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Dynamic fluctuations in a bacterial
metabolic network

Shuangyu Bi1,2, Manika Kargeti1, Remy Colin 1, Niklas Farke3, Hannes Link3 &
Victor Sourjik 1

The operation of the central metabolism is typically assumed to be determi-
nistic, but dynamics and high connectivity of the metabolic network make it
potentially prone to generating fluctuations. However, time-resolved mea-
surements of metabolite levels in individual cells that are required to char-
acterize such fluctuations remained a challenge, particularly in small bacterial
cells. Here we use single-cell metabolite measurements based on Förster
resonance energy transfer, combined with computer simulations, to explore
the real-time dynamics of the metabolic network of Escherichia coli. We
observe that steplike exposure of starved E. coli to glycolytic carbon sources
elicits large periodic fluctuations in the intracellular concentration of pyruvate
in individual cells. These fluctuations are consistent with predicted oscillatory
dynamics of E. coli metabolic network, and they are primarily controlled by
biochemical reactions around the pyruvate node. Our results further indicate
that fluctuations in glycolysis propagate to other cellular processes, possibly
leading to temporal heterogeneity of cellular states within a population.

Metabolism is central to cellular life, andmetabolic and biosynthetic
pathways are highly conserved among different species despite
their enormous variety of lifestyles and ecological niches. Besides
their immediate function in fueling all cellular activities, metabolism
exerts an important regulatory control on many other cellular
processes1–3.

Metabolic networks contain multiple input-output interactions
among transcription factors and other regulatory proteins, enzymes,
metabolites, and fluxes4. Although central metabolism as a whole is
thought to operate deterministically, cells are autocatalytic and sto-
chastic systems in a dynamic equilibrium. Hence, the nature of meta-
bolic networks and their interplay with gene expression and other
cellular processes is inherently stochastic, which can lead to dynamic
fluctuations in the network activity5–12. A well-studied source of cellular
fluctuations is stochastic gene expression, which can generate sub-
stantial cell-to-cell variability in protein levels, either across an isogenic
population or within one cell over time, and in extreme cases drives
genetically identical cells into different physiological states5,8,10,13–15.

Apart from fluctuations in gene expression, which occur on the
timescales of minutes to hours, the ubiquitous post-translational reg-
ulation can lead tomuch fasterfluctuationswithin proteinnetworks. In
contrast to stochasticity in gene expression, origins and physiological
effects of such post-translational fluctuations remain little
investigated12. One of the few studied examples of such stochasticity
are activity fluctuations within bacterial chemotaxis pathway, which
emerge from reaction stochasticity and extensive allosteric interac-
tions among chemosensory proteins and might enhance environ-
mental exploration16,17. Another exampleof a post-translational cellular
process that is driven by dynamic instability within a network are
oscillations of the central glycolytic pathway in eukaryotes. These
glycolytic oscillations have been most intensively investigated, using
NADH autofluorescence signal as a readout, in budding yeast Sac-
charomyces cerevisiae exposed to a combination of glucose and cya-
nide, primarily in synchronized cell populations and in cell lysates but
also in single cells18–22. Glycolytic oscillations were observed in other
eukaryotic cells, too23–25. It wasproposed that this oscillatory process is
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controlled primarily by allosteric regulation of phosphofructokinase,
with substrate inhibition by ATP and product activation by AMP and
fructose 1,6-bisphosphate18,20,26–30, though additional interactions
might be involved in regulation of such oscillations and their syn-
chronization between individual cells21,31–36. Although glycolytic oscil-
lations were also predicted to occur in prokaryotes37–39, the only
experimental indication for their existence in bacteria was up to now
provided by early measurements of metabolite dynamics in the
Escherichia coli bioreactor culture exposed to glucose40.

In addition to these rapid fluctuations, recent studies have
demonstrated slow metabolic fluctuations correlated with the cell
cycle, both in eukaryotic and prokaryotic cells, possibly related to the
cell-cycle variations in protein levels41–43. Moreover, metabolic diver-
sification on the cell-cycle timescale can emergewithin clonal bacterial
populations due to stochastic, and sometimes regulated, variability in
expression of metabolic genes and its effects on growth7,44–49.

Fluctuations and resulting heterogeneity are commonly con-
sidered an impediment to the predictable performance of cellular
networks, and most of these networks possess regulatory circuits that
compensate undesirable effects of fluctuation on homeostasis6,7,50.
However, in a number of cases cellular heterogeneity, including
diversity of metabolic states, might also be beneficial for cell survival
and growth, particularly in variable environments14,51–54. Studying
metabolic variability might thus be important for our general under-
standing of metabolic regulation and the interplay among central
cellular processes. But despite their potential significance, experi-
mental quantification of single-cell metabolite levels with the neces-
sary time resolution poses a number of challenges9,11. Nevertheless, the
development of sensors based on fluorescence readouts, such as
Förster (fluorescence) resonance energy transfer (FRET), has princi-
pally enabled such quantitative monitoring of metabolic processes in
living cells9,55–59.

In this work, we followed time-resolved concentration dynamics
of the keymetabolite pyruvate in single E. coli cells upon stimulation of
the metabolic network, using a FRET-based sensor60. First, we show
with a simplified kinetic model of metabolism that allosteric enzyme
regulation in glycolysis can lead to sustained oscillations of pyruvate
levels upon changes in the carbon source uptake, in a wide range of
kinetic parameters. Consistent with these simulations, we experi-
mentally demonstrate that the intracellular levels of pyruvate exhibit
surprisingly large fluctuations on the timescale of ~100 s when starved
E. coli cells are exposed to glucose or several other glycolytic carbon
sources. We further observed that these metabolic fluctuations
depend on the biochemical reactions involved in the conversion of
pyruvate, and that they are likely coupled to the dynamics of other
regulatory processes in a bacterial cell.

Results
Akineticmodel of E. coli glycolysis predicts periodic oscillations
To first test the likelihood of oscillations in the levels of glycolysis
metabolites in E. coli, as well as their timescale, we used a small
kineticmodel of E. coli glycolysis (Fig. 1a). Themodel consists of four
metabolites and six metabolic reactions that were simulated with
Michaelis-Menten and Hill kinetics (see Methods for a detailed
description of themodel). From amultitude of allosteric metabolite-
enzyme interactions that regulate the activity of glycolysis enzymes,
three of themost relevant ones were included in ourmodel. The first
interaction is the feedforward activation of pyruvate kinase (PYK) by
fructose-1,6-bisphosphate (FBP), which plays an important role for
glycolysis flux regulation in E. coli61. The other two interactions
represent negative feedbacks from phosphoenolpyruvate (PEP) to
the interconversion of hexose-phosphate and FBP, by respectively
inhibiting phosphofructokinase (PFK) and activating fructose-1,6-
bisphosphatase (FBPase), which together regulate the PFK-FBPase
cycle62.

As a starting point for the model analysis, we fixed the glycolytic
flux to a constant value and randomly sampled all model parameters
(maximal rates and binding constants) 10,000 times such that the
model was at steady state. Next, we perturbed this steady state by
decreasing the glucose uptake rate and analyzed whether this per-
turbation can lead to oscillations of the levels of pyruvate, the end
product of our glycolysis model (Fig. 1b). A forward Fourier transfor-
mation of the time-dependent pyruvate levels revealed sustained
oscillations of pyruvate concentrations for 440 of the tested 10,000
parameters sets. The typical period of oscillations across these simu-
lations was several minutes, although some parameter sets caused
faster or slower oscillations (Fig. 1c). Oscillations with a similar dis-
tribution of periods were also observed upon a strong increase in the
glucose uptake starting from low steady state (Supplementary
Fig. 1a–c), suggesting that predicted oscillatory dynamics are not
specific to a particular type of perturbation.

To further identify network features that favor pyruvate oscilla-
tions, we first investigated the importance of individual allosteric
feedbacks (Fig. 1d). The highest fraction of model parameters that
yielded oscillations was observed for the model structure containg all
three feedbacks, but simplified structures containing the positive
allosteric regulation of PYK by FBP and either of the negative feed-
backs from PEP to the PFK-FBPase cycle could also produce oscilla-
tions. We next compared the distribution of model parameters that
yielded oscillations to all parameter sets for both downshift and
upshift simulations (Fig. 1e, Supplementary Fig. 1d and Supplementary
Data 1). Consistent with the structure analysis above, the oscillations
were generally favored by the positive allosteric regulation of PYK by
FBP (high a3). Low Vmax and low Km values of FBA, as well as several
other model parameters were also promoting oscillations. Thus, in
presence of a positive feedforward and at least one negative feedback,
the stoichiometry and the kinetics of glycolysis can produce oscilla-
tions of intracellularmetabolites on the timescale of severalminutes in
a broad range of parameter values and for both upshift and downshift
of glycolysis flux.

Measurements of intracellular pyruvate levels in E. coli cells
using FRET sensor
We next established an assay to monitor dynamics of intracellular
levels of pyruvate in stimulated E. coli MG1655 cells, using single-cell
FRETmicroscopy in a flow-through chamber16 in combination with the
published FRET sensor60 (Supplementary Fig. 2a and Methods). This
FRET sensor employs a pyruvate-binding domain of E. coli pyruvate
dehydrogenase repressor (PdhR) flanked by a cyan fluorescent protein
(CFP) as a donor and a yellow fluorescent protein (YFP) as an acceptor
for energy transfer (Fig. 2a). Pyruvate binding reduces energy transfer
from the donor to the acceptor fluorophore, leading to the increased
ratio of CFP to YFP fluorescence (FRET ratio) that is thus proportional
to pyruvate-induced changes in FRET (see Methods). Population of
E. coli cells expressing this sensor, whichwas grown in Luria Broth (LB)
medium and subsequently pre-equilibrated in the M9 salts buffer
without a carbon source, responded to the addition of pyruvate in a
dose-dependent manner (Fig. 2b). Sensor response was also observed
in cells thatwerepermeabilized by toluene to enable the free exchange
ofmetabolites63 (Fig. 2c), confirming that the change in FRET is caused
by pyruvate binding to the sensor. The half-maximal sensor stimula-
tion in permeabilized cells was achieved at EC50 of ~400μM (Fig. 2d),
which is close to the previously measured Kd value of this sensor60.
Much lower EC50 (~6μM)was observed for intact E. coli cells, likely due
to an active uptake of pyruvate through the high-affinity BtsT
symporter64,65 that leads to a much higher cellular concentration of
pyruvate compared to the exterior.

Changes in pyruvate levels were also observed within seconds
upon a step-like addition and subsequent removal of glucose (Fig. 2e,
Supplementary Fig. 2b, Supplementary Fig. 3). Such rapid conversion
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of glucose to pyruvate agrees with the previously characterized
response of glycolytic fluxes, which occurs on the timescale of
seconds66. The EC50 of glucose stimulation was ~5.5μM (Fig. 2d),
similar to the EC50 value observed for the glucose uptake through the
phosphotransferase system (PTS)67. The pyruvate sensor also respon-
ded to other glycolytic carbon sources fructose and glycerol, to a
gluconeogenic carbon source acetate, as well as to several glycolytic
intermediates, including glucose-6-phosphate (G6P), glyceraldehyde-
3-phosphate (GAP), 3-phosphoglycerate (3PG), 2-phosphoglycerate
(2PG) and phosphoenolpyruvate (PEP) (Fig. 2f, g, Supplementary
Fig. 2c, Supplementary Fig. 3, Supplementary Fig. 4), which indicates
rapid conversion of all these metabolites to pyruvate. Nevertheless,
significantly higher (millimolar) concentrations of these metabolites,
compared to glucose or pyruvate, were required to induce changes in
pyruvate levels. Although the reason for this difference is not entirely

clear, lower sensitivity to these metabolites might be either due to
their inefficient uptake, e.g. because of low expression or absence of
specific uptake systems in E. coli grown in LB medium, or because of
their lower entrypoints into glycolysis. The responsedynamics and the
magnitude of change in the FRET signal were also metabolite-specific.
No response to any tested concentration of succinate was observed
under our experimental conditions, suggesting that its metabolism
does not lead to measurable changes in the levels of pyruvate, again
possibly due to repression of the succinate transporter under our
experimental conditions4.

Notably, FRET responses to even saturating concentrations of
glucose or other metabolites were smaller than the response to pyr-
uvate itself (Fig. 2b, g, Supplementary Fig. 2c), suggesting that elicited
increases in the levels of pyruvate always remain below the saturation
of the sensor. The sensor was also appearently capable of detecting
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Fig. 1 | A kinetic model of glycolysis predicts periodic oscillations. a Structure
and stoichiometry of a simplified model of glycolysis. The outer dotted line is
the model boundary. Solid arrows are reactions and dotted arrows are allosteric
interactions of metabolites with enzymes. G6P: glucose-6-phosphate, FBP: fruc-
tose-1,6-bisphosphate, PEP: phosphoenolpyruvate, PYR: pyruvate, PFK: phospho-
fructokinase, FBPase: fructose-1,6-bisphosphatase, PYK: pyruvate kinase, FBA:
fructose-bisphosphate aldolase, PTS: phosphotransferase system, PDH: pyruvate
dehydrogenase. b Two examples of simulated pyruvate concentrations with two
different parameter sets that produce pyruvate oscillations. Themodel was initially
at steady state and at t = 50min the glucose uptake rate (Vmax of PTS) was
decreased by 5%. c Boxplot showing the distribution of the periods of 440 simula-
tions with oscillating pyruvate levels. Each black dot corresponds to a parameter
set. The black solid line within the blue box denotes themedian of the distribution.
Boxes contain 50% and whiskers 99% of the simulated parameter values.
d Ensemble modelling approach to test the influence of different feedback

structures. Metabolites are indicted by blue spheres and metabolic reactions are
indicated by black arrows. Feedback regulation is colored in green (FBP −> PYK),
orange (PEP −> FBPase), and blue (PEP −| PFK). Feedback regulation was switched
off by setting the corresponding power law exponent to zero. 10,000 stable steady
states were sampled for each model and at t = 50min the glucose uptake rate
(Vmax of PTS) was decreased by 5%. P is the fraction of parameter sets that show
oscillations. Only 1000 out of 10,000 parameter sets were plotted. eOrange boxes
show parameter values in 440 sets that led to oscillations. Blue boxes show all
10,000 parameter sets that were random sampled. The black solid line within each
boxdenotes themedianof the distribution. Boxes contain 50% andwhiskers 99%of
the simulated parameter values. Asterisks denote parameters that moderately
(10−10 < p-value <10−5, a = 0.01) and double asterisks denote parameters that
strongly (p-value <10−10, a = 0.01) affect themodel’s propensity toproducepyruvate
oscillations according to two-sided two-sample t-test. Exact p-values are listed in
Supplementary Data 1.
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decrease in pyruvate levels below the baseline observed in the M9
buffer, since deenergizing cells by addition of 2,4-dinitrophenol (2,4-
DNP) decreased the ratio of CFP to YFP fluorescence, with CFP signal
decreasing and YFP signal increasing, as expected for a specific FRET
response (Supplementary Fig. 2d). However, it has to be noted that
only qualitative conclusion couldbedrawn from this experiment, since

exposure to 2,4-DNP also led to an additional unspecific increase of
fluorescence in both YFP and CFP channels as seen in the negative
controls that express either the FRET sensor with strongly reduced
sensitivity to pyruvate60 or a direct fusion between CFP and YFP
(Supplementary Fig. 2e, Supplementary Fig. 2f and Supplementary
Table 1). This unspecific increase, although different from the effect of
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2,4-DNP on the functional pyruvate sensor, was not exactly propor-
tional between channels and affected the ratio of CFP to YFP fluores-
cence, precluding exact measurement of the change in the level of
pyruvate in this case.

Dynamics of intracellular pyruvate levels in populations and in
single cells
We next followed response dynamics of the pyruvate sensor upon
prolonged step-like exposure of buffer-equilibrated (i.e. starved) E. coli
cells to glucose. For subsaturating, micromolar concentrations of
glucose, the observed initial changes in pyruvate levels were highly
dynamic (Fig. 3a, b and Supplementary Fig. 5a). At a level of cell
population, the response appeared as strongly damped oscillations,
with an initial overshoot and subsequent undershoot relative to the
average level of pyruvate that was reached upon prolonged stimula-
tion. In contrast, stimulation with strongly saturating, millimolar levels
of glucose elicited simple increase in the pyruvate levels without any
apparent subsequent dynamics (Fig. 3c, d).

We further observed that both the initial response and sub-
sequent dynamic changes in the levels of pyruvate could be dis-
tinguished in individual cells, although in this case the FRET ratio
measurements were expectedly noisier than in the cell population
(Fig. 3a–d and Supplementary Fig. 5a). Whereas the population-
average pyruvate level rapidly stabilized after glucose addition, even at
the intermediate (10–100μM) levels of glucose where damped oscil-
lations were observed, the majority of individual cells continued to
exhibit large fluctuations in the FRET ratio for the entire duration of
the observation, >1000 s after the initial stimulation. These single-cell
fluctuations become apparently desynchronized and they were
therefore averaged at the population level. Because these fluctuations
were observed only at sub-millimolar levels of glucose but not in cells
that were equilibrated in buffer or stimulated with millimolar levels of
glucose (Fig. 3c, d and Supplementary Fig. 5b), we conclude that they
reflect genuine dynamics of pyruvate levels rather than the noise of
single-cell measurements.

In order to quantitatively characterize these glucose-induced
dynamic fluctuations of intracellular pyruvate levels, we first deter-
mined the frequency content of the fluctuations of the FRET ratio. This
was done by computing the power spectral density (PSD) of the single-
cell FRET ratio, sR(ω), which reports the contribution of FRET ratio
oscillations at a given frequency ω/2π to the overall FRET ratio
fluctuations16. Consistent with their comparatively stable FRET ratio
(Supplementary Fig. 5b), cells that were equilibrated in M9 buffer or
exposed to millimolar levels of glucose showed constant low level of
fluctuations over the entire frequency range (Fig. 3e). This indicates
that residual FRET ratiofluctuations are caused by thewhite shot noise
of the microscopy measurements. In contrast, for E. coli cells exposed

to 10 or 100 µM concentrations of glucose, the PSD at low frequencies
(ω/2π <0.02Hz) was clearly above the background noise (Fig. 3e,
Supplementary Fig. 5c, d), consistent with large fluctuations of the
FRET ratio on the timescale of several minutes. Although individual
cells exhibited different levels of such low-frequency fluctuations at
these sub-millimolar levels of glucose, the distribution of the low-
frequency PSD values remained monomodal but shifted to higher
values compared to cells equilibrated in buffer or exposed to milli-
molar levels of glucose (Supplementary Fig. 6).

We next calculated the autocorrelation of fluctuations in the
single-cell FRET ratio for E. coli cells exposed to 10μM or 10mM glu-
cose, as well as for buffer-adapted cells (Fig. 3f). As expected for the
uncorrelated shot noise, no pronounced autocorrelation beyond zero
lag time was observed for buffer-adapted cells or in cells exposed to
10mM glucose. In contrast, the FRET ratio for cells stimulated with
10μM glucose had an autocorrelation that was consistent with
damped oscillations, with an apparent periodicity of ~180 s. This per-
iodic pattern became even more apparent when autocorrelation was
calculated for the FRET signals measured using higher (100×) magni-
fication objective (Supplementary Fig. 5d, e). Notably, in this case also
an expectedpeak in thePSDvalue at ~0.006Hzcouldbedistinguished.
Nevertheless, for subsequent experiments we continued to use the
40× magnification objective to enable larger field of view and thus
higher statistics.

As an additional negative control for the specificity of the
observed fluctuations, we utilized the aforementioned FRET sensor
with strongly reduced sensitivity to pyruvate60 (Supplementary
Table 1). Indeed, E. coli cells carrying this sensor could not respond to
10μM glucose (Supplementary Fig. 7a), and they exhibited only low
level of fluctuations over the entire frequency range (Supplementary
Fig. 7b). These results further confirm specificity of the FRET responses
and of the single-cell pyruvate fluctuation observed upon stimulation
with intermediate levels of glucose.

Since our model predicted oscillatory behaviour upon both
upshift anddownshift in glucose levels,we further tested the dynamics
of intracellular pyruvate levels in response to the downshift from high
(1mM) to intermediate (100μM) concentration of glucose. Our results
confirmed that such downshift could also induce fluctuations (Sup-
plementary Fig. 8a, b). However, these fluctuations were less pro-
nounced than those observed upon a glucose upshift, indicating that
starved E. coli cells might be more prone to exhibit the oscillatory
dynamics of the metabolic network.

Dependence of pyruvate fluctuations on supplied metabolites,
genetic perturbations, and energy state of the cell
In order to better understand the nature of observed pyruvate fluc-
tuations, we investigated whether they could be induced by exposure

Fig. 2 | In-vivo and in-vitro FRET measurements of pyruvate levels in E. coli.
a Schematic representation of the PdhR-based pyruvate sensor used in this study.
Pyruvate binding leads to increased separation between CFP and YFP fused to
different termini of PdhR, which reduces resonance energy transfer from excited
CFP to YFP and therefore increases the ratio of CFP to YFP fluorescence. b An
example of FRETmeasurement for a population of intact E. coli cells expressing the
pyruvate sensor. Cells were grown in LB medium, harvested and immobilized in a
flow chamber under steady flow of M9 buffer (Supplementary Fig. 2a). After initial
adaptation, cells were stimulated by addition and subsequent removal of indicated
concentrations of pyruvate in M9 buffer, as shown by down and up arrows. c The
FRETmeasurement of response to pyruvate for E. coli cells thatwere permeabilized
by treatment with toluene. d The dose dependences of the pyruvate sensor
response to pyruvate (blue triangles) or glucose (black squares) in intact cells, as
well as of the response in permeabilized cells (red circles). Plotted are changes in
the CFP/YFP ratio, normalized to the maximum change at saturating stimulation.
Data are presented as means of three independent biological replicates ± SD. e The
FRET measurement of response of intact cells to indicated concentrations of

glucose. f Schematic illustration of the E. coli central glycolysis pathway and the
tricarboxylic acid (TCA) cycle. G6P: glucose-6-phosphate, F6P: fructose-6-phos-
phate, FBP: fructose-1,6-bisphosphate, GAP: glyceraldehyde-3-phosphate, DHAP:
dihydroxyacetone phosphate, BPG: 1,3-bisphosphoglycerate, 3PG: 3-phosphogly-
cerate, 2PG: 2-phosphoglycerate, PEP: phosphoenolpyruvate, PYR: pyruvate, ACA:
acetyl-CoA, CIT: citrate, ICIT: isocitrate, AKG: α-ketoglutarate, SCA: succinyl-CoA,
SUC: succinate, FUM: fumerate, MAL: malate, OAA: oxaloacetate, PGI: phos-
phoglucose isomerase, PFK: phosphofructokinase, FBA: fructose-bisphosphate
aldolase, GAPDH: glyceraldehyde phosphate dehydrogenase, PGK: phosphoglyce-
rate kinase, PGAM: phosphoglycerate mutase, ENO: enolase, PYK: pyruvate kinase,
PDH: pyruvate dehydrogenase, DLT: dihydrolipoamide transacetylase, DLD: dihy-
drolipoamide dehydrogenase, PEPS: PEP synthase, MAE: malic enzyme, PEPC: PEP
carboxylase, PEPCK: PEP carboxykinase. Both glucose and fructose are transported
by the phosphotransferase system (PTS), driven by conversion of PEP to PYR.
g Examples of the FRET responses of intact cells to indicated concentrations of
fructose, acetate, and GAP, with glucose used as control.
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to carbon sources other than glucose or to glycolytic intermediates at
concentrations that elicited subsaturating responses, smaller or com-
parable to the response towards 10 µM glucose (Fig. 2g and Supple-
mentary Fig. 4). As discussed above, these concentrations were
metabolite-specific and substantially higher than for glucose or pyr-
uvate, possibly either due to their inefficient uptake or lower points of
entry into glycolysis. When stimulated with fructose, which is trans-
ported by the fructose-specific branch of phosphotransferase system
(PTS) (Fig. 2f), E. coli cells exhibited fluctuations in pyruvate levels that
were only somewhat weaker than those induced by glucose (Fig. 4a).
However, dynamics of the PTS system could not be themain source of
theobservedfluctuations, since they couldbe also inducedby addition

of G6P, which is taken up independently of the PTS (Fig. 2f and Fig. 4a).
Distributions of the low-frequency PSD values for these metabolites
remained monomodal but shifted to higher values, as was already
observed for glucose stimulation (Supplementary Fig. 6, Supplemen-
tary Fig. 9a–g), indicating that induced fluctuations are not limited to a
subpopulation of cells. Exposure to lower glycolysis metabolite GAP
induced weak fluctuations, and only residual low-frequency fluctua-
tions could be observed upon addition of 2PG. Addition of glycolysis
end-products PEP and pyruvate, as well as of acetate produced no
fluctuations above the shot noise at tested concentration of these
metabolites (5mM–20mM for PEP, 3μM–1mM for pyruvate, and
20mM–30mM for acetate). The pyruvate fluctuations were also
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Fig. 3 | Dynamics of intracellular pyruvate levels in individual E. coli cells
exposed to glucose. The population-averaged (black) and typical single-cell (col-
ors) FRET measurements of pyruvate levels. Cells were first equilibrated in M9
buffer and subsequently stimulated by addition and removal of 10μM (a), 100μM
(b), 1mM (c), or 10mM glucose (d) at indicated time points. The average PSD (e)

and autocorrelation (f) of the FRET ratio fluctuations in individual cells adapted in
buffer or exposed to indicated concentrations of glucose. The error bars in
(e) represent standard errors of the mean (SEM). The sample sizes are 83 (10 μM),
139 (100μM), 89 (1mM), 91 (10mM), and 75 (buffer) single cells, from three
independent biological replicates in each case.
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largely suppressed when cells were exposed to glucose in presence of
succinate that stimulates the TCA cycle without directly affecting the
levels of pyruvate under our conditions (Fig. 4a, Supplementary
Fig. 9h, Supplementary Fig. 10), indicating that cellular energy state
might play a role in the observed behavior.

The observed differences between abilities of individual meta-
bolites to induce fluctuations at least partly match the predictions of
our computational model. Indeed, lower amplitude of fluctuations
induced by GAP compared to G6P, and lack of fluctuations upon
exposure to PEP, are consistent with the predicted importance of the
PEP-dependent regulation of the PFK-FBPase cycle. Other possible
contributions to oscillations, such as dynamics of the energy state of
the cell, were not explicitly considered by our simple model and thus
could not be compared (see Discussion).

We further systematically studied the dependence of fluctuations
on the deletion of individual glycolytic enzymes, with particular focus
on themetabolic reactions involved inproduction and consumptionof
pyruvate, using the KEIO collection of E. coli gene knockouts68. Upon
exposure to glucose, the parental strain of the KEIO collection,
BW25113, expressing the FRET sensor showed pyruvate fluctuations
that were comparable to those in theMG1655 background (Fig. 4b and
Supplementary Fig. 11a). Among the reactions involved in the con-
version of PEP to pyruvate, the deletion of pykF encoding the pyruvate
kinase 1 (PYK1), the primary pyruvate kinase in E. coli69, markedly
increased periodic oscillations of the FRET signal in individual cells

upon exposure to 10 µM glucose (Fig. 4b and Supplementary Fig. 11b).
Although low-frequency fluctuations were similar in this background
to those in thewildtype cells, weobserved ahighly pronouncedpeakat
an intermediate frequencyof ~0.02Hz.Consistently, the FRET ratio for
these glucose-stimulated ΔpykF cells showed clear autocorrelation,
with larger amplitude but also higher frequency than in the wildtype
cells (Supplementary Fig. 11c, Fig. 3d, and Supplementary Fig. 5e). Also
in this case, the distribution of the PSD levels in ΔpykF cells showed a
monomodal shift to higher values (Supplementary Fig. 11e, f). The level
of pyruvate and its upregulation upon exposure to glucose in ΔpykF
strain were similar to that of the wild type and apparently within the
dynamic range of the FRET sensor (Supplementary Fig. 11d and Sup-
plementary Fig. 2).

Although the pyruvate fluctuationswere notmarkedly affected by
the single deletion of pykA encoding pyruvate kinase 2 (PYK2) or ppc
encoding PEP carboxylase (PEPC) (Fig. 4b, Supplementary Fig. 12a),
both these knockouts, individually or combined, reduced fluctuations
in the ΔpykF background below the wildtype level (Fig. 4b, Supple-
mentary Fig. 11g–i, Supplementary Fig. 12a). Moreover, the pyruvate
fluctuationswere abolishedby thedeletionofaceF that encodes oneof
the components for the pyruvate dehydrogenase complex, pyruvate
dehydrogenase (PDH), which converts pyruvate to acetyl-CoA (Fig. 4c,
Supplementary Fig. 12b, c). Althoughdeletions of these enzymesmight
affect the steady-state level of pyruvate, whichwas apparently the case
for aceF knockout as judged from markedly higher levels of FRET in

ba

c d

Fig. 4 | Dependence of pyruvate fluctuations on carbon sources, genetic per-
turbations and energy state. a The average PSD of the FRET ratio fluctuations for
the cells in the presence of different carbon sources and metabolic intermediates.
Used concentrations were 10 μM glucose, 30mM fructose, 15mM G6P, 7mM GAP,
20mM 2PG, 5mM PEP, 30mM acetate and 10μMpyruvate. For testing the glucose
response in presence of succinate, cells were first pre-equilibrated in 10mM suc-
cinate and then stimulated by 10 μM glucose in presence of 10mM succinate. The
sample sizes are 75 (fructose), 66 (G6P), 105 (GAP), 55 (2PG), 125 (PEP), 69 (acetate),
75 (pyruvate), 83 (glucose) and 236 (glucose in succinate) single cells. b, c The
average PSD for the FRET ratio fluctuations of E. coli BW25113 wild type and its

indicated knockout strains upon exposure to glucose. The glucose concentration
for ΔaceFwas 1mM, and for the other strains 10 μM. The sample sizes are 145 (wild
type), 337 (ΔpykF), 120 (ΔpykA), 106 (Δppc), 369 (ΔpykFΔpykA), 314 (ΔppcΔpykF),
343 (ΔppcΔpykFΔpykA), 94 (ΔpfkA), 93 (ΔpfkB), 97 (ΔaceF), 124 (ΔppsA), 71
(ΔmaeB), 67 (Δpck), and 179 (buffer) single cells. d The comparison of the average
PSD of the pyruvate fluctuations with and without CCCP, upon exposure to indi-
cated glucose levels that give a similar response (Supplementary Fig. 13b). The
sample sizes are 94 (CCCP-adapted) and 172 (without CCCP). In a–d, the error bars
represent standard errors of the mean (SEM).
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buffer-equilibrated cells (Supplementary Fig. 12d), in all of tested
strains the levels of pyruvate were still responsive to the addition of
glucose and thus likely within the working range of the FRET sensor
(Supplementary Fig. 12d, e). Nevertheless, higher concentration of
glucose (1mM) had to be used to induce changes in pyruvate levels in
the ΔaceF mutant, and even this stimulation was still subsaturating
(Supplementary Fig. 12d).

The fluctuations were not apparently affected by deletions of
other tested glycolytic genes, including pfkA or pfkB (Fig. 4c and
Supplementary Fig. 12b), indicating that – in contrast to the proposed
mechanism of glycolytic oscillations in yeast21 – regulation of the
phosphofructokinase does not seem to play an important role for
pyruvate oscillations in E. coli.

Finally, we studied how pyruvate fluctuations are affected when
the energy state was lowered by treating E. coli cells with proton gra-
dient uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP).
In contrast to the treatmentwith high concentration (1mM)of 2,4-DNP
(Supplementary Fig. 2d), the level of pyruvate in buffer was not
apparently affected by exposure to 10 µM CCCP. Cells also remained
responsive to glucose, albeit with decreased sensitivity (EC50

~18.5 μM). However, the amplitude and frequency of pyruvate fluc-
tuations were largely reduced upon CCCP exposure (Fig. 4d), possibly
related to the apparently slower response to glucose in presence of
CCCP (Supplementary Fig. 13a, b).

Fluctuations in activity of the PTS and in intracellular cAMP and
NADH levels
The strongest pyruvate fluctuations in the wildtype cells were
observed for glucose and fructose (Fig. 4a), which are both substrates
of the PTS that couples sugar uptake to its phosphorylation through a
series of phosphotransfer reactions that use PEP as a phosphodonor
and generating pyruvate as a byproduct (Fig. 2f)3. Although stimula-
tion with G6P excluded the PTS as the sole source of fluctuations (see
above), the PTSmight neverthelessplaya role in theobserveddynamic
behavior, as proposed previously40.

We thus directly investigated the dynamics of the PTS system
upon exposure to glucose, using the same experimental setup as for
the pyruvate sensor. The phosphorylation state of the PTS proteins is
known to be reduced as a consequence of sugar transport. This affects
associations between multiple PTS proteins, as well as inhibitory
interactions of the glucose-specific PTS components EIIAGlc with sev-
eral non-PTS transporters that could be measured by FRET67. Con-
sistentwith this previouswork,when E. coli cells expressing a FRETpair
of EIIAGlc fused to CFP and the galactose transporterMglA fused to YFP
were grown in tryptone broth (TB), pre-equilibrated in M9 buffer and
subsequently stimulated by glucose, we observed enhanced interac-
tion between these proteins (Fig. 5a, b). These changes in FRET were
also visible in individual cells. Similar to the pyruvate sensor, single-cell
levels of FRET for the EIIAGlc-CFP / MglA-YFP pair showed increased
dynamics even after prolonged exposure to glucose, indicating sus-
tained fluctuations in the PTS phosphotransfer reactions. The PSD and
autocorrelation analyses revealed that these fluctuations had a similar
frequency range compared to the pyruvate fluctuations (Fig. 5c,
Fig. 3e, Supplementary Fig. 14a–c). Glucose-induced fluctuations were
apparently specific, since fluctuations in FRET for this EIIAGlc-CFP /
MglA-YFP pair were much weaker in cells that were either equilibrated
in M9 buffer or exposed to pyruvate, though pyruvate also elevated
the FRET signal. Fluctuations at similar frequency were observed for
cells grown in LB and subsequently tested in M9, although their
amplitude was somewhat lower (Supplementary Fig. 14d). These
results suggest that thefluctuations in pyruvate levels are likely to be at
least partly coupled to fluctuations in the phosphorylation state of PTS
proteins.

As phosphorylated EIIAGlc also activates adenylate cyclase to syn-
thesize second messenger cyclic adenosine monophosphate (cAMP),

we next investigated whether the intracellular cAMP level could fluc-
tuate along with the pyruvate level and the PTS activity in E. coli cells
exposed to glucose. This was done using a FRET sensor based on E. coli
cAMP receptor protein Crp that is flanked by CFP and YFP (Fig. 5d).
Stimulation by glucose that lowers cAMP synthesis, and thus the
fraction of cAMP-bound Crp, expectedly increased the ratio of CFP to
YFP fluorescence in the population and in individual cells (Fig. 5d, e).
Also for the cAMP sensor, single-cell levels of FRET showed increased
fluctuations upon exposure to 10μM glucose, and these fluctuations
had a similar frequency range to the pyruvate and PTS activity fluc-
tuations (Fig. 5f, Fig. 3e, Supplementary Fig. 15), indicating their pos-
sible connection. Consistently, cAMP fluctuations were much weaker
in cells that were either adapted in M9 buffer or exposed to a high
(10mM) level of glucose.

NADH is generated during conversion of GAP to BPG, as well as in
the downstream TCA cycle, and it is commonly used as a readout for
glycolytic oscillations in yeast21,70. We thus analyzed the fluctuations of
the intracellularNAD(P)H levels bymeasuring its autofluorescence in E.
coli MG1655 cells, as done previously41. NAD(P)H levels indeed
increased upon addition of glucose (Fig. 5g). We also observed fluc-
tuations of the NAD(P)H autofluorescence for individual cells adapted
in glucose, in a similar frequency range as the pyruvate fluctuations
(Fig. 5h, i, Supplementary Fig. 16). Thus, the NAD(P)H fluctuations
might also be connected to the pyruvate fluctuations.

Discussion
Like many other protein reaction networks, metabolic networks are
stochastic in nature and potentially prone to fluctuations9,11. As meta-
bolism ultimately drives all cellular processes, fluctuations and
instability of metabolic pathways could have a profound impact on
cellular physiology. Several metabolic processes were indeed pro-
posed to oscillate or fluctuate. The best-established example are gly-
colytic oscillations that can be observed in yeast and also in
mammalian cells20,23–25,71. Glycolytic oscillations are typically induced in
yeast by exposure of starved cells to glucose combined with cyanide,
although weaker and less sustained oscillations could also be induced
by glucose alone32,71, and they primarily originate due to the allosteric
regulation of PFK18,27,28,30. However, whether such glycolytic oscilla-
tions are common and physiologically significant remains unclear26,33.

Here we adapted the FRET-based single-cell microscopy16, which
combines high sensitivity and second-scale temporal resolution
necessary to characterize stochastic network fluctuations, to measure
dynamics of the keymetabolite pyruvate in E. coli. Our key observation
is that the intracellular pyruvate levels in individual E. coli cells exhibit
largefluctuations on the timescale of severalminutes upon stimulation
with intermediate (sub-millimolar) levels of glucose and other glyco-
lytic carbon sources. In wildtype cells, these fluctuations occurred at
frequencies below 0.02Hz, showing limited periodicity of ~3min. This
timescale is much shorter than that of gene expression noise, and the
fluctuations couldbeobserved in non-growing cells,meaning that they
must originate from dynamics of the metabolic network at the post-
translational level. Their broad frequency range strongly indicates that
these fluctuations reflect an interplay between multiple metabolic
reactions and not dynamics of a single circuit, which is not surprising
given the large number of regulatory metabolite-enzyme
interactions66,72,73.

Confirming the inherent potential of E. coli metabolic network to
fluctuate, our computer simulations demonstrated that even a small
simplified kinetic model of E. coli glycolysis could produce pyruvate
oscillations upon changes in the glucose uptake, for a sizeable fraction
of tested parameter values. Notably, while oscillation frequency varied
dependent on the particular parameter set, the overall range as well as
the average value of predicted frequencies were similar to the
experimentally observed frequency spectrum of fluctuations. The
analysis of the model structure revealed that a positive feedforward
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Fig. 5 | Fluctuations of thePTSactivity and the intracellular cAMPandNAD(P)H
level in E. coli cells exposed to glucose. a Schematic representation of the EIIAGlc-
CFP/MglA-YFP FRET pair used in this study as the readout of the PTS activity.
Glucose transport leads to enhanced interaction of EIIAGlc with MglA, which
increases resonance energy transfer from excited CFP to YFP and therefore
increases the ratio of YFP to CFP fluorescence. b Time course of population-
averaged (black) and typical single-cell (colors)measurements of the FRET ratio for
E. coliMG1655 cells expressing the EIIAGlc-CFP/MglA-YFP pair. Cells were first
equilibrated in buffer and subsequently stimulated by addition and subsequent
removal of 100 μM glucose, as indicated by down and up arrows. c Corresponding
average PSD of the FRET ratio fluctuations for the EIIAGlc-CFP/MglA-YFP pair in
presence of glucose, pyruvate or buffer, as indicated. Cells were grown in tryptone
broth (TB). The sample sizes are 170 (glucose, 100μM), 93 (pyruvate) and 72
(buffer) single cells. d Schematic representation of the Crp-based cAMP sensor

used in this study. e Time course of population-averaged (black) and typical single-
cell (colors) measurements of the FRET ratio for E. coliMG1655 cells expressing the
cAMP FRET sensor. f Corresponding average PSD of the FRET ratio fluctuations for
the cAMP sensor in presence of different concentration of glucose or buffer, as
indicated. The sample sizes are 60 (glucose, 10μM), 83 (glucose, 10mM), and 103
(buffer) single cells. g Time course of population-averaged intracellular NAD(P)H
autofluorescence of MG1655 cells. Cells were first equilibrated in buffer and sub-
sequently stimulated by 10μM glucose. h Time course of 59 cells averaged (black)
and typical single-cell (colors) measurements of intracellular NAD(P)H auto-
fluorescence in MG1655 cells exposed to 10μM glucose. Single-cell traces were
trackedand analyzed from 150 s to950 s corresponding to the time course of (g), as
indicatedby dash lines. iCorresponding average PSDofNAD(P)H autofluorescence
fluctuations in presence of glucose or in buffer. The sample sizes are 59 (glucose)
and 41 (buffer). In c, f, i, the error bars represent standard errors of themean (SEM).
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regulation of pyruvate kinase by FBP and a negative feedback regula-
tion of G6P conversion to FBP by PEP are required to obtain oscilla-
tions upon downshift in the glucose uptake. Moreover, the kinetic
parameters of the fructose-bisphosphate aldolase, that uses FBP as a
substrate, were important determinants of oscillations. Such potential
significance of the FBP-dependent regulationmight be consistent with
our experimental observation that the pyruvate fluctuations were
smaller when cells were stimulated with GAP (product of FBA) com-
pared to the stimulation with G6P or fructose that enter glycolysis
upstream of FBP. Moreover, exposing E. coli to PEP, pyruvate or to the
gluconeogenic carbon source acetate produced no fluctuations, in
agreementwith the role of PEP-dependent regulation and involvement
of the pyruvate kinase and/or dehydrogenase.

The importance of the reactions around the pyruvate node,
mediated by the pyruvate kinases 1 (PYK1) and 2 (PYK2) and pyruvate
dehydrogenase (PDH), and possibly also by PEP carboxylase (PEPC), in
inducing metablic fluctuations was also supported by our studies of
genetic perturbations. Deletion of aceF that encodes one of the com-
ponents of PDH was the only identified mutation that completely
abolished pyruvate fluctuations in our experiments. We hypothesize
that increased levels of pyruvate in this knockout might either sup-
press fluctuations by interfering with the regulatory feedbacks in gly-
colysis, or mask them due to high pyruvate background. In contrast,
deletion of pykF led to largely enhanced and faster pyruvate oscilla-
tions compared to thewild type. This enhancement couldbe abolished
by further deletion of either pykA or ppc, indicating that increase
metabolic flow through one or both of these might cause stronger
oscillations. Although increased oscillations in the knockout of pykF,
which is known to be positively regulated by FBP74, was unexpected,
FBP was reported to positively regulate PEPC75 that might create an
alternative feedforward loopwith a different frequency of oscillations.
Nevertheless, even a strain deleted for all of pykF, pykA and ppc still
exhibits pyruvate fluctuations upon stimulation with glucose, showing
that other reactions must also contribute to this phenomenon.

One of such contributors might be the dynamics of PTS, which
couples sugar uptake to the conversion of PEP to pyruvate. A previous
study reporting oscillatory dynamics of several metabolites, including
pyruvate, in a fermenter-growing culture of E. coli cells, hypothesized
that suchfluctuationsmight be causedby the PTS40. Indeed, the largest
amplitude of fluctuations in our experiments was observed for glu-
cose, followed by another PTS substrate fructose. Moreover, protein
interactions within the PTS exhibited activity-dependent fluctuations
on a similar timescale upon exposure to glucose. However, pro-
nounced pyruvate fluctuations were also observed in response to G6P
and also to GAP, which are not PTS substrates, clearly ruling out the
PTS dynamics as the only or primary source of fluctuations.

Apparent coupling of the PTS dynamics to pyruvate fluctuations
might be nevertheless physiologically important, given multiple reg-
ulatory functions of the PTS in bacteria3,67,76. Indeed, intracellular level
of the second messenger cAMP, which depends on the PTS activity,
show fluctuations similar to those of the PTS system. Since the cAMP-
dependent transcription factor Crp regulates the expression of a large
number of genes that are involved in carbon catabolism and growth
control, its fluctuating activity might have a major impact on tran-
scriptional control in E. coli.

Finally, although our simulations could yield periodic pyruvate
oscillations even without taking the energy or redox state of the cell
into account, cellular energy level seems to be important for the
experimentally observed dynamics. The pyruvate fluctuations upon
exposure to glucose were largely suppressed in presence of succinate
and, in contrast to the model predicitons, the magnitude of induced
fluctuations was higher for nutrient upshift than for the downshift in
glucose levels, suggesting that well-energized cells are less prone to
fluctuations than starved cells. On the other hand, the fluctuations
markedly sloweddownupon exposure to the uncoupler CCCP. At least

in the latter case, this might be related to much slower increase in the
pyruvate level upon cell exposure to glucose in presence of CCCP,
which could effectively filter out high-frequency fluctuations. Indeed,
the rate of sugar uptake was shown to affect glycolytic oscillations in
yeast35. Fluctuations in the levels of intracellular NAD(P)H were also
observed under our experimental conditions, which occurred in a
similar frequency range and are thus likely related to the pyruvate
fluctuations.

Concluding, using the single-cell FRET microscopy enabled us to
observe large minute-scale fluctuations in the output of the glycolysis
in E. coli upon exposure to glucose and other carbon sources. Despite
their similarity to the glycolytic oscillations in yeast and other eukar-
yotes, which are typically monitored using NADH autofluorescence20

but can also be observed at the level of pyruvate24, the determinants of
the pyruvate fluctuations observed in E. coli are different from the
established eukaryotic models. While the regulation of PFK is believed
to be the main contributor to the glycolytic oscillations in yeast, the
fluctuations in E. coli appear to have multiple origins within glycolysis,
with biochemical reactions involved in the production or consumption
of pyruvate, which are subject to multiple allosteric feedback
mechanisms66, being of central importance. Given the multitude of
regulatory functions of glycolytic intermediates, and of NAD(P)H
levels, the PTS activity and of cAMP levels to which the observed
pyruvate fluctuations seem to be coupled, the observed dynamic
might have profound effects on bacterial metabolism, gene regulation
and cell physiology that remain to be explored.

Methods
The kinetic model of E. coli glycolysis
The stoichiometry of our model is shown in Fig. 1a. Mass balancing
results in a systemof ordinary differential equations (ODEs), F, which is
a temporal function of the state variables x (G6P, FBP, PEP, PYR) and
the kinetic parametersp. In total, the system comprises 4 variables and
21 kinetic parameters. Dilution of metabolites by growth was not
considered due to large differences between growth dilution and
glycolytic flux.

F x,pð Þ= dx
dt

=

PTS+ FBPase� PFK

PFK� FBPase� FBA

2 � FBA� PYK� PTS

PTS+ PYK� PDH

8>>><>>>: ð1Þ

The six reactions (PTS, PFK, FBPase, FBA, PYK, PDH) are described
by the following kinetic equations:

Reaction1 describes the PTS-mediated uptake of glucose from
outside the system boundary depending on the ratio of PYR/PEP. With
a glucose uptake rate of 8mmol g−1 h−1 and a specific cell volume for E.
coli (2 µl mg−1) the reaction rate for the PTS system is:

r1=PTS=
Vmax1

k1 � PYRPEP + k2 + k3 � PYRPEP + 1
=
8mmolg�1h�1

0:002 l g�1 � 1h
60min

= 66:66mmoll�1min�1

ð2Þ

Reaction 2 (PFK) follows Hill-type kinetics as it was shown that the
enzyme exhibits cooperative kinetics towards its substrate (n1 is the
Hill coefficient). The enzyme is allosterically inhibited by PEP which is
modelled by a negative power-law term with the exponent.

r2 =PFK=
Vmax2

1+ Km1
G6P

� �n1 � PEP�a1 ð3Þ

Reaction 3 (FBPase) is modelled by Michaelis-Menten type
kinetics. The activation of FBPase by PEP is modelled by a positive
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power-law term:

r3=FBPase =Vmax3 � FBP
FBP+Km2

� PEPa2 ð4Þ

The flux ratio between PFK and FBP is randomly sampled between
0.01 and 1 and constraint to a net flux of 66.66mmol l−1 min−1.

Reaction 4 (FBA) is modelled by Michaelis Menten type kinetics.
Here, glycolysis is simplified by condensing four reactions that convert
FBP into PEP into a single reaction:

r4=FBA=Vmax4 � FBP
FBP+Km3

ð5Þ

Reaction 5 (PYK) follows Hill-type kinetics. The allosteric feed-
forward activation by FBP is modelled by a power law:

r5 =PYK=
Vmax5

1+ Km4
PEP

� �n2 � FBPa3 ð6Þ

Reaction 6 (PDH) follows Hill-type kinetics:

r6=PDH=
Vmax6

1+ Km5
PYR

� �n3 ð7Þ

All state variables (i.e. metabolites) were set to 1. The system was
initialized to a steady state by first setting the total reaction flux of all
net reactions to the glucose uptake rate. Then, parameter values of
binding constants (k1-k3, Km1-Km5), Hill coefficients (n1–n3) and
power-lawexponents (exponentsa1-a3)were inserted. Eachpower-law
corresponds to an allosteric feedback loop, and we created eight
models to account all possible feedback structures. To remove a
feedback loop, the respective power-law exponent was set to 0. Then
the maximum velocities were calculated (Vmax1-Vmax6). Binding
constants were sampled between 0.1 and 10, Hill coefficients were
sampled between 1 and 4, where a coefficient of 1 resembles a
Michaelis-Menten type kinetic. Power-law exponents for allosteric
interactions were sampled between 1 and 4. To assess the stability of
the steady state, we tested whether the eigenvalues of the Jacobian
matrix are negative (λ <−10−5) and therefore stable. If the steady state
was unstable, the parameter set was discarded, and a new parameter
set was sampled from a log-uniform distribution. This procedure was
repeated until 10,000 stable steady states were achieved.

The perturbation of the glucose uptake was simulated by chan-
ging the uptake rate by 5% at 50min simulation time. The resulting
time-coursedatawere thenprocessed to identify parameter setswhich
led to oscillations. First, a polynomial first order fit was performed to
remove trends and align the time courses. Second, the data were
Fourier transformed from time domain to frequency domain. Signals
with amplitudes above 0.001 and the corresponding parameter sets
were then selected.

Cell growth and sample preparation
Strains and plasmids used in this work are listed in Supplementary
Table 1. The gene fragment of pyruvate FRET sensor was amplified
from the plasmid pT162M10460 and cloned using XbaI and SalI
restriction enzymes into the vector pTrc99A, to generate the plasmid
pSB27. The non-responsive FRET sensor as a control was generated
from pSB27, with mutations of V188D, V198M, and S245T. For the
cAMP FRET sensor, the sequence of YFP-Crp-CFP was ligated to the
NcoI and SalI digested pTrc99A to generate pVS1503. E. coli strains
carrying the plasmid pSB27 encoding pyruvate FRET sensor or
pVS1503 encoding cAMPsensorwere grown at30 °Covernight in Luria
Broth (LB) supplemented with 100μg ml−1 ampicillin. The culture was
subsequently diluted 1:100 in LB containing 100μg ml−1 ampicillin and

200μM isopropyl-β-D-thiogalactopyranoside (IPTG) for induction of
the sensor, and grownat 30 °C under vigorous shaking (200 rpm) until
the OD600 reached 0.6 to obtain the day culture. For incubation of E.
coli MG1655 expressing EIIAGlc-CFP/MglA-YFP FRET pair67, Tryptone
Broth (TB) or LB containing 100μg ml−1 ampicillin, 34μg ml−1 chlor-
amphenicol, 200μM IPTG and 0.1% arabinose were used to grow cells
to OD600 = 0.6 at 200 rpm, 30 °C. The day culture was harvested by
centrifugation, washed twice with the M9 buffer (40mM Na2HPO4,
22mM KH2PO4, 8.5mM NaCl, 18mM NH4Cl, 1mM MgSO4, 0.1mM
CaCl2, pH 7.0) and stored at the room temperature before the
measurements.

For preparation of permeabilized cells, E. coli cells expressing the
pyruvate sensor were resuspended in the PdhR assay buffer (10mM
Tris-HCl, 150mM NaCl, pH 7.8). Permeabilization reagent toluene was
added to the final concentration of 5 % (v/v) and then stirred gently on
a rotary shaker (180 rpm) at the room temperature for 30min. The
pretreated cells were recentrifuged, washed twice with the PdhR assay
buffer, and analyzed for the PdhR activity.

Chemical compounds used in this study
D-fructose (Product No. F0127), glyceraldehyde-3-phosphate
(Product No. G5251), 3-phosphoglycerate (Product No. P8877),
2-phosphoglycerate (Product No. 79480), phosphoenolpyruvate
(Product No. P7002), acetate (Product No. S2889) and pyruvate (Pro-
duct No. P2256) are from Sigma-Aldrich. Glucose-6-phosphate (Pro-
duct No. SC-221489A) is from Santa Cruz Biotechnology. Glycerol
(Product No. 3783.2) is from Carl Roth. All chemicals were tested for
their purity to exclude contamination by glucose.

Microscopy measurements
The FRET measurements were performed on an automated inverted
microscope (Nikon Ti Eclipse, Nikon Instruments) controlled by the
NIS-Elements AR software (version 4.40, Nikon Instruments)16. Briefly,
E. coli cells expressing the pyruvate sensor, EIIAGlc-CFP/MglA-YFP FRET
pair, or cAMP FRET sensor were attached to poly-lysine coated slides
andwere subsequently fixed at the bottomof a flow-through chamber.
A constant flow (0.5mlmin−1) of fresh M9 buffer and indicated con-
centrations of glucose, different carbon sources/intermediates or 2,4-
DNP was used to stimulate cells. The cells were observed at 40× or
100× oil immersion objective lens and illuminated using a LED light (X-
cite exacte, Lumen Dynamics). Images were continuously recorded
with a 1.0 s integration time and 1.0 s exposure time in two spectral
channels corresponding to CFP (472/30 nm) and YFP (542/27 nm)
fluorescence using an optosplit (OptoSplit II, CAIRNResearch) and the
Andor Ixon 897-X3 EM-CCD camera (Andor Technology). For each
single-cell FRET measurement, the field of view was chosen to contain
both a small regionof high-density cells andwell-separated single cells.
For each population FRETmeasurement, a region of high density with
confluent cells was selected. Nikon perfect focus system was used
during the measurements to maintain the focus. Experiments were
performed at the room temperature (22 °C).

For measurements of the activity of pyruvate sensor in presence
of CCCP, MG1655 cells expressing the sensor were pre-adapted in
10 µM CCCP and stimulated with different concentrations of glucose.
For the intracellular NAD(P)H autofluorescencemeasurements, similar
procedure was performed except that the DAPI filter (excitation 355/
40 nm, emission 460/50 nm, beamsplitter 409 LP) and wildtype E. coli
MG1655 without fluorescence were used to record the time course of
the autofluorescent signals upon addition of glucose.

Image processing and data analysis
The image analysis was performed using theNIS-Elements AR software
(version 4.40, Nikon Instruments)16. Briefly, the CFP and YFP images
were aligned with each other and a gray average of the two channels
was delineated to create binary masks. For single-cell FRET
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measurements, individual cells were detected by segmentation of the
threshold image into individual objects, which resulted in a collection
of distinct regions of interest (ROIs) for each frame of the movie. The
NIS build-in tracking algorithm was then used to track the ROIs from
frame to frame. The selected ROIs were then inspected manually and
those not representing individual single cells or not well attached to
the cover glass were discarded. Alternatively, in particular withmovies
with low signal over noise ratios, a Gaussian Blur was applied to the
gray average of CFP and YFP channels, and the resulting movie was
analyzed using the machine learning based image analysis software
Ilastik v1.4.0rc277 to identify and track single cells and populations of
cells. Pixels in each imagewerefirst classifiedbetweenbackgroundand
cells using the Pixel classification module. The resulting image was
then separated in single cells and aggregated populations using the
Object classificationmodule. The resulting single-cell masks were then
exported into ImageJ Fiji 2.0.0 where they were applied to the original
registered CFP and YFP fluorescence channels. We then used a custom
particle tracking software78 to track individual cells and measure their
average CFP and YFP fluorescence over time. Both methods of deter-
mination of mean CFP and YFP fluorescence traces in single cells gave
similar results.

The average CFP and YFP values over the ROI corresponding to
each tracked cell and the confluent population of cells were
extracted as a function of time using MATLAB 8.4 R2014b (The
MathWorks). The FRET ratio was computed as the ratio between CFP
and YFP fluorescence for both the single cells and the population.
For small chages in FRET as those observed here, this FRET ratio (R)
is related to the negative change in FRET due to pyruvate binding
(ΔF) as R = R0 – bΔF, where R0 is the FRET ratio for this sensor in
absence of pyruvate and b is a constant. Cells with a FRET ratio
change of less than 10% of the population response were discarded
as unresponsive. The percentage of such unresponsive cells was
below 15% for any of our measurements. For the population FRET
measurements, the FRET ratio was analyzed and plotted using
KaleidaGraph v4.5 (Synergy Software). To obtain dose-response
curves, data were fit to a Hill model Y = A × LH/(LH + KH), where Y is the
FRET response (change in the FRET ratio), L is the concentration of
the stimulant, A is the amplitude (for normalized response curves,
A = 1), H is the Hill coefficient, and K is the EC50. The data analysis for
the NADH autofluorescent signals was similar instead of the gray
average of only one channel was delineated and its value over the
ROI was extracted.

The PSD and autocorrelation analysis
The PSD and the autocorrelation analysis were carried out using
MATLAB 8.4 R2014b. The camera dark count (106) was subtracted
from each CFP and YFP time series. Each fluorescence time series
was then corrected for bleaching, by fitting the part of the time
series where cells are stimulated with an exponential decay
(f tð Þ=aexp �btð Þ+ c ), or a linear one (f tð Þ=a� bt) in case of low
bleaching, and dividing the time series by the fitted function. The
FRET ratio was then computed as the ratio of corrected CFP divided
by corrected YFP time series for each cell. For responsive cells, a
N = 800 frames long subset of the ratio traces, starting about 50 s
after the stimulation by the tested compound, was selected for
further analysis of FRET ratio fluctuations.We note rk,j, k 2 1,N½ �, this
time series of ratio values for particle j and tk = kdt the associated
time stamps. Its discrete Fourier transform is defined aserq,j =PN

k rk,jexpð�2πi qkN Þ, with q 2 1,N½ �. Similar to our previous work,
we compute the PSD as:

sR ω=
2πq
N

� �
=

∣erq,j ∣2�
�rk,j
�2

* +
j

dt
N ð8Þ

The unbiased autocorrelation function was computed using the
build-in Matlab function as:

C mð Þ= 1
N � ∣m∣

XN�∣m∣�1

k =0

δrk + ∣m∣, jδrk,j

∣δrk, j ∣
2

* +
j

ð9Þ

With δrk,j = rk,j � rk,j . In both cases, �h ij is an average over single
cells and �xk = 1=N

P
xk is a time average.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data generated in this study are provided within the paper, in
the Supplementary Information and as Source Data files. Source data
are provided with this paper.

Code availability
The codes used for simulations in this study is available under [https://
github.com/nfarke/Pyruvate_Oscillations]; [https://doi.org/10.5281/
zenodo.7779240]. The code used for particle tracking is available
under [https://github.com/croelmiyn/ParticleTracking]; [https://doi.
org/10.5281/zenodo.7781880].
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