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Neural representation is often described by the tuning curves of individual
neurons with respect to certain stimulus variables. Despite this tradition, it has
become increasingly clear that neural tuning can vary substantially in accor-

dance with a collection of internal and external factors. A challenge we are
facing is the lack of appropriate methods to accurately capture the moment-to-
moment tuning variability directly from the noisy neural responses. Here we
introduce an unsupervised statistical approach, Poisson functional principal
component analysis (Pf-PCA), which identifies different sources of systematic
tuning fluctuations, moreover encompassing several current models (e.-
g..multiplicative gain models) as special cases. Applying this method to neural
data recorded from macaque primary visual cortex- a paradigmatic case for
which the tuning curve approach has been scientifically essential- we dis-

covered a simple relationship governing the variability of orientation tuning,
which unifies different types of gain changes proposed previously. By decom-
posing the neural tuning variability into interpretable components, our method

enables discovery of unexpected structure of the neural code, capturing the
influence of the external stimulus drive and internal states simultaneously.

A central goal in neuroscience is to determine how neural responses
depend on external stimulus variables and the internal states of the
brain. The dependence of individual neuron’s firing rate on a stimulus
variable is often described by the turning curve, i.e., the average firing
rate of a neuron as a function of the stimulus'™*. Because tuning curves
are the consequences of various internal computations in neural cir-
cuits, it is likely and indeed empirically the case that it could
be modulated by factors other than the stimulus variable selected a
priori®?. Indeed, variability of neural tuning has now been widely
reported in neural systems, and furthermore been proposed to
exhibit various forms, including multiplicative gain®'®*>?, additive
modulation®?*?, shift of tuning peaks***, and tuning width changes®.
These observations reflect the role of various factors, whether related
to stimuli (e.g., stimulus contrast”, stimulus history****), behavior (e.g.,
movement'), or latent brain states*>?.

Tuning variability has been widely implicated both functionally,
i.e., information encoding and the behavioral performance!>°25393940,
and mechanistically, i.e., how tuning variability is generated***. Prior
studies have attempted to quantitatively model the variability of tun-
ing in the sensory cortex, in particular orientation tuning in the pri-
mary visual cortex (V1), which is widely considered a paradigmatic case
for studying neural code. Decades of studies in V1 have shed general
insights regarding how neurons in the cortex encode external sensory
variables. Perhaps surprisingly, studies of V1 tuning variability have
yielded results that are seemingly at odds so far. One line of work*?*
has proposed a simple multiplicative gain model to account for the
tuning variability. Multiplicative gain has been postulated to have a
vital role in encoding contrast*, encoding uncertainty?, facilitating
downstream readout®”, implementing attention®’, as well as the
transformation of coordinate systems (e.g., retina- to body-centered)
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in parietal cortex***. Mechanistic models suggest that multiplicative
gain could result from threshold-linear neurons operating in the pre-
sence of intrinsic intracellular noise**. In contrast to the above work,
other studies have suggested additive interactions®**® or both addi-
tive modulation and multiplicative gain®**°* in V1.

Crucially, the analysis methods in the majority of this prior work
presumed relatively restrictive structure for tuning variability (e.g.,
refs. 18,25,26,28,30,32), leaving open the question of whether other
forms of fluctuations might in fact account for the data better. Fur-
thermore, existing analyses generally relied on trial-averaging and
comparison across conditions®***%, thus failing to capture the
moment-to-moment variability in tuning. Addressing these open
issues requires approaches that can infer the structure of tuning fluc-
tuations directly on single-trial data—and ideally on the raw spike train
itself—while also avoiding restrictive assumptions.

Here we introduce an unsupervised statistical technique, Poisson
functional PCA (Pf-PCA), to identify the structure of of latent tuning
fluctuations directly from neural spiking data. Importantly, we apply
this method to address tuning variability in a classic neural system that
has long been characterized via tuning, namely neurons in V1. Because
Pf-PCA yields a generative model of the moment-to-moment tuning
variability, where a moment is defined by a block consisting of
responses for all stimuli, it could be used to analyze the information
encoding through the calculation of information-theoretical measures
such as Fisher information. It could also be used to analyze the

geometrical structure of the neural manifold. Performing these ana-
lyses, we find that Pf-PCA reveals several insights. The proposed ana-
lysis framework is broadly applicable to other low-dimensional tuning
modalities.

Results

Previous studies have suggested that the tuning fluctuations may be
heterogeneous®**%. This heterogeneity motivated us to develop a
flexible, unsupervised analysis framework to understand the tuning
variability. It may be used to analyze the tuning fluctuations of any one-
dimensional variable with smooth tuning properties. We will first
develop and validate our method, and then apply it to analyze Maca-
que V1 data. We will show that our method helps reveal insights into
the structure of the neural code for visual orientation, the information
content, and the geometry of the representation.

The Poisson functional PCA framework

Figure 1a illustrates the basic modeling framework of Pf-PCA (see
“Methods” for details). The model assumes that the logarithm of the
tuning curves (of an arbitrary stimulus variable) is determined by a
smooth mean component and smooth functional principal compo-
nents (fPCs) weighted by the amount of latent fluctuations. Note that
each fPC is a function that is tuned to the stimulus variable. The fPCs
and their weights (i.e., scores) together capture the fluctuations of the
tuning curves. Quantitatively, the tuning curve g, for the ¢-th moment
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Fig. 1| The Poisson functional PCA (Pf-PCA) framework. a Illustration of the Pf-
PCA framework. Tuning functions (i.e., the logarithm of the tuning curves) are
modeled as a sum of the mean and functional principal components (fPCs)
weighted by the amount of latent fluctuations « (i.e., scores). Tuning functions then
pass through a static non-linearity to obtain the tuning curves. The non-linearity is
assumed to be an exponential function in this study. Finally, standard Poisson
spiking noise is assumed for the generation of the observed spike trains. The Pf-PCA
algorithm performs inference on the observed spike counts. It extracts the mean
component, the fPCs, and the moment-to-moment scores of each fPC.

b, ¢ Schematics illustrating this framework using two special cases: multiplicative
gain and tuning curve shift. b For multiplicative gain, the logarithm of individual
tuning curves (illustrated using Gaussian functions plus a baseline) can be
decomposed into a mean component and a flat function principal component.
Different tuning curves correspond to different scores. ¢ For the case of tuning
curve shift, the logarithm of the individual tuning curves can be approximated by
the summation of the mean component, the first functional PC that has an anti-
symmetric shape, and a small residual.
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can be describe as

log(p)=f + Z A Pr €. €))
k

Here fis the mean component, ¢ is the k-th fPC, ay  denotes the
amount of fluctuation (i.e., score) for the k-th component during the ¢-
th moment, and is assumed to follow a zero-mean Gaussian distribu-
tion. The last term €, is assumed to be zero-mean Gaussian noise that
captures the residual unstructured fluctuations. The spike train at
every moment is assumed to be generated from a Poisson process with
the firing rate specified by Eqn. (1). Note that with only the first term f,
this model is equivalent to the standard tuning curve model of spike
counts. The remaining terms captures the additional variance from the
contribution of moment-to-moment fluctuations, making the model
naturally capture the over-dispersion of spike counts***,

Our algorithm takes spike count data as the input and infers the
mean, fPCs, the variance of each component, as well as the weight for
each fPC for each moment. Critically, the shape of fPCs, which specifies
the particular form of the fluctuations, is directly inferred from the
data. When studying the neural response to continuous stimulus
variables, it is natural to assume the mean component and fPCs of
individual neurons as some smooth functions of stimulus. Importantly,
our method merely assumes that the mean component and fPCs are
smooth, without imposing restrictive assumptions on their shapes.
Our method provides a way to parse the variability of tuning into a set
of fPCs from the spike counts. Now consider a couple of special cases.
With the additional assumptions that there is only one fPC and that it is
constant over the stimulus dimension (Fig. 1b), our model becomes
essentially the multiplicative gain model”. When tuning curves exhibit
systematic lateral shifts, our model could capture it with an fPC that is
proportional to the derivative of the mean component (Fig. 1c). It is
worth emphasizing that our method is general and capable to capture
other cases that may be potentially more complicated. It may be used
to analyze the tuning fluctuations of any one-dimensional stimulus
variables with smooth tuning properties.

Our method is developed by adapting a technique, i.e., functional
PCA*~3, to deal with Poisson spiking noise. As the firing rate is not
observed, it makes the inference procedure more challenging. We
resolve this problem by developing a procedure based on an
Expectation-Maximization algorithm. Details of the inference proce-
dure are described in the Methods section. In broad strokes, the
algorithm treats the unobservable firing rates of stimulus s p(s) as
“observations" generated from the model in Eqn. (1). To maximize the
likelihood, the algorithm iterates between estimating the mean and
covariance matrix parameters and calculating their posteriors based
on the spike counts given their current estimates via the Monte Carlo
method. This step gives an estimate of the firing rates. In the next step,
we apply the functional PCA technique to the estimated firing rates for
estimating the components and the moment-to-moment fluctuations.

Validation of the method

We validated our method systematically using simulated data. Inspired
by previous experimental observations on tuning
variability?>?3-28303336 ‘we first examined whether our method is able
to recover fPCs that correspond to multiplicative gain, additive
change, tuning shift, or sharpening. Specifically, we generated syn-
thetic data, which exhibit different types of tuning fluctuations by
reverse-engineering the appropriate fPC, and tested Pf-PCA and
alternative methods with these data, where the ground-truth
were known.

Figure 2a shows results based on the analysis of the simulated
datasets using our method and alternative methods (see “Methods” for
details). We found that Pf-PCA could accurately recover the form of the
fluctuations in all four cases. Furthermore, it approximately recovers

the proportions of variance explained by the structured fluctuation
(Fig. 2a), as well as the magnitude of the latent fluctuation on a
moment-by-moment basis.

How does our method compare to simpler methods? Applying
conventional PCA to the synthetic data, we found that it often mis-
identified the form of the fluctuation, and that it could not reliably
estimate the magnitude of the latent fluctuations (Fig. 2b). We also
applied a variant of our method, referred to as y-PCA, by removing the
smoothness constraint in our full algorithm (see “Methods” for
details). This algorithm is similar to the Poisson PCA** (a discussion of
the technical differences between p-PCA and Poisson-PCA can be
found in “Methods”). The u-PCA generally performs better than regular
PCA, but is still considerably worse than the full method Pf-PCA.

We further validated our method when multiple types of fluc-
tuations co-exist, e.g., a combination of multiplicative gain and
tuning shift. We found that Pf-PCA could recover both components
reliably (see Supplementary Fig. 3), and that it drastically outper-
forms regular PCA and u-PCA (see Supplementary Fig. 4). In addi-
tion, we validated our method in the case of monotonic tuning
curves, e.g., the sigmoidal tuning curves, and found similar results
(see Supplementary Fig. 5). Taken together, these results on syn-
thetic data suggest that our method could robustly recover the
structure and magnitude of the tuning fluctuations using an
experimentally realistic amount of data.

Pf-PCA reveals power-law modulation of neural tuning

We next show that our method can be used to reveal scientific insights
into neural codes. We will focus on the variability of orientation tuning
in macaque V1, which has been a question of substantial interest in the
past decades and may have general implications regarding the prin-
ciple of neural coding in the cortex. Previous studies have mainly
focused on “gain variability”, which assumes constant additive mod-
ulations or multiplicative gain that scales the whole tuning curve. The
nature of this tuning variability has been heavily debated to date. Our
unsupervised approach enables us to generalize the notion of “gain
variability” to general “tuning variability”, resulting in a more accurate
understanding of the structure of the neural response.

We analyzed seven previously published datasets, each with
dozens of neurons simultaneously recorded from macaque V1°°*
(total number of neurons = 402). During these experiments®*, drift
gratings with different directions were presented, each for 1 or
1.28 seconds. A block-randomized design was used in these
experiments, with each block sampled a pre-determined set of sti-
mulus directions once. See “Methods” for details. To build some
intuitions on orientation tuning variability, we first split the total
blocks into two halves according to the number of spikes for indi-
vidual neurons, and calculated the tuning curves for the high and
low conditions®. Figure 3a shows six representative example neu-
rons. Visual inspections suggest that tuning variability is hetero-
geneous across neurons, exhibiting features consistent with an
additive modulation or multiplicative gain or both, though other
times neither.

We applied Pf-PCA to analyze the tuning fluctuations for sti-
mulus orientation. We treated each block of stimuli as one moment,
assuming that the tuning curve is stable within each block. Thus the
tuning fluctuations studied here is at the timescale of ~10 s. The Pf-
PCA model achieves a better fit compared to the Modulated Poisson
model that assumes a multiplicative gain®, assessed through cross-
validated prediction error and cross-validated likelihood (see Sup-
plementary Note 1, Supplementary Fig. 1). When applying Pf-PCA,
we assumed three fPCs, which are sufficient to capture most of the
tuning variability in these data (see Supplementary Fig. 6). In fact,
the first fPC alone captures 62.4% of the variance on average
(Fig. 3b). Below we will focus our analysis primarily based on the
first fPC.
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Fig. 2 | Model validation with bell-shape tuning curves. a Inferred fluctuations of
four types of tuning fluctuations. Black curve: the tuning curve with zero fluctua-
tion. This corresponds to the mean component exponentiated. Red/green curves:
the corresponding tuning curves when setting the score to be +1 standard deviation
of the scores. Crosses in the first column: the set of discrete stimuli used in the
simulation. From left to right: ground truth, Pf-PCA, regular PCA, and a reduced
version of Pf-PCA termed as u-PCA. In each case, we simulated neural responses
from the corresponding ground truth model, and then inferred the form of the
fluctuation and its magnitude for each moment. The percentages on the plots show

the proportion of variance explained by the component. By our construction of the
model, the first fPC of a “perfect” estimation procedure should explain 80% of the
variance. b-d Recovered scores v.s true scores for each method. Light to dark
bisque points denote multiplicative gain (“M”), additive modulation(“A”), tuning
shift (“T”), and tuning sharpening (“W”). Dashed lines indicates the diagonal.
Overall, Pf-PCA substantially outperforms the alternatives in all these cases, both in
terms of recovering the form of the tuning fluctuations and the magnitude at each
moment. The correlations between the recovered and the ground truth are 0.788
for Pf-PCA (b), 0.544 for regular PCA (c), and 0.647 for u-PCA (d).

As mentioned before, if a neuron exhibits multiplicative gain
change, the first fPC should be a constant (Fig. 1b). However, we found
that the first fPC for the majority of neurons is not constant (for
example, see Fig. 3a). This implies that the fluctuations of the firing rate
of these neurons could not be accurately described as a pure multi-
plicative gain, and instead the gain appears to be stimulus-dependent.
Interestingly, the first fPC for most neurons is highly correlated with
the mean component. This is confirmed by a simple linear regression
analysis between the mean component and the first fPC (Fig. 3c). For
quantification, we defined a fraction to capture the percentage of the
first fPC explained by the simple linear relationship (see “Methods” for
details), and found that this linear relationship explains most of the
information in the first fPC (Fig. 3d). We wondered if our estimation
procedure might exhibit systematic biases so that even when the
ground truth model was a simple gain modulation model, the esti-
mated first fPC might nonetheless be correlated with the mean com-
ponent. We performed a control analysis and found that this is
unlikely. Specifically, we simulated datasets from a multiplicative gain
model with approximately matched statistics and performed Pf-PCA
on the synthetic datasets (see “Methods” for details). The results
showed that the slope values of the regression for the synthetic data
are much closer 0 compared to what we obtained from the V1
data (Fig. 3e).

Crucially, the above observation (linear relationship between the
mean tuning curve and the first fPC) has conceptually important
implications for the tuning structure. In particular, the linear
relationship permits the following linear approximation for the first

fPC (),

1(8)=b+wf(s). )
Together with Eqn. (1) and some algebraic manipulations, we
found that the tuning curve for moment ¢ can be expressed as

1+wa,,

H.(s)= exp(bay ,)exp{f(s)})]

Because the latent variable a7, appears in the exponent, it sug-
gests that the fluctuations of the tuning curves could be in fact
described as a power-law modulation, with the exponent of the power
function varying from moment to moment.

Power-law modulation accounts for both additive modulation
and multiplicative gain
Previous studies have proposed two forms of gain change in V
i.e., additive and multiplicative. It has been heavily debated which type
of variability is more appropriate to describe the V1 activity, or whether
both types of activity co-exist in V1. We hypothesize that the part of the
controversy is due to the restrictive notion of gain variability in pre-
vious studies. By considering and analyzing general tuning variability
as enabled by Pf-PCA, below we will demonstrate that the power-law
relation unifies these different forms of gain variability.

Noticing i (s)= exp{f(s)} (and assuming that it is already nor-
malized to have peak activity equal to 1 by absorbing into the intercept

25,28-30
1 )
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Fig. 3 | Results of Pf-PCA on V1 data. a Recovered mean component and first fPC
for six example neurons. Neuronal tuning fluctuations exhibit a variety of struc-
tures. The top panels show the average tuning curves by splitting the experimental
blocks into high and low blocks. Panels in the second row show the tuning curves
and the fluctuations inferred from Pf-PCA, plotted in the firing rate space. The last
two rows show the mean component and the first fPC, both plotted in the logarithm
of the firing rate scale. For the last row, “PV” (y-axis) represents the value of the first
fPC for each stimulus. b The variance explained by the first fPC. Central mark:
median value. Edges of the box: 25th and 75 percentiles. Whiskers: the maxima and
minima of the data within 1.5 times the interquartile range from the nearest quartile.

¢ Testing the significance of the regression analysis of the first fPC on the mean
component. The majority of the neurons show a significant linear relationship
between the mean component and the first fPC. d The “fraction” index quantifying
how much information of ¢,(s) is accounted for by a linear function of f{s) (see
“Methods”). The observation that the “fraction" index is closed 1 for each dataset
suggests that the linear function of the mean highly explains the first fPC for the
majority of the V1 neurons. Box plot: similar convention to (b). e Slope values of the
regression analysis obtained from real data v.s. those obtained from synthetic data.
The synthetic data were generated from a multiplicative gain modulation model.

term b), the tuning curve on each moment can be re-expressed as

H(8)= o (9)' e exp(bary ). 3)

Equation (3) is a power function with the power 1+ wa; . and the
scale ba; ;, both of which are linear function of the fluctuation a; , for
moment ¢. In this relation, for each neuron, there are two free para-
meters corresponding to the slope and intercept in the regression
analysis respectively. Without loss of generality, we can constrain the
intercept to be always non-negative. The consequence of varying each
parameter on the tuning is straightforward to see. Specifically, a non-
zero intercept would lead to fluctuation of the peak firing rate, while a
non-zero slope would lead to systematic tuning width change due to
the exponentiation (Fig. 4a). Depending on the specific combination of
the slope (w) and intercept (), the tuning fluctuation will exhibit dif-
ferent characteristics for individual neurons.

First, when the slope w=0, the power-law modulation degen-
erates to a pure multiplicative gain®. Second, the power-law modula-
tion could lead to approximately additive modulation with certain
combinations of the slope (w) and intercept (b). For quantification, we
defined a “flatness” index to characterize the change over the stimulus
variable induced by the fluctuation. Informally, this index computes
the ratio between the change of the firing rates between the preferred
and the orthogonal orientations (see “Methods” for a formal defini-
tion). With additive modulation, the flatness index is 1, while multi-
plicative gain leads to a flatness index of 0. When the flatness score is
negative, the resulting configurations show a sharpening of the tuning
curve. Figure 4 shows the “flatness” while systematically varying the
two parameters (i.e., the slope and intercept). In the appropriate
parameter regimes, the power-law would manifest itself as a multi-
plicative or an additive change (see “Methods” for details), while
parameter values in between result in tuning modulation which might
be interpreted as a mix of multiplicative and additive modulations®.
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change implies “flatness” equals to 1. Changing the flatness from O to 1 would lead
to a gradual transition from multiplicative gain to additive change. This index can
be smaller than 0, a case implying sharpening of the tuning curve. b The estimated
values of slope and intercept for individual neurons. ¢ The histogram for the flat-
ness scores, indicating that tuning fluctuations lie on a continuum.

Empirically, most of the neurons lie in between multiplicative and
additive changes (Fig. 4b), thus are better characterized by the pro-
posed power-law relation than a pure multiplicative or additive mod-
ulation. The control analysis by generating simulated data using
multiplicative gain showed that the recovered slope is close to zero
over intercept as expected (See Supplementary Fig. 9). Note
that a previous study*® found that additive and multiplicative fluctua-
tions were anti-correlated, which could be naturally explained by our
power-law model. It is also worth mentioning that a subset of neurons
exhibits a mild sharpening of the tuning curve. Together, these results
provide a unified account of the fluctuations of orientation tuning in
V1. Although we could not rule out the possibility of two separate
mechanisms (one for multiplicative gain, and one for additive mod-
ulation), our results show that a single form of fluctuation is sufficient
to capture the variability, and the tuning fluctuations of individual
neurons appear to lie on a continuum.

Population tuning fluctuations are low-dimensional

The dimensionality of tuning fluctuations has important implications
for the mechanisms and the function of the circuit. Some studies (e.g.,
refs. 28,29) implicitly assumed a rank-1 fluctuation that scales the gain
of the population in a coherent manner, and found evidence sug-
gesting that the total population activity is highly predictive of the
moment-to-moment fluctuation of the response of individual
neurons®. Others found the coupling strength of individual neurons to
the rest of the local network to be diverse®, implying a higher
dimensionality of the tuning fluctuations and a potential role of
recurrent connections in shaping network responses. Recently pro-
posed E/lI-balanced network models with spatial connectivity
structure® predicted that the population fluctuations should be low-

dimensional. Finally, it has been proposed” that gain variability in V1
may serve to represent the stimulus uncertainty via sampling, a com-
putation would generally require the gain variability to be high
dimensional.

We examined the structure of the tuning fluctuation at the
population level. As demonstrated earlier, for each neuron, the tuning
fluctuations could be well captured by the first fPC. Exploiting this
observation, we approximated tuning fluctuations of a neural popu-
lation by concatenating the scores for individual neurons together
(number of neurons x number of blocks, Fig. 5a). Examining the cor-
relation of the scores, we found that while most of the neurons fluc-
tuate coherently, a small group of neurons is anti-correlated with the
rest of the neurons (Fig. 5b) in some sessions (for results for all ses-
sions, see Supplementary Fig. 10). What is the dimensionality of latent
fluctuations of the neural population? If the neurons share a coherent
multiplicative change or additive change®, the latent fluctuation
should be close to one dimensional. To assess this, we performed a
standard PCA analysis on the score matrix to assess the linear dimen-
sionality. We found that, while the fluctuation shows a low-dimensional
structure (Fig. Se), the dimensionality exceeds one.

The empirically observed latent fluctuations cannot be explained
by a rank-1 multiplicative or additive modulation model. To demon-
strate this, we performed control analysis by generating simulated
data using the rank-1 additive or multiplicative model (see “Methods”
for details), and found that the resulting correlation structure of the
inferred score based on the synthetic data exhibits a simpler structure
(Fig. 5d, e, and Supplementary Figs. 11 and 12). The dimensionality of
the scores is lower than that estimated from real data (Fig. 5f).

These results paint a more nuanced picture of the fluctuations of
V1 at the neural population level. Deviating from what was suggested
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Fig. 5 | Population structure of the tuning fluctuations: the fluctuations of V1
population as captured by the first fPC have a low dimensional structure. a The
heat map of scores of the first fPC for every neuron in one dataset (Session D5).

Every data point represents the score of one neuron during one block of stimulus
presentation. b The correlation of the score matrix above. The neurons are sorted
according to a hierarchical clustering algorithm in (a) and (b). ¢ The dimensionality
of the fluctuations as captured by the first fPC. We run a standard PCA on the score

neuron

# of principal components

matrix. The first two principal components capture more than 60% of the variance.
d, e Similar to (a, b), but based on the simulated dataset assuming rank-1 multi-
plicative gain fluctuations. f Similar to (c), but based on the simulated dataset
assuming rank-1 multiplicative gain fluctuations. In this case, the first principle
component consistently dominates other components in the recovered score
matrix. These results suggest that the fluctuations in the neural population are low-
dimensional, but not one-dimensional.

previously®, the fluctuations of V1 neurons are not completely
coherent in the anesthetized state, with subset of neurons could
exhibit fluctuation at the opposite direction compared to the majority,
nor can it be characterized by a rank-1 additive modulation or multi-
plicative gain fluctuations. These results will help further constrain and
refine the network mechanisms giving rise to the tuning fluctuations in
the visual cortex®’,

Higher neural activity barely increases, or even decreases Fisher
information
So far, by applying our Pf-PCA analysis to the V1 data, we have derived a
generative model of the neural activity in V1. Below, we demonstrate
that this generative model is useful for characterizing various critical
aspects of the neural code. In this section, we will leverage Pf-PCA to
the calculation of the Fisher information to understand how the tuning
fluctuation affects the information-carrying capacity of the V1 popu-
lation. We focus on a local measure of the representation, i.e. Fisher
information (FI), which has been important in quantifying the local
property of the neural code® 2, In the next section, we will use Pf-PCA
to understand how the geometry of the neural response changes
under tuning fluctuations, which represents another important aspect
of the neural code. Overall, through the FI and geometry analysis, Pf-
PCA enables further understandings of the local and global structure
of the V1 code.

First, using the model estimated by Pf-PCA, we examined the
relationship between the FI and the magnitude of neural activity for

individual neuron (Fig. 6a, b). See “Methods” for the calculation of the
FI. We found that this relationship differs substantially from neuron to
neuron- it could be positive, negative, or flat (Fig. 6a, b). Figure 6b
shows the histogram of the slope when regressing Fl against the neural
activity. Interestingly, the median of these slopes is close to O (i.e.,
0.001). We also reported the histogram of the slopes of Fl-activity
curve for each session in Supplementary Fig. 13. We further validated
these results by performing recovery analysis using synthetic data. We
found that our method could indeed faithfully recover the relationship
between FI and neural activity for individual neurons given the parti-
cular sample size of the data (see Supplementary Fig. 14).

Figure 6¢ shows the population FI obtained by summing the FI
values across all stimuli within a block and all neurons in each dataset,
sorted according to the neural activity of individual blocks. Here we
assume that the neurons are noise-independent conditioned on the
latent fluctuations. Note that a multiplicative gain model predicts that
the population FI scales proportionally with the amount of neural
activity, or put it in another way, doubling the firing rate would double
the population FI. However, we found that, for most sessions, the
population FI is minimally affected, or decreases systematically as the
neural activity increases. This is in sharp contrast with the multi-
plicative gain model. To quantify this, we defined a FI-modulation
index (i.e., the slope of Fl-activity curve). With the multiplicative gain
model, this FI-modulation is exactly 1. In the data, the modulation
indexes for all sessions are far smaller than 1 and in some cases
negative (-0.17, -0.44, -0.07, 0.10, 0.12, 0.26, and 0.21, respectively).
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Fig. 6 | Fisher information analysis reveals that higher neural activity barely
increases, or even decreases Fisher information. a The relation between the FI
and the neural activity (lower panels) and the tuning curves with latent fluctuation
induced by the first fPC (upper panels) in four neuron examples. b Histogram of
slopes of the Fl-activity for all neurons (n=402). ¢ Scatter plots showing the rela-
tionship between the population FI and the neural activity for each session in real
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data. d Scatter plots showing the relationship between the population FI and the
neural activity for the synthetic data. The synthetic data were generated from the
Pf-PCA model fit to each corresponding dataset. Note that there is a tendency for
the model to underestimate the scores (as expected), leading to a proportional
underestimation of the population FI. Importantly, this underestimation does not
affect the recovery of the relation between the population Fl and the neural activity.

Recovery analysis based on synthetic data suggests that our procedure
could indeed recover the relationship between the neural activity and
the population FI (Fig. 6d). See “Methods” for details. These results are
consistent with the study®® in that both studies found that increased
neural activities do not lead to substantial increase of the population
FI. Meanwhile, we also noticed some subtle discrepancies between the
two studies, because it has been suggested *° that there was a minimal
change in the population FI when neural activity changes. We believe
that the difference lies in the difference in the analysis methods (see
“Methods” and Supplementary Note 5 for a detailed discussion).

Change of representational geometry induced by spontaneous
fluctuation is different from contrast

Neural response naturally forms neural manifold by systematically
varying the stimulus. The geometry of the encoding manifold has
multiple implications in understanding the format of the repre-
sentation and in linking neural responses to the behavior (reviewed
in ref. 63). How the tuning variability affects the geometrical
properties of the encoding manifold represents an interesting yet
unresolved question. To investigate this question, we begin by
simulating a multiplicative gain, which is a simple scenario exhi-
biting how fluctuating signals are displayed by the geometric ana-
lysis. We constructed a homogeneous population code for
encoding stimulus orientation with independent Poisson noise, and
varying the shared multiplicative gain (see “Methods” for details).
This population coding model recapitulates the basic effect of
varying stimulus contrast®***, We computed the representational
distance®* as a function of the orientation disparity, and found that
multiplicative gain only scales the representational distance func-
tion without changing the shape (Fig. 7c). A 3-D multi-dimensional
scaling (MDS) based on the representational distance matrix shows

that the neural manifold under tuning fluctuation exhibits a cone-
shape (Fig. 7d), with the radial dimension encoding the multi-
plicative gain. When projecting onto the first two dimensions, we
observed that the size of the representation for each contrast (e.g.,
the radius of each circle) scales with the neural activity (Fig. 7e).

Next, we sought to understand how the tuning fluctuations
identified by Pf-PCA from the V1 data would affect the geometry of the
code®*¢, To do so, we created a neural population code based on the
empirically fitted tuning curves and scores from Pf-PCA (see “Meth-
ods” for details). We clustered the score matrix into 10 clusters, then
computed the average scores for each cluster to get the pattern of
fluctuations corresponding to each of the 10 characteristic states. For
each state, the corresponding tuning curves were generated accord-
ingly. Analyzing the representational distance (RD) as a function of
orientation disparity for the 10 latent states (shown in Fig. 7g-m, first
column), we found that the RD curves are only slightly affected by the
total activity. In several cases, higher activity leads to overall lower RD,
e.g., (Fig. 7h). Furthermore, MDS analysis (Fig. 7g-m, second column)
shows that the fluctuations cause the representation to move along a
cylinder-like manifold. When projecting onto the first two dimensions,
we had two observations. First, the centers of the representations
corresponding to all states are aligned, suggesting that the repre-
sentation “drifts”” in the direction is orthogonal to the representation
of orientation. Second, the size of the representation only changes
slightly with varying population activities (Fig. 7g-m, third column).
Note that this general pattern does not resemble the cone-like struc-
ture induced by the multiplicative gain (Fig. 7d). Note that in two of
seven sessions, the latent fluctuations are smaller so that the cylinder
structure does not appear in the 3-D MDS, however, it becomes
apparent when we plotted the first two and the fifth dimension ina 5-D
MDS embedding.
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Fig. 7 | Geometry analysis demonstrates that the latent tuning fluctuations lie
on a different manifold compared to changing contrast. a-e Analysis based on
multiplicative gain model. a Tuning curves under different multiplicative gain (or
contrast) levels. b The representational distance matrix for each pair of states,
defined by the orientation and the gain level. We discretized the orientation into
180 bins, results in 180 x 4 = 720 states. The states were arranged according to the
orientation and the gain level. ¢ The representational distance (RD) as a function of
orientation disparity for four different gain levels. d 3-D MDS revealing a cone-like
structure of the neural population code. e Projection onto the first two dimensions
revealing that the size of the representation (measured by radius) scales

proportionally with the neural activity. f The pipeline of geometric analysis based
on real data. For each session, we inferred the score matrix for the first fPC, and
then computed ten characteristic states using a clustering procedure. For each
characteristic state, we generated the corresponding tuning curves using the
results from Pf-PCA. The curves for different states are color-coded based on the
total activity (normalized to the maximum). g-m The results for each dataset from
the geometric analysis. The MDS results reveal a cylinder-like structure in most of
the sessions. Although total activity can change substantially across the different
scales, however, the size of the representation does not change substantially. This is
apparent when comparing it to the multiplicative gain model.

These results demonstrate that the spontaneous fluctuations of
neural tuning in V1 lie on a different manifold compared to that
induced by the changing stimulus contrast that leads to a multi-
plicative gain. Note that the effect is also different from a simple
additive modulation (Supplementary Fig. 16). These results have
important implications for the downstream readout. If the sponta-
neous fluctuations lied on the same manifold as the changing sti-
mulus contrast, the downstream would not be possible to distinguish
the spontaneous fluctuations from a change of contrast. Our results
argue against that scenario, and further suggest that the latent fluc-
tuations mostly cause a “drift” of the representation without funda-
mentally changing the fidelity and the structure of the
representation®”®’,

Discussion

We have presented a flexible unsupervised approach, Pf-PCA, to ana-
lyze the tuning variability. This approach provides a general frame-
work to understand how the observed stimulus variables and latent
factors together influence the neural activity. Specifically, it decom-
poses the tuning curves as the sum of the mean component and the
fPCs which are tuned to the stimulus, and are subject to the modula-
tion of the latent factors. We demonstrated that Pf-PCA could robustly
and reliably recover the structure of the fluctuations given a few
dozens of blocks of data. We applied our method to analyze the spike
train data collected from anesthetized macaque V1 while viewing drift
gratings, and discovered several insights regarding the structure of the
orientation code.
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Our method represents a more flexible modeling framework
compared to previous work in analyzing the tuning variability. Pre-
vious models often presumed the form of fluctuation (e.g.
refs. 25,28,30,31), and the fluctuation was often assumed to be a con-
stant, acting onto the tuning curve through either multiplicative or
additive interactions. Thus, the forms of fluctuations captured by these
analyses were limited by construction. Our method, instead, allows
unsupervised discovery of arbitrary smooth tuning fluctuation, and
potentially multiple forms of fluctuations simultaneously. Our method
is broadly applicable, so long as the neurons have smooth tuning over
certain stimulus dimension, which could be spatial frequency”,
location'”, direction”>”?, or time’*. A potentially fruitful venue of using
our approach would be to leverage our approach to test computa-
tional models by analyzing the data simulated from these models to
identify the structure of the latent fluctuations, and comparing these
predictions with the structure extracted from the data.

Our results suggest that the tuning fluctuation exhibits low-rank
structure, both at the levels of individual neurons and neural popula-
tions. The latter is generally consistent with, and generalizes from,
results in previous studies that assumed coherent gain fluctuations
among simultaneously recorded neurons®***?°, A recent study” found
that the variance explained by the PCs of large-scale neural popula-
tions scaled as a power-law. Our results are different from theirs: (i)
our results concern about the dimensionality of tuning variability, not
the dimensionality of stimulus tuning; (ii) we primarily focus on the
amount of variance explained by the top PCs, not the properties of the
tail of the spectrum as done in ref. 75. With a few dozens of simulta-
neously recorded neurons, we can not accurately estimate the scaling
relationship between the variance (of the tuning variability) explained
of the neural population and the number of PCs—an interesting
question that could be addressed in the future with larger datasets.

We have focused on an exponential non-linearity for the link
function, which has been assumed by many previous models™ ", It
should be possible to further extend it to other types of non-linearity*°,
such as a power-law transformation®>**%, It would also be interesting
for future research to develop techniques that could automatically
infer the type of non-linearity from the data directly.

Our V1 results should be informative to a better mechanistic and
functional understanding of the V1. Naively, assuming an exponential
non-linearity, the power-law modulation revealed by our analysis could
be explained by a tuned input to a given neuron which fluctuates over
time. However, this is likely a simplified picture. It would be more
fruitful to consider how threshold non-linearity together with noise
could lead to these kind of results. Previously, models of this kind®**
have been used to account for the multiplicative gain on the tuning
curve induced by varying contrast. Second, the finding that the latent
fluctuations are heterogeneous in the population is consistent with the
idea that the recurrent processing in V1 may play an important rule in
shaping the structure of the fluctuations of neural tuning. These results
echo with recent work® showing that spatially patterned fluctuation
structure could emerge in balance networks in V1 in which neural
fluctuations can be heterogeneous. Third, it is interesting to consider
the implications of our observations in the context of the functional
models of neural variability. Such variability has been proposed to
reflect sampling of the sensory inputs®, encoding stimulus
uncertainty”, and efficient encoding of natural scene statistics® . The
specific structure of the latent fluctuations extracted by Pf-PCA pro-
vides a richer set of summary statistics to further test these current
mechanistic and functional models and help developing future models.

Our method enables us to further analyze the coding properties in
the presence of the tuning fluctuations, both in terms of local prop-
erties (via FI) and the global geometrical structure of the code under
tuning fluctuations. We found that FI generally does not substantially
increase (sometimes even decrease) with increased neural activity.
This may point to the potential importance of cortical inhibition in

sharpening the neural code®®. The analysis of the geometry reveals that
the manifold induced by the latent fluctuation lies in different sub-
space of changing contrast. This suggests that the tuning fluctuations
in V1 may not interfere with encoding of contrast. These observations
deserve further investigations in the future.

Our V1 results are entirely based on analyzing neural responses at
the anesthetized state. To the extent by which the structure of noise
fluctuations under the anesthetized states resembles those of the
awake-behaving animals remains an open problem. Earlier work using
voltage-sensitive dye to measure large-scale activity fluctuation in V1
under anesthesia found that the structure of the spontaneous fluc-
tuations resembled the stimulus-driven activity, and they interacted
with stimulus-evoked activity in an additive fashion®**°, and reported
that slow gain fluctuations identified in the anesthetized macaque were
also present in the awake state. In addition, results in ref. 30 found that
the additive and multiplicative change of the tuning curves were also
present in a smaller dataset from one macaque monkey. Nonetheless,
anesthesia can change the properties of neuron integration in cortical
neurons’, and may trigger a profound change of the cortical
dynamics” and coding”. Detailed in-depth investigations in the future
will be important to determine whether the rule of V1 tuning variability
that we discovered from anesthetized states may generalize to the
awake states. One further limitation of the anesthetized data is that it
precludes the analysis of the latent tuning fluctuations with behavior. It
would be interesting to see if the fluctuations of internal states similar
to what we found here correspond to a change of the behavior®.

A few limitations and the potential improvement of our results are
worth mentioning. Our current method does not explicitly model the
temporal structure of the tuning fluctuation, as a, is assumed to be
independent, and is estimated for each t. It should be possible to
improve our method by leveraging temporal smoothness prior on the
scores, e.g., by weighted Poisson fPCA where the weights are con-
structed by using a temporal kernel, or assuming a Gaussian process
prior®>*—a direction we did not pursue here, but would be an inter-
esting future direction. Also, our method, when applying to V1 data,
only deals with slow fluctuations (-10s)* (see Supplementary Fig. 8),
because of the assumption that the latent is the same within every block
(or moment). Thus, this inferred moment-to-moment tuning fluctuation
is at the time scale of ~10 s. Tuning variability at an even faster time scale
would be averaged out. Thus our estimate of the tuning fluctuation is
likely an under-estimate of the true fluctuations. It should be possible to
refine these estimates and study tuning variability at an even faster
scale. Two approaches may be promising: (i) by using faster stimulus
sampling in experiments-with a stimulus sampling of 100 ms per sti-
mulus, it is possible to apply the same approach to study tuning varia-
bility at a timescale of -1s; (ii) by extending our methods to fit the neural
population all together. For the latter, assuming a low dimensional
latent structure, it should be possible to infer the latent fluctuation
based on individual stimulus—a direction we are currently pursuing.

In summary, we have developed a statistical approach to parse the
variability of neural tuning. Our approach can flexibly capture the
impact of both stimulus variable and latent variable on a moment-by-
moment basis. Applying our approach to macaque V1 revealed the
structure of the tuning variability both at the level of individual neuron
and the neural population. Our analyses also led to further insights on
the FI and geometry of the code. While we only analyzed the orienta-
tion code for V1 in the paper, we hope that the analysis pipeline
developed here would be informative for elucidating the structure of
neural tuning and response variability in other neural systems as well*’.

Methods

Poisson functional principal component analysis (Pf-PCA):
generative model

A standard model description of neural responses in neuroscience is
based on tuning curves and (typically) Poisson spiking noise.
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Specifically, the observed spike count n(s) of stimulus s for individual
neuron, during a counting window of length A, is modeled as a Poisson
distribution

n(s)
() nGs )' T exp(—p(s)A,). “)

p(n(s)lus)A,) =
where u(s) represents the tuning curve of stimulus s.

The tuning curve may vary among B moments (i.e., blocks of
trials) and is not directly observed. Denoting the tuning curve as p(s)
for moment ¢, t=1, --- B, we model the log of the stochastic curve,
log(u,(s)), as following:

108(1,($) =f($)+ Y _ g Pr($) +€.(5). )
k

Here f(s) is the mean component, ¢(s) is the k-th functional
principal component (fPC), a, . denotes the amount of fluctuation (i.e.,
score) for the k-th component during the t-th moment, and is assumed
to follow a zero-mean Gaussian distribution, with variance o2, and
{e/(s)} are independent and identically distributed zero-mean Gaussian
noise with variance ¢3 that is a parameter to quantify the remaining
variance of log(u,(s)) on {@(s)}. Note that this is the same model as
described in Eq. (1) in the main text, in which dependence of the
individual terms on s was suppressed for simplicity. This model implies
that log(u,(s)) has the mean E[log(u,(s))]=f(s) and the co-variance
function 3", 07¢(s)P(s,) + 03,

Note that with only the first term f{s), this model is equivalent to
the standard tuning curve model of spike counts. The second term
Y k0 () is the additional variance from the contribution of moment-
to-moment fluctuations, making the model naturally capture the over-
dispersion of spike counts.

Pf-PCA differs from the multiplicative gain model proposed in
ref. 25. First and most importantly, we do not assume a pure multi-
plicative gain change in the fluctuations, instead, the form of fluctua-
tions is arbitrary. Second and a more subtle point is that, in Pf-PCA, the
magnitude of the fluctuation « is assumed to follow a Gaussian dis-
tribution, while Gamma distribution was assumed for the gain in the
firing rate scale (not the logarithm of firing rate) in ref. 25. Note that ay
is Gaussian distributed thus symmetric, while the logarithm of Gamma
distribution is left-skewed thus has a different shape.

Inference: a two-step estimation procedure
Assume that we have observations based on a set of m stimuli which
are sampled from a particular stimulus space S. The spike count of
individual neuron elicited by individual stimulus s;, j=1,..,m, is
denoted as ns;) for the t-th moment (i.e., the -th block of trials). We
further denote the spike count vector for the t-th moment
as nt (Me(81), -+ M(Sp)

Intuitively, lf we could recover the unobservable mean u(s;) for

=1,..,B, j=1,..,m, fitting the model of stochastic curve log(u,(s))
using functional PCA would be straight-forward. Denote
1= ((S), - - e (Sp)) . We could estimate the posterior of the hid-

den firing rate Iog(ﬁt) from the spike count data using an expectation-
maximization (EM) algorithm'. Following these ideas, we developed a
two-step estimation procedure, as follows.

Step 1: recover the hidden 77,

When the vector Iog(ﬁ)t) is observable, the likelihood of Poisson
model can be written as

[ (1™
ZZ{ ) p[—m(s,-)}}. (©)

Eqn. (5) implies that the logarithm of the firing rate for the sam-
pled stimulus set {s, -+, sp,} during the ¢-th moment log(ﬁ[) can be

-
modeled as log(# ,) ~ N(F X), where X = Zkofa)kt_p)k +021. We then
obtain the log-likelihood

t= Y (logi—F)

t

Ylog(Hip— f ) +loglEl. (@)

In reality the firing rates are not directly observed. However, by
treating Iog(ﬁ)t) as missing data, we could use an EM algorithm to
iterate between an E-step and a M-step to optimize the functions.
Specifically, the E-step calculates the conditional mean E[Iog(ﬁ[)m[]
and conditional variance (;ov[log(ﬁt)ﬁz)t], given the current estimates
of the parameters f and X obtained in M-step. Given the expectations
obtained in the E-step, the M-step maximizes ¢, in Eq. (7), which
involves the following two quantities:

5 1<&
fzng[IOg(ﬂtﬂnt]

| —

B ~7T
BZ[Cov log( ) ]+ |E[log(H )l 1l ] - f] [E[Iog(m»nt]—f] }

Note that calculating these expectations in the E-step requires the
marginal distribution ﬁ),, which is not analytically tractable. We thus
adopt a Monte Carlo approach*lto calculate them. For each ¢, we gen-
erate a set of samples, Iog(ﬁ)t) FERR Iog(ﬁt) , where M=10, 000 is
the number of Monte Carlo runs, according to the distribution of
log(ﬁ)t) given by the current parameters. Then the unbiased estimates
are obtained from the samples that we simulated. Together, Step 1
gives an estimator of hidden means 7 , in the form of E[log( )| 71 ,].

Step 2: perform functional PCA on the recovered hid-
den E[log(# )| 7 ]

Given the posterior E[Iog(ﬁt)ﬁ)[], we then apply the method of
functional data analysis into the estimated posterior means to get the
mean component f{s), the fPCs {¢(s)}, and their corresponding scores
ay,. Specifically, f(s) is obtained by using the natural cubic splines
smoothing approach

B ri : 2
=2;|E[Iog(ﬁt)l7fr]—f ! +’1/ <6(3J;(25)> “
<

101

where A is chosen via generalized cross validation

The functional fluctuations {¢(s)} are estlmate_d) by the roughness
of the eigenfunction®>'®?, The first component ¢, and the corre-
sponding score for each moment &, are estimated via

var [ y(s)Ellog( AL 7 Jds
1+ [ (@] (s)) ds

and = / py(Ellog (7 )T ]~ F(s)lds

subject to / ) (@1()ds =1,
¢1(5) (8)

The remaining components and their scores are obtained via an
iterative process such that any higher order eigenfunction is ortho-
gonal to the eigenfunctions already recovered. This procedure
allows us to estimate the variance explained by each fPC, as quantified
by the variance of the score for that component. The proportion
of variance explained by the k-th fPC ¢, is simply calculated

by var(ay /> var(ay ,).

Implementation of a reduced version of the method: -PCA

We also implement a reduced version of the method, y-PCA. For this

method, after obtaining the posterior mean E(log(ﬁt)ﬁ)r), we per-

form regular PCA directly on the exponential function of the estimated

posterior mean, exp[E(log(# ,)| 77 ,)], instead of functional PCA,
p-PCA can be thought as an alternative way to perform PCA to

Poisson count data compared to Poisson PCA®*. First, Poisson PCA>*
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considered log(u,(s)) as “natural parameters”, which define the mean
and components. In contrast, u-PCA considers the unobserved
log(u,(s)) as random variables, and decomposes it into the mean and
the principal components with the amount of fluctuations assumed to
be Gaussian. Second, different techniques are proposed to obtain the
principal components. Following the relation between log-likelihood
of exponential family and Bregman distance, Poisson PCA** con-
structed a loss function to optimize it, and then obtained the principal
components. The u-PCA method seeks to estimate the posterior mean
E(Iog(ﬁ,)m)[) instead of random variables ﬁt.

Validation of the methods using simulated data

We validated our methods using simulated data inspired by experi-
mental observations*>**'°*> and with ground truth. To do so, we gen-
erated tuning curve p(s)=0.5+ fc%}fc(zio) where f; is the density
function of standard normal distribution. The stimulus s takes a
sequence with a 22.5 degree interval from -90 to 90 degree. The
number of moments (blocks) B was set to be 50 throughout.

For each of the four types of tuning changes, i.e., multiplicative
gain, additive modulation, tirling shift, and tuning sharpening, we
reverse-engineered the fPC ¢ that would give rise to that type of
tuning fluctuations. More concretely, the tuning fluctuations, denoted
by Vg _are generated from Gaussian with covariance structure
X=02¢ ¢ +cl, where c is chosen such that the structured compo-
nent explains 80% of the variance. The second component amounts to
white noise, accounting for 20% of the variance. Adding this random
noise component allows us to test the robustness of the model in the
presence of less structured fluctuations, as well as to evaluate the
extent to which our estimation procedure could recover the variance
explained by the structured fPC. Note that the recovery problem
becomes easier without such random noise component. From the
simulated data, we first estimated the variance explained by the K fPCs
(K=number of stimuli) using Pf-PCA, and then computed the pro-
portion of variance explained by the first fPC as var(a; ,)/>_, var(ay ,).
Effectively, we relied on the last K—1 components to recover the ran-
dom component in the generative model.

Here puy(s)= exp(f(s)) represents the tuning curve with no fluc-
tuation, and o7 denotes the the strength of fluctuation. Due to the scale
difference among different fluctuations, the parameter o7 is set as
follows. Multiplicative gain: 02=1.25, so that its gain change is
log(1.3p4(5)) — 10g(0.91(s)). Additive modulation: 0? =5.5, so that its
response change is log[uy(s)+0.4] — log[uy(s) — 0.2]. Tuning shift:
02 =1.38, so that it shifts log(to(s + 6)) — log(to(s — 6)). Tuning width
change: 02 =1.85, so that its standard deviance changes +20%. Under
these settings, we generated Poisson spike count data with firing
rates f1,(s) = exp[log(to(s) + y,(s)]-

Note that we also validated our methods (i) when multiple forms
of fluctuations co-exist simultaneously; (ii) when the tuning curves are
monotonic'*'%, These procedures and their results can be found in
Supplementary Notes 2 and 3.

Analyzing data from macaque V1 using Pf-PCA

We used 7 datasets (i.e., 7 sessions) which were published previously.
Three of them (D5-D7), publicly available from CRCNS website, were
obtained from anesthetized macaque primary visual cortex by Mat-
thew Smith and Adam Kohn®. In these experiments, described in
details in refs. 55,103, spiking activities were recorded while presenting
different grayscale visual stimuli, including drifting sinusoidal gratings
(each presented for 1.28 s). These gratings are [0, 30, 60, ---, 330] deg.
The other four sessions (D1-D4) were previously published in®, shared
by the authors. These data also visually evoked activities from anes-
thetized macaque primary visual cortex (see ref. 30 for details). The
grating directions are [0, 22.5,45, ---,157.5] deg. We chose neurons

with SNR>2 and mean firing rate >1.5 spikes/second. In total, we ana-
lyzed 7 datasets with 402 neurons.

For each stimulus, we counted the number of spikes for a 500 ms
window (80-580 mss after stimulus onset). Because the experiments
had a block-randomized design, for each block we obtained a response
vector corresponding the responses for all the stimulus orientations
sampled in the experiments. Repeating this for every block, we con-
structed a spike count matrix for each neuron (number of blocks x
number of orientations).

We then applied Pf-PCA to this matrix for each neuron. In doing
so, we obtained the mean component f(s), the fPCs ¢(s), where k is
component index, as well as the amount of fluctuations, i.e., scores, ax ,
for each moment ¢. We set the number of fPCs to be to three, as three
fPCs could already sufficient to account for most of the variance (see
Supplementary Fig. 6). The results reported in Fig. 3 were obtained
based on hundreds of blocks of data (400 for the D1-D3, 200 for the
D5-D7). To examine the impact of sample size, we ran Pf-PCA on sub-
sets of V1 data by taking 25, 50, or 100 blocks of each dataset. See the
results in Supplementary Note 4 and Supplementary Fig. 7.

In Fig. 3a, we plotted the inferred mean component in the form of
exp(f(s)), and the first fPC in the form of exp(f(s) £ o¢g;(s)), where o is
the s.d. of estimated ay .

Regression analysis. We analyzed the relationship between ¢;(s) and
f(s) by performing a regression analysis with the following form

1(5)=b+wf(s) +e(s). ©)

The regression is done by using the “Im” function in scientific
computing software R. First, we tested the significance of the regres-
sion by a F-test (Fig. 3¢). To quantify how much information of ¢;(s) is

accounted for by a linear funzction of f(s), we defined a summary sta-

Se(s)

tistics: fraction=1-— ik This measure was reported in Fig. 3d.
P

“Flatness index” analysis. In Fig. 4a, uy(s) = exp(f(s)) was generated
from von Mises function with parameters satisfying po(s) € [0.2,1].
Denote the tuning curve corresponding to the fluctuation a=ag as
Hq, (5). Define Au(s)=pq(s) — Ho(s) — c(exp(ba) — 1), where c is the
baseline of o(s). Thus, Au(s) captures the change of firing rate as a
function of the stimulus with an additional correction term. The
“flatness" index was defined as ﬁﬁ%ﬂ;, where s”f and s°" denote the
preferred orientation of the neuron and its orthogonal orientation,
respectively.

This index quantifies how flat Au(s) is. For additive change,
Uo(S) =o(S) + Caqa®@,  Where  c,q¢ IS a  constant, and
Au(s) = cqqa — c(exp(ba) — 1), implying Au(s) is completely flat over s.
Thus, flatness=1 in this case. For multiplicative gain,
Ha(S) = exp(ba)ug(s) and  Au(s)=(Ho(S) — o)(exp(ba) — 1), implying
Au(s*™) = 0. Thus, flatness = 0. Remarks: flatness can be larger than
1 when Au(s°™) > Au(sP"), which is possible when Au(s) < 0. It is also
possible to have flatness <0, when Au(s®™) < 0 < Au(sP™).

Connecting the power-law relation to multiplicative gain and
additive modulation. The power-law modulation can degenerate to
multiplicative gain and additive modulation under certain parameter
regime. Obviously, as w = 0, the power-law modulation is equivalent to
multiplicative gain. The connection to additive modulation is less
obvious. When ba and wa are close to 0, using Taylor expansion,
Ho(S) = o (S) + o (S)(b +wlog py(s))a. It follows that when the function
Ho(S)b/w+py(s)loguy(s) is flat over s, the power-law modulation
degenerates to an additive change. Examining the property of
the function g(x)=xlog(x)—kx, we found that g(x) is indeed
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approximately flat over [0, 180] when « is in some region, resulting in
an approximate additive modulation.

Control analysis

Simulated data from multiplicative gain model. To generate syn-
thetic data from the multiplicative gain model, we set the tuning curve
Hu(s) on each moment to be log(mean firing rate) plus a constant fluc-
tuation, with its standard deviation matching that inferred from the
real data. We then sampled the spike count under Poisson noise. In
doing so, we generated synthetic data which approximately match the
amount of fluctuations in the real data, but with a pure multiplicative
gain. We performed regression analysis on the simulated data using
the same procedure as that was used for real data (described above).
The slope values obtained for the real and synthetic data were com-
pared. The results were reported in Fig. 3e.

Rank-1model. In Fig. 5c, d, f and Supplementary Fig. 11, we reported the
recovered score matrix based on a Rank-1 multiplicative gain model and
the dimensionality. When simulating this model to generate synthetic
data, the multiplicative gain fluctuations were sampled i.i.d. from a
normal distribution. To ensure comparability of results, we set the
variance in a way such that the fluctuations of each simulated neuron
match the values of real neural data. The fluctuation at each moment
was shared by all neurons in the population, ensuring the score matrix is
rank-1. We performed the Pf-PCA analysis on the simulated population,
then obtained the recovered score matrix. We also simulated and ana-
lyzed synthetic data from a rank-1 additive-modulation model. These
results were reported in Supplementary Fig. 12.

Fisher information

Assume that the tuning curve for neuron i is z(s) and that the spike
count n®(s) follows Poisson distribution with mean u(s). Because we
can approximate 1(s) by the mean f(s) plus the functional fluctua-
tions, the Fisher information (FI) of neuron i at stimulus s, given the
score ay, where k is index of component, is obtained by

i) = VO | _ PIn log(u®) — p01] apcs)
0s (@uoy 0s

o (of%s) o\l 1 [ (%) P (s)
= |yt k i) Z 13
{” )(S)< s +Zk Y 5s 1o(s) H 3 - s

. af(i)(s) a(p(i)(s) 2
=uD(s) | L2 k
H (s){ 75 +;ak 5|

10)

To compute the population Fisher information, we assumed that
the neurons are independent conditioned on the fluctuations. To
compute the population FI for each stimulus, we summed over the
neurons in the population. Note that the reported FI for neural
population or individual neurons (Supplementary Fig. 14) is the total FI
(Fig. 6) by summing over different stimulus orientations with an indi-
vidual experimental block.

Recovery analysis on Fl. To see if our method indeed has the statis-
tical accuracy to recover the relation between FI and spike activity, we
performed a control recovery analysis. We first generated synthetic
datasets by simulating data based on the Pf-PCA model with the
parameter values estimated from the real data. Specifically, for a
neuron we considered the Poisson mean p.(s) of moment ¢ to be
log(u,(s))=f(s) +ay; ¢ (5), and generated the counts of moment ¢ from
Poisson with the mean. From this, we obtained the synthetic popula-
tion counts. We then performed the same analysis pipeline on these
synthetic data to estimate the population FI. From this control analysis,
we found that our method can accurately recover the relationship
between FI and total spiking activity.

Fl and classification analysis. We performed classification analysis
similar to ref. 30 to examine the relation between the population FI
and classification accuracy. Similar to ref. 30, we split the data into
two groups (i.e., high and low), sorted by the population activity. We
performed classification based on ensemble with different size.
Given a randomly selected ensemble of neurons with certain size, we
performed multinomial logistic regression, and obtained the per-
formance (proportion of correct classification). For avoiding over
fitting the data, we used 5-fold cross-validation and reported the
average performance across the five sets of left-out data. For each
ensemble size, we performed this analysis on 500 randomly selective
groups for high and low group each. These results were reported in
Supplementary Fig. 15a. We also performed this analysis on the
synthetic data as described above. The results were shown in Sup-
plementary Fig. 15b.

Analysis of representational geometry

We analyzed the geometry of the representation under a simple mul-

tiplicative gain model and the power-law model inferred from the

V1 data.

For the simple multiplicative gain model recapitulating the effect
of changing contrast, we generated a homogeneous set of tuning
curves using von Mises function (tuning width parameter equals 1). We
assumed that the multiplicative gain modulated the firing rate of all
neurons in the same way. In Fig. 7a-e, we assumed that the multi-
plicative gain could take four different levels (0.25, 0.5, 0.75,1), and
computed the representation distance matrix by evaluating the
representational distance for each pair of states (defined by both sti-
mulus orientation and multiplicative gain). We performed three-
dimensional classic MDS to visualize the geometrical structure of the
representation, and obtained the projection onto the first two
dimensions. A similar analysis was performed based on pure additive
change (for results, see Supplementary Fig. 16).

For the models based on Pf-PCA inferred from real data (Fig. 7f-1),
we performed the geometry analysis by the following steps:

(i) We first generated the mean firing rates for each moment ¢ by
from our power-law modulation model. We clustered the
blocks x neuron score matrix into 10 clusters according to blocks
by k-mean, then computed the average score within clusters to
get the “10-state averaged score", which is 10 x neuron matrix. For
each of the 10 states in the population, the corresponding tuning
curves were generated.

(ii) To reduce the biased sampling of neurons, we created a more
shift-invariant neural population code by shifting tuning curves 8
times with 20 degree each. Our assumption here is that the neural
code for orientation in V1 is roughly shift-invariant.

(iii) We calculated the euclidean distances between stimuli based on
the extended population matrix (after variance-stabilizing trans-
formation for Poisson noise, i.e., taking the square root
transformation) to obtain a distance matrix, and performed the
classic MDS based on this distance matrix. In most of the sessions,
we performed 3-D MDS. In two of seven sessions, the latent
fluctuations are smaller so that the cylinder structure does not
appear in 3-D MDS. For these two sessions, we performed 5-D
MDS. When plotting the first two and the fifth dimension in a 5-D
MDS embedding, the cylinder-like structure is apparent.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

No experimental datasets were collected in this study. Three of the
seven datasets used in this study are available from CRCNS data
sharing website. The remaining 4 datasets were originally collected in
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Dr. Adam Kohn’s 1ab®’. Request of these datasets should be directed to
the original authors who collected these data. Source data are pro-
vided with this paper.

Code availability

The R code that implements the Poisson functional PCA method and
related analyses is available in a public repository (GitHub: https://
github.com/rong-zhu/PfPCA).
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