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Privacy risks of whole-slide image sharing in
digital pathology

Petr Holub 1,2 , Heimo Müller 3, Tomáš Bíl2, Luca Pireddu 4,
Markus Plass 3, Fabian Prasser 5, Irene Schlünder6, Kurt Zatloukal 3,
Rudolf Nenutil7 & Tomáš Brázdil8

Access to large volumes of so-calledwhole-slide images—high-resolution scans
of complete pathological slides—has become a cornerstone of the develop-
ment of novel artificial intelligence methods in pathology for diagnostic use,
education/trainingof pathologists, and research. Nevertheless, amethodology
based on risk analysis for evaluating the privacy risks associated with sharing
such imaging data and applying the principle “as open as possible and as
closed as necessary” is still lacking. In this article, we develop a model for
privacy risk analysis for whole-slide imageswhich focuses primarily on identity
disclosure attacks, as these are the most important from a regulatory per-
spective. We introduce a taxonomy of whole-slide images with respect to
privacy risks and mathematical model for risk assessment and design . Based
on this risk assessment model and the taxonomy, we conduct a series of
experiments to demonstrate the risks using real-world imaging data. Finally,
we develop guidelines for risk assessment and recommendations for low-risk
sharing of whole-slide image data.

The last decade has seen tremendous advances in the methods avail-
able to pathologists for computer-assisted diagnosis, particularly
thanks to the rapid developments in digital microscopy, which has
reached high interchangeability levels with optical microscopy1; the
whole field has become known as digital pathology2. The availability of
large volumes of imaging and other types of clinically relevant data, as
well as the availability of large-scale compute capacities has resulted in
themassive development of Artificial Intelligence (AI) methods aiming
to support pathologists in the diagnostic process3.

The fundamental data used in this domain are whole-slide images
(WSIs): high-resolution optical microscopy scans of the whole slide of
biological material, resulting in image data typically in the order of
gigapixels or even tens of gigapixels, as shown in Fig. 1.WSIs arewidely
used for purposes ranging from routine diagnostics to development
and application of AI models. The images are commonly stored in
databases linked to other types of the data—e.g., as a part of hospital

information systems—and they are sometimes shared under tight
confidentiality agreements (e.g., ADOPT CRC-Cohort4) or as open data
under the assumption of inherent anonymity (e.g., CAMELYON
competition5,6 or TCGA Digital Slide Archive (TCGA DSA https://
cancer.digitalslidearchive.org/)7. WSIs from the same patients can also
appear in different data sets associated with different data, and these
can be potentially linked.

The process of creating a WSI begins with the acquisition of the
biologicalmaterial froma patient in a surgery or a biopsy. Thematerial
is then cut into blocks that are formalin-fixed and paraffin-embedded
(hence the FFPE abbreviation), which are then sectioned andmounted
onto glass slides and stained (colored) based on the type of the
material and diagnostic methods to be applied—most common stain-
ings being hematoxylin-eosin, van Gieson or various modern immu-
nochemical staining methods. The material is then digitized using a
slide scanner in the visible orfluorescence spectrumusing a small pixel
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size such as 0.250μm/px (generally designated as 20× magnification)
or even 0.125 μm/px (usually denoted 40× magnification). The result-
ing images show the detailed cellular structure of the tissue, as illu-
strated in Fig. 1, and their high resolution results in an image size
typically in the order of gigapixels or tens of gigapixels. In some cases,
the scan can also include a visible patient identifier in the slide label—

e.g., a bar code that could be a patient-related ID or a pseudonym (a
code of the patient used for a particular research purpose). Metadata
in the image file(s) usually also includes details about the scanner and
the settings used for the acquisition.

Given the large amounts of data required for the development of
AI models, developing AI models for digital pathology requires access

Fig. 1 | Examples of WSIs and details at high magnification. (a) Prostate cancer
biopsy image hasbeen stainedwith hematoxylin-eosin staining and scannedat 20×,
resulting in resolution of approximately 100,000px × 200,000px. (b) Various
types of less common staining methods, left to right: Giemsa, Gram, Alcian Blue

Stain, andWarthin-Starry (silver) stain. All images have the same scale. (c) Example
of the same colon tissue from MIDI and FLASH scanners (scanners specified in
detail in Methods). Both images have the same scale. (d) Example of the con-
secutive slides. Both images have the same scale.
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to large WSI collections, or even assembling collections by pooling
data from different sources. However, the privacy risks related to WSI
sharing have not yet been systematically explored and the practice of
sharing is extremely heterogeneous: from the above-mentioned
approaches considering WSIs low-risk data and sharing them as open
data sets, to the opposite extreme considering them as sensitive as
other clinical data and sharing them only as a part of pseudonymized
data sets under contracts compliant with the applicable data protec-
tion laws, such as the General Data Protection Regulation (GDPR) in
European countries.

Hence, the pivotal question is: what are the privacy risks related
to sharing WSIs and are there any circumstances under which the
risks can be considered low enough to treat the data as anonymous?
At a first glance, it would appear unfeasible to identify the source
individual from a WSI alone, which uniquely refers to the biological
material that has already been removed from the patient’s body and
therefore histological slides and WSIs produced from this tissue
cannot be directly reproduced from the patient. On the other hand,
the WSIs are very large with relatively characteristic tissue struc-
ture, making each image very unique and potentially enabling the
extraction of identifying information. There are also potential arti-
facts, such as slide preparation characteristics, associated data and
metadata and various other factors that can significantly increase
the likelihood with which a WSI can be traced back to its original
FFPE slide and associated data.

Results
In this section, we defineWSI hierarchy and use it for evaluation of the
worst-case probe attack success rate Rs for the various WSI linking
attacks. Rs is a ratio of vulnerable patients to total number of patients,
given that the attacker is using image similarity. Formal definition of

the attack model is the Methods section below. Results from linking
attacks are used to formulate guidelines to releasing WSI data.

Problem statement
We consider the following problem, illustrated in Fig. 2a. Assume that
an attacker possesses a background knowledge consisting of a data set
of patients indexed by a PatientID (for simplicity, we assume that
PatientID is unique) and includingWSI data linked to the patients. Now
the attacker is given another WSI, called a probe, possibly associated
with additional data. We assume that the probe belongs to one of the
patients in thedata set, but theprobe itself does not necessarily appear
in the data set (for instance, with respect to a WSI in the background,
the probe may be a WSI of a different slice cut from the same block of
material obtained from the patient). The aim of the attacker is to link
the probe to the correct donor patient by matching it with a WSI from
the same donor in the background knowledge.

Privacy risks are then given by the additional data associated with
the probes; this additional data can be either derived from theWSIs or
they can be merely associated with the WSIs. If the linking attack is
successful, the attacker can link this additional data to the correct
patient, thus expanding his knowledge about the individual. As a
practical example of how this situation might emerge, consider a
researcher who would like to train an AI model using digital pathology
data to predict the prognosis of treatment result for melanocytic
tumors with and without BAP1 mutation8. For this purpose, the
researcher obtains a pseudonymized data set from Hospital X con-
sisting of WSIs and the associated diagnosis, information about other
cancers, patient outcome, and BAP1 mutation status. Suppose then
that the researcher learns from a colleague at Hospital X that the
institute is contributing data to a public archive, such as TCGA DSA,
where they publish data sets consisting of WSIs and associated rich

Fig. 2 | Illustration of the assumed attack model. (a) Assumed model for data
structure—tabular data with patients in rows and different data types in columns,
demonstrating that different data sets can be linked by aWSI. (b) Illustration of the

probe ground truth function G, which defines which probes belong to which
patients according to the “ground truth” (not known to the attacker):
G(h1) = {ia, ib, ic} and G(h2) = {id}.
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genetic data describing at least the status of several different muta-
tions. Now, suppose that the researcher’s data set and the contribu-
tions to the public archive’s collection contain data from the same
patients—regardless of whether the same WSIs are in both sets. The
researcher might then be able to enrich his knowledge about the
patients in the data set he received from Hospital X by matching
the WSIs with the public data set and linking rich genetic data to the
clinical data he received. Depending on the extent of the information
in researcher’s background, it might be possible tomake a good guess
aboutwhether the patient has been included in the public data set. The
researcher knows that: the patients in the AI data set have consented
for research, they fall within recent year range when the mutations
were already tested, the number of patients with this cancer and
mutation status is low. This information as well as the BAP1 status can
be used to facilitate an attack by more effectively targeting patients
that the attacker is reasonably sure to find in the public data set.
Moreover, this type of scenario is an example where stratification of
patients in personalized medicine leads to creating very small popu-
lations—so small that even specialized regional cancer centers canhave
as few as 5 cases in a year and research is done on individual cases9.
Therefore, the risk of having the researcher access more data than
authorized and approved can become a plausible scenario.

The privacy risks associated with sharing this type of data can be
seen as composed of two orthogonal dimensions: the likelihood of a
successful attack and the harm resulting from a successful attack. As
stated in the problem statement in the previous paragraph, this work
focuses on the analysis of the likelihood dimension for linking dis-
closure attacks, where the WSIs can act as a key for linking different
data sets—i.e., linking the WSIs in background knowledge to the set of
WSI probes, possibly associated with additional data. On the other
hand, the harm dimension represents a generic problem and depends
on the type and total amount of information that the attacker is able to
link to the same PatientID, drawing from both probes and their asso-
ciated data as well as the attacker’s background knowledge. While the
harm aspect is not part of our attack model and experimental eva-
luation, it is still considered in the guidelines developed in the Dis-
cussion section of this paper.

In this work, we consider the following crucial questions. (1)
WhichWSI canbe used by the attacker as a potentially effective probe?
We introduce a hierarchical taxonomy capturing “closeness” of dif-
ferent WSIs with respect to their linking potential, starting with

identical WSIs, progressing through different scans of the same slide
and WSIs coming from tissues with different degree of spatial or
temporal closeness. (2) How to quantitativelymeasure likelihood of an
attacker’s success? We introduce a metric, which measures the prob-
ability of successful identification for deterministic attacks and which
can be easily extended to randomized attacks.

Based on themetric and the slide hierarchy, we perform a series
of experimental evaluations using state-of-the-art image similarity
techniques, to demonstrate that the attacker’s likelihood of success
depends on the slide’s location in the taxonomy. The experimental
evaluation utilizes the extensive WSI collections of the Medical
University Graz and the Masaryk Memorial Cancer Institute to
evaluate likelihood of a successful attack in real-world settings. We
outline guidelines for the conscientious sharing of WSI data,
encouraging the advancement of data-driven research while pro-
tecting the identity of the individuals from whom the tissue was
originally obtained. Our risk assessmentmethodology also provides
practical approaches for data controllers to perform related ana-
lyses for their own data sets.

WSI hierarchy
To analyze WSI linking attacks, we need to examine the factors in the
image generation process that can make two WSIs—i.e., one in the
attacker’s background knowledge and one a probe—moreor less easily
linked to each other. The first factor is when and fromwhere the tissue
on the slide was extracted. We introduce the following spatiotemporal
hierarchy of cases, ordered by decreasing potential image similarity:
(1) WSIs of the same slide scanned with different parameters

(including age of the slide at time of scanning, scanning para-
meters such as resolution, type of scanner, etc.; see Fig. 1c);

(2) WSIs fromthe same tissue block—which canbe further divided into
consecutive (adjacent, see Fig. 1d) vs. distant slides;

(3) WSIs from the same primary sample, defined in ISO/DIS
20658(en), Definition 3.17, as “a discrete portion of material,
intended for examination, study or analysis of one or more
quantities or properties. It is retrieved during an acquisition
procedure such as a surgery or a biopsy.”; the same primary
sample can be divided into multiple different blocks;

(4) WSIs from different primary samples (such as the primary tumor
site, the lymph node, the metastasis) from the same patient taken
at the same time;

Fig. 3 |Rs on tissue slides scannedondifferent scanners. In this experiment theRs

has a low number of distinct values and hence we are providing full results visua-
lized as a bar plot with the number with counts of misclassified results. The Rs is on
the horizontal axis; the bold numbers under the bars indicate number of

misclassified patients (i.e., 1 - number of f-vulnerable patients); the vertical axis and
the small number above the bar indicates the number of occurrences out of total
Y = 40 independent experiemnts on X = 28 slides as described in (E-1) and Statistics
and Reproducibility.
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(5) WSIs from different primary samples from the same patient taken
at different times, which can also relate different diagnoses of the
same patient.

The second factor in the image generation process affecting
image similarity is the staining applied in slide preparation. We intro-
duce the following hierarchy of staining cases, ordered by decreasing
potential image similarity, which can be combined with the spatio-
temporal hierarchy to reason about risks:
(1) (H-a) WSI slides from the same staining batch;
(2) (H-b)WSIs fromdifferent staining batches using the same staining

method;
(3) (H-c) WSIs from slides stained using different staining methods

(e.g., H&E vs. DAB-based immunohistochemistry vs. van Gieson).

This hierarchy led to the design of experiments further denoted
(E-1) for the same slides scanned on different scanners corresponding
to (H-1), (E-2a) for consecutive slides and (E-2b) non-consecutive slides
from the same block (H-2). Details of the expreriment setup is in the
Methods section below. Hierarchy elements (H-3), (H-4), and (H-5)
were not experimentally evaluated as the methods tested already
showed a dramatic decrease in Rs even in (H-2), with increasing spatial
distance of slides from the same primary sample. Peformed experi-
ments included both linking attacks on full WSIs where the linking can
use also the overall shape of the tissue on the slide, and crops that are
only showing internal part of the tissue.

Results on WSI linking attacks
First, we present results of linking attacks on entire WSIs. Fig. 3 pre-
sents the histogram of Rs values measured in experiment (E-1), which
measures the effect of the different slide scanning conditions on Rs.
The results show thatWSIs of the same tissue acquired using different
scanners are very similar and can be used in a successful WSI linking
attack.

Figure 4 presents the box plots of the Rs values measured in
experiment (E-2a), which tests WSI linking attacks using WSIs of con-
secutive slides scanned under the same conditions. The high feature
similarity of consecutive slides also leads to successful WSI linking
attacks in this case—if using the right neural network as a feature
extractor. So, in this case as in (E-1), different WSIs can be easily linked
to violate privacy of the patient.

Finally, Fig. 5 presents the box plots of the Rs values measured in
experiment (E-2b), which tests WSI linking attacks using WSIs of non-

consecutive slides as shown in Fig. 1d. We have measured the effect of
the spatial distance between the probe WSIs and the patient’s “pivot”
WSI on the Rs value by varying the minimum distance threshold l from
3mm to 18mm. Note that the larger the distance between cuts, the
fewer WSIs are available as probes; hence the plot also shows the
average number of probes per patient. As expected, the attack success
value Rs decreases with the increasing physical distance of cuts, as can
be seen from drop in Rs shown in the figure.

As the efficiency of our similarity-based linking method appar-
ently depends on the number of patients and the number of probes for
each patient, we have evaluated the effect of these parameters on the
Rs value in the case of non-consecutive slides—i.e., in experiment
(E-2b).

For evaluating the dependency on number of patients, we select a
random subset of n patients and, for each patient, we randomly select
one slide and insert it intoB, while we insert the rest of their slides inP;
we then measure the corresponding Rs value. We performed this
process 40 times for every number of patients nbetween 1 and 80. The
resulting Rs statistics are presented in Fig. 6a. Given the prosecutor
attack model, the Rs ≈ 1 for small number of patients (<5) and drops to
still significant Rs ≈0.5 for themaximum of 80 patients in our data set.

For evaluating the dependency on the number of probes per
patient, we tested attacks varying the number of probes per patient
from 1 to 6. For this experiment, from our data set we selected the set
of patients with at least 7 slides, leaving us with 43 patients (hence the
maximumof 6 probes per patient tested, as increasing this upper limit
further would dramatically decrease number of patients available for
the experiment). For a given number of probes to be tested p, for each
patient we randomly selected a subset of p + 1 slides; of these, a ran-
dom slide is placed in B, while the rest are placed in P. We then pro-
ceed with the measurement of Rs. The experiment was repeated 40
times for each number of probes p. The resulting Rs statistics are
shown in Fig. 6b. One can observe that Rs increases substantially with
the number of available probe slides p. This effect is explained by the
random slide selection process—increasing p increases the probability
of including a “strong” probe slide that falls in the hierarchy case (H-2)
with low distance, for which the attack implementation has shown to
bemost effective (see Fig. 5). This effect implies an increasing residual
risk as more WSIs from the same block of tissue are released, even if
they are sampled far from each other.

In order to examine linking attacks when overall shape of a WSI
cannot contribute to extracted features and hence to the similarity, we
present results for linking WSIs cropped to an internal tissue only as

Fig. 4 | Rs on consecutive slides, with different feature extraction models and
cosine distance—as measured in (E-2a). Except for when using the Inception
model as a feature extractor, the attacks were almost always able to successfully

link probe slides to the correct donor patient. Done on X = 151 slide pairs in Y = 40
independent experiments. Boxplot settings is described in Statistics and
Reproducibility.
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shown in Fig. 7. Figure 8 summarizes our results on cropped WSI
linking attacks measured on consecutive slides in experiment (cE-2a).
Rs decreases only slightly when compared to the results of experiment
(E-2a) in Fig. 4 (i.e., WSIs of consecutive slides scanned under the same
conditions). When comparing results of Inception, we can see that
cropping tissue actually significantly increases Rs; we assume this is
caused by the changes in shape/border of the tissue on consecutive
slides, to which this feature extractor seem to be more sensitive
compared to other extractors.

Similarly, we have also tested attacks on cropped WSIs of non-
consecutive slides in experiment (cE-2b); results are summarized in
Fig. 9. Compared with results of experiment (E-2b) in Fig. 5 on whole
non-consecutive images, there is again a slight decrease in Rs. Crop
shifts have not been evaluated for non-consecutive slides, as the slide
distance on cropped slides already drives Rs down to minimal levels
and shifting has marginal room for effect.

We can summarize that the success of a (full) WSI linking attack
using the presented methods does not depend significantly on the
availability of the border and on the overall shape of the tissue, but the
internal structure of the tissue is sufficient. The used attack model
implementation is also relatively insensitive to small shifts in the crop
area. Only after shifting by 50 pixels (area overlap 71% to 78%
depending on the shift direction) or more, the Rs value deteriorates
below 0.8 for all extractors except SimCLRv2, where the significant
drop starts only at 75 px (area overlap 58% to 67%). This is expected
behavior as SimCLR/SimCLRv2 are trained using random image crop-
ping as a part of stochastic data augmentation.

Discussion
WSI are a specific category of data from the privacy risk per-
spective. In this paper, we have primarily focused on linkage
attacks, which may lead to unintentional identity disclosure or
enable inferring additional information about the data subjects.
As demonstrated by our experimental results, with a relatively
straightforward attack model, the potential for identical WSIs to
act as links across different data sets is substantial; likewise for
WSIs generated from the same or from closely spatially related
physical slides. Additional insight into risks could be obtained by
organizing an international competition, where different teams

could propose and compare potentially stronger attack methods.
The authors propose to organize such a competition using the
attack model presented in this paper to develop and test proper
technical safeguards for protecting WSI data donor privacy.

Moreover, an aspect which has not been a specific focus of this
paper, apart from generic feature extraction, is howmuch information
can be inferred directly from WSI data—i.e., what additional informa-
tion can be inferred from the “fingerprint” itself. Many AI models have
been developed to infer diagnoses (see survey by Pocevičiūtė et al.10)
and disease-specific scores such as a UICC stage for colorectal cancer
or a Gleason score for prostate cancer11,12. But AI models have been
shown to also recognize less apparent features, such as information on
particular mutations13–16 or even yet unknown morphological features
of prognostic significance11. Inferring such information might be used
to further improve linkage attacks (e.g., if mutation information is
known to the attacker) or to infer additional information about the
data subjects, such as clinical or genomic data. When releasing WSI
data as a part of bigger data sets, the likelihood of inferring sensitive
data should be taken into account; this aspect is considered in the
proposed guidelines presented in the following Section. This is rele-
vant primarily when releasing the data as de facto anonymous data
sets, where it can be correlated with other data sets in the future (e.g.,
genomic data).

To summarize, given the experimental findings and the additional
considerations presented in this text, when WSI data is to be released
across different public data sets—i.e., without controlled access
and additional contractual responsibilities—caution needs to be exer-
cised to mitigate privacy risks. At the same time, we acknowledge the
need tomaximize openness of data and tomake large volumes of data
available for the development of AI models and other research that
have the potential to significantly improve health care. Hence, we
propose the risk assessment models and data release guidelines for
WSIs presented in the following Section.

When releasing data sets containing WSIs, it is desired to publish
them as openly as possible to support their reuse, but also to keep the
data as closed as necessary. In the following subsections we define the
relevant terminology, discuss risk assessment aspects, and propose
two sets of guidelines: the first for releasing WSI as de facto anon-
ymous data sets, and the second for releasing pseudonymized (or even

Fig. 5 | Effect of distance between probe and target slides on Rs measured in
experiment (E-2b) on attacks using non-consecutive slides. The labels on the
vertical axis denote theminimumdistance threshold l (in mm) and, in parentheses,
the average number of probes available per patient (p/p), which decreases with

increasing threshold l. Set of total of X = 558 slides for 80 patients (subset selected
based on distance tested) was used in Y = 20 independent experiments. Boxplot
settings is described in Statistics and Reproducibility.
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identified) data set under a contractdefining appropriate technical and
organizational safeguards. Note that the privacy risk analysis in this
paper is independent of any particular jurisdiction. We do, however,
anchor the guidelines developed below to the terminology established
by the GDPR.

The notion of de facto anonymity captures the idea that it is
reasonably unlikely that the person subject of the data could be
identified. We can examine the notion in more detail by reading the
GDPR. In recital 26 it defines anonymous information as:

…information which does not relate to an identified or identifi-
able natural person or to personal data rendered anonymous in
such a manner that the data subject is not or no longer
identifiable.

To understand this definition, we need to understand what con-
stitutes personal data andwhatmakes a person identifiable. The GDPR
defines personal data in Art. 4 (1) as:

Fig. 6 | Effect of the number of patients and number of slides (probes) on Rs.
Figure (a) shows the Rs measured in attacks ondata sets including data from 1 to 80
patients. On the other hand, Figure (b) shows the observed growth in Rs as the
number of available probes increases—from 1 to 6 in these experiments. These two
experiments use non-consecutive slides (H-2) described in (E-2b). Set of total of

X = 558 slides for 80patients (subset selectedbasedon number of patients or slides
tested) was used in Y = 40 independent experiments. Note that, as in the other
figures in this article, these modified box plots show median, quartiles, and
min/max.
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Fig. 8 | Effect of the crop area shift onRs for croppedWSI of consecutive slides.
We observe that attacks are relatively insensitive to small shifts in the crop area;
only after shifting by 50px (area overlap 71% to 78% depending on the shift

direction) ormore, theRs value deteriorates significantly. Set of total of X = 151 slide
pairs was used in Y = 40 independent experiments. Statistical evaluation and box-
plot settings is described in Statistics and Reproducibility.

Fig. 7 | Examples of consecutive slides used for cropped WSI linking attacks
without shift andwith a shift. Figure (a) demonstrates croppedWSIwithout shift,
(b) shows a shift of 50px. The overlapping area of the images with a 50px shift is

71% to 78%, depending on the shift direction. Note that the images shown are
already downscaled to fit the input of the network, as described in Design of
Experimental Evaluation of WSIs Linking Risks. Both images have the same scale.
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“‘personal data’ means any information relating to an identified
or identifiable natural person (‘data subject’); an identifiable
natural person is one who can be identified, directly or indir-
ectly, in particular by reference to an identifier such as a name,
an identification number, location data, an online identifier or to
one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that
natural person”.

Finally, recital 26 of the GDPR also provides important informa-
tion on how to decide whether a natural person is identifiable:

“To determine whether a natural person is identifiable, account
should be taken of all the means reasonably likely to be used…
To ascertain whether means are reasonably likely to be used to
identify the natural person, account should be taken of all
objective factors, such as the costs and time required for iden-
tification, taking into consideration the available technology at
the time of the processing and technological developments.”

Further, according to the Art. 29 Working Party (predecessor
of European Data Protection Board under the GDPR) even orga-
nisational measures can influence the status of anonymity (Art. 29
WP opinion 136, concept of personal data, p. 17), since identifia-
bility depends on the background knowledge of potential
attackers: the same data might be anonymous in one setting and
personal data in another. Examples of such organizational mea-
sures include: access control and contractual obligation to not re-
identify research participants, to not share the data with third
parties, and to make them internally accessible only under con-
fidentiality obligations, provided that the contractual party is
reliable and able to fulfill those obligations.

To summarize, the stance taken by the GDPR is that anonymity is
not an absolute value; it follows that absolute anonymity once and
forever with zero risk of re-identification is not required by the GDPR.
Instead, certain residual risks are acceptable and can be calibrated
against the sensitivity of the data in respect to the impact of privacy
breaches for the data subjects. This is captured by the notion of de
facto anonymity.

Based on the risks demonstrated in the previous sections, we
define recommendations for releasing WSI data as de facto anon-
ymous data or as pseudonymized data, based on the concepts of data
protection in European GDPR framework.

Guidelines for releasing WSI as de facto anonymous data
The following technical and organizational measures shall be con-
sidered before releasing WSI data in de facto anonymous data sets.

A1.Minimize metadata. Each WSI shall be stripped of any patient-
identifying metadata. Technical metadata related to scanning pro-
cesses should be reviewed and minimized for the given purpose (e.g.,
removing location identifiers if present, but retaining information on
scanning parameters).

Rationale: Patient-identifying metadata, such as health insurance
identifiers, would be a direct source of a patient’s identity. Similarly,
hospitals often use unique identifiers for the histopathological pro-
cess, which is a unique patient identifier with one or more levels of
indirection. Many relatively identifying technical metadata, such as
serial number of the WSI scanner and location metadata, are typically
not strictly needed or used for research activities with WSIs. This fol-
lows directly from the nature of the metadata and needed not be
considered in the experiments presented in this work. Note that
removal of patient-identifying metadata implies breaking provenance
chain and hence traceability of data, as discussed in the provenance
information management paragraph below. It also disables handling
incidental findings.

A2.Dissociate frompatient records. Both theWSIs to be released in
a de facto anonymous data set and their originating slides must be
dissociated from the patient records (except for the data which is
released in the samede facto anonymous data set and is also subject to
anonymization).

How the dissociation is done depends on the context of the de
facto anonymization. It can be done using a legally enforceable con-
tract preventing the recipient of the data fromaccessing the link. If this
is not possible, the dissociation has to be done by removing all refer-
ences between the WSIs/originating slides and any patient records in
the data holder’s/controller’s information systems.

Rationale: Experiment (E-1) demonstrated that WSIs generated
from identical physical slides on different scanners (i.e., (H-1)) can be

Fig. 9 | Effect of distance between cropped, non-consecutive probe and target
slides on Rs, measured in experiment (cE-2b). The labels on the vertical axis
denote theminimum distance threshold l (in mm) and, in parentheses, the average
number of probes available per patient (p/p), which decreases with increasing

threshold l. Set of total of X = 558 slides for 80 patients (subset selected based on
number of patients or slides tested) was used in Y = 20 independent experiments.
Boxplot settings is described in Statistics and Reproducibility.
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trivially linked. Hence, not only is the dissociation of WSIs necessary,
but the originating slides must also be dissociated, so that it is no
longer possible to release additional patient data that would be asso-
ciated with that anonymized slide or its WSIs.

A.3. Consider combinations with other data sets. (a) If a WSI is
released into more than one de facto anonymous data set, all corre-
sponding records (i.e., WSI and data linked to it) in these data sets shall
be considered linked. Rationale: This follows from ability to do bit-by-
bitmatch of identicalWSIs ormore effectively by comparing hashes of
WSIs as discussed in Characterization of privacy risks considered. (b) If
the sameWSI is released into a de facto anonymous data set and other
non-open data sets, gaining information from the de facto anonymous
data set is technically trivial for the recipients of the non-open data set
and must be considered from the risk assessment perspective. Ratio-
nale: This follows from ability to do bit-by-bit match of identical WSIs
or more effectively by comparing hashes of WSIs as discussed in
Characterization of privacy risks considered.

Note that this may be a complex task when data releases can be
done by different organizations—e.g., when a chain of data controllers
is set up, in which several controllers are allowed to further release the
data in whole or even just in part.

A4. Slides from the same block. If the WSI is a part of a series of
consecutive slides, the same rules A1–A3 on dissociation apply to the
whole consecutive WSIs stack and corresponding original slides.

Rationale: Experiment (E-2a) linking consecutive slides using
common feature extractors showed high risks of linkage; even crops
from the consecutive slides in experiment (cE-2a) were demonstrated
to provide very good linkage if the overlap of areas is higher than 70%.
For non-consecutive slides in experiment (E-2b) and their crops (cE-2b)
the linking capability is much lower and decreases rapidly with the
distance between slides in the stack (Fig. 5 and 9), with increasing
number of patients, (Fig. 6a) and with decreasing number of slides per
patient (Fig. 6b), though we can realistically anticipate improvements
of the matching methods in the future. When only releasing distant
non-consecutive slides, precaution needs to be taken for future data
releases, so that intermediate slides are not released in other data sets.
In the extremecase, thiswould result in consecutive slides being found
in different data sets and matched easily. As a further consequence,
FFPE tissue blocks from which multiple slides can be generated also
have to considered as a means for generating linking information.

Note: If effectivemethods for linkingmore distant elements in the
slide similarity hierarchies are developed in the future—i.e., for (H-3) to
(H-5) or for different staining relationships (H-a) to (H-c)—this recom-
mendation will be affected and will need to be expanded to cover
new risks.

A5. Consider information inference risks. The probability of suc-
cessfully inferring information from the WSIs shall be considered and
in case that such information could practically lead to singling out a
patient, the WSIs shall not be released as anonymous material. Exam-
ples include rare cancer diagnoses and raremutations, where inferring
these and their combinations from a WSI might narrow down the
number of possible donor patients dramatically and even lead to sin-
gling out individuals. Qualified risk assessments need to be carried out
according to state-of-the-art methodologies (e.g., those by Ohmann,
et al.17 or by El Emam18).

Rationale: As discussed above, there is increasing body ofwork on
deriving information from WSIs. The state-of-the-art needs to be
monitored and information derived with high reliability should be
considered as if it is accompanying the WSI. Hence, a risk assessment
needs to be done for the compound of the WSI and the derivable
information.

A6. Consider small populations. When releasing slides from small
(sub)populations, such as in case of rare diseases or highly stratified
major diseases, for which inclusion criteria of the cohort may already
indicate very low number of patients included, the risk assessment

must consider this aspect. A rare disease diagnosis itself, for example,
may already act as a partial identifier. A decision must be taken as to
whether releasing the data as a de facto anonymous data set is
acceptable, considering that an attacker may gain knowledge about
members of the population from other sources, and what harm can be
caused by deriving information from the de facto anonymous data set.

Rationale: Results in Fig. 6a show that with the prosecutor attack
model, when the attacker knows the patient is in the data, the success
rate increases rapidly for small populations. The prosecutor model
implements the worst-case scenario for small populations, where the
attacker gains membership information elsewhere and has it in his
background knowledge.

A7. Contract setup. When releasing data as de facto anonymous, a
legally enforceable contract shall be in place between the data con-
troller and the data recipient, which prohibits re-identifying data
subjects and/or inferring data about any specific individuals. This is a
legal measure to mitigate residual risks, such as risks arising from the
development of novel re-identification techniques for WSI data. Such
legalmeasuresmay include limiting thepurposeof thedataprocessing
as well as setting time constraints for the processing in order to
manage risks related to the development of newmethods in the future.
It is recommended that the contract anticipates reproducing research
results: instead of requiring the deletion of the data by the recipient
after completing the research, it should allow the data to be kept for
archival and reproducibility analysis/testing purposes.

When releasing WSI data in an open data set (e.g., publicly
downloadableon the internet), at least a lightweight contract, suchas a
licence agreement for the data set, shall be implemented to which the
recipient of the data set must actively agree.

Note to A5 and A6: These guidelines should not be interpreted as
preventing sharing of WSIs from rare disease patients, but only relates
toprecautions to be taken for sharing data as de facto anonymous. The
rare disease patients are known to be highly interested in the medical
research that could help them and fellow patients and are generally
positive to FAIR data sharing or even open data sharing19. Such data
should be shared as personal data with the necessary awareness about
the risks and adequate technical and organizational measures (see
below). For other vulnerable or low-incidence patient populations, the
attitudesmight be less positive to data sharing and, hence, sharing the
data as personal data with adequate measures in place is even more
important in order not to compromise the trust placed by themon the
researchers.

Guidelines for releasing WSIs as personal data
When there is a legal basis for processing personal data for a particular
purpose, it is recommended to release the WSIs and any other
necessary linked data as personal data that is not anonymized. Of note,
releasing data as personal data (even if pseudonymized) has the
advantage of enabling research results to be fed back to the donors—
for instance in the form of acting on incidental findings to prevent the
development of a disease not yet known to the donor. The following
technical and organizational measures shall be considered before
releasing WSI data as personal data.
1. Regulate data transfer and/or processing with a legal contract.

Use a legally enforceable contract to regulate the conditions
under which access to the personal data is granted. Under the
GDPR, this can be a data transfer agreement (i.e., establishing
controller to controller data transfer) or a data processing
agreement, regulating the data processing activities that are to be
performed on behalf of a data controller.

2. Pseudonymize and minimize the data set. Direct patient identi-
fiers should be replaced by pseudonyms. The data set should be
minimized for the purpose for which it is being shared.

3. Safeguard data via technical and organizational measures. Pro-
cessing of personal data is typically safeguardedby a combination
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of technical measures (e.g., encryption of transmission channels
and storage, network protection mechanisms, mechanisms for
data destruction after termination of the contract) and organi-
zational measures (e.g., organizational life cycle of the data,
restriction of access to defined personnel and having appropriate
contracts setup with each person authorized to access the data),
which are defined in a contract between the provider and reci-
pient(s) of the data. The contracts also need to restrict the pur-
pose of use and define requirements data processing.

4. Consider information leakage from AI models. When AI models
are developed using WSI data, it needs to be ensured that the
model does not leak personal information learned from training
data (see, for instance, the work by Shokri et al.20). Methods like
PATE21 can be used to mitigate these risks.

Provenance information is an important aspect of trustworthy
data with defined and analyzable quality22. For personal/pseudon-
ymous data sets, provenance information can lead back to the origi-
nating biological material, but the link to the donating patient can
typically only be resolved by authorized personnel at the source
organization. When releasing de facto anonymous data sets, prove-
nance information can only start with the anonymization process and
cannot link to the originating data (this link must be intentionally and
permanently destroyed).

Please note that our guidelines only consider aspects specific to
WSI data, and they need to be complemented by relevant common
best practices for processing personal data. Under GDPR this entails
that there has to be a legal basis for processing personal data, such as
consent or performance of a contract (list of possible legal bases is
specified in Art. 6 of GDPR) and the data subject needs to be able to
exercise their rights (e.g., right to be informed, rights of access, rec-
tification, erasure, restricting processing). Moreover, though anon-
ymized data is not personal and processing it does not require a legal
basis, the anonymization process itself—i.e., generation of anonymized
data from personal data—is just a specific form of personal data pro-
cessing and, if done, there needs to be a legal basis for it, too. The
details of the process are dependent on the relevant jurisdiction and
are outside of the scope this article.

Methods
Characterization of privacy risks considered
In our model we consider privacy risks caused by WSIs acting as
accurate or approximate links across data sets. The attack model
assumes that an attacker that has a background knowledge, including
WSI data, receives a WSI probe with associated additional data. The
attacker tries to correctly assign this probe to the patients in the
background knowledge. This operation can be performed determi-
nistically—e.g., based on image similarity. Note that the deterministic
assignment is a special case of the randomized one where each probe
is assigned to a single patient with probability one. We demonstrate
how the deterministic model can be extended to a randomized one,
but this is not necessary for the experimental evaluation used in
the paper.

The intuition behind the metric. We define the attack success rate to
be the proportion of the patients in the attacker’s background
knowledge that are correctly guessed from available probes. This
means the fraction of patients correctly assigned by an attack f to at
least one of their probes and thus potentially compromised.

Definition of themetric for deterministic attacks. Consider a setH of
patients and a set P of data probes that the attacker is trying tomap to
the patients in H. Given a patient h 2 H, the attacker may acquire a
probe belonging to the patient.Wedefine the probe ground truthG as a
function which assigns a set of possible probesG(h) to every patient h.

Formally G is defined as G : H ! 2P , where 2P is the set of all subsets,
so called powerset, of P. In our case G(h) consists of all publicly
availableWSIs of the patienth. The probe ground truth is not known to
the attacker.

Consider an attack f : P ! H on the identity of the patient h
using the probe p. That is, given a probe p, the attack f assigns a patient
f ðpÞ 2 H to the probe p. We say that a given patient h 2 H is
f-vulnerable if there is a probe p∈G(h) such that h = f(p); that is, if at
least one of the probes of the patient h is correctly assigned to h by the
attack.

We define worst-case probe attack success rate by

Rsð f Þ=
number of f �vulnerablepatients

∣H∣
ð1Þ

i.e., ratio of number of f-vulnerable patients to total number of
patients. This equivalent to the common definition of success rate as
defined in23.

Observe that there is always a perfect attack f under which all
patients are f-vulnerable: a perfect attack simply assigns correctly a
patient to at least one of his/her probes. However, such an attack
cannot be practically implemented as attackers typically have limited
background knowledge. Sowe consider families of possible attacks, an
attack domainF , based on the type of the background knowledge and
algorithms used for the probe-patient assignment. In this work we
consider attack domain F , in which attacks map probes to patients
according to theWSI similarity. However, the abovedefinedmetric can
be understood in a more general sense as a method of measuring an
attack on partially anonymized data sets using publicly available data.

Application to WSI linkability risks. In this paper we apply the metric
to the analysis of linking risks related toWSI data. The attacks f 2 F are
implemented by various types of algorithms that are able to determi-
nistically assign WSI probes to patients with WSIs in the attacker’s
background knowledge utilizing image similarity (attack domain F ).
The analysis assumes the attacker does not have any explicit infor-
mation about the mapping of the probes P to patients in H. The
resultingRs is a proportionof patients forwhich given attack f is able to
link WSI from the probes to the WSI from background knowledge.

Note that an attack f : P ! H is determined by three compo-
nents: set of patients in attacker’s background knowledge H, set of
probes P, and set of algorithms implementing the assignment of
probes to patients. From a practical perspective, in order to analyze
the risks we need to establish relationship between WSIs which might
appear in the attacker’s background knowledge and in set of probes.

Now note given the large size and detailed tissue structure of
WSIs, it is reasonable to expect that if an identical WSI appears in both
sets, a trivial bit-by-bit comparison algorithm would be able to assign
this probe to the correct patient deterministically and unambiguously.
Comparing larger data sets can be made more efficient by using
cryptographic hash functions on each WSI and comparing resulting
hashes. But towhat extent does this apply also to otherWSIs related by
spatial or temporal relation to a single patient? In order to have basis
for such analysis, we develop a taxonomy of WSI relations in WSI
hierarchy.

Possiblemodel extensions. The abovemetric can also be generalized
in several ways. (a) One may consider randomized attacks, where the
attacker no longer deterministically assigns probes topatients butmay
instead employ randomness in the choice: from random or fixed
assignments of probes to patients without considering the content of
each probe (probably not really useful except very small data sets with
very privacy-threatening background knowledge) to any type of ran-
domized algorithm. In such a case we would measure the worst-case
probability (i.e., highest possible probability) of hitting the right
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patient. (b) Patients may be assigned prior probabilities (weights)
based on their priority/availability (e.g., more vulnerable patients
might be prioritized by the attack model designer, such as persons of
public interest, for whom the attack is causing more harm); that is,
define πh∈ [0, 1] for each patient h 2 H so that

P
h2Hπh = 1, and then

define Rs(f) to be the sumof probabilities of all f-vulnerable patients. In
our basic definition above, the probabilities are uniform—that is,
πh = 1=∣H∣ for every h 2 H. (c) Probes in G(h) may be assigned prob-
abilities of being revealed to the attacker. Our basic definition of Rs(f)
would then be the expected number of f-vulnerable patients when a
probe is chosen randomly for eachpatient. Presenceof patient priorπh

allows us to express additional knowledge about the patients. For
instance if the attacker can improve patient estimates based on their
geographical location: e.g., due to source hospital being in attacker’s
backgroundknowledge and theprobes coming froma knownhospital,
we can introduce patient prior based on thematch of source hospitals
to model increased vulnerability of patients with matching hospital.

This extension maps to the formal frameworks of Quantitative
Information Flow24,25, where the secret is X = fðh1,paÞ,ðh2,pbÞ, . . . g with
the prior distributions, the communication channelC is the release of a
probe p 2 P, i.e., C(h, p) = p, and the attacker is trying to guess the
secret (h, p) using a possibly randomized algorithm, which may utilize
his background knowledge.

The analysis can be extended to other types of data. The back-
ground information as well as the probes can contain additional data
types—e.g., phenotypic, clinical, omics, or other types of imaging. The
attackmodel allowsdescribing this as the attackdomainF can contain
attack algorithms utilizing these additional data types. However, these
attacks have been studied elsewhere in the literature and are not
subject of this paper, which focuses on developing recommendations
for WSI data.

Furthermore, when considering WSIs from the privacy risk per-
spective, it is useful to consider them in terms of the conditions
required for any variable to be considered an identifier26: distinguish-
ability, replicability, and availability.

Distinguishability refers to the ability of the data to act as a fin-
gerprint distinguishing the donor. One WSI is always distinguishing
using direct bit-by-bit comparison; hence when the same WSI appears
in two data sets, they are directly linkable. For different WSIs with
increasing distance in the hierarchy (H-1)→ (H-5) and to lesser extent
also (H-a)→ (H-c), each one of them is still individually distinguishing,
but their linkability may decrease. The decrease in linkability between
the (H-1) and (H-2) classes is demonstrated in the experimental part of
this paper.

Replicability refers to what extent one can reproduce the data—
either in succession or, more importantly, in more distant points in
time. For WSIs the replicability is likely to decrease rapidly with
increasing distance in spatio-temporal hierarchy. If the same slide is
physically available (H-1), it can be scanned again, resulting in a WSI
very similar to the previously obtained WSI from the same slide, with
small differences related to aging of the slide (fading of staining),
differences in physical preparation for scanning (e.g., dust particles),
and properties of the scanner. Other means to replicability imply
producing multiple very similar slides from different biological mate-
rial. If different slides from the same block of tissue are used (H-2), the
biological structures are not identical and the near perfect replicability
is impossible. However, even imperfect replicability can still lead to
linkability, as demonstrated later in this paper. For more distant tem-
poral relation (H-5), replicability is unlikely due to the previous mate-
rial being fixated in the slide preparation process, while new biological
material remaining in the patient’s body is subject to further biological
development (e.g., natural growth, shrinkage/dying as reaction to
treatment), making new samples diverge from previous ones. In
addition, regarding tumor tissue, this is intentionally removed during

surgery, hence new relevant material is no longer available in the
patient’s body subsequent slide replication.

Availability (also sometimesdenoted as “knowability” in European
Medical Agency guidelines27) describes the extent to which the data is
accessible to potential attackers. Availability of WSI data has been
evolving recently: a decade ago, the WSI was mostly limited to diag-
nostic purposes, if available as digital imaging at all. Some digital
imaging has been used for education and training of medical
professionals28–30, but not to the extent of substantially increasing
likelihoodof identification except for diseases that are so rare that they
already identify the patient. The above mentioned CAMELYON com-
petitions demonstrated, however, how the situation is changing due to
the demands and hopes put into development of novel AI methods to
support cancer diagnosis and treatment; data are becoming rapidly
available either under contracts or even as open data sets, thus sub-
stantially increasing availability.More recently, somepublicly available
data sets, such as PCam31, have been made available as (labeled) tiles,
instead of full WSI. This was done primarily to simplify training in tile-
based AImodels, but as a side effect it can also decrease linking risks if
only limited number of tiles is released from each contributing WSI.
Tile-based approaches are also considered in the experimental
evaluation below.

Design of experimental evaluation of WSIs linking risks
Theattackermodel implementation.We consider attackers assigning
WSI probes to a patient’s WSIs using similarity measures on features
extracted from WSIs using common deep learning methods. Specifi-
cally, we assume that the attacker is given a WSI probe p (i.e., probes
consisting of WSI data only) and a background knowledge of WSIs
b1, . . . ,bn 2 B associated to the patients h1,…, hn, respectively. Then
the attacker proceeds as follows:

• Apply feature extractor to all WSIs, obtaining feature vectors
w½p�,w½b1�, . . . ,w½bn� 2 Rk corresponding to the WSIs. Here k is
the number of features extracted from eachWSI and is typically
in the thousands.

• Apply similarity measure M to all pairs of vectorsw[p] andw[bi],
obtaining M(w[p],w[bi]) for all 1 ≤ i ≤ n.

• Assign the WSI probe p to the patient with the WSI bi with the
maximum M(w[p],w[bj]) among all b1,…, bn, i.e., such that

i 2 argmax
j

Mðw½p�,w½bj�Þ∣ j = 1, . . . ,n
n o

ð2Þ

In case that argmax containsmore than one index, we select the
smallest one.

The implementation of the attack model is based on the “prose-
cutor model”18,32—i.e., attacker knowing or assuming that the patient is
in the background.

Feature extraction. The purpose of the feature extraction is to
squeeze the high-dimensional WSIs into numerical vectors of smaller
dimension. A conventional approach is to use a trained deep neural
network model which takes images as inputs and outputs their vector
representations, while preserving important features of the WSIs. To
implement the feature extraction and to demonstrate variability in
efficacy between different extractors we consider the following neural
network models pre-trained on the ImageNet data set33:

• ResNet34 – output dimension 2048 features;
• VGG1635 – output dimension 25,088 features;
• Inception – output dimension 51,200 features;
• Img2vec36 – a Python package that uses a pre-trained ResNet

network to extract features of the dimension 512;
• SimCLRv237 – fine-tuned model on 100% of labels with output

dimension of 8192 features;
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In addition, we have also included a specialized VGG16
feature extractor (denoted VGG16histo) that has been trained
specifically for prostate cancer diagnosis38 and achieves state-of-
the-art diagnostic performance; this allows comparison of the
generic ImageNet-trained VGG16 extractor with a very specialized
extractor focused on detailed tissue structures to detect cancer
patterns. These models from computer vision demonstrate their
ability to relate slides which are nearby in the hierarchy, namely
classes (H-1) and (H-2). In each of these cases, we remove the top
layers of these networks, that originally solve image recognition
problems, and use their internal representations of the input
WSIs as feature vectors. Note that each WSI needs to be either
downscaled or cropped to fit as an input of these networks, which
is 224 px × 224 px. In our analysis we consider both alternatives
and compare attacks using complete downscaled WSIs with
attacks using WSIs cropped to their central parts. Also note that
full resolution has not been used as the detailed structures are
only similar on consecutive slides, i.e., (H-1) and consecutive
slides of (H-2) using our hierarchy, for which the presented
methods on down-scaled images are already very effective, as
shown in Figs. 4 and 8.

Similarity measures. To measure similarity of feature vectors we use
Cosine similarity

Mcosðv,wÞ=
Pn

i = 1 viwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 v

2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 w

2
i

q ð3Þ

which is normalized in the range [−1; 1]. We have also implemented
Euclidean metric (Meucðv,wÞ= 1=ð1 + Pn

i = 1 ðvi �wiÞ2Þ) but the trends
are generally the same and the Cosine similarity achieved slightly
higher Rs scores. Thus, in the evaluation we use Cosine similarity
exclusively, as it provides the upper bound on vulnerability.

Human samples
Slides for the (H-1) hierarchy analysis were provided by Masaryk
Memorial Cancer Institute (MMCI) and contained colorectal cancer
WSIs, breast cancerWSIs, and prostate biopsies. Slides for all the other
hierarchy analyses were prostate biopsies provided by Medical Uni-
versity Graz (MUG). All images were stained using hematoxyline &
eosin staining in a single batch; therefore, the experimental analyses
are restricted to the (H-a) step from the WSI staining hierarchy.

The research has been authorized under ethics vote at Masaryk
Memorial Cancer Institute, no. 2021/3375/MOU (MOU 385 920), and at
Medical University Graz, no. 1072/2019. Participats provided informed
consent for the use of their samples. This work has not attempted to
identify nor identified any data subjects, it solely performed the
linking-based risk analysis on WSI data.

Data sets
The attack analyses focusedprimarily on linking completeWSIs andwe
performed experiments with the following data sets based on the WSI
spatiotemporal hierarchy.
(1) [Based on (H-1)] Consists of 28 slides from different patients with

prostate, breast, or colorectal cancer provided by MMCI, which
were scannedonPannoramic®MIDI and Pannoramic®250 Flash III
scanners by 3DHistech (Budapest, Hungary) at a resolution of
0.172μm/px (WSI sizes: 18.3 Gpx for Flash scanner and 23.3Gpx
for MIDI scanner). Of each pair, one WSI is randomly assigned to
the probe set P and the other is assigned to B of background
knowledge.

(2) [Based on (H-2)] Consists of WSIs from consecutive and non-
consecutive prostate biopsy slides provided by MUG, which were
scannedonAperio AT2 scanner at a resolution of0.25μm/px (WSI
size of 9Gpx). Note that in the following text we use the term
“slides” for better readability, but precisely speaking the sets B
and P are populated by the WSIs from the discussed slides.

(1) The whole data set consists of 151 pairs of (directly) con-
secutive WSIs from 151 different patients (see Fig. 1d). Pairs
are visually similar, but there are also visible differences.
One randomly selected slide from each pair goes intoB—the
attacker’s background knowledge—and the other into the
probe set P.

(2) Consists of 558 slides from 80 patients (average
6.975 slides per patient). Metadata on these slides
contained information on order of cuts and approx-
imate distance from the previous one (ranging 3mm to
5mm). We used this information to compose various
data subsets to study the influence of the distance
between slides in background knowledge and probes
(see Fig. 10). For each threshold distance l and each
patient, the sets B and P were populated as follows: a
pivot slide is selected randomly from the patient and is
inserted into B; then, all the patient’s slides that are at a
distance greater than l from the pivot are added to the
P. Note that the set of slides added to P may be empty
for some patients, if there are no slides available in
distance greater than l; this practically happens for
larger threshold distances. In such a case, the pivot slide
in B for the given patient has no corresponding slides
in P.

We also study the ability to attack the data set when the overall
shape of the tissue cannot contribute to the extracted features and
hence to similarity. We cropped the WSIs so that the resulting image
contained internal parts of the tissue only (further denoted as cropped
WSIs). Registration (alignment) of the WSIs was done before the
cropping, tomodelworst case scenario that the attacker canget access
to spatially corresponding cropped WSIs (see Fig. 7a). We studied the
influenceof decreasing overlapof these cropping regions onRs too, by

Fig. 10 | Example of probe selection for (E-2b) with minimum distance
threshold l = 4mm. A pivot slide (in the centre) is selected as background
knowledge. Additional slides from the same tissue block at a distance of 3mm from

the pivot are removed as they are not further than the threshold l, while other slides
at 6 mm (i.e., 3mm+ 3mm) are included in P.
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shifting the crop regions by fixed amounts in random direction for
each WSI pair (see Fig. 7b). These experiments were done for both
consecutive slides (cE-2a) and non-consecutive slides (cE-2b).

Statistics and reproducibility
We have tested attacks using all the deep learning models listed in
Design of Experimental Evaluation of WSIs Linking Risks to extract
feature vectors from the images.Moreover, two similaritymetricswere
tested to compare the extracted feature vectors: cosine and Euclidean.
However, the trends produced by the two metrics are generally the
same and the cosine similarity achieved slightly higher Rs scores;
therefore, we only present results using cosine similarity. The experi-
ments (E-1) and (E-2a) were repeated 40 times. On the other hand,
experiment (E-2b) was repeated 20 times, as this experiment hasmuch
higher computational requirements and 20 repetitions were sufficient
to characterize the sample distribution of the observations for this
case. All data sets are regenerated randomly from the available data for
each run. Naturally, at each run we measure a different Rs value, and
the results presented in the graphs below show the characteristics of
the obtained sample distributions of Rs (avoiding distribution nor-
mality assumptions): median, quartiles, and min-max range using box
plots, overlaid with bootstrap-based 95% confidence intervals (dashed
tabs) and with jittered plots of actual data points, unless explicitly
stated otherwise. Note that the box plots are modified so that the
whiskers visualize min–max range without eliminating outliers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data of Results is included with the paper (source-data.zip),
which contains data in CSV format for each experiment, anR notebook
to generate all the graphs presented in the paper, and anHTML version
of the R notebook. The sourceWSI data used in this paper are available
under restricted access for data protection resons, access can be
requested via BBMRI-ERIC, a European Research Infrastructure, from
MMCI via https://directory.bbmri-eric.eu/menu/main/app-molgenis-
app-biobank-explorer#/collection/bbmri-eric:ID:CZ_MMCI:collection:
LTS and MUG via https://directory.bbmri-eric.eu/menu/main/app-
molgenis-app-biobank-explorer#/collection/bbmri-eric:ID:AT_MUG:
collection:FFPEblocksCollection. The access request can be filed from
these URLs via BBMRI-ERIC Negotiator. Expected time frame for data
release, if approved, is 1–2 months. Source data are provided with
this paper.

Code availability
Code is available at GitHub at https://github.com/RationAI/WSI-
anonymity.
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