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Multidimensional cerebellar computations
for flexible kinematic control of movements

Akshay Markanday 1,3, Sungho Hong 2,3, Junya Inoue1, Erik De Schutter 2 &
Peter Thier 1

Both the environment and our body keep changing dynamically. Hence,
ensuring movement precision requires adaptation to multiple demands
occurring simultaneously. Here we show that the cerebellum performs the
necessarymulti-dimensional computations for the flexible control of different
movementparameters dependingon theprevailing context. This conclusion is
based on the identification of a manifold-like activity in both mossy fibers
(MFs, network input) and Purkinje cells (PCs, output), recorded frommonkeys
performing a saccade task. Unlike MFs, the PC manifolds developed selective
representations of individual movement parameters. Error feedback-driven
climbing fiber input modulated the PC manifolds to predict specific, error
type-dependent changes in subsequent actions. Furthermore, a feed-forward
network model that simulated MF-to-PC transformations revealed that
amplification and restructuring of the lesser variability in the MF activity is a
pivotal circuitmechanism. Therefore, theflexible control ofmovements by the
cerebellum crucially depends on its capacity for multi-dimensional
computations.

Short-term motor learning is a specific variant of sensorimotor
learning. It provides the ability to rapidly acquire a new control
scheme that allows the motor system to cope with the demands of
often unexpected or sudden changes in the external environment1.
Not only external but also internal changes may require fast adjust-
ments. For instance, the motor plant may change due to muscular
fatigue slowing movements. Also, boredom and declining motiva-
tion, i.e., cognitive fatigue will reduce the speed ofmovements. If not
too extensive, this slowing of movements—the decline of movement
“vigor”—may not necessarily degrade endpoint precision as the
speed reduction can be compensated by cranking up the overall
movement duration, an adjustment of a distinct parameter that
requires the cerebellum2–4. However, behavioral studies indicate
that parametric control by the cerebellum, deployed to swiftly
react to external and internal changes, is not confined to a single
kinematic parameter like movement duration. Rather, work on
goal-directed eye movements as models of cerebellum-based short-
term motor learning has established that adaptation to external

and internal changes involves adjustments of several kinematic
parameters2,5–11.

How does the cerebellum coordinate the control of multiple
kinematic parameters in order to ensure optimal movements? To
answer this question, we should know at which stage of the cerebellar
neural network the information on the various movement parameters
and necessary adjustments is available and how they are transformed
within the network. Previous studies on saccadic eye movements have
emphasized the control of particular parameters like movement
duration12 or velocity13 by the simple spike (SS) discharge of a popu-
lation of cerebellar Purkinje cells (PCs)—the output currency of cere-
bellar cortex. Although it has been suggested that SS firing rate and
spike time can simultaneously encode the velocity and timing of eye
movement at the individual PC level14, ultimately unifying these
divergent views at the population level is challenged by the large
cell-to-cell variability in the discharge of cerebellar neurons. This
problem is usually addressed by extensive averaging of all or cate-
gorized subsets of neurons in data6,12,13,15,16. However, averaging can
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lead to conclusions that are biased towards a particular parameter
within a space of multiple encoded movement parameters and, in any
case, it fails to detect information hidden in cell-to-cell variabilities.
Unraveling such hidden information in neuronal populations is where
recent studies of the neural dynamics of cortical motor regions have
made remarkable progress17–20. One of the key ideas is that the
apparent substantial heterogeneity—high dimensionality—of the
responses of individual neurons can be explained by a combination of
a smaller number of underlying patterns, i.e., a low-dimensional latent
structure. This low-dimensional structure, referred to as the “mani-
fold,” captures the essential properties residing inside the population
discharge20–22 concealed by simple averaging across neurons without
the risk of biased conclusions.

Hence, to address if and how the cerebellum accommodates the
multifarious parametric requirements of short-term sensorimotor
learning, here we identify the manifold structure of the activity of key
input and output elements of the cerebellar cortical network, mossy
fibers (MFs) and PCs, of nonhuman primates performing a fatigue-
inducing repetitive saccade task entailing different kinematic changes.
We report the multi-dimensional manifolds in the MF and PC-SS
activity that simultaneously encode eye movement velocity and
duration by their geometry and dynamics. We then proceed with
considering the influence of climbing fibers, represented by the PC
complex spike (CS) discharge on the PC manifolds, with a focus on its
function of conveying information on performance error among
others23. We show that CSs modulate PC manifolds in an error type-
dependent manner that predicts complementary changes in sub-
sequent eye movements by selectively controlling the individual
movement parameters. Finally, we investigate the nature of the inter-
action between the input and output neurons and present evidence
that the underlying network computation amplifies the relatively small
variability in MF responses to transform them into representations of
individual movement parameters, exhibited by PCs in an error-type-
dependent manner. Our results demonstrate an enhanced computa-
tional capacity of PCs that provides the flexible control of more than
one kinematic parameter, ensuring the precision of goal-directed
movements.

Results
Velocity-duration adjustments during a fatigue-inducing
repetitive saccade task
We trained twomonkeys to execute a long series of center-out visually
guided saccades made towards two fixed target locations, left and
right on the horizontal meridian (eccentricity: 15 deg), alternating
between targets, in order to receive awater-based reward at the end of
the movement (Fig. 1a, see Methods for details).

As exemplified in Fig. 1b–d, over the course of a session saccades
exhibited a gradual decline in their peak velocity (PV), reflecting a
general loss of motivation (“cognitive fatigue”), arguably due to the
fast and repetitive nature of the task4 (Fig. 1b, up). This gradual drop in
saccade velocities was compensated by a likewise gradual upregula-
tion of saccade duration (Fig. 1b, middle) ensuring that endpoint
accuracy was maintained (Fig. 1b, bottom) within an acceptable range
of error (±2 deg around the target). Since inter-trial intervals were
short (~100ms), the monkeys had to execute rapid saccades back
towards the fixation point (i.e., centripetal saccades) after every cen-
trifugal saccade to get ready for the subsequent trial. Albeit not
directly rewarded, the kinematic structure and the velocity-duration
adjustments of centripetal saccades were very similar to those of
centrifugal saccades (red and blue traces, Fig. 1b, c). The notion of a
viable velocity-duration tradeoff suggested by the exemplary data
received full support from a behavioral population analysis which was
based on pooled saccades from all sessions in which we had recorded
the responses of 117 MFs and a complementary dataset of saccades
collected while recording from 151 PCs, the latter also the basis of

Markanday et al.23 (Fig. 1d–f). Relative to the early trials, we observed
an overall decrease of 9.9% in the median PV of late centrifugal and
12.1% decrease in late centripetal saccades (Fig. 1d), compensated by
12.2% and 16.5%, respectively, increases in median saccade duration
(Fig. 1e), maintaining the required accuracy (Fig. 1f).

On top of these gradual changes, reflecting the consequences of
the development of cognitive fatigue over many trials, we also
observed a within-session, trial-to-trial variability in centrifugal and
centripetal saccade endpoints (“motor noise”), which resulted from
saccades randomly overshooting or undershooting the target (Fig. 1a,
see schematic diagrams with green and yellow-colored arrows). Con-
sequently, both saccade types could result in retinal errors in both
directions that we could resort to when trying to estimate the pre-
ferred error direction of CSs fired by individual PCs as projected on the
left–right axis.

Mossy fiber discharge encodes saccade kinematics
The saccade-related MFs, all recorded from the oculomotor vermis
(OMV)24,25, could be broadly categorized into threemain types—burst-
tonic (BT), short-lead burst (SLB), and long-lead burst (LLB) units
(Fig. 2b, see Methods for details), based on the timing of a burst-
response component and the presence of subsequent tonic discharge.
As demonstratedby anexemplaryBTunit (Fig. 2a, left panels), a strong
“burst” discharge for saccades made in the preferred leftward hor-
izontal direction was followed by an elevated discharge rate (the tonic
component), that persisted throughout the post-saccadic period and
stopped only when the eyes began to move in the opposite (non-
preferred) direction. Compared to the SLB and BT units that started to
fire vigorously just a few milliseconds before saccade onset (Fig. 2a,
middle; 9ms in the example), the modulation onset of the LLB units
occurredmuchearlier (Fig. 2a, right; ~330ms in the example), reaching
itsmaximumexpression in a rampingmanner. Independent ofMF unit
type, the discharge rate reached its peak during the saccade and
stopped around the end of saccades, made into a unit´s preferred
direction.

Thedischarge ofMFs reflected the trial-to-trial changes in saccade
kinematics. To demonstrate this relationship, we calculated the
population responses for saccades in a unit´s preferred direction,
separately for BT, SLB, and LLB MFs (n = 24, 27, and 60, respectively,
Fig. 2b) and sorted them into bins of PV (bin size = 50deg/s), ranging
from low to high values (and corresponding changes in saccade
duration). Comparing the MF population responses for the two
extreme bins comprising the lowest and highest velocities, respec-
tively, clearly showed that in all three MF groups (Fig. 2c–e), the peak
firing rate was substantially larger for the high PV bin, associated with
clearly shorter burst duration. Note that in all three classes ofMFs, the
peak discharge rate coincided with saccade onset and, moreover, that
not only the saccade profiles but also the associated mean discharge
profiles were clearly less skewed for the high PV bin. This was due to a
shortening of the saccade deceleration phase and a parallel faster
decay of the discharge following the discharge peak. In fact, the peak
discharge rate grew linearly with PV over the full range of PV bins
(Fig. 2f, h, j), whereas the time of burst offset (see Methods for details)
linearly predicted the time of saccade offset (Fig. 2g, I, k). Even for the
tiniest corrective microsaccades that occurred either during the fixa-
tion period or during the post-saccadic period after under- or over-
shooting saccades, we observed the same linear encoding of these
kinematic parameters by the activity of the three MF types (Supple-
mentary Fig. 1).

Simple spikes of Purkinje cells encode saccade kinematics
We also recorded 151 OMV PCs and analyzed their SS responses.
Whereas MFs exhibited bursting in their preferred saccade direction
and little firing in the non-preferred direction, PC SS patterns for the
two opposite directions—although often clearly different—did not
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follow a comparatively simple rule and exhibited a large variability in
their response patterns (see Methods). Therefore, to characterize the
different responsepatterns and their relation to saccade kinematicswe
considered SS responses for centripetal and centrifugal saccades
separately. We classified them into four main categories—burst
(n = 107), pause (n = 99), burst-pause (n = 72) and pause-burst types
(n = 24), using linear discriminant analysis applied to the first two
principal components accrued from a principle component analysis
(PCA) of the discharge patterns (Fig. 3a, c, see Methods). The
responses of typical “burst” and “pause” units were characterized by a
saccade-related increase or decrease in firing rates respectively,

whereas “burst-pause” and “pause-burst” units exhibited both types of
changes, yet in opposite succession.

Pooling the responses of all SS units within each category, sepa-
rately for the aforementioned PV bins, we obtained a clear linear
relationship between the firing rate extremes (maximum discharge in
units with burst component, minimal discharge in units with pause
component) and eye velocity for all four SS categories (Fig. 3d–g and
Fig. 3h–k). To capture saccadeduration-related changes in SSfiring,we
relied on the timing of the first discharge rate extreme. As summarized
in Fig. 3l–o, it shifted to later times in burst-pause and pause-burst
units, while showing the same non-significant tendencies in the other
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two categories. Hence, one might conclude that the SS discharge of
PCs in our data set encoded both movement velocity13 and duration12,
albeit not as precisely as in the case of MFs.

Identifying manifolds from pseudo-populations of MFs and PCs
to unveil multi-dimensional coding of eye movements
However, there is a necessary caveat. Individual units were recorded in
separate sessions. Hence the trial number varied between sessions.
Moreover, the behavioral state of a monkey was hardly constant over
sessions. Therefore, we must assume that such differences between
individual sessions might have biased particular velocity bins. For
instance, a session characterized by poor motivation would be
expected to give rise to the emergence of low-velocity bins not found
in sessions of higher motivation and, consequently, confounding
estimates of the influence of PV on neuronal responses at the popu-
lation level. In order to avoid confounded estimates of the kinematic
dependencies of MF and SSs of PC units in our analysis, we resorted to
a computational model that predicted the firing rate of individual MFs
andPC-SSs basedon a linear combination of a kinematics-independent
component, namely the mean firing rate of a unit, and a PV- and/or
duration-based modulation as added kinematics-dependent compo-
nents (see Methods, Eq. 1). Finally, by combining the linear models of
individual units, we obtained “pseudo-population” responses of MFs
and PCs to which every unit contributed with an equal number of trials
for any given PV bin as if all units had been recorded simultaneously
during an experimental session22. A step-by-step illustration in Sup-
plementary Fig. 3 shows the reconstruction of neuronal activities
based on Eq. 1, using only PV as the kinematic-dependent parameter to
compute the pseudo-population discharge as an estimate of the true
population response (see also Methods for more details).

The population responses estimated by the pseudo-population
model of MFs predicted the actual peak firing rate and duration of the
population burst discharge with high accuracy (Supplementary
Fig. 3e). On the other hand, the pseudo-population model for PC-SSs
also predicted the samequantities significantly, but less well, especially
the burst duration (Supplementary Fig. 3g). Note that the quality of the
prediction did not improve substantially by considering both para-
meters (i.e., PV and duration) or only PV (see Supplementary Fig. 3e, g
and Supplementary Methods). This is expected, since, for the main-
tenance of endpoint precision, a change of one kinematic parameter
must be compensated by a coupled change of the other. Therefore, in
most cases we used the PV-only model to probe the effects of the
compensatory duration change correlated to PV change as in Figs. 2
and 3, except for when we investigated the effects of the uncorrelated
changes in PV and duration by the PV and duration-based models, as
discussed later. The relatively poor prediction provided by the pseudo-
population of PC-SSs might be due to a much larger variability of the
kinematics predictions of the individual models, reflected in higher
standard errors of population averages of kinematics-independent and
kinematics-dependent components (Supplementary Fig. 3c, bottom).

A possible source of the high unit-to-unit variability could be the mix-
ing of SS responses of individual PCs, each preferring a specific direc-
tion of retinal error. In fact, it has been shown that the conventional
saccade-related SS population averages exhibit higher firing rates if the
saccades considered are made in a direction that is opposite to the
preferred direction of CSs, the latter the direction associated with the
highest probability of observing CSs (CS-ON direction)13. Hence, could
the performance of the PC-SS pseudo-population kinematics predic-
tion be improved by grouping individual PC-SS responses into two
pools that share the preference for error direction, i.e., left and right
error, respectively? Indeed, reorganizing our PC data based on CS
error-tuning, approximated by deciding whether left- or rightward
errors evoked larger CS firing rates, led to a clearer saccade-related
burst around the time of the saccade in the CS-OFF direction, whose
peak clearly modulated with PV (Supplementary Fig. 4a, b), unlike for
saccades made in the CS-ON direction (Supplementary Fig. 4c, d).
However, despite qualitative differences in the CS-ON and OFF direc-
tions obtained by controlling for preferred error directions, the per-
formance of the SS pseudo-population model in predicting the actual
firing rates and burst duration did not improve compared to when
information about CS-ON/-OFFdirectionswas ignored (Supplementary
Fig. 3e), suggesting that large heterogeneity in SS responses still pre-
vailed. To quantify the difference in the kinematics encoding between
MFs and PCs, we performed a PCA on PV-dependent components
(reflecting PV encoding), similar to the PCA on the PV-independent
meanfiring rates shown in Fig. 3.We found thatmanymore dimensions
were required in the case of PCs (d = 10), compared to MFs (d = 4), to
explain ~78% of the total variability in the encoding of PV by individual
units (Supplementary Fig. 4e, f), supporting a large discrepancy in the
heterogeneity of PV encoding by MFs and PCs.

To mitigate the impact of this apparent large cell-to-cell varia-
bility, we resorted to dimensionality reduced representations of the
pseudo-population responses ofMFs and PC-SSs, eachgiven as a linear
combination of components, the first one reflecting the mean
kinematics-independent firing rate and the second, kinematics-
dependent discharge contribution reflecting discharge deviations
due to fluctuations in movement kinematics. To this end, we used the
following approach. First, we ran a PCAon the kinematics-independent
component to identify the number of dimensions explaining a major
chunk of the total cell-to-cell variability of the mean firing rates.
However, there is a risk that these dimensions may change due to
spontaneous trial-by-trial changes in PV or duration. Therefore, we
resorted to matrix perturbation theory where we applied minor dis-
turbances in PV or duration resembling trial-to-trial changes in
our data and show that there are no significant changes in these
dimensions as reflected by the eigenvalues of individual dimensions
(Supplementary Fig. 5i). Given that the PCA-derived dimensionality is
stable enough, we finally computed how the result of the first step
would change relative to changes in movement parameters derived
from the same dimensions of the kinematics-dependent component

Fig. 1 | Repetitive saccade task induces a gradual decline in saccade velocity.
a Behavioral task. Saccades weremade repetitively, either in left or right directions.
All center-out (centrifugal (CF), solid arrows) saccades were rewarded. Centripetal
(CP) saccades (dashed arrows) were not rewarded. Both CF and CP saccades could
lead to errors in leftward (orange arrows) or rightward (green arrows) directions.
bGradual decay of peak velocity (upper panels) in CF (left) and CP (right) saccades
(CF: p = 1.12 × 10−5, Z = 4.4; CP: p = 1.02 × 10−5, Z = 4.4) is paralleled by an increase in
duration (middle panels, CF: p = 1.82 × 10−4, Z = −3.7; CP: p = 1.9 × 10−6, Z = −4.8) to
stabilize amplitudes (lower panels, CF: p =0.89, Z = −0.1; CP:p =0.95,Z =0.1) within
a single session. Comparison based on n = 30 early and late trials, respectively. Each
dot represents data from a single trial. Trends in the data are highlighted by fitting
second-order polynomial fits (dark yellow lines) to the data. All comparisons based
on two-sided Wilcoxon signed-rank tests. c Comparison of horizontal eye position
and velocity profiles of early (i.e., first 30 trials, CF: dark blue; CP: dark red) and late

(i.e., last 30 trials, CF: light blue; CP: light red) trials chosen from the experimental
session in b. Data aremean± SD. d–f Population analysis of 117 behavioral sessions.
Box plots showing overall reduction of peak velocity (CF:p =6.51 × 10−18, Z = 8.6; CP:
p = 8.81 × 10−21, Z = 9.3) in late trials (lighter colors) as compared to early (darker
colors) ones which is compensated by the upregulation of saccade duration (CF:
p = 1.31 × 10−20, Z = −9.3; CP: p = 8.81 × 10−21, Z = −9.3) during the late trials to main-
tain amplitude around 15 deg (CF: p =0.57, Z =0.6; CP: p =0.01, Z = 2.5). Each data
point corresponds to themean value of the early (first 30, dark-colored circles) and
late (last 30, light-colored circles) CF (blue circles) and CP saccades (red circles) of
an individual session (n = 117 sessions). All comparisons based on two-sided Wil-
coxon signed-rank tests. Significant differences are highlighted by asterisks. On
each boxplot, center is median value, lower and upper edges of the box are 25th
and 75th percentiles, respectively, whiskers extend to extreme values and outliers
are marked as “+”.
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(see Methods, Eq. 2). This provided a good prediction of the move-
ment parameter-dependent pseudo-population discharge (see Sup-
plementary Methods for mathematical details). For MFs, the first step
found two dimensions that explained 87.6% of the total cell-to-cell
variability (Supplementary Fig. 5b). The second step found that the
first dimension seemed to represent a burst modulation (Supple-
mentary Fig. 5c, top and Fig. 4c, top), similar to the population average
firing whose burst size and duration were modulated by PV. The

second dimension (Supplementary Fig. 5c, bottom and Fig. 4c, bot-
tom) represented the sustained responses during the pre- and post-
saccadic period, reminiscent of the long-lead and tonic component of
the LLB and BT MF types, respectively. Here, those components had
opposite signs (rather than being all positive in the average firing
rates), indicating an anti-correlation between the pre- and post-burst
responses. However, in PCs, capturing 92.3% of the total cell-to-cell
variability required four dimensions, where the first two dimensions
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Fig. 2 | Encodingof saccade kinematics bymossyfibers (MFs). aRaster plots (up)
and average firing histogram (bottom) of a representative burst-tonic (purple),
short-lead burst (yellow) and long-lead burst (turquoise) MF unit. Solid gray lines
between upper and lower panels are the mean horizontal eye position traces.
Data are aligned to saccade onset. b Proportion of MF units in each category.
c–e Population response of burst-tonic (purple), short-leadburst (yellow) and long-
lead burst (turquoise)MFs to high and low velocity saccades (see insets for average
velocity profiles), representedby lighter anddarker shades, respectively. Solid lines
represent themean and the shaded regions are ±SEM. f,h, jAverage peak firing rate
as a linear function of saccade peak velocity (bin size = 50deg/s) for each MF

category. Linear regression parameters: Burst-tonic (f): p =0.016, R2 = 0.83; Short-
lead burst (h): p =0.005, R2 = 0.9; Long-lead burst (j): p =0.006, R2 = 0.9.
g, i, k Average burst offset relative to saccade onset as a function of saccade
duration (calculated from velocity bins) for each MF category. Linear regression
parameters: Burst-tonic (g): p =0.008, R2 = 0.88; Short-lead burst (i): p =0.0005,
R2 = 0.96; Long-lead burst (k): p =0.0005, R2 = 0.97. Solid gray lines represent the
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peak velocity bins, respectively, for which population responses in c, d and e are
plotted for comparison. Data are mean ± SEM obtained from n = 24 burst-tonic,
n = 60 long-lead burst and n = 27 short-lead burst units, respectively.
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represented simple monophasic (i.e., bursting or pausing) and bipha-
sic (burst-pause or pause-burst) firing patterns, respectively, whereas
the remaining two dimensions exhibited more complex features
(Supplementary Fig. 5f, g and Fig. 4e).

We then plotted the first two of these reduced dimensions as a
function of each other (“2D manifolds”, or in short “manifolds”), both
for MFs and PCs for different values of PV. While both MF and PC

manifolds appeared as limit cycle-like rotating trajectories, they
exhibited crucial differences from each other (Supplementary Fig. 5d,
h and Fig. 4b, d). For example, unlike the MF manifolds that were
characterized by an overall PV-related increase in their size almost
symmetrically around the saccade onsets, the PC-SS manifolds based
on the first two dimensions showed no significant changes before
saccade onsets, as depictedby the strongoverlapping of themanifolds
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Fig. 3 | Classification of simple spike (SS) responses of Purkinje cells (PCs) into
different categories and their encoding of saccade kinematics. a Scatter plot of
the first two principal components of SS responses. Classification of PCs into four
response categories: burst (blue), pause (orange), burst-pause (green) and pause-
burst (red), separated by decision boundaries (dotted black lines). Each data point
corresponds to a PC’s SS response in one of the two directions. b Saccade onset-
aligned average SS responses of exemplary units taken from each category (large
black circles in a). c The proportion of units in each category. d–g SS population
response (baseline corrected, mean ± SEM) of all four categories to high and low
velocity saccades (see insets for average velocity profiles), represented by lighter
and darker shades, respectively. Data are aligned to saccade onset. h–k Baseline
corrected, average maximum (h, j) and minimum (i, k) firing rates as a function of

saccade peak velocity (bin size = 50deg/s) for each category. Linear regression
parameters: Burst (h): n = 107 units, p =0.041, R2 = 0.69; Pause (i): n = 99 units,
p =0.0068, R2 = 0.87; Burst-pause (j): n = 72 units, p =0.00081 R2 = 0.95; Pause-
burst (k): n = 24 units, p =0.0059, R2 = 0.88. l–o Average peak (for burst (n = 107)
and burst-pause (n = 72) units; l, n) and trough (for pause (n = 99) and pause-burst
(n = 24) units; m, o) timing relative to saccade onset as a function of saccade
duration (calculated from velocity bins) for each PC category. Linear regression
parameters: Burst (l): p =0.065, R2 = 0.61; Pause (m): p =0.087, R2 = 0.56; Burst-
pause (n): p =0.00015, R2 = 0.98; Pause-burst (o): p =0.0059, R2 = 0.88. Solid gray
lines represent the linear regression fits. Light and dark-colored bins correspond to
the high and lowpeak velocity bins, respectively, for whichpopulation responses in
d–g are plotted. Data are mean± SEM.
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(Fig. 4a–e). However, the PC manifolds for the third and fourth
dimensions showed clear differences already before saccade onsets
(Supplementary Fig. 5h, bottom). Therefore, PC manifolds based on
different dimensions can selectively encode specific phases of a
movement, preparation and execution, in the same manner as the
“null-space” in cortical manifolds for the preparation of reaching arm
movements18,19, while the MF manifolds lacked this information sui-
table to control specific movement phases.

Furthermore, PC manifolds also carried a more disentangled
representation of the two saccade parameters, PV and duration,
compared toMFs. To arrive at this conclusion,we estimated the PV and
duration-based models of MFs and PC-SSs. Since PV and duration in
our data are highly, yet not perfectly correlated, these parameters had

a residual variability, apart from the variability explained by the
velocity-duration tradeoff suggesting complementary changes in PV
and duration. In fact, the natural end-point variability we observed in
saccades is a consequence of these residual variabilities appearing as
slight deviations from the values predicted by the velocity-duration
tradeoff. To capture the residual variability, we independently
manipulated these two kinematic parameters (varying one while
keeping the other fixed) and then tried to identify concomitant
changes inMFmanifolds. In fact, a change inPV (Fig. 4f)modulated the
manifold size (i.e., geometry), as well as the time-dependence (i.e.,
rotating neural dynamics). While the manifold size can be interpreted
as the maximal size of firing rate modulation, the rotation speed
represents how rapidly the rate is modulated (Fig. 4g, h, see Methods
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Fig. 4 | Manifolds identified in MF and PC-SS activity perform multi-
dimensional encoding of eye movements. a Correlated changes in peak velocity
(PV) and duration when PV is used as the only control parameter. b 2D plot of the
first two dimensions in the MF manifold. Triangles and circles mark the saccade
onsets and 250ms before saccade onsets, respectively. Arrows show the direction
of rotation. cThe first twodimensions inb, plotted in time.d, e Sameasb, c for PCs.
f Isolated changes in saccade PV with the duration kept constant. g, h Isolated PV-
dependent changes in the MF manifold computed from the rate models para-
metrized by PV but with fixed duration. i, j Same as g, h for PCs. k Isolated changes
in saccade duration with constant PV. l–o Same as g, h and i, j but for duration
change. p Left: MF manifold size versus rotation speed along the MF manifold

varying with the correlated (green; a) and independent (orange and blue; f, k)
change of PV and duration. Colors are as the color bars in c,h,m. Right: slope angle
of the lines in left. In computing the angles, the x- and y-coordinates (manifold size
and rotation speed) are normalized by the standard deviation of the correlated
change case. T-val (Correlated, PV) = 17.97; ***: p = 1.27 × 10−35, T-val (PV, Duration) =
−30.37; ***: p = 2.44 × 10−57, T-val (Correlated vs Duration) = −19.18; ***: p = 4.46 ×
10−38. q Same as p for PCs. T-val (Correlated, PV) = 19.75; p = 5.26 × 10−44, T-val
(PV, Duration) = −47.18; p = 1.36 × 10−92, T-val (Correlated vs Duration) = −48.13;
***: p = 8.24 × 10−94. p Values are from one-sided Student’s t tests. Data are jackknife
mean ± SEM from n = 117 MFs and n = 151 PCs.
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for calculating manifold size and rotation-speed). Therefore, in terms
of behavior, an increase in the manifold size can be linked to an
increase in the PV of saccades, whereas a higher rotation speed of the
manifold would suggest shorter saccade duration. Manipulating the
saccade duration (Fig. 4k) also modified the MF manifolds (Fig. 4l, m)
in a manner quite similar to the one resulting from correlated changes
in PV and duration (Fig. 4a) where the perfect velocity-duration tra-
deoff is assumed. In contrast, PV (Fig. 4i, j) and saccade duration
(Fig. 4n, o) varied the PC manifold size and rotating neural dynamics
almost independently. These effects are summarized by the curves
obtained by plotting the average rotation speed as a function of
manifold size and their corresponding slope angles (Fig. 4p, q). Com-
pared to the correlated change case (green in Fig. 4p, q), the curves
with steeper slopes (or larger angles) indicate a bias towards the
rotation speed (related to duration) adjustment, whereas smaller slope
angles suggest stronger changes in the manifold size (related to PV).
Therefore, while the slope angles were all comparable in the case of
MFs (Fig. 4p), the PV and duration variation resulted in nearly ortho-
gonal curves in the case of PCs, indicating almost completely dec-
orrelated encoding of the two kinematic parameters (Fig. 4q).

Centrifugal saccades could be either leftwards or rightwards, but,
notably, we found that our results did not depend on saccade direc-
tion. To test the potential influence of saccade direction onMF and PC
manifolds, we performed the same analysis on MF and PC data sepa-
rately for leftward and rightward saccades. For MFs, the left and right
groups showed comparable results (Supplementary Fig. 6a, b) as
suggested by high canonical correlations yielded by a canonical cor-
relation analysis (CCA)21,26 (Supplementary Fig. 6c). In the PC case, the
size of the manifold was much larger for saccades in the rightward
direction as compared to leftward saccades (Supplementary Fig. 6d, e).
Since around 80% of the recorded PCs had their CS-OFF in the right-
ward direction, the direction-dependent differences in the size of
these manifolds are not surprising and only confirm the gain-field
encodingof SSs13 (Supplementary Fig. 6g–i).Nevertheless, the shapeof
thesemanifolds was highly similar (Supplementary Fig. 6f). Therefore,
MFs and PCs had qualitatively identical manifold structures regardless
of the eye movement direction.

PC manifolds reveal the structure of plasticity triggered by
sensorimotor errors
In the prevailing theory for cerebellum-dependent sensorimotor
learning, the climbing fiber-driven CSs convey motor error-related
information to prompt parametric adjustments for correcting future
motor behavior, thereby acting as “teacher signals”27–29. Therefore,
motor learning has been attributed to these CSs, serving as a proxy of
sensory feedback on motor errors that, when coincident with the
parallel fiber inputs, modify the PC output by inducing a long-term
depression (LTD) at the parallel fiber-PC synapses30.

To understand how the occurrence of CS impacts the multi-
dimensional encoding of eye movements, we investigated how CSs
fired during the post-saccadic period of 50–140ms in the nth trial (“CS
trial”), reflecting retinal errors arising from natural end-point varia-
bility in saccades23, modulated the PC-SSmanifolds of the subsequent,
n + 1th trials (“Post-CS trial”). In our paradigm, errors occurred mainly
when the primary saccade undershot (outward error) or overshot
(inward error) the target location (Fig. 5a). Depending on the direction
of the primary saccade, these inward and outward errors could occur
in both left and right directions (Fig. 1a). Therefore, depending on the
CS-ON direction of individual PCs, the inward and outward errors will
elicit CSs with high probability in those PCs whose CS-ON directions
are aligned with the error vector (Fig. 5a, red circles), as compared to
those cases in which the CS-ON direction and the error vector do not
match13,15,23,31,32 (Fig. 5a, gray circles, also see Supplementary Fig. 7a). In
other words, for any retinal error in a particular trial, there will always
be a subpopulation of PCs whose CS-ON direction matches the error

vector, leading to CS trials, and in others not, leading to “No-CS” trials.
For a given error in the nth trial, we looked at its influence on the entire
population of PCs in our data set and the consequences for the SS
manifolds of then + 1th trials, rather than restrictingour analysis to only
CS-ONunits (see Supplementary Fig. 7b), assuming that the behavior is
based on the concerted action of both subpopulations. To this end, we
combined trials following CS-trials from the pool of CS-ON PCs (i.e.,
post-CS trials) and “No-CS” trials fromCS-OFF PCs (“Post-noCS trials”),
separately for outward (Fig. 5b, left) and inward errors (Fig. 5b, right).
Importantly, we included all “CS trials” from CS-ON PCs (regardless of
whether the actual error occurred or not) assuming that every CS in
the error time window of 50–140ms after the saccade was fired to
report an error (referred to as simulated error trials in Fig. 5, see
Supplementary Fig. 7a for a detailed illustration).
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sided Student’s t test).
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We found that CS firing associated with inward and outward
errors modified the resulting PC-SS manifolds, based on PV as the
kinematic-dependent parameter, differently (Fig. 5c, top). Relative to
the “Post-no-CS” trials, the normalized slope angle, capturing changes
in PV-dependent manifold size relative to the rotation speed, pro-
foundly increased in the post-inward error trials but decreased, albeit
only slightly, for post-outward error trials (Fig. 5c, bottom). Could it be
that this result may be influenced by the actual error direction, rather
than error type? Our analysis comparing inward and outward errors
made in the same direction revealed that the PC-SS manifolds of
subsequent trials maintained their specificity for inward and outward
errors, even if their vectors pointed in the same direction (Supple-
mentary Fig. 7c–e). Given that the PC manifold size and speed of the
latent dynamics encode PV and saccade duration almost indepen-
dently (Fig. 4q), this result suggested that CSs associated with inward
and outward errors, potentially engaging the same population of PCs,
tuned the population firing more towards duration coding in post-
inward error trials (more compensatory duration change given PV) and
PV coding in post-outward error trials (more compensatory PV change
given duration).

Therefore, one would expect to see a reduction in subsequent
saccade’s duration if a CS signal reporting an inward error, caused by
an overshooting saccade in the previous trial, was present. On the
other hand, in case of an outward error (i.e., undershooting saccade),
CSs should trigger an increase in the PV of the next trial to reduce
endpoint error. Indeed, this is what we found. When comparing the
movement velocity of saccades accompanied by a CS to post-CS sac-
cades, we observed that outward errors (undershooting) were cor-
rected mainly through increasing the PV of the subsequent saccade
with a slight increase in the velocity at the end of the saccade (Fig. 5d,
left). In contrast, inward error-encoding CSs prompted a significant
decrease in the duration of the subsequent saccade, reflected by the
narrowing of its velocity profile (Fig. 5d, right).

Eye movement error-triggered CS firing is not restricted to our
chosen post-saccadic error period of 50–140ms15,23. Hence, howwould
CSs that fired at other time points influence the SS manifolds? We

tested the influence of relatively late CSs during 140–250ms from
saccade offset23. We found that those late CSs also modified the SS
manifolds of post-simulated inward and outward error trials, albeit
differently from the earlier ones (Supplementary Fig. 8). These late CSs
modified the PC-SSmanifold in a way that prompted adjustments only
in the duration of the subsequent saccades, for both inward and out-
ward errors. Therefore, the CS timingmayplay an additional role in the
selective control of kinematic parameters.

Linear feed-forward network model shows high-dimensional
transformations by the cerebellar cortex
Wedemonstrated that, despite the similar limit-cycle-like properties of
MF and PC manifolds, there were crucial differences in their encoding
of kinematic parameters, especially for PCs which also exhibited a
large heterogeneity in their kinematics-independent and kinematics-
dependent components. The climbing fiber-driven CSs clearly explain
some of the differences between the two (Fig. 5 and Supplementary
Fig. 6). However, additional inputs to PCs arriving from interneurons
may also play a significant role.

The role of input from climbing fibers and interneurons not-
withstanding, we found that already a linear feed-forward network
(LFFN) from MFs to PCs33 (Fig. 6a), not considering the aforesaid ele-
ments, was able to predict the kinematics-independent and
kinematics-dependent activity components of all individual PCs with
high fidelity (R2 = 0.984 ±0.018, mean ± SD) (Fig. 6b, c), allowing us to
successfully reproduce the PC-SS manifolds from the MF activity
(Fig. 6d; see also Supplementary Fig. 9a–c). But how is it possible that
already a simple linear transformation can explain the many differ-
ences between MF and PC-SS manifolds? This paradox led us to
examine how many dimensions of MF (dMF) firing are necessary to
make good predictions of the PC manifold.

We addressed this question by two approaches, both leading to
the conclusion that the number of dimensions that need to be con-
sidered while trying to account for the properties of MF activity is
definitely much smaller than the maximum number of dimensions,
dMF = 116 (corresponding to the number of MFs used in this analysis),
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schematic diagram showing LFFN for MF-to-PC firing rate transformation. Right:
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in the PV-independent component (left). d LFFN prediction of PC manifolds in
Fig. 4d using all dimensions in MF firing. e Schematic diagram of the LFFN model
showing steps involved (from bottom to top) in the prediction of PC manifolds
from dMF-dimensionalMFmanifolds. f Examples of the predicted PCmanifold from
e when MF manifold dimension is dMF = 2 (left), 4 (middle), and 20 (right).
g Goodness of fit for the predicted PC manifold to the data versus the input MF
manifold dimensions dMF. Dots represent examples in f. Data are mean± SEM.
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but significantly higher than two or four, the dimensionalities captur-
ing amajor chunk of cell-to-cell variability inMFs and PCs, respectively
(Supplementary Fig. 5a–h). In the first approach, we first created the
dMF-dimensional pseudo-population firing rate model of MFs (Fig. 6e,
gray circles) using the dMF-dimensional MF manifold (red arrow), then
generated the prediction of individual PC-SS firings using the LFFN
(black circles), and finally identified the predicted PC-SS manifold
(green arrow). The PC-SS manifold (in the first two dimensions) was
relatively poorly predicted (R2 < 0.9) when dMF < 9 (Fig. 6f, g). In the
second approach (Supplementary Fig. 9d), we directly tested whether
the prediction of individual PC firings requires high dimensional
components in MF firings by another LFFNmodel, where MFs and PCs
communicate through a dimensionally reduced submanifold, called
the “communication subspace”34. This model also showed that a good
prediction of individual PC responses requires a high-dimensional
(d > 15) communication subspace (Supplementary Fig. 9d,e). Note that
the dimensions higher than four (i.e., d > 4) explain only 4.3% of the
total MF-to-MF variance together due to rapid decay (∝1/d3.23) in the
explained variance (Supplementary Fig. 5b). Therefore, the properties
of multi-dimensional control of movements by PC-SS manifolds
emerge from transformations by the cerebellar cortical circuit that
amplifies those small variabilities in MF inputs.

Discussion
The present study demonstrates the presence of multi-dimensional
manifolds, latent in the activities of the cerebellar input and output,
MFs and PCs respectively, and how their geometric and dynamic fea-
tures encode key kinematic eye movement parameters (see Supple-
mentary Fig. 10 for summary). Climbing fiber-driven CSs, signaling
error-related information to PCs, modify the PC manifolds, differen-
tially depending not only on the direction of error but also the type of
error, which predicts how the subsequent eye movements are cor-
rected. Finally, we show that the cerebellar cortical circuit amplifies
seemingly insignificant variabilities in the MF activity to generate
highly selective PC outputs.

The fast and repetitive nature of our paradigm induced cognitive
fatigue, a gradual decline in the speed of saccades, which was com-
pensated by duration upregulation8. However, on top of fatigue, we
also observed natural trial-to-trial changes in the saccade velocity
requiring rapid duration adjustments in order to guarantee endpoint
precision. Therefore, the same velocity-duration trade-off mechanism
that maintainedmovement accuracy across hundreds of trials within a
session also ensured reduced endpoint variability (motor noise) on a
trial-to-trial basis. The residual motor noise led to tiny, albeit specific
error types, directed inward and outward respectively, depending on
whether the eye movements were too large or fell short relative to the
target location.

Depending on the firing pattern of individual MFs and SSs of PC
units, we could broadly classify them into different categories by using
strict statistical criteria to compute population averages of each
category13,25,35. Yet, in our analysis, these units appeared continuous in
their distribution (Supplementary Fig. 2) rather than forming discrete
clusters, due to a large cell-to-cell variability exceeding between-
category distances. Therefore, one may question the reliability of the
classify-and-average approach in testing the encoding of specific
kinematic parameters as it may be prone to the risk of sampling bias.
This problem gets even worse if one additionally considers the large
between-session variability in eye movements also influencing the fir-
ing rates of individual units. To avoid exactly these biases, we esti-
mated the firing rates of all individual units, based on a firing rate
model that varies linearly with key kinematic parameters, to obtain a
“pseudo-population” of MFs and PC-SSs.

This new approach allowed us to identify multi-dimensional, limit
cycle-like manifolds of neuronal activity from dimensionality reduc-
tion of the pseudo-population responses capturing a significant

proportion of cell-to-cell variability22. Moreover, these low-
dimensional components exhibited a mixture of different features
observed in the firing patterns of individual MF and PC-SS responses,
thereby capturing specific interactions between individual units to
generate activity patterns relevant for selective kinematic control of
movements. In the MF case, this cell-to-cell variability could be
attributed to different inputs from a variety of premotor nuclei in the
brain stem. For instance, the SLB MFs may represent the activity pat-
ternof paramedian pontine reticular formation (PPRF) short-leadburst
neurons36. The origin of the LLB types seems less clear. Candidate
sources may include as well the PPRF but also the nucleus reticularis
tegmenti pontis (NRTP) and the dorsal pontine nuclei25,36–43. These
various nuclei provide the precise information on the kinematics of
macro- and micro-saccades to MFs needed (Fig. 2 and Supplementary
Fig. 1). And in the case of PCs, it might be the concerted impact of the
granule cells-parallel fibers44 together with interneurons45 that
accounts for the large heterogeneity in PC responses reflected by their
larger number of low-dimensional components (Supplementary
Fig. 4e, f).

PC discharge, the output of the cerebellar cortex, is only a few
synapses away from the final stage motor neurons. Therefore, moving
up the cerebellar circuitry, one would expect the PC signals to be far
more refined and informative about themovements than the signals at
earlier stages, e.g., at the level of MF afferents. At first glance, our
results from the population analysis seemed to contradict this
expectation as the MF pseudo-population exhibits a much more pre-
cise encoding of relevant kinematic parameters while the kinematics
description provided by PC-SS pseudo-population responses is com-
paratively sloppy as a consequence of the large heterogeneity of
individual firing patterns. However, a very different perspective is
opened if one resorts to the low-dimensional pseudo-population
manifolds that reveal the hidden dynamics of PC-SS activity for the
flexible control of key movement parameters like velocity and dura-
tion in a movement phase specific manner. Furthermore, the PC
manifolds carried significantly more disentangled representations of
movements than the MF manifolds. Unlike MFs, the PC-SS manifolds
exhibited distinct geometric and dynamical properties related to the
two specific kinematic parameters, velocity, and duration. This con-
spicuous differencebetween theMFand the PC-SSmanifolds indicates
a highly nontrivial transformation by the network.

What is the nature of this transformation? Notably, a simple LFFN
model33 simulating theMF-to-PC pathway could accurately explain the
MF-to-PC transformation at the firing rate andmanifold level, but only
if the high dimensional components in the MF inputs, representing a
tiny fraction (<5%) of the total MF-to-MF variability, were preserved.
This result suggests that a disentangledmovement encoding at the PC
level emerges through substantial amplification of those seemingly
insignificant variabilities in MF responses by the cerebellar network.
Highly correlated activity, resulting in an apparently small dimen-
sionality, has been widely observed in work on the cerebellar input
layer46–48 (but see also ref. 44). We found the same in our MF data, but
our analysis together with the PC data suggests that enhancing small
input variabilities is a fundamental information processing principle of
the cerebellar network. This expansion of variability may allow PCs to
extract asmuch information aspossible during themovement so it can
be used optimally when errors occur. Therefore, the cerebellar circuit
can predict the dynamical, trial-to-trial deviations from the forward
model for the average eye movement. This property is important for
the cerebellum’s function and role in dynamic, online movement
control. Furthermore, together with the finding that serial single-unit
recordings are sufficient to generate reliableMF and PCmanifolds, the
prediction power of the LFFN model implies that MFs should use
asynchronous firing rate coding.

PCs are also influenced by the direct climbing fiber pathway,
imparting plastic changes in their activity via CSs. Indeed, we found
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that CSs modulated the geometry and dynamics of the PC-SS mani-
folds on a trial-to-trial basis, in an error-type dependent manner, pre-
dicting selective post-CS parametric adjustments of eye movements.
The forced error-based short-term saccadic adaptation is similarly
error-type dependent6, which supports that PCs, by duration coding,
control movements flexibly in response to external and internal
(fatigue) changes8. On the other hand, recent studies have demon-
strated the effects of CS-driven plasticity on the movement velocity,
thereby emphasizing velocity-coding by PCs13,15. We demonstrate that
those two mechanisms coexist and can be interwoven to exhibit
complex formsof population-level plasticity. Notably, other properties
of CS firing, such as the time of occurrence of these spikes may also
govern the selective control of kinematic parameters by PCs.We found
that CSs that fired relatively earlier during the post-saccadic retinal
error period modified SS manifolds such that they predicted a PV
change in post-outward error trials. However, when CSs fired later, the
same errors were compensated by only a duration change. This result
may seem perplexing as different periods of CS activity suggest dif-
ferent kinematic adjustments and yet, the motor system selects only
one optimal behavior for the next trials. However, given that CSs sig-
nals carry a multiplexed code of behaviorally relevant information23,
the different dimensions in PC firing may utilize these valuable CS
signals, staggered in time, by integrating all the multiplexed informa-
tion tomake context-dependent, appropriate behavioral adjustments.
Therefore, the multidimensional nature of cerebellar computations is
necessary for the flexible, context-dependent control of movements
and their rapid adaptation.

Our findings provide a novel outlook on the existing theories of
cerebellar function in sensorimotor control. Particularly, the so-called
internal model hypothesis proposed that the cerebellum operates as a
predictive circuit, implementing a control-theoretic internal model
that estimates an outcome of a controlled system to an input49,50. With
the pioneering use of the LFFN analysis (Fig. 6), an earlier study sup-
ported this theory by showing that the final output of the cerebellum,
the deep cerebellar nuclei, can predict the external network input
provided by MFs33. Our results significantly advance this concept by
elucidating how the cerebellum can process the efference copy inputs
bearing multi-dimensional dynamics, which can arise potentially in
similar ways to the motor/premotor and collicular regions related to
other motor behavior where earlier studies showed the existence of
neural manifolds17–19,21,51. Furthermore, this study highlights the cere-
bellar function in processing and learning to modify the trial-to-trial
variability inmovement and neural activity. This capability is crucial in
rapid, online motor control, but has remained elusive due to studies
usually analyzing only trial-averaged body and neural dynamics. Based
on the observations reported in this study, we conclude that the cer-
ebellar neural circuit performs optimal computations for fast and
flexibly varying sensorimotor control, indispensable in natural
environments.

Methods
Animals, preparation, and surgical procedures
Two healthy male rhesus macaques (Macaca mulatta; monkey K and
monkey E, age: 10 years and 8 years, respectively), purchased from the
German PrimateCenter in Göttingen, were used for the purposeof this
study. All data presented in this study were collected from these two
animals using procedures that strictly adhered to the rules defined by
the German as well as the European law and guidelines that were
approved by the local authority (Regierungspräsidium Tübingen,
veterinary license N7/18 and N4/14) and National Institutes of Health’s
Guide for the Care and Use of Laboratory Animals. All training, experi-
mental and surgical procedures were supervised by the veterinary
service of Tübingen University.

As a first step, the animals were subjected to chair training which
began in the animal facility where animals were encouraged to

voluntarily enter a customized mobile chair for the first few weeks
followingwhich theywere transported to the experimental area where
they were gradually acclimatized to the new environment. To proceed
with experimental training, it was necessary to painlessly immobilize
the head in order to record eye movements reliably. Therefore, once
the animals felt fully comfortable in the experimental setups, the first
major surgical procedure of installing the foundations of cranial
implants was performed. During this procedure, the scalp was cut
open and these foundations, made from titanium, were fixed to the
skull using titanium bone screws. The scalp was then closed with the
help of sutures under which the foundations were allowed to rest and
stabilize for at least 3-4 months to ensure their durability and also full
recovery of the animals. After this period, the second surgical proce-
dure was performed in which the scalp was opened just enough to
allow a titanium-based hexagonal tube-shaped head-post to be
attached to the base of the implanted head-holder. Since this proce-
dure was rather quick, the surgery was also accompanied by implan-
tation of magnetic scleral search coils52,53 to record high-precision eye
movements. After 2–3 weeks of recovery, monkeys were trained fur-
ther on the behavioral task until their performance was accurate
enough to consider neural recordings. To this end, the final surgical
procedure was performed in which the upper part of the cylindrical
titanium recording chamber (tilting backward by an angle of 30° with
respect to the frontal plane, right above themidline of the cerebellum)
was attached to the already implanted chamber foundation. A small
area of the skull within the confines of the chamber was removed to
allow electrode access to our regionof interest, the oculomotor vermis
(OMV, lobules VIC/VIIA). The position and orientation of the chamber
were carefully planned and confirmed based on pre-and post-surgical
MRI, respectively. All surgical procedures were performed under
aseptic conditions using general anesthesia in which all vital physio-
logical parameters (blood pressure, body temperature, heart rate, pO2

and pCO2) were closely monitored54. After surgery, analgesics
(buprenorphine)weredelivered to ensure painless recoverywhichwas
monitored using regular ethograms under the strict supervision of
animal caretakers and veterinarians.

Experimental set-up and behavioral task
All experiments were performed inside a dark room where monkeys,
with their heads fixed, were seated comfortably in a primate chair
placed at 38 cm in front of a CRTmonitor such that their body axiswas
aligned to the center of the monitor. All neural and behavioral data
presented in this study were collected during a simple to-and-fro
saccade task in which monkeys were asked to rapidly shift their eye
gaze repeatedly in order to follow a jumping target that appeared in
two fixed locations along the horizontal axis on the monitor in an
alternating manner (Fig. 1a). Before the beginning of each trial, the
fixation target (a reddot of diameter0.2 deg) appeared at the center of
themonitorwith an invisible fixationwindowof size 2 × 2 deg centered
on it. Only if themonkeysmoved their gaze within the fixationwindow
the trial was initiated. This was followed by a short fixation period
ranging from 400 to 600ms from trial onset after which the fixation
target vanished and, at the same time, another target (with the same
properties as the fixation target) appeared at a new horizontal loca-
tion, giving the impression that the target “jumped” centrifugally
(Fig. 1a, solid arrows), i.e., from the center of the screen to this new
location. The size (=15 deg) and thedirection (left or right) of the target
jump were kept constant within a session. Every target jump served as
a “go-cue” which prompted the monkey to execute a saccade towards
the new target location within the 2 x 2 deg fixation window centered
on it, in order to receive an instantaneous reward (water drops)
marking the end of a trial. The peripheral target disappeared
approximately 700–900ms relative to the go-cue, immediately after
which the central fixation dot reappeared indicating the beginning of
the next centrifugal trial. To proceed with the next trial, the monkey
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made a saccade from the peripheral target back to the central location
(i.e., centripetal saccade, see dashed arrows in Fig. 1a). In other words,
the appearance of the central fixation dot served as a go-cue for cen-
tripetal saccades, although these saccades were not rewarded.
Depending on the motivation of the monkeys to perform the task, as
well as the duration for which a PC could be kept well isolated, the
number of trials varied in each session (median = 307 trials) with each
trial lasting for 1200ms. While the fatigue-inducing fast and repetitive
nature of the paradigm allowed us to capture both trial-by-trial and
gradually declining changes in the peak velocity of centrifugal and
centripetal saccades, the natural endpoint variability in saccades, on
the other hand, observed as over- or undershoots resulting in inward
(Fig. 1a, see yellow arrows) or outward errors (Fig. 1a, see green
arrows), allowed us to measure the CS’s preferred and anti-preferred
direction of error for an individual PC. All experimental parameters
were designed and controlled using in-house Linux-based software,
NREC (http://nrec.neurologie.uni-tuebingen.de).

Electrophysiological recordings, identification of Purkinje cells
and mossy fibers in the oculomotor vermis
All electrophysiological recordings of PCs (n = 151) and mossy fibers
(n = 117) from the OMV were performed using glass-coated tungsten
microelectrodes (impedance: 1–2MΩ),manufactured by AlphaOmega
Engineering, Nazareth, Israel. To target the OMV, as predicted by the
MRI scans, the position of electrodes along the rostrocaudal (i.e, Y-
axis) and lateral (i.e, X-axis) axis were manually adjusted with the help
of a custom-made microdrive, temporarily mounted on the recording
chamber during eachexperimental session. The depth of the electrode
was controlled using a modular multi-electrode manipulator (Elec-
trode Positioning System and Multi-Channel Processor, Alpha Omega
Engineering). The exact location of the OMV was confirmed based on
careful inspection of online audio-visual feedback of the electrode
signals, reflecting multi-unit granule cells activity, that exhibited
strong modulations in response to fast eye movements.

For PC recordings, extracellular potentials sampled at 25 KHz
were high (300 Hz–3 KHz) and low (30–400 Hz) band-pass filtered to
obtain action potentials and LFP signals, respectively. Individual PC
units were identified based on the presence of two types of action
potential signals, high-frequency simple spikes (SSs) and low-
frequency complex spikes (CSs), the latter characterized by a poly-
phasic wave morphology in the action potential trace paralleled by
large deflections in the LFP signals. The fact that both signals originate
from the same unit was confirmed online by the suppression of SS
discharge for 10–20ms when aligned to the occurrence of a CS55–57.
Although the final characterization of CSs was based on an offline
neural networks approach58, we relied on the performance of Alpha
Omega Engineering´s Multi Spikes Detector for detecting SSs online.
Note that we did not analyze the LFP signals since they are only weakly
correlated to the firing rate code for movement kinematics and seem
to represent other types of information14, which are beyond the scope
of this paper.

In order to record from mossy fibers (MFs) in the granular layer,
we adjusted the upper cut-off frequency of the high band-pass filter to
5 KHz while keeping the lower cut-off frequency the same as 300Hz.
The identification of MFs was based on their strong directionally
selective response to saccades, firing up to several hundred spikes
per second in the preferred direction and seldomly in the opposite
direction. Unlike the relatively longer duration SSs (mean duration:
1.5ms), MF units exhibited much shorter duration (mean duration:
0.6ms), mostly mono- and biphasic shaped waveforms while occa-
sionally exhibiting a negative after-wave16,24,25,59,60. Additionally, MFs
exhibited a wide range of inter-spike intervals16 (mean ± sd:
82.7 ± 86ms) as compared to those of PC SSs (mean ± sd:
19.5 ± 2.6ms).

Classification of mossy fiber responses
Unlike the bidirectional SS discharge of PCs, well-isolated MF units
exhibited a strong and clear preference for saccades made in one of
the two horizontal directions. This property allowed us to pre-
determine the preferred direction of the MF unit under investigation
and use that direction as the rewarded direction in which the cen-
trifugal saccades were made. A majority (115 out of 117) MF units
investigated in this study exhibited a much stronger (“burst-type”)
discharge during the peri-saccadic period in their preferred direction
(=centrifugal direction) as compared to the opposite, non-preferred
direction (=centripetal direction) in which very few or almost no
spikes fired, resulting in weak modulations. Therefore, MF responses
only in the centrifugal direction were considered for classification and
all analyses. In the other two units, we did not observe a peri-
saccadic burst.

Overall, we observed twomain types of burstmodulations: the eye
position-related tonic discharge preceded by a saccade-related burst,
i.e., the “burst-tonic” type, and the saccade-related burst discharges
that remained mostly silent outside the peri-saccadic period, i.e.,
“phasic” type. In order to identify the “burst-tonic” responses, we first
identified those units in which the difference between the average fir-
ing rate in the post-saccadic period (150 to 250ms from saccade onset)
and the pre-saccadic period (−250 to −150ms from saccade onset) was
larger than 1.5 × standard deviation (SD) of the average firing rate
during the pre-saccadic period. Next, we compared the slope values of
the linear regression fits applied on the pre-and post-saccadic firing
responses, and only those cases in which no significant difference
between the slopes was observed, were labeled as “burst-tonic”
responses (n = 24; Fig. 2a,b; seeBT). Inotherwords, if thepost-saccadic
MF activity was not only larger than the pre-saccadic activity but also
remained elevated after the saccade-related burst discharge, the unit’s
response was classified as a “burst-tonic” type. The “phasic bursts,” on
the other hand, were further categorized into “long-lead burst” types
and “short-lead burst” types, based on the timing of each MF unit’s
burst modulation onset relative to saccade onset25. For this, modula-
tiononsetsweredetectedwhenever the averagedMF response crossed
a threshold (defined as 3 × SD of baseline activity during −400 to −200
ms from saccade onset). To this end, all MF units in which the burst
modulation led the saccade onset by more than 15ms were labeled as
“long-lead burst” types (n = 60; Fig. 2a, b; see LLB), whereas those that
started firing less than 15msbefore the saccade onsetwere classified as
“short-lead burst” (SLB) types (n = 27; Fig. 2a, b; see SLB). The value
15ms was chosen, based on the observed SD value of modulation
onsets of “long-lead burst”MF units identified by Ohstuka and Noda25.
Given that the timing of the detected modulation onsets was a
crucial factor in separating these two categories, in addition to the
clarity of their firing patterns, spike data were not smoothened using a
Gaussian kernel, as in the case of SSs. Based on this criteria, four units
(in addition to two non-bursting units) could not be categorized into
any of the three categories as in those cases the onset of burst mod-
ulation occurred after (i.e., lagged) saccade onset. The timing of the
modulation offsets was detected whenever the averaged MF response
dropped below the threshold value (defined as 3 × SD of baseline
activity during 200–400ms from saccade end) during the post-
saccadic period.

Classification of simple spike responses
SS responses of individual PCs were broadly categorized into
four types—burst, pause, burst-pause and pause-burst—based on their
pattern of firing during the perisaccadic period of −50 to 150ms from
theendofprimary saccades (note: all primary saccades between 13 and
17 degrees of amplitude were detected using a velocity threshold of
30deg/s). To this end,we estimated themean spikedensity functionof
the SS discharge of individual PCs by first convolving the time of each
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SS event detected within a trial with a normalized Gaussian kernel
(SD = 5ms) and then averaging across all trials.

We found that in almost 50% of PCs the SS firing patterns were
entirely different for saccades made in the centrifugal and centripetal
directions. For instance, a PC could demonstrate a sharp peri-saccadic
increase (or burst) in SS firing for a rightward centripetal saccade,
whereas in the opposite direction (i.e., left centrifugal) the same PC
could exhibit a sudden drop (or pause) in SS firing. Therefore, only for
the purpose of demonstrating these different response categories and
their corresponding modulations with respect to changes in saccade
kinematics (shown in Fig. 3) we considered the response of each PC
separately for each tested direction. Consequently, every PC con-
tributed to each response category at least once if the firing patterns
were different in the centrifugal and centripetal directions, and twice if
they were same (i.e., n = 302; 151 PCs × 2 directions). Whereas the
quality of our results shown in Fig. 3 may have benefited from such a
treatment, the impact of potentially unknown variables cannot be
completely ruled out. To avoid this risk, we only consider the SS
activity of saccades made in centrifugal (left or right) direction for all
analyses, that appear later for the calculation of SS manifolds for the
pseudo-population of PCs.

We describe our classification procedure as follows. As the first
step, we used a threshold-based criteria to label each SS responsewith
one of the four types based on the polarity of the response modula-
tion. For this, we identified all maximum (peaks) and minimum
(troughs) SS firing rates (detected using the MATLAB function “find-
peaks,”minimumpeak distance = 10ms,minimumpeak prominence =
2 spikes/s) during the peri-saccadic period. The modulation was con-
sidered significant if the peaks and troughs crossed an upper and a
lower threshold (defined as ±5 × SDof baseline activity during the −250
to −100 ms from saccade onset), respectively. The SS response was
classified as a “burst” or a “pause” type if we encountered only a
monophasic increase or decrease in SS firing during the peri-saccadic
period. Responses were categorized into “burst-pause” or a “pause-
burst” types if the first modulation in the biphasic responses showed
an increase (followedby decrease) or a decrease (followedby increase)
in SS firing, respectively. Next, we ran a principal component analysis
(PCA) on the 302 SS responses (centrifugal and centripetal direc-
tions combined) to obtain a 2D plot (Fig. 3a) of their first two principal
components (explaining 62.2% of the total variance) that seemed to
appear as overlapping clusters organized in a circular pattern, cen-
tered around the origin. For better discrimination of these clusters, we
relied on the SS response labels (identified in the first step) to obtain
decision boundaries by resorting to linear discriminant analysis (LDA).
As shown in Fig. 3a (dashed lines), the first decision boundary sepa-
rated the “burst” (blue cluster) from “burst-pause” (green cluster)
types, as well as the “pause” (orange cluster) from the “pause-burst”
(red cluster) types. On the other hand, the second decision boundary
separated the “burst” from “pause-burst” types, and the “pause” from
the “burst-pause” types. As compared to the threshold-based labeling
of these response patterns, the LDA approach was clearly better in
separating these response types (Supplementary Fig. 2c, d).

Rate models for individual MFs and PCs
We constructed the firing rate model of individual MFs and PCs by
using a linear combination of kinematics-independent and kinematics-
dependent components. Given the baseline-subtracted dynamic firing
rate of the nth unit, Rn(t,z), where t is the time from saccade onset and
z is a vector of the specific movement kinematic parameter (e.g.,
z = [PV] or [duration], or a pair of kinematic parameters, i.e., z = [PV,
duration]), wemodeled the firing rate vector of a “pseudo-population”
containing N number of neurons, R(t,z) = [R1(t,z); R2(t,z);…; RN(t,z)], as

R t,zð Þ=R0 tð Þ+
X

z

δz ∂zR tð Þ ð1Þ

where R0 and ∂zR are the kinematics-independent and kinematics-
dependent part, respectively, and δz=z−z0 is thedeviationof z from the
mean value of z, z0. We used the multivariate linear regression of the
firing rate data with respect to the kinematic parameters (Supplemen-
tary Fig. 3a) for each unit to find the model components for all unit
data (Supplementary Fig. 3b, c). See Supplementary Methods for
details.

Estimation of manifolds
To find the dimensionally reduced approximation of the population
rate model, R(t,z) in Eq. 1, given by R0 and ∂zR, we followed the fol-
lowing steps: First, R0 and ∂zR were converted to (N,T) matrices by
discretizing timewhere T is the length in time inmilliseconds. Second,
we performed PCA on R0, which contains the mean firing rates of
individual units at z = z0 at every time point. We obtained a dimen-
sionally reduced representation, a manifold, PK such that R0 ≈WPK
whereW is some (N,K) dimensionalmatrix (K <N).We determinedKby
finding the number of dimensions (principal components) capturing
>85% of the total variability and confirmed it by the cross-validation
analysis. Finally, we estimated the linear approximation of how the
kinematics-dependent component, ∂zR, would change the PCA result
of the firing rates if z deviates from z0. Our analytic estimation showed
that it is enough to consider a change in PK as,

PK ! PK +
X

z

δz ∂zPK ,∂zPK =Wy ∂zR
� �

+ ∂zW
� �y R0 �WPK

� �
ð2Þ

to predict the PCA results of R(t,z) with sufficient accuracy. ∂zW is a
matrix obtained in the second step and describes how the higher
dimensional (>K) components move into the K-dimensional subspace
when kinematic parameters change and † represents conjugate
transpose. See Supplementary Methods for details.

Analysis of manifolds
Given a manifold of MFs or PCs for a given kinematic variable, we
computed the manifold size and rotation speed in 2D (Figs. 4–5). We
defined the manifold size as the area enclosed within the 2D circular
trajectory, computed by numerically integrating the areas of triangles
defined by two neighboring data points and the origin (0,0). For the
rotation speed, we first computed the phase of rotation θ at each data
point (x,y) by θ = tan−1(Δy/Δx) where (Δx, Δy) = (x−x0, y−y0) and (x0, y0)
is a reference point defined by [(maximum of x coordinate data)/2, 0].
Then, we estimated the time T3/4 from the trial beginning t = −250 ms,
where θ ≈ −180° (by definition), to the point θ = 90° (rotation of 3/4
cycles), finally finding the average rotation speed by 270°/T3/4. We
summarized how the manifold size and rotation speed vary with the
kinematic parameters by computing the normalized slope angle in the
manifold size and rotation speed plane (Figs. 4p, q and 5c). To do so,
we first normalized the manifold size and rotation speed data for all
cases by the standard deviations of the control case, which was the
correlated variation in Fig. 4p, q and post-no-CS case in Fig. 5c. The
slope angle was computed in each case in the normalized coordinates.
We also performed the comparison/alignment analysis of multiple
manifolds using the canonical correlation analysis21,26. See Supple-
mentary Methods for details.

Linear feed-forward network models (LFFN)
The LFFN models had movement kinematics-independent and
dependent components for output variables (Y, ∂zY) and input
(X, ∂zX), such as PC and MF firing rates in Fig. 6a, b. We assumed that
the movement variable z follows the Gaussian distribution and esti-
mated the weight matrix T to minimize the least-square error,

EðTÞ= ∣∣Y� TX∣∣2 +
X

z

X

z0
Cov½z,z0�ð∂zY� T∂zXÞ: ð∂z0Y� T∂z0XÞ, ð3Þ
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Performances of all the LFFNmodels weremeasured by this least-
square error. To prevent overfitting we used the LASSO regression61

where the hyperparameter was chosen by AIC minimization. For the
manifold-transformation inLFFN(Fig. 6e),we reusedT from theMF-to-
PC LFFN model but replaced the input variables by those approxi-
mated by the dMF-dimensional MF manifold. The communication
subspace model (Supplementary Fig. 8d, e) was obtained by the rank-
reduced regression34 with the error function in Eq. 3. See Supplemen-
tary Methods for details.

Statistical analysis
Inmostdata analyses,we evaluated amean and standard error ofmean
(SEM) by the jackknife resampling except for two quantities. In testing
the prediction of the population-averaged firing rate by models
(Supplementary Figs. 3e, g and 4b, d), we separated trials into two
equal-sized sets, trained the model by only one of them (train data),
and tested it on the other data set (test data). In Fig. 6g, we used the
bootstrap procedure that randomly sampled the goodness of fit for
individual time points and computed their averages with 500 repeti-
tions to give the bootstrap mean and SEM.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All source data files are provided with this paper and can be down-
loaded from https://doi.org/10.5281/zenodo.7732421. Source data are
provided with this paper.

Code availability
All underlying codes to reproduce the results and figures of this paper
are available at https://doi.org/10.5281/zenodo.7732421.
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