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Single-step retrosynthesis prediction by
leveraging commonly preserved
substructures

Lei Fang 1 , Junren Li 2, Ming Zhao 3, Li Tan4 & Jian-Guang Lou1

Retrosynthesis analysis is an important task in organic chemistry with
numerous industrial applications. Previously, machine learning approaches
employing natural languageprocessing techniques achievedpromising results
in this task by first representing reactant molecules as strings and subse-
quently predicting reactant molecules using text generation or machine
translation models. Chemists cannot readily derive useful insights from tra-
ditional approaches that rely largely on atom-level decoding in the string
representations, because human experts tend to interpret reactions by ana-
lyzing substructures that comprise a molecule. It is well-established that some
substructures are stable and remain unchanged in reactions. In this paper, we
developed a substructure-level decoding model, where commonly preserved
portions of product molecules were automatically extracted with a fully data-
driven approach. Our model achieves improvement over previously reported
models, and we demonstrate that its performance can be boosted further by
enhancing the accuracy of these substructures. Analyzing substructures
extracted from our machine learning model can provide human experts with
additional insights to assist decision-making in retrosynthesis analysis.

Organic synthesis is an essential branch of synthetic chemistry that
mainly involves the construction of organicmolecules through various
organic reactions. Retrosynthesis analysis1 that aims to propose pos-
sible reaction precursors given a desirable product is a crucial task in
computer-aided organic synthesis. Accurate predictions of reactants
can assist in finding optimized reaction pathways from numerous
possible reactions. In the context of our paper, we use the term
“reactants” to refer to substrates that contribute atoms to a product
molecule. Solvents or catalysts that take part in the reaction, but do
not contribute any atoms to the product were not considered as
reactants in the context of our paper. Recently, machine learning-
based approaches have achieved promising results on this task. Many
of these methods employ encoder-decoder frameworks, where the
encoder part encodes the molecular sequence or graph as high
dimensional vectors2–8, and the decoder takes the output from the

encoder and generates the output sequence token by token auto-
regressively. The sequences of the molecules involved in these algo-
rithms are usually represented as SMILES (Simplified Molecular-Input
Line-Entry System) strings9,10, and the graph refers to the molecular
graph structure. For example,MolecularTransformer2 andAugmented
Transformer3 used textual SMILES representations of reactants and
products. Subsequently, retrosynthesis analysis was formulated as a
machine translation task from one language (product) to another
(reactants). Molecular Transformer2 was applied to predict retro-
synthetic pathways with exploration strategies based on Bayesian-like
probabilities11.

Casting retrosynthesis analysis as a machine translation task
enables the use of deep neural architectures that arewell-developed in
natural language processing. For example, self-attention based
Transformer architectures12 are employed in recent state-of-the-art
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models2–7. In the decoding stage, output SMILES strings are auto-
regressively generated token-by-token, where the elementary tokens
in the SMILES strings from traditional approaches mostly involved
individual atoms in a molecule. This is not immediately intuitive or
explainable for chemists in synthesis design or retrosynthesis analysis.
In real world route scouting tasks, synthetic chemists generally rely on
their professional experience to formulate a reaction pathway by
drawing inspirations from previously learned reaction pathways,
coupledwith an abstract understanding of the underlyingmechanisms
based on first principles. For human experts, retrosynthesis analysis
often starts from molecular substructures or fragments that are che-
mically similar to, or are preserved in target molecules. These sub-
structures or fragments help provide clues to an assembly puzzle
involving a series of chemical reactions that may yield the final
product.

In this paper, we propose to leverage commonly preserved sub-
structures in organic synthesis, where the substructures extracted
from large sets of known reactions capture subtle similarities among
reactants and products, while remaining free from expert systems or

template libraries. This way, we essentially cast the retrosynthesis
analysis as a substructure-level sequence-to-sequence learning task.
The pipeline of the overall framework is illustrated in Fig. 1, which
consists of the following modules:
(a) Reaction retrieval. The reaction retrieval module aims to retrieve

similar reactions given an individual productmolecule as a query,
and these retrieved associated reactions are extracted for com-
monly preserved substructures. We introduce a learnable cross-
lingual memory retriever13 used in machine translation tasks to
align the reactants and the corresponding products in high
dimensional vector space. The retrieval model is based on the
dual-encoder framework14. For each reaction, the learned repre-
sentation of reactants is similar to that of the product. After the
dual-encoder retrieval model is trained, we obtain dense vector
representations of all the reactants and products, as shown in
Fig. 1a. In retrosynthesis analysis, the product representation
forms the query to retrieve reactant molecules that are similar in
high dimensional vector space. To conduct a fair comparison to
other methods, the retrieved candidate reactants (denoted as

Fig. 1 | Method overview, virtual number labeled atoms and substructures are
highlighted in green. a Reaction retrieval using the dual encoder model.
b Substructure extraction and isolation using virtual numbers as labels.
c Substructure-level sequence-to-sequence learningwith Transformer encoder and

decoder, both of which have a stack of L identical blocks. The predicted fragments
aremerged with the substructures to obtain the final output. It is worth noting that
the predicted fragment remains in the assembled reactant molecules, which is
slightly divergent from chemical intuitions.
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“candidates” subsequently) are only derived from the same
training and validation data set utilized by previous studies.

(b) Substructure extraction. Given the training objective of the dual-
encoder retrieval model, the retrieved molecules are expected to
be similar to the correct, or “golden” reactants. We then extract
the common substructures from the product molecule and the
top cross-aligned candidates based onmolecular fingerprints.We
assume these common substructures to also exist in the golden
reactants, and likely remain intact for the reactions considered.
More details are provided in the section “Substructure extrac-
tion”. The common substructures provide a reaction-level,
fragment-to-fragment mapping between reactants and products.
These substructures are product molecule specific and are
analogous to reaction templates learned from the dual encoder
retrieval model, rather than from an expert system. We then
separate the molecules into common substructures and other
molecular fragments. We use “molecular fragment(s)”, or simply
“fragment(s)” in the context of this paper to refer to those atoms
and bonds not present in the common substructure. When
multiple bonds are broken to isolate the substructures, we
introduce “virtual number(s)” to virtually tag the atoms con-
nected by the broken bonds, as shown in Fig. 1(b).

(c) Substructure-level Sequence-to-sequence Learning. With commonly
preserved substructures andmolecular fragments,we convert the
original token-level sequence based largely on atoms, to a
substructure-level sequence. The new input sequence is the
SMILES strings of the substructures followed by the SMILES
strings of other fragments with virtual number labels. The output
sequences are the fragmentswith virtual numbers. In otherwords,
the fragments are connected to common structures with bonds
specified by these virtual numbers. Subsequently, retrosynthesis
analysis is cast into a structure-level sequence-to-sequence
learning task. Given the model predicted virtually labeled
fragments to various locationson the substructures,weultimately
performabottom-upmodular assemblyof these individual pieces
to obtain the final molecular graph and its SMILES strings. An
example is shown in Fig. 1(c), where 1S (denoted by [1SH]) is a
virtually labeled atom from the substructure that should be
connected to atom 1c (denoted by [1cH]) in the predicted
fragment. Similarly, 2c (denoted by [2cH]) from the substructure
should be connected to atom [2B](denoted by [2BH]) in the
predicted fragment.
Substructure analysis is integral to how human researchers per-

form retrosynthesis analysis, and our approach achieves improvement
over previously reported models. We demonstrate that the perfor-
mance can be boosted further if we enhance the accuracy of sub-
structure extraction. Substructures extracted from our model can
potentially provide human experts additional insights for decision-
making in routine synthesis tasks. While still early in development, we
demonstrate that it’s possible to develop amachine-learningmodel by
mimicking human experts’ way of thinking.

The remainder of this paper is organized as follows: in the
section “Results”, we present simulation results on retrosynthesis
prediction and substructure extraction based on the model we
developed. In the section “Discussion”, we discuss and summarize
the strengths and weaknesses of our approach when compared to
existing models. In the section “Methods”, we provide more details
of how we built our model, including reaction retrieval, sub-
structure extraction, and substructure-level sequence-to-sequence
learning.

Results
Retrosynthesis prediction results
We report the overall results of one-step retrosynthesis based on the
USPTO_full dataset in Table 1. For comparison, we analyzed the results

fromother notable works in this area that employed differentmachine
learning pipelines. RetroSim15 treated retrosynthesis as a template
ranking problembased onmolecular similarity.MEGAN16morphed the
problem into sequences subjected to molecular graph edits. GLN17

employed a conditional graph logic network to learn chemical tem-
plates for retrosynthesis analysis. RetroPrime5 decomposed a given
product molecule into synthons and generated reactants through
attachment of leaving groups. Augmented Transformer3 incorporated
data augmentation strategies with a base Transformer model.
Graph2SMILES8 combined a Transformer decoder with permutation
invariant molecular graph encoders. GTA6 proposed a molecular
graph-aware attentionmask for both self-attention and cross-attention
when applying Transformer models.

The following characteristics of the USPTO_full data set are worth
noting for future reference. On the test set, about 4.4% of products
have no reactants, rendering them as invalid data; for the remaining
products, approximately 82.2% successfully produced a substructure
from our current pipeline. Not every product molecule is guaranteed
to produce a substructure in our current implementation as the
extraction process relied on comparisons between products and can-
didate reactants. For a fair comparison, we trained a vanilla Transfor-
mer model with augmented random SMILES to obtain predictions for
products with no substructures. Substructures are considered “cor-
rect” if they arepart of the golden reactants, and “incorrect” otherwise.
We also attempted filtering out incorrect substructures and assessed
the model based on the subset containing only correct substructures.
As the improvement of our approach is dependent on successfully
extracting substructures from product molecules, we present the
results on this subset as well.

In almost every scenario, our method achieved comparable or
better top 1 accuracy when compared to other methods previously
tested. On the subset of data where substructures were successfully
extracted, model performance is much improved compared to the
overall result, as shown in Table 1. Because we employed a pair-wise
ranker in our model to rerank predictions, the results in different
scenarios were compared to those from a competing ranking strategy
in the Augmented Transformer3 model in Supplementary Results. Fil-
tering out incorrect substructures further improved top k accuracies
(see Table 1). This improvement demonstrates that performance
metrics on the model can be further improved if we invest additional
effort in enhancing the accuracy of substructure extraction, as sub-
structures are essential to every aspect of our implementation and

Table 1 | The results of retrosynthesis on USPTO_full dataset

Templ. reaction templates used,Map. atom-mapping information used.
aSubstructures are all correct.
bInvalid reactions are excluded from the test set.
cResults on data with substructures.
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forms the fundamental basis to simplifyingmolecules with human-like
intuitions. Once again, it’s worth noting that our approach does not
require any reaction templates built upon expert systems or template
libraries containing prior knowledge about organic chemistry, and
does not consider any atom mapping information from reactants to
products inherent in the data set. Atom-mapping information can
reveal information about potential reaction sites5.

The improvement in our method can be attributed to two main
factors: 1) our method managed to successfully extract substructures
from 82.2% of all products on the USPTO_full test data set, which is a
relatively high coverage showing the general applicability of this
approach, 2) we only needed to generate fragments connected to
virtually labeled atoms in the substructures, which shortened the
string representations ofmolecules, significantly lowering the number
of atoms to be predicted. For product molecules with extracted sub-
structures, the average number of atoms in reactants to bepredicted is
reduced from 30.0 to 17.9. Our model design has advantages over
previous token-by-token decoding models, where the elementary
tokens were mostly atoms, e.g., Augmented Transformer3,
Graph2SMILES8 and GTA6.

Results on commonly preserved substructures
In the section “Substructure exaction”, we describe in detail how
substructures are obtained based on common fingerprints between a
given product and the retrieved candidates. Because the retrieved
candidates are not always golden reactants, errors can be introduced
in the extraction process, resulting in incorrect substructures. For
example, the substructure extracted from candidate #1 in Fig. 2 is
incorrect. In this case, the retrosynthesis product is a long molecule
linkedby a triple bond. All retrieved candidates have a shared common
substructure with the product. By taking a further look at the products
associated with these candidates, we readily observe that the triple
bond itself is likely to be the reaction site. This means that the triple
bond should not have been included in the substructure, even if it is in
the environment of the aligned fingerprint. We leave this as planned
future work to improve the accuracy of substructure extraction, i.e.,
we plan to identify possible reaction sites based on the retrieved
candidates and exclude these atoms frombeing considered as part of a
substructure.

For incorrect substructures, we can easily filter them out with
golden reactants on the training and validation data. On the training
data set, we extracted substructures from 81.9% of product molecules
after filtering incorrect substructures. The extracted substructures
were derived from the complete set with 20 retrieved candidates. The
average number of candidates that yielded a substructure is 12.5. The
average number of unique substructures is 4.2. The model training
data is formed by unique substructures only to avoid redundancy.

On the test data, we extracted substructures from 82.2% of pro-
duct molecules with an accuracy of 90.2%. The average number of
substructures and unique substructures are 12.1 and 4.9, respectively.
The averagenumber of heavy atoms in the product, substructures, and
golden reactants are 26.3, 12.1, and 30.0, respectively. On the entire
test data set of product molecules and their associated candidates,
79.8% yield at least one correct substructure, 63.0% yield structures
that are all correct, and 2.4% (82.2–79.8%) yield all incorrect sub-
structures. It is worth noting that if a particular substructure is incor-
rect, predictions based on that particular substructure are also
incorrect.

To improve the accuracy of extracted substructures, we could
identify potential reaction sites based on the retrieved candidates.
Another viable method is to increase the threshold for common fin-
gerprint selection from the retrieved candidates. Note that our current
implementation requires that the common fingerprints exist in at least
5 out of the 20 retrieved candidates to define a successful substructure
extraction. Fig. 3 shows thepercentageof productswith substructures,

the percentage of products with all correct substructures, and the
accuracy of substructures, when the threshold is set between 3 and 10.
The result shows that as accuracy increases, the likelihoodof obtaining
products with substructures monotonically decreases, while the per-
centage of products with all correct substructures forms a convex
curve with a maximum at around 6. In this paper, we set the threshold
to 5 mainly because this setting balances a relatively high percentage
of products with successfully extracted substructures and a high per-
centage of these substructures being correct. On the test data, even if
products and associated candidates yield results that are inclusive of
incorrect substructures, the average number of correct substructures
is still 7.3. This indicates that, after aggregating the results, the model
can predict correctly even if substructure extraction resulted in a
partially incorrect set of substructures.

Our hypothesis is that substructures are relatively stable and tend
to remain unchanged during reactions, which can be associated with a
low likelihood for inclusion of a reaction site. We discovered at least
two distinct types of extracted substructures from a cursory analysis:
(1) those located at the ends of the molecules with protections from
other reactive functional groups in the samemolecule. For instance, a
hydroxy group protected by a trimethylsilyl group is a common sub-
structure across different reaction types; (2) those located in the
middle of themoleculeswith inert alkyl chains or aromatic rings, which
contain no reactive functional groups. The percentages of sub-
structures with aromaticity in the top-10 and 20 most frequent sub-
structures are 80% and 70%, respectively. On average, among all the
substructures, about 60% of the atoms are included in those aromatic
ring structures. These numbers show that extracted substructures
have some level of chemical interpretability even with this initial
implementation of our model, which has minimal manual input of
chemistry knowledge.

It is important to note that the extracted substructure is product
molecule specific, which can help to capture subtle structural changes
from reactants to products that are reaction specific. Phthalimide is a
common heterocyclic substructure. We show four exemplary reac-
tions, where the reactants contain phthalimide in Fig. 4. The extracted
substructures vary among different reaction types. In the model out-
put, phthalimide is not considered to be part of the substructure for
reaction (a) and reaction (b). The substructures of reaction (c) and
reaction (d) are different, yet they both contain phthalimide. The
results show that substructures are product-specific, which is con-
sistent with our expectations.

Another benefit of leveraging commonly preserved substructures
is thatwe canprovideuserswith additional insights for decision-making
in retrosynthesis planning when compared with existing methods. For
the case shown in Fig. 2, the product can be synthesized via multiple
types of coupling reactions. Because we can group predictions by
substructure, our predicted groups of reactants and reactions can aid
human experts by giving them an opportunity to assess potential
pathways, and eliminate infeasible reactions through chemistry
knowledge. As is shown in Fig. 2, the reaction associated with the first
candidate reactant is a Suzuki-Miyaura coupling reaction between
benzene and thiophene rings, while the reactions associated with the
remaining candidates are Sonogashira coupling reactions, with the tri-
ple bond being the reaction site. This example indicates that an expert
user can refine the predictions by comparing reactions associated with
retrieved candidates, making our predictions more explainable and
trustworthy compared with existing “black-box” models.

Note that in Fig. 2, the extracted substructure is not a fully con-
nected graph, as they come fromdifferent parts of the samemolecule.
As discussed in the section “Substructure exaction”, broken bonds do
not necessarily mean reaction sites. For instance, the broken bonds
associated with substructures from candidate reactants #2, #3 and #4
in Fig. 2 are not reaction sites. While substructures produced by our
current model are not indicative of actual chemical reactions, and our
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model has the tendency to break molecules down further than an
expert chemist would, it can still fully reproduce the golden reactants
when needed.

In summary, we developed a method to derive commonly pre-
served substructures to form the basis for retrosynthesis predictions.

The substructures are extracted using a fully data-driven approach
with no human interventions. The overall approach is intrinsically
related to how human researchers perform retrosynthesis analysis.
Our current implementation achieved improvement over previously
reported models. We also demonstrate that one way to improve

Product:

Clc1ccc(-c2ccc(C#Cc3ccc(OCCN4CCCC4)cc3)nn2)cc1

Ground truth reactants:

C#Cc1ccc(-c2ccc(Cl)cc2)nn1.Ic1ccc(OCCN2CCCC2)cc1

Products of candidate reactants: Retrieved candidate reactants:

Predictions by substructures: top predictions: 

(Correct)

substructure from 1), 

substructure from 2), 3), 4), 

1)

2)

3)

4)

a

b

c

Fig. 2 | Substructures and predictions grouped by substructures. The retrieved
candidate reactants (#2, #3 and #4) indicate that the substructures extracted from
the retrieved reactant #1 is likely incorrect, because the triple bond is likely a

reaction site. The extracted substructures are highlighed in green. a Product and
reported reactants for the reaction. b Retrieved reactions. c Predictions from
our model.
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retrosynthesis prediction for our model is by optimizing the under-
lying substructure extraction process. We hope this workwill generate
interest in this fast-growing and highly interdisciplinary area on ret-
rosynthesis prediction and other related topics.

Discussion
In this section, we address the advantages and disadvantages of our
approach when compared with other existing approaches, which can
broadly be classified as either template-based or template-free.

Advantages over template-based approaches
Template-based approaches18–22 use reaction templates or rule librar-
ies, which contain information about atoms involved in reactions and
chemical bonds near reaction sites. These methods heavily rely on the
templates, which require considerable human effort to ensure that the
template library coversmost known organic reactions. They formulate
retrosynthesis prediction as template classification or ranking
problems18–22 based on molecular similarity15. The resulting imple-
mentations involve deep neural networks to select top-ranked tem-
plates, which can then be applied to transform input molecules into
outputs. The templates utilized in these methods usually depend on
precomputed atomicmappings (how atoms in reactants map to those
in the products). How to obtain a complete and reliable atomic map-
ping relationship is also a complex problem.

For test data with extracted substructures (about 82.2% of pro-
ducts from the whole test data), we reference the single-step retro-
synthesis module in AiZynthFinder22 as a representative template-
basedmodel for comparison. The single-step retrosynthesismodule of
AiZynthFinder was also trained on the USPTO data. The top 10 accu-
racy on template-based predictions is 62.9%, while our approach is
73.8%, which indicates that the coverage of the template library has
room for improvement. We further test our model on the subset of
data where golden reactants are not among the top 10 predictions of
the template-based results, essentially singling out scenarios where
template-based methods completely failed. The size of the subset is
about 30%of thewhole test data. For these scenarios, the accuracies of
our model on the top 1, 5, and 10 predictions are 25.6%, 42.1%, and
46.7%, respectively. The accuracies are reduced because reactions in
this subset are rare, not covered by reaction templates, or matched
with incorrect templates. After checking template-based results on this
subset, we discovered that for most predictions, the reaction sites
predicted did not correctly match any templates in the library. Some
incorrectly predicted reaction sites were includedwithin the extracted

substructures by our model, which means that they actually remain
unchanged during reactions.

Because substructures are usually inclusive of inactive parts of a
molecule, we can use our model to narrow down possible options for
locating potential reaction sites. Product molecule-specific sub-
structures may help filter incorrect templates in template-based
approaches; including well-known reactions in our approach can
help extracting correct substructures. We leave integration of tem-
plates with our approach to have the best of both worlds as
future work.

Advantages over other template-free approaches
Template-free approaches can be categorized into graph edit-based
and translation-based approaches. The graph edit-based approaches
cast retrosynthesis prediction or reaction outcome prediction as
graph transformations16,23–25. Modeling or predicting electron flow in
reactions26 can also be considered as a variant of graph-based meth-
ods. Besides, some semi-template-based methods also improve per-
formance by identifying reaction sites followed by recovering graphs
or sequences5,27–29. Translation-based approaches formalize the pro-
blems as SMILES-to-SMILES translation, typically with sequence mod-
els such as Recurrent Neural Networks30 or the Transformer2–4,31,32.
Variants of these approaches are introduced, such as reranking and
pre-training7,33. Some models that fuse molecule graph information
with translation-based approaches also achieved promising results6,8.
Translation-based approaches can also be considered a two-step pro-
cess: first locating possible reaction sites and then applying the
“translation pattern(s)” learned from the data. The advantage of
translation-based approaches over template-based approaches is that
both steps are data-driven and translation patterns are inherently
more flexible than templates.

Augmented Transformer3 is a model that introduces random
SMILES strings as data augmentation into their Transformer model,
whichweemploy as a state-of-the-artbaseline for comparison from the
pool of template-free models. We built a subset of data for testing
based on an overlap between products with successfully extracted
substructures and golden reactants that were not among the top 10
predictions of the Augmented Transformer. The size of the subset is
about 22% of the whole test data. For our model, the accuracies of top
1, 5, and 10 are 4.7%, 16.8%, and 22.9%, respectively. It is worth noting
that this subset of cases is quite difficult to predict correctly. Com-
pared with most template-free models that output SMILES strings
representing complete reactant molecules, our model only generates
SMILES strings of predicted fragments only. As shown in the sec-
tion “Results on commonly preserved substructures”, the average
number of heavy atoms in the product, substructures, and golden
reactants are 26.3, 12.1, and 30.0, respectively. Leveraging sub-
structures have reduced difficulties by reducing the length of output
sequence by approximately 40%.

We show a sample case in Fig. 5. The ground truth reaction is a
Suzuki-Miyaura cross-coupling reaction that produces a four-ring
hydrocarbon molecule. The product molecule contains no hetero
atoms or functional groups other than aromatic hydrocarbons, which
is not a commonoccurrence in the data set. The predicted reactants of
the Augmented Transformer will not produce the given product in
practice. While the structure of anthracene is covered by the sub-
structure, we only predict the fragments of reactants (atoms or bonds
that is not highlighted in Fig. 5(c)), which was easier compared to
predicting the whole reactants’ SMILES strings. The reactants pre-
dicted byourmodel indicate that theproduct can beobtained through
combining benzene with anthracene via coupling reactions.

Advantages of leveraging substructures
It is well-established that substructures and functional groups are
essential concepts in chemical reactions. Reference34 proposed graph

Fig. 3 | Substructure extraction analyses. The accuracy and the percentage of
products with substructures under different thresholds.
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motif-based self-supervised learning, where graph motifs refer to
important subgraph patterns in molecules. The exploration of che-
mical substructures or subgraphs also provides efficient solutions to
build large-scale chemical libraries35 for drug discovery36. In our work,
we explicitly introduce the concept of product molecule-specific
structurally stable substructures for utilization in retrosynthesis
predictions.

Commonly preserved substructures are expected to remain
unchanged during reactions. A logical follow-up question is when
considering reactants with multiple similar reactive groups, will non-
reactive groups be correctly preserved in their substructures? We use
amidation reactions as an example to perform a quantitative analysis.
First, we aggregated products that were synthesized through selective
amidation reactions on the test data with an additional requirement
for reactants to contain more amine groups than the corresponding
product molecule. We count the number of amide groups before and
after the reactions. In this scenario, selective amidation reactions
result in new amide groups being generated and the reactants

contained multiple active amine groups, introducing well-known
chemistry concepts such as primary amines and secondary amines.
In total, we analyzed 1, 154 products. For our model, the overall
accuracies of top 1, 5, and 10 are 60.5%, 80.2%, and 82.6%, respectively.
The accuracy of extracted substructures is 90.6%. Among the set of
correct substructures, 57.6% contained non-reactive amine groups.
The result shows that a portion of the substructures are capable of
preserving those non-reactive amine groups. Because substructures
are extracted using a fully data-driven approach with no human
intervention, it is possible that some atoms which remain unchanged
during reactions are not included in the substructures. When wemake
predictions onlywith the substructures containing non-reactive amine
groups, the accuracies of top 1, 5, and 10 are 67.7%, 85.6%, and 87.5%,
respectively. This is another proof that if we were to select only che-
mically correct substructures by designing additional ranking or fil-
tering models that incorporate existing chemistry knowledge instead
of using all extracted substructures indiscriminately, prediction
accuracies can be further improved.

Fig. 4 | Product molecule specific substructures. These reactants all contain
phthalimide, with substructures highlighted in green. a In this hydrolysis
reaction, the methyl 4-ethoxybenzoate on the nitrogen atom is extracted as sub-
structure. b In this reduction induced by sodium borohydride, the 4-(ethylsulfanyl)

pyridine on the nitrogen atom and the benzene ring are extracted as substructure.
c In this epoxy ring-opening process, the non-reacting phthalimide is extracted as
substructure. d In this Heck coupling reaction followed by a reduction on the
double bond, the heterocycle and the phthalimide are extracted as substructure.
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Limitations
Our current model implementation successfully extracted sub-
structures for about 80% of the training and test data set; the coverage
clearly has room for improvement. The root cause for our model’s
failure to return any substructures for a given productmolecule is that
retrieved candidate reactants sometimes hadno structural similarities.
We speculate this to be attributed to either the dual encoder to not be
fully trained, or the number of similar reactions for some product
molecules remained limited. The results of Augmented Transformer, a
very strong baseline we employed for single-step retrosynthesis pre-
diction comparison, only achieved about 34% top 1 accuracy on pro-
ducts when no substructures are extracted. This indicates that
the limited number of similar reactions for some product molecules is
the main reason. We might need to collect more reaction data to
improve the coverage in substructure extraction.

The substructures are extracted with a purely data-driven
approach. Although we incorporated routines in our algorithms to
preserve the most elementary chemical properties like aromaticity or
stereoisomerism, there is no guarantee that the substructures we
ultimately derived corresponded to known functional groups, nor can
we use the substructures to explain the underlying reaction mechan-
ism. As shown in the section “Results on commonly preserved sub-
structures”, some substructures obtained could provide hindsight for
experts in selected cases.

Our method has an error propagation issue: incorrect sub-
structures will increase probability of incorrect predictions. This can
bemitigated by extracting substructures fromall retrieved candidates,
i.e., we can obtain correct predictions if the majority of extracted
substructures are correct. The results observed so far indicate that
performance can be further improved if accuracies of substructures
are improved.

Methods
Reaction retrieval
In reaction pathway planning, chemists generally need to obtain
insights and inspirations from existing reaction pathways learned

through previous education and professional experience. Corre-
spondingly, a retrieval module for a machine learning model must
efficiently produce a list of candidates similar to the given query froma
large collection of data. For retrosynthesis analysis, the query is the
product, and the candidates are derived from “existing reactions”,
namely a large pool of reactions formed by the training and
validation data.

To learn andmeasure the similarity between the reactants and the
product, we used the dual-encoder architecture14, which was intro-
duced prior in memory-based machine translation13. We used two
independent Transformer encoders12 in the dual-encoder architecture,
one to encode the reactants and the other to encode the products, as
shown in Fig. 6.

Transformer12 is a prominent encoder-decoder model that has
achieved great success in natural language processing, computer
vision, and speech processing. It consists of an encoder and a decoder,
with each being a stack of L identical blocks (highlighted using light
yellow in Fig. 6). Each encoder block is mainly a combination of a self-
attention module and a position-wise feed-forward network. Please
refer to12 for details about the Transformer model. Note that we only
employed the Transformer encoder in our dual-encoder, without the
decoder part.

We added the [BOS] token to the tokenized SMILES strings of
both products and reactants, then fed them into the Transformer
product and reactant encoders. The encoded output of [BOS] token
represented the product and the reactants, denoted by Epro and Erea,
respectively. The overall objective is to minimize the distance
between Epro and Erea in high-dimensional space for a given reaction.
Following the training strategy proposed in13, we developed two
objectives for cross-alignment. The first objective was for golden
reactants to have the highest-ranking score given the product,
among all candidate reactants. This was approximated by maximiz-
ing the ranking score in a batch of product-reactants pairs when the
batch size is relatively large. For a batch of B product-reactants pairs
sampled from the training set at each training step, letX and Y be the
B × d matrix of the encoded product and reactants vectors,

Fig. 5 | Comparisonwith Augmented Transformer (substructures highlighted).
a A polycylic aromatic hydrocarbons synthesized with Suzuki–Miyaura coupling
reaction. b The predictions from Augmented Transformer3, which cannot produce

the expected product. c The predictions from our model, which gave ground truth
reactants as the first prediction.
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respectively, where d was the hidden size. Each row in X/Y corre-
sponded to a product/reactant representation Epro/Erea. We defined
S, the ranking scores, as the dot product of the encoded product and
reactants representations, namely S = XYT, which was a B × B matrix
of scores. Each row corresponded to a product and each column
corresponded to a reactant in the batch. The pair (Xi,Yj) was con-
sidered aligned when i = j. The goal was tomaximize the scores along
the diagonal of the matrix and henceforth reduce the values in other
entries. The loss function for the ith product-reactants pair was
defined as:

LðiÞ
rank =

� exp Sii

� �

exp Sii

� �
+
P

j≠i exp Sij

� � ð1Þ

The second objective was mainly borrowed from machine trans-
lation,whichaimed topredict tokens in reactants’SMILES strings given
the encoded product representations, and vice versa. This objective
introduced additional semantic alignments between the product and
reactant candidates at the token level. For the i-th product-reactants
pair, the bag-of-words loss was used for this token-level cross-

alignment and formulated as

LðiÞ
token = �

X

wy

logp wy∣Xi

� �
+
X

wx

logp wx ∣Yi

� �
ð2Þ

where w represented one SMILES token of the product or reactants.
The probability p was computed by a linear projection layer followed
by a softmax layer. For the dual-encoder model, the overall loss was

L=
1
B

XB

i= 1

LðiÞ
rank +LðiÞ

token: ð3Þ

Once the dual-encoderwas trained, we obtaineddense vectors for
all the reactants in the training and validation data. We leveraged
Faiss37, an open-source toolkit, to perform Maximum Inner Product
Search (MIPS) on large collections of these dense vectors. The toolkit
essentially built the index of dense vectors, which is optimized for
MIPS search. The Faiss index code in our work was “IVF1024 HNSW32,
SQ8”, a graph-based index with a Hierarchical Navigable Small World
(HNSW) algorithm38. In our approach, we pre-computed and indexed
the dense vector representations of all reactants on the training and

Fig. 6 | The dual-encoder retrieval model. Both the product and reactant
encoder have L identical blocks. x is one product and y is one reactant(s) in the
batch. The encoded output of the [BOS] token of x and y is denoted by a d-

dimensional hidden vector Epro(x) and Erea(y), respectively. In one batch, the
training objective is to maximize the scores along the diagonal of the score matrix
and minimize the bag-of-words loss for token-level cross-alignment.
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validation data with the reactant encoder. For input product SMILES x,
we used the product encoder to obtain its dense vector representation
Epro(x) and retrieved a ranked list of candidates by MIPS on the
Faiss index.

Substructure exaction
Given the training objective of the dual-encoder model, the retrieved
top candidateswere expected to be similar to the golden reactants.We
further assumed that these candidates shared a common substructure
with the golden reactants. Although this hypothesis was not always
valid, we observed that the assumption was reasonable in most cases.
Common substructures were product molecule specific, because the
retrieved candidates varied for eachproductmolecule.Our goalwas to
extract common substructures given the product and its associated
top cross-aligned reactants.

The extraction process was mainly based on molecular finger-
print, awidely used approach inmolecular substructureextractionand
similarity search. Using molecular fingerprints is one way to encode

the structure of a molecule. The most common type of fingerprint is a
series of binary bits that represent the presence or absence of parti-
cular substructures in the molecule. Comparing fingerprints can help
determine similarity between two molecules or locate aligned atoms.
Using circular fingerprints is one of the methods capable of capturing
3D topological information. Itmaintains the environment of the center
atom, which covers the neighbor atoms in different radii. The de facto
standard circular fingerprints are the Extended-Connectivity Finger-
prints (ECFPs), based on the Morgan algorithm, which is specifically
designed for structure-activity modeling. Circular fingerprints are
obtained through an enumeration of sub-molecular neighborhoods.
First, each atom is encoded by an integer identifier, which is a hashed
encoding representation of structural properties. The neighborhood
information of the constituent atoms and bonds in different radii are
iteratively assigned as the atom’s numerical identifiers. The radius of a
circular fingerprint refers to the size of the largest neighborhood
surrounding each atom considered during enumeration. The finger-
print consists of the combination of all unique identifiers and is

Fig. 7 | Substructure extraction. a Collecting atom environments, the atom
environments of fingerprints 2076081310 and 897554406 in the product and the
retrieved candidates are highlighted in green and blue, respectively. b Virtual
number labeling and substructure isolation, the virtually labeled substructures are

highlighted in green. c Model input, which is the SMILES strings of the sub-
structures followed by the SMILES of fragments. The virtually labeled atoms are
highlighted in green. “∣” in the model input is a special character indicating the
beginning of product fragments' SMILES strings.
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subsequently folded into a binary vector of fixed length by converting
integer identifiers into indices of the vector.

We used the toolkit RDKit39 to extract common substructures.
The overall extraction scheme is illustrated in Fig. 7. In our approach,
we calculated the circular fingerprints of the product and the top 20
retrieved candidates with a radius ranging from 2 to 6. For example, in
Fig. 7(a), the fingerprint 2076081310 encoded the environment of the
center atom (index 4) and its neighbors with a radius of 1 in the
product.

For each candidate reactants, we built the atom alignments with
the product using shared fingerprints, as highlighted in green and blue
in the fingerprint table in Fig. 7a. We selected atoms to build the sub-
structure if they were aligned 5 times or more among the retrieved
candidates. We further removed atoms in the substructure that were

aromatically bond to non-substructure atoms, or if connecting bonds
showed stereoisomerism. Without these settings, splitting molecules
into fragments was counterintuitive from a chemistry perspective, e.g.,
it may destroy aromaticity or stereoisomerism of the original molecule.
For simplicity, we also removed atoms that were connected tomultiple
non-substructure atoms. Note that for a specific reaction, the atoms in
the extracted substructuremight not be fully connected. They could be
different parts of one molecule or parts of different molecules, as
shown in Fig. 7b. The extraction algorithm first used fingerprints to
determine if an atom should be included in the substructure. Once the
atoms of substructures were determined, all bonds between those
atoms in the original molecule were kept as part of the substructure.

Next, we separated the product into substructures and other
fragments. The assumption was that substructures tend to remain
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Fig. 8 | Substructure-level sequence-to-sequence learning.Both the Transformer
encoder anddecoder have L identical blocks. The virtual number labeled atomsand
substructures are highlighted in green. During training, the product side (input) is
converted to substructures and fragments from the product, the reactants side
(output) is converted to fragments from reactants only. “∣” in the converted input is
a special character marking the beginning of SMILES strings for fragments present

in the product. The model is trained on the converted input and output. During
inference, we only predict the fragments of reactants; finally predicted reactants
are obtained by merging the substructures with the predicted fragments.
a Substructure-level sequence-to-sequence learning model. b Our training and
inference workflow.
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unchanged during reactions. Note that it’s possible for multiple frag-
ments to be connected to atoms in the substructure. We introduced
virtual numbers as labels to differentiate these bonds. As shown in
Fig. 7(b), we added a virtual label to the bond between the atom S in
the common substructure, and the atom c in the fragment, resulting in
SMILES snippets with the virtual labels [1SH] and [1cH], respectively.
Note that we purposedly introduced additional hydrogen atoms in the
substructure and other fragments after breaking the bonds, so they
looked like charge-neutral molecules rather than radicals. We also
recorded the type of bonds broken (double bond or triple bond) so
that we can remove these hydrogen atoms easily when restoring the
original molecule. Atoms with the same virtual number meant that
they were connected in the original molecule before being broken
down, for example, [1SH] was connected to [1cH] and [2cH] in the
substructure was connected to the atom [2cH] in the fragment. With
virtual number labeled bonds, we can easily isolate the substructure
from other molecular fragments; we can also restore the molecule
from the substructure and the associated fragments. The sites of
broken bonds between the substructure and other fragments did not
automatically translate to reaction sites in the chemistry sense; only a
fraction of the sites were simultaneously reaction sites. For example,
the broken bond between 1S and 1c was not a reaction site, as shown
in Fig. 7.

It isworth noting that substructures were extracted using a purely
data-driven approach with no human interventions other than the
stereochemistry and aromaticity determination mentioned earlier on.
Therefore, these substructuresmight not be “perfect” in the sense that
they did not convey or correspond to specific chemical properties.
“Perfect” is used to refer to cases when all broken bonds are reaction
sites, and all atoms that remain unchanged are contained by the sub-
structures. We will explain how we handle removed atoms or broken
bonds that remain unchanged during reactions in the section “Sub-
structure-level sequence-to-sequence learning”.

To build a model that was not sensitive to the substructure for a
given product molecule, we also extracted the center and neighboring
atoms based on the common fingerprints as substructures from all the
retrieved candidates. These substructures may be different as they
come from different candidates. All the substructures from retrieved
candidates that existed in the query (product) were used as input for
model training and inference. Note that obtaining substructures based
on common fingerprints between the product and the retrieved can-
didates might introduce errors because the retrieved candidates were
not the golden reactants. We showed a sample of such error in the
section “Results on commonly preserved substructures”. For model
training purposes, we can easily filter out incorrect substructures with
golden reactants and only use correct substructures as the training
data. The product molecule was represented multiple times with dif-
ferent substructures and fragments. This redundancy made output
results robust over different substructures for a specific input product
molecule. We were also able to group predictions by substructures to
provide human experts with additional insights for decision-making in
retrosynthesis planning compared with existing “black-box” models.

Substructure-level sequence-to-sequence learning
Using methods detailed in the previous section, we isolated sub-
structures on the reactant side of the training data. The product and
reactantsmolecules wereboth converted into substructures and other
molecular fragments. We used SMILES strings to represent these
substructures and fragments and cast retrosynthesis analysis as
substructure-level sequence-to-sequence learning problems. For
sequence-to-sequence learning-based approaches, Molecular
Transformer2,3 achieved state-of-the-art performance on the reaction
outcome prediction and retrosynthesis analysis4 by employing textual
SMILES representations of reactants and products. The model treated
reactionpredictionor retrosynthesis as amachine translation task. The

output SMILES was generated through a Transformer decoder token-
by-token.

In our model, the input sequence was the SMILES string of sub-
structures and fragments separated by “∣”, as shown in Fig. 1 and Fig. 8.
“∣”was a special character marking the beginning of SMILES strings for
fragments present in product molecules. We assumed that sub-
structures were stable and remained unchanged during reactions. For
reactants, we only needed to predict virtually labeled fragments.
Sometimeswe failed to extract any substructures fromagivenproduct
and its associated candidates retrieved due to the lack of atoms with
the number of fingerprint alignments above the threshold. This hap-
penedbecause theminimumnumberof alignments requiredwas set at
5 out of the 20 retrieved candidate reactants in our model. For these
cases, the inputwas convertedback to theoriginal SMILES strings,with
predictions performed by the data augmented Transformer model3.
Based on our current implementation, the retrosynthesis analysis task
was simplified and the average length of sequences to be predicted
was significantly reduced compared to earlier models, which also
helped reducing model complexities. Extracted substructures and
predicted fragments containing virtual numbers enabled us to easily
obtain the predicted reactants, as shown in Fig. 1. The structural
changes among reactants and products were expected to be captured
and predicted by the substructure-level sequence-to-sequence learn-
ing model. Note that for those atoms that remain unchanged during
reactions but were not included in the substructures derived earlier,
the model predicted them as output fragments.

Given an input product molecule, we extracted substructures
from all associated candidates retrieved. The original product mole-
cule was represented differently multiple times in this process, each
time with a unique substructure and its corresponding fragments.
During model inference, different substructures may lead to the same
reactant molecules with different rankings. The ranking scores for the
predictions of augmented SMILES strings were calculated mainly
based on the output ranking by the beam search method3. In our
implementation, the lengths of predicted fragments for different
substructures were different, thus defining an empirical ranking for-
mula based on the original beam search rank was not easy. As a result,
we trained a pair-wise rankingmodel using a neural networkwith three
linear layers on the validation data. The input features included fre-
quency, ranking percentages among top 1 and top 2, average rankings
on predictions of all the substructures and unique substructures. The
training objective was set to ensure that on the validation data, the
golden reactants had a higher score than incorrect predictions. See
Supplementary Methods for more details on the pair-wise
ranking model.

We tested ourmodel on the USPTO_full benchmarkwith the same
data split as17, and performed evaluations using the top-k accuracy of
getting an exact match, i.e., given a product molecule, whether one of
the top k predicted reactants exactly matched the ground truth. Our
model extracted substructures fromabout 80%of the training and test
data. For a fair comparison, we trained a vanilla Transformer model
with augmented random SMILES to obtain predictions for products
with no substructures.

Data and settings
We used the publicly available reaction data sets from the USPTO40,
which used SMILES strings to describe chemical reactions. We tested
our approach on the USPTO_full benchmark with the same data split
(train/valid/test) settings (80%/10%/10%) as17. There are approximately
1M reactions in total. We performed evaluations using the top-k exact
match accuracy, i.e., given a productmolecule, whether one of the top
k predicted reactants exactly matched the ground truth. We canoni-
calized the molecules with the toolkit RDKit39 and tokenized all the
inputs following30. Note that the virtually labeled atoms were toke-
nized as single tokens. For each instance, we added two randomized
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SMILES strings as augmented data for substructures and fragments on
the product side to be used in both model training and testing.

Table 2 shows the parameter settings. For the dual-encoder reac-
tion retrieval model, following13, we set the learning rate at 0.0001, the
batch size at 4, 096, and the label smoothing at 0.1. For parameters in
substructure-level sequence-to-sequence learning, we mainly followed
the Molecular Transformer settings2. We used the Adam optimizer41

(β1 = 0.9, β2 = 0.998) and the Noam learning rate scheduler12, where the
scale factor was 2, and the number of warmup steps was 8, 000. The
batch sizewas 8, 192 tokens, and the gradientswere accumulatedover 2
batches. For fair comparisons, we also trained a Transformer model
with data augmentation (5 random + 1 canonicalized SMILES at the
product side) under similar settings to obtain predictions for product
molecules with no substructures extracted.

The dual-encoder was trained on theUSPTO_full training data, the
training process was stopped when the accuracy of alignment on the
validation data was not improved. The ranking model had three linear
layers of size 400; it was trained on the pairs collected from the vali-
dationdatawith label-smoothed cross-entropy loss. To collect training
pairs, we trained our substructure-level sequence-to-sequence learn-
ing model on the USPTO_full training data, the training process was
stopped when perplexity on the training data was no longer decreas-
ing. Perplexity is a measurement of how well a model generates a
sequence,which is a commonlyusedmetric inmachine translation and
text generation. A lower perplexity indicates that the trained model is
better at generating sequences, which suggests that it can be
employed on the training data as an artificial metric to stop model
training. Previous work2,3 shows that the performance of Transformer-
based models monotonically increases with the number of training
steps, which suggests thatwe canuse the perplexity on training data as
themetric to stopmodel training. We used perplexity because when it
has stopped decreasing on the training data, the model’s capability at
generating sequences cannot be further improved. We can obtain
predictions on the validation data with the trained model. We further
selected predictions that contained the golden reactants and paired
the golden reactants with non-golden predictions. For each product,
we collected at most 10 pairs of (golden reactants, non-golden reac-
tants). Therewere about 510, 000pairs, and the training/valid split was
set to 60%/40%. For each pair, we extracted ranking features for
golden reactants and non-golden reactants to train the rankingmodel.
The training objectivewas to ensure that golden reactants had a higher
score than incorrect predictions. We stopped training when the
accuracy on the validation data (40% of the pairs collected on USP-
TO_full valid data) was not improved.We used the scores generated by
the ranking model to rank predictions on the USPTO_full test data.

After the ranker was trained, following Augmented Transformer3,
we combined the training and validation data of USPTO_full as the
training set to train our model. We saved the model checkpoint every
10, 000 steps, the training was stopped when perplexity was not
decreased for 100, 000 steps. Following Molecular Transformer2, we

used average parameters of the last 10 checkpoints to obtain predic-
tions on the test data. These predictions were further ranked by the
scores generated by the ranking model.

Data availability
The USPTO_full dataset is available at https://github.com/Hanjun-Dai/
GLN. The processed data generated during and/or analyzed during the
current study are available at https://github.com/fangleigit/
RetroSub42. Source data are provided with this paper.

Code availability
Codes and models are available at https://github.com/fangleigit/
RetroSub42.
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