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Para-hydrodynamics from weak surface
scattering in ultraclean thin flakes

Yotam Wolf1, Amit Aharon-Steinberg1, Binghai Yan 1 & Tobias Holder 1

Electron hydrodynamics typically emerges in electron fluids with a high
electron–electron collision rate. However, new experiments with thin flakes of
WTe2 have revealed that other momentum-conserving scattering processes
can replace the role of the electron–electron interaction, thereby leading to a
novel, so-called para-hydrodynamic regime. Here, we develop the kinetic
theory for para-hydrodynamic transport. To this end, we consider a ballistic
electron gas in a thin three-dimensional sheet where the momentum-relaxing
(lmr) and momentum-conserving (lmc) mean free paths are decreased due to
boundary scattering from a rough surface. The resulting effective mean free
path of the in-plane components of the electronic flow is then expressed in
terms of microscopic parameters of the sheet boundaries, predicting that a
para-hydrodynamic regime with lmr≫ lmc emerges generically in ultraclean
three-dimensional materials. Using our approach, we recover the transport
properties of WTe2 in the para-hydrodynamic regime in good agreement with
existing experiments.

The viscous flow of an interacting electron fluid was predicted a
long time ago1; however, experimental evidence for it has
remained scarce for many decades2. The advent of ultraclean
quantum materials with low carrier density3–5 yielded a growing
number of cases demonstrating viscous electron flow in the last
few years6–11. Moreover, it has even become possible to establish
ballistic and viscous flow profiles using spatially resolved
techniques12–16. Among the coveted properties of hydrodynamic
flow is, for example, a negative nonlocal resistance17–20 as well as
other nonlocal transport signatures21–27. However, the observation
of vortical flow (electron whirlpools) still remained elusive28–31.
This situation was upended very recently when a high-fidelity,
spatially resolved experiment32 in ultraclean WTe2

33,34 could
unambiguously demonstrate hydrodynamic vortical flow, clearly
excluding a ballistic origin of the observed whirlpool pattern.

The observation of this hydrodynamical vortical flow is
remarkable for two additional reasons. First, the device is not an
effective two-dimensional system but a thin (thickness d = 48 nm,
width w = 550 nm), three-dimensional flake exfoliated and fabri-
cated from WTe2 flakes with a very large bulk mean free path
ℓ ≈ 20 μm. Second, at the measured temperature T = 4.5 K, the
electron–electron interaction leads to a momentum-conserving

mean free path ℓee ≈ 10 μm≫w. This means that the sample can-
not be in the hydrodynamic regime, which is characterized by the
condition that ℓee≪w≪ ℓ1.

Based on the unusual properties of WTe2, the authors in ref. 32
suggested that an effectively hydrodynamic flow could instead be
induced by almost specular (and thus predominantly momentum-
conserving) scattering from the top and bottom surfaces of the three-
dimensional WTe2 sheet, a mechanism termed para-hydrodynamics
(cf. Fig. 1a). However, no kinetic theory has been put forward which
would explain how such a novel type of hydrodynamic flow emerges
microscopically.

In this letter, we consider a kinetic theory for the in-plane flow of
an electron fluid in a thin, three-dimensional slab that takes into
account weak boundary scattering from the rough top and bottom
surfaces. We demonstrate that this setting naturally leads to para-
hydrodynamic flow in thin three-dimensional devices as long as the
bulk mean free path ℓ of the material is very large compared to
the device thickness d. The proposed scatteringmodel is generic, with
the only parameters being the amplitude and correlation length of the
surface roughness.

The mechanism is depicted schematically in Fig. 1b–d. The
emergence of the para-hydrodynamic regime is a result of the
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conversion of rarely colliding trajectories that impact the top and
bottom surfaces at a grazing angle (i.e., ballistic flow) into tra-
jectories that scatter often and at a steep angle from the surface
(hydrodynamic flow). This conversion happens due to the slow
angular diffusion of the scattered trajectories. The redistribution
of statistical weight means that the distribution function and,
thus, also the current predominantly resembles hydrodynamic
transport. Therefore, while it is not possible to describe the three-
dimensional distribution function using a Stokes–Ohm hydro-
dynamic approach, the in-plane components of the flow velocity
exhibit relaxation properties which resemble viscous flow. Spe-
cifically, we find that the effective in-plane momentum-relaxing
(ℓmr) and momentum-conserving (ℓmc) mean free paths are rela-
ted as ‘mr=‘mc / logð‘=dÞ> 1. Since the conversion of forward tra-
jectories into steep trajectories is bound to happen whenever
angular diffusion is present in the boundary scattering, the only
reason why the phenomenon of para-hydrodynamics has so far
remained elusive seems to be the logarithmically slow enhance-
ment of this effect with increasing mean free path. In particular,
our model posits that neither the precise surface roughness nor

the material itself sensitively affects whether a para-
hydrodynamic transport regime can emerge in a given material.
Instead, the para-hydrodynamic regime merely requires a very
large fineness ratio ℓ/d, combined with an appropriate choice of
the width w of the slab so that ℓmr≫w≫ ℓmc. These conditions
were fulfilled in the experiment of ref. 32, which was done with
high-quality samples where ℓ/d > 500.

Results
Absence of e–e interactions at low T
It has been argued16,32 that WTe2 cannot be in the hydrodynamic
regime below 20K. However, estimates for the effective
electron–electron mean free path ℓee may vary considerably depend-
ing on the employed band structure model and other details of the
calculational approach. Therefore, before invoking a surface
mechanism, we briefly comment that bulk scattering is unequivocally
too weak to matter in these mesoscopic devices. To this end, consider
the electronic self-energy for three qualitatively different but realistic
candidate band structures of the three-dimensional phase of WTe2.
The proposed Fermi surfaces describe (i) aWeyl semimetal phasewith

(
)

( )

ℎ− ℎ .

0 0 0

> |log |<

ℓ

WTe

⃗⃗

lattice-scale
surface roughness

e

Fig. 1 | Phenomenology of para-hydrodynamics. a The current flows through a
thin slab of thickness d≪w≪ ℓ. Electrons scatter at the microscopically rough top
and bottom surfaces with incident angle θ. Most trajectories are reflected almost
specularly, leading to angular diffusion in θ, while few trajectories scatter ran-
domly, thus dissipating momentum. b–d Comparison of the non-equilibrium dis-
tribution functions f(θ) in different flow regimes (red curve). An approximate
cosine that inscribes f(θ) for steep angles θ ≠0,π is shown as a blue shaded area,

whereas the red shaded area indicates grazing trajectories (θ ≈0,π). Different parts
of f(θ) have dissimilar scale dependencies in terms of the ratio α = d/2ℓ≪ 1. For
ballistic flow, f(θ) decays strongly upon approaching θ =π/2, while for hydro-
dynamic flow, it assumes a smooth cosine formeverywhere. The intermediate para-
hydrodynamic regime carries signatures of both ballistic and hydrodynamic flow,
but the smooth part of f(θ) is logarithmically larger than the ballistic part, thus
leading to an effectively hydrodynamic current in the limit α→0.

Fig. 2 | Candidate Fermi surfaces forWTe2, with electron (hole) pockets in blue
(red). a Highly anisotropic pockets, b large pockets, and c very small pockets,

corresponding to a semimetallic state. We find that the effective electron–electron
mean free path does not depend sensitively on the choice of Fermi surface.
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very small pockets, (iii) a phase with highly anisotropic pockets, and
(iii) a relaxed phase with large pockets (Fig. 2). Employing standard
methods to calculate the imaginary part of the self-energy due to the
screened Coulomb interaction35 and using a fine momentum grid
(cf. Supplementary Information), we obtain the estimates ‘ðiÞee = 19μm,
‘ðiiÞee =22μm and ‘ðiiiÞee = 155μm at T = 4.5 K. Therefore, we conclude that
details of the calculation, and differing starting assumptions about the
qualitative shape of the Fermi pockets do not substantially affect the
electron–electron scattering rate, soundly excluding bulkmechanisms
as the source of the hydrodynamic flow. Note that ref. 16 additionally
considered phonon-assisted electron–electron interactions, but they
are likewise too weak at low T.

Boundary scattering model
Due to the nature of the para-hydrodynamic transport regime, the
derivation cannot rely on a hydrodynamic treatment but has to start
from a Boltzmann transport approach. In the following, we consider
the nearly ballistic flow in a three-dimensional rectangular geometry
where d≪w≪ ℓ (cf. Fig. 1). In the kinetic approach, the distribution
function is denoted by f(r, k) at real-space position r and for momen-
tum k on a spherical Fermi surface.While thematerial in consideration
has a complicated, non-spherical Fermi surface, the relevant Fermi
surfacequantity in the Boltzmann equation is the Fermi velocity, which
is indeed relatively isotropic. The Boltzmann equation in the steady
state is

vF � ∇r f + eE � ∇k f = I0ð f Þ+ Ibð f Þ: ð1Þ

Here, vF is the Fermi velocity, e is the electron charge, E = (Ex, 0, 0)
is the electric field and I0ðf Þ= ∣v∣ðf � f 0Þ=‘ is the bulk collision
integral in relaxation time approximation. Ibðf Þ is the collision
integral due to boundary scattering from the top and bottom
surfaces. Because the thickness d of the flake is much smaller than
its width w, we can neglect the spatial dependence along the
width of the channel. We note that this approximation becomes
exact when the in-plane boundaries at y = ±w/2 are completely
specular, in which case the distribution function is y-independent.
We parametrize f ðr,kÞ � f 0 =Ahðz,θÞ cosθ cosϕ, choosing −d/
2 ≤ z ≤ d/2 along the third dimension, −π/2 ≤ ϕ ≤ π/2 as the angle
in the plane, and −π < θ ≤ π as the out-of-plane angle, with
θ = ϕ = 0 pointing along +x (cf. Fig. 1). The dimensionless coeffi-
cient A = −(∂ϵ f0)eExℓ is chosen such that the solution h becomes
normalized (h(z, θ) = 1) when boundary scattering is absent,
associated with the bulk current density j0 =

evF
32π

R
d3kA.

We now construct h(z, θ), which solves Eq. (1) for boundary scat-
tering from a rough surface. The microscopic process of boundary
scattering has been studied for many decades36–43. It is common to
rewrite the boundary collision integral in terms of boundary condi-
tions using a specularity parameter Rθwhichmay depend on the angle
of incidence θ. Here, Rθ = 0 corresponds to completely diffuse scat-
tering, while Rθ = 1 is fully specular. Using this parameter, one can
express the reflected part of the distribution function h(d/2, −∣θ∣) at the
top surface in terms of the incident one as h(d/2, −∣θ∣) =Rθh(d/2, ∣θ∣),
and vice versa at the bottom surface it is h(−d/2, ∣θ∣) =Rθh(−d/2, −∣θ∣).
However, using a true 2D scattering cross section to describe a
boundary scattering event, one has to go back to the full distribution
function, expressing the reflected f > in terms of the incident f < by an
integral condition38

f > ðkÞ= f <ðkÞ+ kz

Z
FS0

d2k0k0
zW ðk� k0Þ½ f <ðk0Þ � f <ðkÞ� ð2Þ

where W(k) is the correlation function of the surface scattering
potential and the integral runs over the half-sphere (FS’) of the Fermi
surface, which corresponds to trajectories incident to the boundary.

We henceforth employ a generic Gaussian-correlated scattering
potential38, defined as W ðkÞ=πa2b2e�k2b2

=4, with potential depth a
and correlation length b.

Historically, Eq. (2) has been solved in two limiting cases, for
grazing angles θ ≈0 and for steep angles of incidence, θ ≈π/238. For
grazing angles, the distribution function changes more rapidly than
the scattering cross sectionW and one obtains a standard form of the
boundary in terms of the angle-dependent specularity (1− q∣θ∣) with
parameter q=4

ffiffiffiffi
π

p
Γð34Þa2k3=2

F =
ffiffiffi
b

p
. Conversely, for steep angles, the

scattering potential W changes faster than the distribution function.
Using a saddle-point approximation therefore yields a Fokker–Planck
equation in the angle of the form hðd=2,� ∣θ∣Þ= Ôθhðd=2,∣θ∣Þ with the
operator of the angular diffusion on the Fermi surface being
Ôθ =Qsin

2θðð2 cot θ� tanθÞ∂θ + ∂2θÞ, where Q = 8a2/b2. To our knowl-
edge, no attempts have been made to treat the scattering for both
limits, θ ≈0 and θ ≈π/2, in a unified framework. However, to capture
the para-hydrodynamic behavior, we seek a solvable description that
holds for all angles of incidence. Indeed, as we demonstrate next, the
description for general angle θ is absolutely vital to capture the para-
metric dependencies of the para-hydrodynamic flow correctly.

In the spirit of Matthiessen’s rule, we propose to add both scat-
tering limits as two different types of scattering processes, which
yields for the distribution function at the upper boundary of the slab
the boundary condition

hðd=2,� ∣θ∣Þ= ðRθ + ÔθÞhðd=2,∣θ∣Þ: ð3Þ

Here, we introduced the specularity parameter Rθ = ð1� q sin ∣θ∣Þ,
which is the periodic extension of the previously mentioned spec-
ularity at small angles. Note that both scattering types can be com-
bined safely because for θ =0,π, the momentum-relaxing scattering
vanishes (R0 = 1), meaning that the distribution function has no
discontinuities anywhere. Equation (3) presents the key innovation
for a unified treatment of boundary scattering.

The ordinary differential Eq. (3) exhibits several favorable prop-
erties. First, solutions for q =0 and for any Q > 0 are non-dissipative,
with distribution function h(z, θ) ≡ 1, corresponding to a bulk current
profile without any stresses. This can be understood as follows. Q
parameterizes the relative importance of angular diffusion due to
scattering from theboundaries.However, without anymomentum loss
(i.e., unless q >0), the angular diffusion ofmomentumwill redistribute
momenta equally into higher and lower momentum states, thereby
conserving momentum exactly. Second, the differential equation
becomes stiff both at θ =0 and θ =π/2, both of which constitute sin-
gular points. Therefore, the resulting distribution function at either
point singularly depends on the initial conditions at the respective
other point. Indeed, we find that for Q≫ q, the solution retains a sin-
gular dependence on q for all angles, even though Rθ is dominant over
Ôθ only for shallow angles smaller than d/ℓ.

Intermediate regime of para-hydrodynamics
Using a symmetric parametrization in terms of the characteristics of
themotion44, the solution of the Boltzmann equation can bewritten as

hðz,θÞ= e�z csc θ=‘cðθÞ+ ð1� e�z cscθ=‘Þ: ð4Þ

c(θ) is symmetric in θ and is determined by the modified boundary
scattering condition. Inserting the general solution of Eq. (4) into (3),
one obtains for 0 < θ <π/2

eα csc θcðθÞ+h�
in = ðRθ + ÔθÞðe�α cscθcðθÞ+h+

inÞ ð5Þ

where α = d/2ℓ and h±
in = ð1� e∓α cscθÞ. Solving Eq. (5) is rather

involved (cf. Supplementary Information). Typical solutions for
q = 1 and several values of Q are shown in Fig. 3a. For Q ≈ 0, the
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distribution function quickly decays with increasing angle,
meaning that the current originates almost exclusively from long-
lived trajectories in the forward direction (θ = 0). This is the
expected behavior for ballistic flow. In contrast, for Q > 1, the
profile changes qualitatively, with the trajectories at grazing
angles being strongly suppressed, while the distribution function
becomes a cosine (corresponding to cðθÞ= const:) for all other
angles. This shape of the distribution function resembles a
hydrodynamic distribution function. The flat part is characterized
by the asymptotic value c1 = c(π/2), which by Taylor expansion in
θ ≈ π/2, evaluates to

c1 = 1�
qeα � 2Qc00ðπ2Þ

e2α � 1 + q+ 2Qα
ð6Þ

≈
2Qc00ðπ2Þ+ ð2� q+2QÞα

q+2ð1 +QÞα for α ! 0, ð7Þ

where c00ðπ=2Þ= 1
2∂

2
θcðθÞ∣θ=π=2. In the ballistic regime (Q = 0), we find

numerically that c″(π/2)∝ α, and thus also c1∝ α, which is subleading
compared to the forward trajectories at θ ≈0, which contribute to the
current at order Oð ffiffiffi

α
p Þ38. In contrast, for Q > 0, we find that

c00ðπ=2Þ / α logα�1. The weight of trajectories with steep angles is
therefore substantially increased compared to the forward trajec-
tories, which are in turn suppressed and contribute to the current only
at orderOðαÞ. For small values of α, the enhancement of the flat part of
the distribution function compared to the forward (ballistic) trajec-
tories is therefore large enough so that a para-hydrodynamic regime
emerges (cf. Fig. 1).

Since the logarithmic enhancement makes it impossible to con-
struct the size of c1 from local properties around θ =π/2, we now focus
on the limit where α→0. To leading order in α, in terms of the variable
s = sinθ, Eq. (5) can be expanded as

s2? 2 + 2Qs2 � qs
� �

α = s2? ð2 + 2Qs2Þα +qs2
� �

cðsÞ
� Qs2

s2?
s 3s4 � 4s2 + 2
� �

+ 2αs4?
� �

c0ðsÞ � Qs3c00ðsÞ ð8Þ

where s? =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
. This equation no longer contains any essential

singularities for shallow θ and is much easier to handle numerically.
Based on the analytical structure of c″(π/2) in terms of higher

derivatives and using the numerical solution as a reference, we find by
fitting that c00ðπ=2Þ≈α logð0:06=αÞ=ð0:4q+0:5QÞ.

Effective mean free paths
The crossover from ballistic to bulk hydrodynamic flow is well
studied in two-dimensional electron fluids2,22,42,44–49 and is typi-
cally described using a dual relaxation time approximation for the
scattering integral in terms of the two length scales ℓmr and ℓmc.
However, it has been shown44,50 that the nature of the transport
regime can also be reconstructed from an inspection of the dis-
tribution function. Namely, the distribution is smooth and rela-
tively flat in the hydrodynamic regime (ℓmc≪w≪ ℓmr), while in the
ballistic regime (w≪ ℓmr, ℓmc), scattering from the boundaries
makes the distribution function strongly angle dependent. This
can be more formally restated by considering the angular har-
monics of h(θ). Keeping only the first and second terms in such an
expansion, the Boltzmann equation simplifies to the Stokes–Ohm
equation44, i.e., the distribution function can be obtained in a
hydrodynamic description. On the other hand, if higher angular
harmonics are present in the distribution function, this indicates
the presence of additional long-lived modes in the flow, as would
be expected for a ballistic distribution function.

In the present case, different parts of the distribution func-
tion at respectively shallow or steep angles resemble either the
ballistic or the hydrodynamic situation. We therefore propose a
two-fluid approximation (cf. Figs. 1 and 3), whereby we decom-
pose the distribution function h(θ) into a constant part which
constitutes a hydrodynamic current density jh = c1j0, while the
remaining strongly angle-dependent parts constitute a ballistic
current density jb = j − jh.

As shown in Fig. 3b, at Q = 0, it is jh < jb, but upon increasing
Q, there is a crossover into a regime with jh > jb. In the latter
regime, one can immediately infer ℓmr and ℓmc from the flat part
of the distribution function, which creates the dominant con-
tribution jh to the current density. To this end, using the reduced
current density, we write for the effective momentum-relaxing
mean free path,

‘‘mr

ð‘+ ‘mrÞ
=

‘

π

Z π

�π
cos2θcðθÞ≈ ‘c1: ð9Þ

Fig. 3 | Normalized distribution function and currents in the two-fluid picture.
a The distribution function c(θ) in the para-hydrodynamic regime, for q = 1, three
different values of Q and two α. With increasing Q, more weight is accumulated at
the steep trajectories away from θ =0. Forα =0.05,Q = 4, the asymptotic value c(π/
2) = c1 is indicated by a gray dashed line. In the two-fluid approximation, the current
jh stemming from the area below c1 (gray, hatched) is compared against the current

jb induced by the rest of the non-equilibrium distribution. b Comparison of the
para-hydrodynamic (jh/j0) and ballistic (jb/j0) current density contributions in the
two-fluid approximation for two values of α, where j0 denotes the bulk current
density. For all α≪ 1, the contribution of the para-hydrodynamic current increases
with Q, quickly overtaking the ballistic contribution.
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The flatness of the distribution function furthermore suggests
that the total scattering rate is large and completely dominated
by momentum-conserving processes. ℓmc is therefore expected to
approach its maximally possible value, which for a flat distribu-
tion is entirely determined geometrically by the normalized travel
distance between two successive scatterings from the top and
bottom surfaces. In other words, we can estimate that
1

‘mc
≈ 1

d
1
2π dθ

R π
0 sin ∣θ∣, which yields ℓmc = πd.

Using these values for ℓmr≪ ℓ and ℓmc≪ ℓ, the effective Gurzhi
parameter for the para-hydrodynamic flow in thin sheets becomes

D0 =
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘‘mr

‘+ ‘mr

‘‘mc

‘+ ‘mc

s
≈

ffiffiffiffi
π

p

2

ffiffiffiffiffiffiffiffiffi
c1d‘

q
: ð10Þ

In the experiment, the WTe2 samples had the properties
d = 48 nm, ℓ = 20 μm, ℓmr = 530 nm, and D = 155 nm. Using as input
the experimental values for d and ℓ, Eq. (10) yields D0 = 145nm and
ℓmr = 560 nm for the choice (q,Q) = (1, 4), while it is D0 = 143nm and
ℓmr = 545 nm upon choosing (q,Q) = (0.8, 2). This indicates that
the kinetic theory is not strongly sensitive to the precise value of
q and Q, and it can explain the experimental findings well for a
reasonable range of boundary scattering parameters. Impor-
tantly, this versatility implies that para-hydrodynamic flow
emerges generically as long as there is a large-scale separation
between sheet thickness d and bulk mean free path ℓ and does
not require extensive fine-tuning. We remark that q and Q are, in
turn, only weakly dependent on the microscopic scattering
parameters a and b. For example, using kF = 1 nm−1, we obtain
a = 0.27 nm, b = 0.37 nm for (q,Q) = (1, 4), and a = 0.26 nm,
b = 0.51 nm for (q,Q) = (0.8, 2). These estimates correspond to
boundary roughness at the lattice scale and are indeed reason-
able for cleaved samples34.

Discussion
We derived a microscopic boundary scattering model which can
explain para-hydrodynamic flow in the absence of strong
electron–electron scattering. As the main characteristics of the
new regime, we identified singular points in the resulting
boundary condition, which lead to a different thickness depen-
dence of the current density that onsets in the presence of small-
angle scattering from the boundary. Our findings constitute a new
type of ballistic-to-hydrodynamic crossover, where the three-
dimensional problem is microscopically ballistic, but the in-plane
components of the flow velocity exhibit relaxation properties
which are indistinguishable from viscous flows. Our results indi-
cate that the phenomenology which was previously suggested to
govern the hydrodynamic-to-ballistic crossover is not universal.
Since para-hydrodynamic flow exclusively emerges in the pre-
sence of angular diffusion from short-range correlated disorder,
conventional approaches which rely solely on a reflectivity coef-
ficient have not been able to capture this mechanism2,51,52. We
note that small-angle scattering can also appear from bulk scat-
tering, in which case it typically leads to a ratio ℓmr/ℓmc = 429,53. For
small-angle boundary scattering, we instead found ℓmr = c1ℓ and
ℓmc = πd, which yields a scale-dependent ratio ‘mr=‘mc / logð‘=dÞ
that becomes large enough to support hydrodynamic phenomena
for very large ratios ℓ/d.

It would be interesting to find additional signatures of the para-
hydrodynamic regime for the channel flow. Since the in-plane current
density in narrow channels is not suitable for distinguishing between
the ballistic and hydrodynamic transport regimes14, this would prob-
ably involve the investigation of the Hall viscosity at finite magnetic
fields46,54 or optical probes.

Since only very few microscopic parameters other than the bulk
mean free path enter into our results, we expect that the

para-hydrodynamic flow observed in WTe2 is not unique and that a
number of clean, three-dimensional compounds, for example, Weyl
and Dirac semimetals4,5 and ultrapure delafossites7,55, can exhibit this
new transport regime. The proposed boundary scattering model and
the two-fluid approximation used here for extracting the effective
mean free paths are generic. Thus, the same methodology can very
likely be applied directly to many other three-dimensional materials
and also integrated into numerical schemes56.

Methods
The calculation of the electron–electron scattering rate was done
in four steps. The first step in the process is finding the energy
bands and wave functions of the Weyl semimetal phase of WTe2
within DFT using VASP and Wannier9057,58. These were evaluated
inside the Brillouin zone on a k-mesh of Nx × Ny × Nz = 100 × 50 × 7.
The particle-hole bubble Π was calculated with an IR cutoff of
5 meV, which is approximately a tenth of the Fermi energy. The
real and imaginary parts were calculated separately to avoid
numerical errors. ReΠðq,ωÞ and ImΠðq,ωÞ were evaluated on the
same k-mesh as the bands and wave functions and on energies
between −11 and 11 eV with a resolution of 0.055 eV. On energies
in between the grid points, a linear interpolation was used. The
UV energy cutoff is chosen such that the low-temperature self-
energy corrections are converged, where the main contribution
to the relaxation time is by electrons with energy ϵnq in band n
residing in an energy window of ϵF − T < ϵnq < ϵF + T that are scat-
tered by electrons in band m that likewise satisfy
ϵF − T < ϵmk < ϵF + T. Thus, the main contribution to the self-energy
is generated by electrons whose differences in energies are
ω = ϵnq − ϵmk < 2T, while the target temperatures are below
T < 0.025 eV≪ 11 eV. It is then sufficient to let the band indices run
through the first 10 bands above and below the Fermi surface,
which corresponds to a maximal energy difference of 4 eV.

The self-energy was calculated with a regularized Bose distribu-
tion function, bðϵÞ ! ðeβϵ � 1Þ=ððeβϵ � 1Þ2 + λÞ (cf. Supplementary
Information). A good choice for the regulator is λ = 10−4, such that the
pole at zero frequency is cut off at b(ϵ) < 104.

We confirmed the convergence of our results by comparing var-
ious grid resolutions. First, two k-meshes were chosen at sizes
200 × 50 × 3 and 100 × 100 × 3. The difference in the self-energy
between both grid resolutions is less than 2%. Additionally, the fre-
quency resolution was also tested by increasing the resolution to
0.02 eV, which yielded a change of less than 1%. Finally, the bosonic
occupation number cutoff was increased to λ = 10−6, which yielded a
change of less than 1%. The sensitivity of our results against small
changes in the Fermi level was also tested. On two points separated by
0.02 eV, the results changed by about 36%, which is significant but
shows that the order of magnitude is robust to small changes in the
chemical potential. A calculation with a different number of bands
included in the correction of the photon propagator showed no rele-
vant changes.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.
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