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In silico cancer immunotherapy trials
uncover the consequences of therapy-
specific response patterns for clinical
trial design and outcome

Jeroen H. A. Creemers 1,2, Ankur Ankan3, Kit C. B. Roes4, Gijs Schröder 3,
Niven Mehra 5, Carl G. Figdor 1,2, I. Jolanda M. de Vries 1 &
Johannes Textor 1,3

Late-stage cancer immunotherapy trials often lead to unusual survival curve
shapes, like delayed curve separation or a plateauing curve in the treatment
arm. It is critical for trial success to anticipate such effects in advance and
adjust the design accordingly. Here, we use in silico cancer immunotherapy
trials – simulated trials based on three different mathematical models – to
assemble virtual patient cohorts undergoing late-stage immunotherapy, che-
motherapy, or combination therapies.We find that all three simulationmodels
predict the distinctive survival curve shapes commonly associated with
immunotherapies. Considering four aspects of clinical trial design – sample
size, endpoint, randomization rate, and interim analyses – we demonstrate
how, by simulating various possible scenarios, the robustness of trial design
choices can be scrutinized, and possible pitfalls can be identified in advance.
We provide readily usable, web-based implementations of our three trial
simulation models to facilitate their use by biomedical researchers, doctors,
and trialists.

Immunotherapy is revolutionizing the treatment landscape for
patients with advanced cancers. While the number of immuno-
oncology drugs under investigation is rising rapidly – around 4700
agents are currently in the development pipeline – the need to further
improve patient outcomes remains high1. Well-designed immu-
notherapy trials are crucial to establish advances in clinical outcomes
robustly. Unfortunately, the odds for cancer treatments to successfully
pass the development pipeline are unfavorable, and only a minority of
the treatments (5–10%) ultimately obtain market approval2–4. Even for
cancer therapies that do reach late-stage development, approval rates
remain modest at around 27%5. The primary reason in most of these

trials (i.e., 63.7%) is failure todemonstrate efficacy5, which canbepartly
attributed to suboptimal trial design choices based on overly opti-
mistic assumptions of the treatment effect. Such assumptions may be
used to erroneously justify low numbers of patients or inappropriate
endpoints and lower the power of these trials5,6.

Immunotherapy trials raise complex design questions, and con-
ventional design methods are not always a good match to the unique
characteristicsof immunotherapies7. There is a verybroad spectrumof
therapies based on various molecular mechanisms – ranging from
immunomodulators to cell therapies, cancer vaccines, oncolytic viru-
ses, and CD3-targeted bispecific antibodies – that can lead to unusual
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toxicity profiles, response patterns, and survival kinetics8–10. These
observations render a “one-design-fits-all” approach futile and stress
the need for designs that are tailored to immunotherapy or even
combination therapies.

Immunotherapies are known to induce a delayed clinical effect
and long-term overall survival (OS) in only a subset of patients11. The
survival curve reflects these phenomena by a delayed curve separation
and a plateau of the treatment arm at later stages of the trial12. These
characteristics violate a fundamental premise that underlies the design
of many trials: the proportional hazard assumption (PHA) – essentially
stating that the treatment effect should remain constant over time13. As
a result, immunotherapy trials based on this principle can have an
overestimated power12,13 and require a longer follow-up to demon-
strate efficacy than initially planned12, increasing the likelihood of a
negative trial.

These issues led to thedevelopmentof innovativemethods such as
novel radiological criteria to quantify tumor responses9,14,15, (surrogate)
endpoints to capture unique survival kinetics10,16–19, biomarkers to
enrich for patients more likely to respond to treatment20–23, and statis-
ticalmethods to retain a trial’s power in thepresenceof unusual survival
kinetics24–26. Despite themultitude of availablemethods, it is difficult to
predict trial outcomes in advance and select the methodology accord-
ingly. The stakes are high: a trial design built on accurate predictions of
the responsekinetics ismore likely tobepositive,whereasmisjudgment
could result in a negative trial, potentially compromising patient ben-
efit, vast amounts of work, and (public) research funds.

In this work, we use late-stage in silico cancer immunotherapy
trials to investigate howdesigndecisions affect the trial outcome in the
context of cancer immunotherapy, possibly combined with che-
motherapy. The mechanism-based nature of these trials allows
researchers to translate cellular processes in the tumor micro-
environment and immunotherapeutic interventions thereon into pre-
dicted response patterns, survival kinetics, and trial outcomes. An in
silico immunotherapy trial is based on explicit biological assumptions
and provides an intuitive means to predict risk profiles and treatment
efficacy. Moreover, it equips researchers with a tool to scrutinize trial
designs and analysis strategies of upcoming trials in advance to iden-
tify potential risks and pitfalls. We use three different simulation
models to performour in silico trials, basedonwork by ourselves27 and
other authors28,29. Despite considerable differences, all models repli-
cate late-stage immunotherapy or combination trials reasonably well
and capture their typical survival kinetics. Then, we demonstrate var-
ious applications of such trial simulations, including the ability to
scrutinize a clinical trial’s design and sample size calculations based on
a range of predicted possible outcomes. Finally, we illustrate the
consequences of (not) considering immunotherapy-specific response
patterns in settings selected for educational purposes, such as
selecting survival endpoints and randomization ratios of upcoming
trials and planning interim analyses.

Results
Generating trial populations based on tumor-immune dynamics
We used in silico cancer immunotherapy trials based on mechanistic
simulations of cancer-immune dynamics to investigate the con-
sequences of immunotherapy-specific response patterns on trial
design principles26. The virtual patients in these trials are simulated
with ordinary differential equation (ODE) models, which describe
disease courses based on assumptions about interactions between
tumor cells and the immune system26. In this paper, we will focus on
simulating two years of follow-up after treatment – while it is
straightforward to consider longer follow-up times with in silico trials,
a two-year time frame is common for contemporary immunotherapy
trials30–32.

To investigate the extent to which our simulation results depend
on specific modeling choices, we use three different ODE models.

Model 1 (M1) describes the following tumor-immune dynamics in the
tumor microenvironment: immunogenic tumor growth leading to
priming and clonal expansion of naïve T cells, migration of effector
T cells to the tumor microenvironment, and formation of tumor-
immune complexes to enable tumor cell killing (see Methods; Fig. 1A).
We simulate treating these patients with immune checkpoint inhibi-
tors (ICI), chemotherapy, or both. ICI increase the T cell killing rate and
directly affect the tumor-immune dynamics. Chemotherapy has a
cytotoxic effect on the tumor, slowing its growth. A detailed descrip-
tion of a previous version of this model, including the rationale for
parameter selection, hasbeenpublishedpreviously26; a full description
of the version used this paper is given in the Methods. In contrast,
model 2 (M2) does not represent T cells migration between lymph
nodes and tumor microenvironment; however, it does contain an
explicit representation of antigen-presenting cells (APCs)33. Finally,
Model 3 (M3) does not contain either T cell migration or APCs, but it
does takeT cell exhaustion into account. Another important difference
between themodels lies in how tumor growth is represented:M1uses a
size-dependent growth rate, M3 a resource-constrained growth rate
(logistic growth), and M2 uses unlimited exponential growth.

Regardless of model specifics, in silico clinical trials describe
cancer outcomes on three levels: (1) a cellular level, (2) a patient level,
and (3) a trial population level. Cellular interactions in the tumor
microenvironment are translated into clinical trial outcomes as fol-
lows: firstly, the ODE model is implemented, and model parameters
that vary between patients are selected by fitting to existing survival
data (Fig. 1B; see Methods). Next, individualized disease trajectories –
either treated or untreated – of cancer patients are generated (Fig. 1C).
Eventually, patients are randomized into two cohorts to resemble
conventional phase III trials: a control group (either placebo or che-
motherapy) and a treatment group (immunotherapy, chemoimmu-
notherapy, or induction chemotherapy followed by immunotherapy;
Fig. 1D). Since the cellular dynamics (e.g., tumor burden over time or
the efficacyof T cell killing) and survival outcomesof thesepatients are
known and can bemodified, in silico clinical trials are suited to answer
questions like: “Assuming that a novel treatment increases T cell killing
5-fold, how does this translate to a survival benefit in patients? More-
over, how many patients are needed to establish this benefit in a
clinical trial? When should one analyze the results?” (Fig. 1E).

Despite their differing mechanisms, the models generate quali-
tatively similar predictions (Fig. 2): tumors grow at realistic speeds and
are usually not cleared by the immune system without therapeutic
intervention. In themodels, therapeutic interventions can slowor even
reverse tumor growth, in principle leading to two major contrasting
outcomes: death or long-term survival. However, there is a unique
effect inM3where even after treatment and growth reverse, the tumor
burden keeps oscillating over time, leading to regular self-resolving
recurrences. While this may not be entirely realistic, it is not an issue
for our purpose aswe shall focus on the initial growth trajectory of the
tumor preceding and up to 2 years after treatment, and recurrences in
M3 happen after that.

In silico late-stage immunotherapy trials yield realistic survival
outcomes
To investigate whether our in silico models can generate realistic
survival curves as observed in late-stage immunotherapy trials, we
fitted the models to three different datasets: (1) the north central
cancer treatment group (NCCTG) lung cancer survival dataset34; (2) the
CA184-024 trial (ipilimumab+dacarbazine vs. dacarbazine in pre-
viously untreatedmetastatic melanoma35); and (3) the CheckMate 066
trial (nivolumab+placebo vs. dacarbazine + placebo in treatment-naive
metastatic melanoma patients without BRAF mutation36). The choice
for these trials is based on the size of the trials and the maturity of the
data. The follow-up of the CA184-024 trial and theCheckMate 066 trial
were five and three years, respectively. As the last two datasets were
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not publicly available, we extracted the data using image digitization
(see Methods). As a reference for the in silico trials, we visualized the
Kaplan–Meier estimators of these datasets (Fig. 3A). Both trials were
digitized correctly, as reflected by the nearly identical risk tables
compared to the original manuscripts35,36. Next, we fitted the tumor
growth rate distributions and treatment effect parameters for che-
motherapy and immunotherapy (NCCTG: 3 parameters; immu-
notherapy trials: 4 parameters) to these datasets (M1: Fig. 3B; M2, M3:
Supplementary Fig. 1). For the CA184-024 and CheckMate 066 trials,
the simulatedpatientswere treatedwith ICI upondiagnosis, increasing
their T-cell killing rates. For simplicity, we did not simulate dropout or
censoring in the trials shown in this paper, although it could be added
to the simulation. Model M1 achieved satisfactory fits to all datasets.
However, M2 and M3 had difficulties fitting the CheckMate 066 data,
with M2 predicting more rapid death in the control arm and M3 pre-
dicting a cross-over of survival curves. M3 also had difficulties fitting
the other two datasets, as its survival curves plateaued from 12months
after treatment onwards.While thefit of allmodels can be improvedby
allowing more parameters to vary, we chose to keep the number of
fitted parameters small to investigate the consequences of such issues
on our downstream analyses.

Hence, our in silico trials couple the disease mechanism and
treatment effect to a predicted clinical trial outcome. By allowing
model parameters to vary between patients, suchmodels can be fitted
to existing clinical trial data. Whether a good fit can be achieved
depends on the model assumptions and the number of parameters

that are allowed to vary. In our case,models M1 andM2were able to fit
the three datasets reasonably well, with M3 showing a substantially
worse fit.

Interestingly, although not incorporated explicitly, the models
reproduced hallmark survival curve features arising as a consequence
of the interaction between tumor and immune cells typically seen in
immunotherapy trials: a delayed curve separation and a plateau of the
survival curve of the treatment arm at later stages of the trial (last two
columns in Fig. 3B and Supplementary Fig. 1).

In silico immunotherapy trials predict immunotherapy-specific
response patterns
The design and the success rate of any clinical trial depends, among
others, on a realistic prediction of the shape of the survival curves
and the distribution of clinical outcomes. For late-stage immu-
notherapy trials, commonly observed immunotherapy-induced
response patterns are a delayed curve separation and a plateauing
tail of the survival curve of the treatment arm (Fig. 3). These char-
acteristic survival curve shapes violate a vital premise of many
clinical trials: the proportional hazard assumption (PHA). The PHA
states that the “instantaneous death rate” of a patient (i.e., the
hazard rate) in both arms of the trial should be proportional,
resulting in a constant hazard ratio. Many traditional design meth-
ods, ranging from sample size calculations to outcome analyses, are
based on this convenient assumption. For late-stage immunother-
apy trials, this induces two problems: (1) while a violation of the PHA

Fig. 1 | In silico late-stage immunotherapy trials and their applications.
ACellular interactions between a tumor and the immune system as implemented in
ODE model M1 (Methods). This model describes immunogenic tumor growth
leading to a T cell response originating from lymph nodes. Disease courses in
patients can be steered by immunotherapy, chemotherapy, or a combination of
both. Parameters: α=naive T cell priming rate, δ=effector T cell death rate,
ξ=effector T cell killing rate, ρ=tumor growth rate, ρs=effector T cell proliferation
rate, and ms=effector T cell migration rate. B After implementation, we used sur-
vival data from clinical trials to fit some of the model parameters. C Patients

received either no treatment (placebo), chemotherapy, immunotherapy, or both.
Disease trajectories based on tumor-immune dynamics were simulated for each
patient, resulting in individual survival outcomes. D Subsequently, cohorts of
patients were constructed based on the fitted parameters to simulate actual
immunotherapy trials. E Applications of such trials include predicting possible
survival outcomesof trials, estimating sample sizes needed for a rangeof scenarios,
and investigating endpoints, randomization ratios, and the timing of interim
analyses.
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needs to be addressed during trial planning, the hazard rates – and
an eventual violation of the PHA – becomes available only after the
trial; and (2) if a trial does not adhere to a PHA, what will be the
shape of the survival curve? Especially in an era where treatment
and control arm regimens are becoming increasingly complex,

adjusting the design and analysis methods to various survival curve
shapes is challenging.

In silico clinical trials can provide principled predictions about
possible shapes of the survival curve, including the underlying hazard
rates and hazard ratios, before trial execution. We generated such

Fig. 3 | Fitting in silico cancer immunotherapy trial models to survival data.
A Kaplan–Meier estimators of the NCCTG, CA184-024, and CheckMate 066 trials.
While the NCCTG dataset is publicly available34, the others are carefully recon-
structed survival curves based on digitized data from the respective articles35,36.
B Trial simulations can generate realistic survival curves as observed in actual

immunotherapy trials. Specifically, typical immunotherapy-related survival curve
shapes – such as a delayed curve separation and a plateau in the treatment arm –

arise from these simulations as emergent behavior. Source data are provided as a
Source Data file.

Fig. 2 | Simulating immunotherapy responses using different mathematical
models. Each simulation starts with a singlemalignant cell that establishes a tumor.
Without treatment, this tumor grows to a lethal volume (upperhorizontal line) over
the course of several months; the plots start when the tumor has a size of 108 cells.
Treatment is started when the tumor reaches a size of 65 × 108 cells (lower hor-
izontal line). Immunotherapy is implemented in each model by increasing the rate
at which T cells kill tumor cells; in M2, the death rate of T cells is additionally

decreased by the same factor. The treatment effect sizes are chosenpermodel such
that there is a partial response (orange, leading to prolonged survival) or a com-
plete response (red, leading to tumor eradication). The recurrence of the tumor in
M3 is a consequenceof themodel’s equations,which lead tooscillatingdynamics of
the tumor burden rather than complete eradication in the complete response
regime. Arrows indicate start of treatment.
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survival predictions using the models – fitted to the CA184-024 data
(Table 3) – and changed the treatment effect parameters according to
the simulated scenario. A traditional scenario would be a trial in which
patients are randomized 1:1 to mono-chemotherapy or placebo. Given
the direct chemotherapy effect, the PHA is generally assumed to hold
for these trials. An in silico trial in which chemotherapy reduces the
tumor growth rate for the entire trial duration indeed replicates these
assumptions (Supplementary Fig. 2): the survival curves separate from
the start of the trial, and the hazard ratio remains roughly constant
over time.However, whathappens if the chemotherapy effect does not
last for the entire trial but for – maybe more realistically–6 months?
For M1 and M2, the initial proportional separation of the survival
curves is followed by a parallel decay and eventual convergence of
both curves, leading to an early but transient survival benefit for the
chemotherapy arm (Fig. 4A, B). For M3, the chemotherapy effect
estimated from the CA184-024 data is more profound and instead
induces a permanent response (Fig. 4C). Hence, substantial deviations
from the PHA are observed in all cases, even for seemingly simple
chemotherapy trials. Also, a violated PHA becomes immediately

apparent when considering a more contemporary scenario of immu-
notherapy combined with chemotherapy compared to chemotherapy
alone: through approximately the first six months, the hazard rates
remain constant over time, but after that, they start to decline in the
immunotherapy group (cyan line), yielding a non-constant hazard
ratio over time (Fig. 4D).

The flexibility of in silico trials lies in their ability to incorporate
complex treatment regimens. For example, let us assume one would
be interested in estimating the survival curves and underlying hazard
ratio over time of an immunotherapy+placebo-chemotherapy vs.
chemotherapy+placebo-immunotherapy trial (Fig. 4E) or a trial with
induction chemotherapy followed by immunotherapy vs. immu-
notherapy (Fig. 4F). Mechanism-based immunotherapy trials translate
biological assumptions regarding the disease and treatment effects
into survival curves (including hazard ratio estimates). The resulting
survival curve shapes, such as crossing survival curves (Fig. 4E) or a
temporary curve separation (Fig. 4A, B, F), may be hard to predict
otherwise and can be detrimental to the trial outcome if addressed
appropriately.

Fig. 4 | In silico clinical trials can predict immunotherapy-specific survival
patterns basedonbiological assumptions. A–F Examples of 1:1 randomized trials
with various (treatment) regimens (n=600 simulated patients per arm). A–C A
traditional chemotherapy trial (vs. placebo) only shows a proportional hazard ratio
when the biological treatment effect targets the tumor directly and remains con-
stant over time (compare to Supplementary Fig. 2). D An in silico immunotherapy
trial elicits typical immunotherapy-induced survival curve shapes (i.e., delayed
curve separation) and violates the proportional hazard assumption. E, F More
intricate treatment or control regimens – (D) immunotherapy+chemotherapy-

placebo vs. chemotherapy + immunotherapy-placebo, or (E) induction che-
motherapy followed by immunotherapy vs. immunotherapy – induce more com-
plex survival patterns, including (E) crossing survival curves or (F) only a temporary
separation of the survival curves. Horizontal bars underneath the survival curves
indicate the duration of the treatment effect (T=treatment, C=control). The red dot
in column three indicates the hazard ratio averaged over the entire trial. Lines and
shading in middle column: estimated hazards and 95% CIs (see Methods). Source
data are provided as a Source Data file.
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We emphasize that different models can generate different pre-
dictions depending on model assumptions and parameters, as seen in
our chemotherapy vs. placebo examples (Fig. 4A, B, C). Conversely,
however, even substantially different models can agree on the essen-
tial aspects of the predicted survival curves. For example, despite their
differences, our three models all predict the characteristic delayed
curve separation of immunotherapy trials (Fig. 4D, Supplementary
Fig. 3, Supplementary Fig. 4).

Using in silico trials to select the treatment effect metric
A key design decision in a clinical trial is which effect sizemetric to use
to define treatment success. Two common choices are the overall
hazard ratio, which is affected by the entire survival data of the trial,
and a survival endpoint such as 2-year overall survival (OS), which only
depends on the specifically defined time-point. When there is no solid
clinical rationale to prefer one effect size measure over the other,
statistical considerations such as power become important. To inves-
tigate the consequences of choosing hazard ratio or 2-year OS as the
study effect size indifferent immunotherapy scenarios, wedetermined
the power of in silico trials by conducting simulations at varying study
population sizes.

A potential advantage of using the hazard ratio is its use of the
entire survival curve, which can increase power when the PHA is met
and detect transient effects even if the PHA is not met. Indeed, when
investigating the power of the transient chemotherapy effect gener-
ated by model M1 (Fig. 5A), we found the power to be much greater
when using the hazard ratio compared to the power to detect the
minimal difference in survival still found after 2 years. The opposite
was true when investigating the chemoimmunotherapy vs. immu-
notherapy scenario usingM2 (Fig. 5B): the power of trials that used the
hazard ratio lagged far behind the power to detect a 2-year survival
endpoint, as a consequence of the considerable violation of the PHA in
this scenario. Indeed, when considering the persistent chemotherapy
effect generated by model M3 (Fig. 5C), a scenario with a substantially
lower variation of the hazard ratio, we found the power to be more
comparable, although the hazard ratio still had a meaningful advan-
tage. When using M3 to investigate the chemoimmunotherapy vs.
immunotherapy scenario, the choice of endpoint made hardly any
difference (Supplementary Fig. 5).

These results illustrate the critical importance of choosing an
appropriate effect size to measure the clinical outcome, which in turn

strongly depends on the shape of the survival curves. For established
treatments, investigators can rely on their experience or published
results to make an appropriate choice; however, the expected survival
curve shape might be very uncertain for novel immunotherapies or
combinations of existing immunotherapies. In such cases, running
various in silico trials would help investigators prepare for different
plausible scenarios and choose a robust trial design. In our examples,
themodels agreed that hazard ratiowouldbea suitable effect size for a
chemotherapy vs. placebo trial even if the PHA does not entirely hold,
whereas 2-year OS would be appropriate for the chemoimmunother-
apy vs. immunotherapy case (Supplementary Fig. 5).

In silico trials can help to choose endpoints and randomization
ratios
Clearly, the success rate of novel immunotherapy trials depends on
more than its sample size alone. To establish an OS benefit of the
treatment arm, it is crucial to analyze the trial once the data have
reached a certain maturity – i.e., the treatment needs to be granted
sufficient time to induce a survival benefit. We assumed that a delayed
curve separation in immunotherapy trials would prolong the follow-up
needed to establish an OS benefit of immunotherapy and thereby
defer reachingmaturity of the trial data. If the therapy is effective, data
maturity canbe regarded as the timepointwhen a treatment effect can
be observed. Hence, an optimal trial endpoint would be the earliest
time at which this treatment effect can be detected with sufficient
power. Therefore, we analyzed the power of differently-sized trials
with respect to their OS endpoint. Herein, we distinguished trials that
were subject or were not subject to a delayed curve separation
(immunotherapy and chemotherapy, respectively). In a classic che-
motherapy trial, the treatment effect translates directly to a survival
benefit in the treatment arm – the survival curves separate from the
start. Therefore, the highest power is obtained after the total duration
of the treatment effect (Fig. 6A, panel 1). In this case, the treatment
effect lasts for sixmonths, leading to the 6-months OS as the endpoint
with the highest power. The delayed curve separation in immu-
notherapy trials renders it futile to analyze OS data early in the trial
(Fig. 6B, panel 1). A practical ramification is that in the presence of
a delayed curve separation, the trial requires a sufficiently long follow-
up and an adequate size to gain power and detect immunotherapy-
specific treatment effects. Mechanism- and simulation-based
power calculations with in silico trials can consider these specific

Fig. 5 | Immunotherapy-specific survival curve shapes critically determine a
trial’s power to detect different treatment effects. We analyzed the power of in
silico trials to detect a difference in 2-year OS (black lines) or a hazard ratio not
equal to 1 (red lines) for (A) chemotherapy vs. placebo (transient effect, M1); (B)
chemoimmunotherapy vs. chemotherapy (M2); and (C) chemotherapy vs. placebo
(long-term effect; M3). Choosing an inappropriate effect size for the response

pattern at hand leads to a significant reduction in trial power, greatly reducing the
probability of success. The chemotherapy effect for M3 was set to a 20% reduction
in growth rate to simulate amore subtle effect; all other parameters were set to the
values fitted to the CA184-024 data. Points and error bars: estimated proportions
and95%CIs frombinomial tests (n = 250 simulated trials perpoint). Source data are
provided as a Source Data file.
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survival curve features when determining the sample size for upcom-
ing trials.

Given the observation that both the size of an immunotherapy
trial and its endpoint heavily influence the probability of finding the
survival benefit of interest, we presumed that increasing the size of the
treatment arm – i.e., an unequal randomization scheme – would
similarly affect the power. Instead of varying the study size, we now
varied the randomization ratio. Interestingly, while the power logically
depended on the OS endpoint, the randomization ratio did not greatly
affect the power (second panel of Fig. 6A, B). Considering that an
unequal treatment allocationmay provide ethical benefits, we confirm
that the randomization ratio in immunotherapy trials is of secondary
importance compared to study size or primary endpoint.

In summary, our in silico immunotherapy trials replicate existing
insights from trial design as to how violation of the PHA affects power
and analysis choices. Our ability to directly translate biological
assumptions on treatment mechanisms into survival curve shapes
allows the trialist to reason deliberately about whether such violations
of the PHAwouldorwouldnotbe expected in their specific trial design
and how the problem could be addressed if it arises.

Simulating the effects of interim analyses
We have observed a clear trade-off between the power of an immu-
notherapy trial on the one hand, and the primary OS endpoint, and
correspondingly the data maturity, on the other. Luckily, the two are
not entirely mutually exclusive: interim analyses have been developed
for ethical purposes to establish positive or harmful treatment effects
early. However, there is a catch: the necessity to control for multiple
testing at each interimanalysis lowers the significance thresholdon the
final analysis to maintain the same overall type I error rate. This raises
the question: “How many interim analyses should you plan, and when
should youplan them?”Again,well-founded answers to suchquestions

can be obtained with the help of in silico immunotherapy trials. To
illustrate this, we usedM1 to simulate 1000 immunotherapy trials with
1200 patients per trial, randomized 1:1 over immunotherapy with a
strong treatment effect or a placebo (Fig. 7A). In the absenceof interim
analyses, the vastmajority of the trials are predicted to enduppositive.
Adding interim analyses (O’Brien-Fleming approach) to the equation
induces a trade-off. On the onehand, increasing thenumber of equally-
spaced interim analyses increases the probability of early detecting a
positive treatment effect (e.g., approximately 40% of the trials are
positive after 18 months in the case of three interim analyses; Fig. 7A).
On the other hand, the overall probability of ending upwith a negative
trial due to more stringent analyses (i.e., less power) also increa-
ses slightly, especially in the case of immunotherapies with a weaker
treatment effect (± 88%without an interimanalysis vs. ± 86%with three
interim analyses; Fig. 7B). In an actual trial, the latter needs to be
corrected by including additional patients tomaintain the pre-planned
power. Furthermore, we observe that the timing of the interim analysis
is crucial.Whereas an interimanalysis at 18months provides additional
value to the trial, interimanalyses before 16months arepredicted tobe
wasteful due to non-proportional hazards and less mature data. As a
control, we simulated trials without any treatment effect. By design,
approximately 95% of the trials should end up negative irrespective of
the number of interim analyses, which indeed seemed to be the case
(Fig. 7C). Logically, the weaker the treatment effect, the higher the
probability of erroneously finding a harmful treatment effect – a
characteristic that the simulation also exhibits (Fig. 7B, C).

Discussion
Over the past decade, tumor-immune dynamics have been investi-
gated extensively with in silico models. In the early days of cancer
immunotherapy, these modeling efforts focused – next to
chemotherapy37 – on cellular immunotherapy38,39. More recently, the

Fig. 6 | In silico trials guide decisions on OS endpoints and randomization
ratios of upcoming immunotherapy trials. A, B In silico trials can be used to find
the optimal endpoint (panel 1) or randomization ratio (panel 2) of novel trials.
A Since the survival curves in classical chemotherapy trials separate from the trial
onset, the highest power – and optimal endpoint – is obtained at the end of the
treatment interval (i.e., after six months in this example; see Fig. 4A). Although less
influential, a similar observation can be made for randomization ratios (study size
panel 2: 300 patients). B Delayed curve separation in immunotherapy trials

emphasizes that a premature final analysis of the primary OS endpoint is detri-
mental to the trial outcome. These trials permit validating the pre-specified survival
outcomes of novel trials a priori. Commonly selected randomization ratios do not
seem to be heavily influenced by immunotherapy-specific response patterns (study
size panel 2: 1200 patient). Trial characteristics are similar to Fig. 4A, D. All simu-
lations performed using M1. Points and error bars: estimated proportions and 95%
CIs from binomial tests (n = 400 simulated trials per point). Source data are pro-
vided as a Source Data file.
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field has addressed ICI therapy (e.g.,33,40,41). Models of tumor-immune
dynamics have been applied to study pharmacokinetic and therapy
dynamics (PK/PD), treatment effects (including mechanism(s) of
action, optimizing dosing regimens), treatment combinations, toxi-
city, biomarker prediction, drug resistance, and drug discovery (see
reviews on these topics38,42–47). These extensivemodeling efforts by the
Mathematical Oncology community have created a rich and valuable
methodological resource. The goal of the work described in this paper
is to tap into this resource for the purpose of clinical trial design. Once
parameterized, a mathematical model can predict likely outcomes of
treatments for individual patients; using such a model for trial design
requires considering heterogeneity between patients and translating
these into likely survival curve shapes for each arm of the trial.

In this study, we leveraged mathematical models to perform
cancer immunotherapy trials in silico, predicting survival and response
profiles of various treatment regimens. Complementary to conven-
tional design methods, in silico trials provide the ability to investigate
the implications of a researcher’s biological (as opposed to statistical)
hypotheses about a drug’s mechanism of action for the design, con-
duct, analysis, and outcome of clinical trials. When comparing the
simulated outcomes to actual immunotherapy trial outcomes, we
showed that in silico trials are suited to translate complex biological
mechanisms (such as those observed during the treatment of patients
with ICI) into realistic trial outcomes. Crucially, regardless of the
model, the survival curves from these mechanism-based simulations
reflected two pivotal components often found in immunotherapy

Fig. 7 | A priori scrutiny of the interim analysis plan to evaluate possible
advantages and disadvantages of timed additional analyses during the trial.
A In the case of immunotherapy with a potent effect, in silico trials help develop a
rationale for the timing of the interim analyses. In these simulations, while an
interim analysis at 12 months might not add value to the trial, analyses after 16 and
18months, respectively, have a probability of approximately 25% and40% to lead to
early stopping with a positive result. B Multiple interim analyses can reduce the
probability of confirming the desired treatment effect in case of a weak

immunotherapy effect. C In the absence of any treatment effect (a control sce-
nario), the number of interim analyses does not heavily influence the trial outcome.
Each trial simulation contains 1200 patients (randomization ratio 1:1) to ensure
adequate power of the trial. Trials are analyzed with a proportions test (Pearson’s
chi-squared test). Treatment effect (fold increase of the T cell killing rate):
strong=12, weak=4, no effect=0 (see Methods). All simulations were performed
using M1. Source data are provided as a Source Data file.
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trials: a delayed curve separation and a plateauing tail of the survival
curve at later stages of the trial. In line with genuine immunotherapy
trials, we find that these immunotherapy-specific response patterns
differ considerably from chemotherapy. Our findings confirm that
diversity in survival curves profoundly impacts the outcomes of
immunotherapy trials48. Consequently, these features need to be
considered when deciding on the sample size, endpoint, randomiza-
tion ratio, and the number and timing of interim analyses of a novel
cancer immunotherapy trial.

In silico clinical trials are gaining popularity in medicine. Such
trials enable investigating, among others, how novel drugs, treat-
ment schedules, dosing regimens, and inter-patient heterogeneity
affect the outcome of a clinical trial49. In silico clinical studies have a
wide range of applicability from pediatric infectious50 and orphan
diseases51 to diabetes52, inflammatory autoimmune diseases53,
traumatic injury54, psychiatric illness55, and cancer. In oncology,
several in silico clinical trials involving chemotherapy and tyrosine
kinase inhibitors have been performed56,57. Moreover, with the onset
of checkpoint inhibitors, in silico immunotherapy trials have gained
interest, leading to in silico trials with anti-CTLA-4-antibodies and
anti-PD-(L)1 antibodies58–60. In contrast to these earlier studies, our
work does not primarily focus on the treatment itself but on
the design of clinical trials intended to show efficacy of a
given treatment. In that sense, our work is more comparable to
statistical simulation studies aiming to calculate the sample size and
power of clinical trials61–63. However, purely statistical approaches
lack a direct link to the underlying biological diseasemechanism. As
we have seen, such a link is critical in the case of immunotherapy
trials, which tend to violate common statistical assumptions
of trial designs such as PHA. Therefore, an interdisciplinary
approach to trial design that combines these two perspec-
tives – modelling and statistics – could be especially beneficial in
the oncoimmunology field.

In silico clinical trials are applicable in several settings. First, they
provide the means to verify clinical trial and treatment assumptions
before investing extensive amounts of work and funds into the
development and execution of a clinical trial and can, thereby,
function as a proof of principle of the soundness of the hypotheses
for an upcoming trial. Scrutinizing each aspect of the trial design
might lead to better design decisions and reduce unanticipated
outcomes. Moreover, this mechanism-based approach does not
necessitate a deep understanding of complex mathematical theo-
rems; instead, it requires a biological understandingof a disease. This
mechanistic basis is intuitive, which benefits the communication
between clinical doctors and biomedical researchers on the one hand
and statisticians and clinical trialists on the other. Additionally, in
silico trials might serve as excellent educational tools. The ability to
simulate a wide range – from basic to highly advanced–research
questions can be exploited in teaching activities for entry-level clin-
icians to experienced trialists. A final implication, which holds for any
trial simulation, is that theymayprovide somedegreeof insightwhen
conventional clinical trials are unfeasible due to practical or ethical
constraints (e.g., clinical trials in rare diseases, pediatrics, or critical
care medicine).

Nonetheless, in silico clinical trials have to be considered in
light of some limitations. The most critical limitation is universal
to any scientific model, whether in vitro, in vivo, or computa-
tional: the immunotherapy trial outcomes depend heavily (if not
entirely) on the biological assumptions of the model, meaning
that incorrect interactions or erroneous parametrization of the
model can lead to inaccurate predictions. The parameterization,
in particular, might pose a problem: given the often novel treat-
ment mechanisms, data to fine-tune the parameters of the model
accurately might be scarce. In these cases, the simulation itself

can be used as a sensitivity analysis to assess to what extent a
certain parameter range, or the structure of the model itself,
influences the robustness of the predictions. Our use of three
different models in this paper can be seen as such a type of
sensitivity analysis; indeed, despite the major differences, it
was reassuring to observe that the models often agreed when it
came to the critical qualitative aspects of the predicted survival
curves.

In addition, while ODE models can be rather simple and
intuitive to understand, translating biological principles into an
ODE model and implementing it into a simulation requires thor-
ough knowledge of computational methods, potentially limiting
its widespread applicability. To address these limitations, we have
made our model implementations available as (1) an interactive
website that can be used without installing any software and
without any programming knowledge (https://computational-
immunology.org/models/immunotherapy-trials/); (2) an R pack-
age allowing to run simulations without requiring knowledge of
ODEs and their solutions.

In summary, in silico cancer immunotherapy trials offer a versatile
approach to simulate immunotherapy trials based on biological
assumptions. As a simulation tool, they facilitate the scrutiny of trial
design decisions to optimize the probability of a successful immu-
notherapy trial and contribute to high-quality research for cancer
patients.

Methods
Ethics
No human subjects participated in this study, and we did not
analyze any identifiable data. Survival data from three published,
completed clinical studies was retrospectively analyzed: the
NCCTG cohort34, the CA184-024 trial35 (NCT00324155), and the
CheckMate 066 trial36 (NCT01721772). We had no access to indi-
vidual patient data from these cohorts and only analyzed the
survival times. For the NCCTG cohort, these data are available
publicly as part of the R package “survival”64; for the CA184-024
and CheckMate 066 trials, we estimated the survival data by
digitizing published figures as described below.

Mechanism-based models of the tumor microenvironment
We implemented three ODE models of tumor-immune interactions:
one from our previous work27 and two by other authors28,29. We first
describe the common aspects of the models, then explain the differ-
ences and show themodel equations. Allmodels describe cancer onset
and progression, and we initialize each model by seeding a single
growing tumor cell. This tumor cell divides, leading to a proliferating
mass of tumor cells. The parameter ρ controls the grows rate. Within
the tumor microenvironment, an anti-tumor immune response indu-
ces cytotoxic T cells to kill tumor cells at rate ξ. Intratumoral T cells die
at a rate δ. In these models, the rate at which T cells are activated and/
or proliferate depends initially on the tumor size: an early-stage
microscopic tumor presents fewer antigens than a larger – but still
small – tumor. However, antigen presentation saturates as the tumor
grows further (scaling factor T/(g + T) in Equations (3),(4),(3),(9)).
Thus, four model parameters are shared between the models.
Depending on the parameter values, it is possible that the immune
response eliminates the tumor or that the tumor escapes and grows in
an uncontrolled fashion.

We now discuss the model equations and parameters. In all
models, we denote the number of tumor cells by T (Eq. (1),(5),(8)) and
the number of intratumoral T cells by I (Eq. (2),(6),(9)). Compared to
their original versions, variables and parameters in the equations
below have been renamed, and the units of some parameters scaled to
make the models easily comparable.
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Model M1 is based on our previous work27 and has the following
equations:

dT
dt

=ρT
3
4 � ξI

T
1 + I

hI
+ T

hT

ð1Þ

dI
dt

=mSS� δI ð2Þ

dS
dt

=
T

g +T

� �
ðαNN +pSSÞ �mSS ð3Þ

dN
dt

= � T
g +T

� �
αNN ð4Þ

We implemented a tumor growth rate that is slower than exponential
growth. This is a common modeling choice based on data and the
biological premise that a growing tumor needs to sustain itself with
nutrients. A commonmethod to implement a sub-exponential growth,
whichwe adopt here, is to raise the number of tumor cells to the 3/4th
power to obtain the number of actively dividing cells65. We had
previously modeled slightly faster-growing tumors using the less
common power 4/5th27. However, given that the other two models
already implement faster-growing tumors, we here use the more
common, slower one. The killing of tumor cells is implemented using a
double saturation model66 parameterized as proposed by Gadham-
setty et al.67 (Michaelis constants hT and hI). The double saturation
model reflects that T-cell killing of tumor cells takes hours68. The
immune cells within the tumor microenvironment originate from
tumor-draining lymph nodes, where naive cytotoxic T cells (N,
Equation (4)) turn into activated T cells (S, activation rate αN; Eq.
(4)). Activated T cells proliferate at rate pS and migrate to the tumor
microenvironment to become infiltrating T cells (I). Themigration step
leads to a slight delay between T cell activation and tumor cell killing
on the order of days (mS = 1day−1). If desired, the distinction between
lymph node and tumor microenvironment sites could be removed for
simplicity, given that the migration takes place on a faster timescale
than the immune response.

Model M2, proposed by Tsur et al.28, conceptually differs fromM1
in five aspects. First, its tumor growth is unrestricted exponential.
Second, the anti-tumor response saturates with increasing numbers of
tumor cells but not with increasing numbers of T cells. Third, it
explicitly represents antigen-presenting cells, called A (Equation (7)),
which are recruited at rate αA in response to the tumor growth. Fourth,
its T cells do not proliferate but are produced at a capped rate. Fifth, it
does not distinguish between T cells in the lymph node and intratu-
moral T cells; as mentioned above, this is likely not critical. The model
equations are as follows:

dT
dt

= ρT � ξI
T

1 + T
hT

ð5Þ

dI
dt

=αeA� δI ð6Þ

dA
dt

=αA
T

g +T
� δAA ð7Þ

Model M3 was recently proposed by Bekker et al.29. It has two
equations representing tumor cells and T cells. It resembles M2 in that
tumor growth is initially exponential, but there is a maximum capacity
for tumor cells (logistic growth). Killing dynamics follow a “mass-
action law” (i.e., there is no saturation of the killing rate like in M1 and

M2). Further, it includes a term for tumor size-dependent T-cell
exhaustion. This modeling choice leads to oscillating numbers of
T cells and tumor cells in many parameter regimes. The model equa-
tions are as follows:

dT
dt

= ρTð1� T=βÞ � ξIT ð8Þ

dI
dt

=αA +pI I
T

g +T
� δI � ϵIT ð9Þ

We emphasize that M3 has been presented by Bekker et al.29 as an
abstraction of the general mechanisms underlying immunotherapy
similar to M1; neither model claims to fit specific time-resolved data.
Nevertheless, we included it as we were interested in the impact of the
different modeling choices.

Model parameters
Table 1 shows an overview of the parameters in the threemodels. Four
parameters appear in every model, but note that this does not
necessarily mean that the parameters can be interpreted in the same
way. For example, in a model where killing saturates in a scenario
where there are many more tumor cells than T cells (M1 and M2), the
same value of the killing rate will lead to less effective killing than in a
model where there is no such saturation (M3). Other parameters are
model-specific. To improve the inter-model comparability and reduce
the potential for over-fitting, we left the parameters in all models fixed
except the tumor growth rate ρ, which we varied to obtain hetero-
geneous patient populations.

Parameter values for M1 and M2 were taken from earlier
publications27,28, where the biological reasoning underlying these
values is explained, and references are provided. Differences in model
structure, and in experimental data being referred to, yield extensive
variation in parameter values (Table 2). The variation in ρ is just a
consequence of the different tumor growth models, which give a dif-
ferent meaning to the parameter in each model. Despite the

Table 1 | Overview of parameters used in the three models

Model(s) Symbol Meaning Unit

M1,M2,M3 ρ Tumor proliferation rate day−1

M1,M2,M3 δ T cell death rate day−1

M1,M2,M3 ξ T cell killing rate day−1

cell−1

M1,M2,M3 g Amount of tumor cells at which antigen pre-
sentation is half-maximal

cell

M1,M2 hT Michaelis constant for tumor-dependent kill-
ing saturation

cell

M2,M3 αA T cell or antigen presenting cell influx cell
day−1

M1 hI Michaelis constant for T cell-dependent kill-
ing saturation

cell

M1 ms T cell migration rate day−1

M1 ps Proliferation rate of T cells in lymph nodes day−1

M1 αN Activation rate of naïve T cells day−1

M2 αe Production rate of intratumoral T cells day−1

M2 δA Death rate of antigen-presenting cells day−1

M3 pI Proliferation rate of intratumoral T cells day−1

M3 β Maximum number of tumor cells the body
can sustain

cell

M3 ϵ Rate at which tumor cells exhaust T cells day−1

cell−1

Four parameters are shared between all models. The number of parameters is the largest for M1
at 9 parameters, followed by M2 and M3 (8).
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differences, the values actually lead to comparable growth kinetics.
The biggest quantitative differences are in the killing kinetics. M2’s
killing rate ξ is three orders of magnitude smaller than M1’s, but M2
compensates for this by saturating the killing at a number of tumor
cells that is five orders of magnitude higher than M1’s. Overall, the
number of cells being killed when the immune system is active and the
tumor exceeds the diagnosis threshold is comparable across the
models.

M3 was not explicitly parameterized by the authors29. Therefore,
we set its parameters to the same values as in M1 or M2 as much as
possible. For instance, because both M2 and M3 contain essentially
unrestricted exponential growth of the tumor cells until M3 approa-
ches the carrying capacity, we used the value for the tumor growth rate
in M2 for M3. For the killing rate, we used a value that gave similar
killing speed as M1 for tumors containing 109 − 1010 T cells. Note that
due to the saturation term in M1, the killing is faster in M3 for larger
tumors and slower for smaller tumors. Two parameters, the T cell
exhaustion rate and the carrying capacity, were unique to M3. We set
both to values that lead to a small influence of the corresponding
termson the simulation result andobtained comparable kinetics to the
other two models at those parameter settings.

Simulating untreated disease and treatments in individual
patients
Using ODE models, we can implement different cancer immu-
notherapies in twogeneralways: (1) by changingmodel parameters; (2)
by adding or removing cells at a certain time.

Using this ODE model, we simulated cancer development and
disease trajectories in patients. We extensively varied the tumor
properties (i.e., the tumorgrowth rate, the growth rate decline, and the
decline decay rate) between patients to generate interpatient variation
in disease courses.

Each patient is simulated from cancer onset (i.e., malignant
transformation of the first cell) for up to ten years. As argued
previously27, we start from a diagnosis threshold of a tumor mass of
65 x 108 cells, corresponding to the size at which common malig-
nancies are diagnosed69–71. The lethal tumor burden is set to 1012 tumor
cells (a tumor volume of approximately 10.6 dm3). Since we expect
both thresholds to vary considerably between patients, depending, for
example, on the timing of doctor visits or a tumor’s location, we
implement them as random variables that change with every simula-
tion. Specifically, every threshold is drawn from a log-normal dis-
tribution with a 4σ range of one order of magnitude. The upper 2σ
point (95.45% quantile) is set to 65 x 108 for diagnosis and 1012

for death.
Disease trajectories of patients with cancer can be steered with

therapy. In our model, treatment is implemented by changing the
model parameters once the tumor exceeds the diagnosis threshold, as
we assume this iswhen treatment starts. Given their prominent roles in
many oncological treatment plans, we included immune checkpoint
inhibitors (ICI) and chemotherapy in the models. Both treatments
function through their primary modes of action. ICI are implemented
by increasing the killing rate of cytotoxic T cells (i.e., the parameter ξ)
in M1 and M3. In M2, it is implemented by increasing the T cell acti-
vation rate αA and decreasing the death rate δ; for simplicity, we

restrict this such that the fold increase ofαA equals the fold decrease of
δ. These changes are implemented directly after diagnosis and remain
active for the rest of the simulation unless stated otherwise. The
duration and potency of the ICI treatment (as measured by the mag-
nitude of the change of the affected parameters) eventually determine
patient outcome.

In patients treated with chemotherapy, the immune system is still
present; however, it is not boosted (as is the caseduring ICI treatment).
Hence, the T cells are not potent enough to curb tumor growth. We
implement the cytotoxic capacity of chemotherapy in the models
uniformly by reducing the tumor growth rate (parameter ρ) to a
smaller number. Again, the duration and potency (as measured by the
reduction in tumor growth rate) determine patient outcome. By
default, the treatment duration for ICI and chemotherapy are two
years and six months, respectively.

Simulations of patient cohorts and parameter fitting
To generate heterogeneous patient populations, we draw each
patient’s growth rate parameter ρ from a log-normal distribution.
Depending on the parameter, the simulated patient’s tumor may clear
spontaneously; such results are discarded (rejection sampling). When
the tumor reaches the diagnosis threshold, we apply ICI, chemother-
apy, a combination of chemotherapy and ICI, or we leave the patient
untreated (i.e., a placebo treatment). Therefore, each patient cohort
(Fig. 3) is characterized by two to four parameters: mean and standard
deviation of the log tumor growth rate, immunotherapy treatment
effect size, and chemotherapy treatment effect size. These two to four
parameters can be fitted to a given dataset.

Due to the stochastic nature of our model, we used an approx-
imate Bayesian computation / sequential Monte Carlo (ABC-SMC)
algorithm72 to fit the parameters. As the test statistic for ABC-SMC, we
used the root mean squared difference (RMSD) between model-
predicted and data-estimated survival curves (i.e., Kaplan–Meier
curves) evaluated for each month in a 2-year time window upon
diagnosis. We set the sample size for generating the model-predicted
survival curve to the same number of patients that is contained in the
data being fitted. Figure 3 and Supplementary Fig. 1 show, for each
model, the simulation that achieved the lowest RMSD to the target
data during each ABC run.

We applied the ABC-SMC algorithm to all three patient cohorts
shown in Fig. 3. When examining the posterior distributions of the
parameters, we found that a wide range of chemotherapy effect values
achieved comparable RMSD values for each model – which is not
surprising, given that a higher baseline growth rate combined with a
higher chemotherapy effect leads to similar predicted tumorgrowthas
a lower baseline growth rate combined with a lower chemotherapy
effect. We, therefore, performed a further set of fits to the CA184-024
data where we kept the chemotherapy effect values fixed at 0.6 for M1
and M2 and at 0.75 for M3, respectively – values that were chosen to
obtain comparable and realistic impacts of chemotherapy on the
2-year OS curves (Fig. 5A), and were plausible given the posterior dis-
tributions. We then again fitted the remaining three parameters to the
CA184-024 data using ABC-SMC. By estimating the mode of the joint
posterior distributionusing kernel density smoothing,weobtained the
parameter values shown in Table 3.

Table 2 | Fixed parameter values used in our simulations

Parameter ρ δ ξ g hT αA hI mS pS αN αe δA pI β ϵ
M1 5 0.019 0.001 10000000 571 571 1 1 0.0025

M2 0.045 0.178 0.00000134 92330 60095000 2073.5 0.8318 0.231

M3 0.045 0.019 0.0000000001 10000000 2073.5 0.05 1.1 ⋅ 1012 10−12

All values except ρ are taken from previous work, and are kept constant in all simulations. The value of ρ is allowed to vary between simulated patients to account for heterogeneity, and the
distribution of ρ is fitted to real data. The values of ρ shown here were those used to generate Fig. 2.
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Simulating late-stage immunotherapy trials
Late-stage (i.e., phase III) clinical trials traditionally contain two arms: a
control arm and a treatment arm. The control arm can be a placebo
(i.e., untreated) or a standard-of-care therapy. To construct phase III in
silico immunotherapy trials, we extended the simulations with treat-
ment cohorts (mono-chemotherapy, mono-immunotherapy, che-
moimmunotherapy, or induction chemotherapy followed by
immunotherapy). These cohorts facilitate the comparison between
various treatment regimens. The treatment cohort uses the same
baseline distribution of tumor growth parameters as the control
cohort. Upon reaching the diagnosis threshold, up to two different
treatments are applied in each arm; patients can be treated with che-
motherapy, ICI, combination therapy, or left untreated (as described
above). Unless otherwise specified, the baseline distribution of tumor
growth parameters was derived from the most mature, digitized data
from the CA184-024 trial, as shown below35.

The primary endpoint of the trials is the 2-year OS. Given
the absence of accrual times in silico trials, the trial duration equals
two years, providing each virtual patient with 24 months of follow-up
at the time of analysis. If the OS endpoint is not reached for a patient
(i.e., the patient’s tumor burden does not reach the lethal volume
within the time frame of the simulated trial), the patient is considered
censored for the endpoint and regarded as such in subsequent
analyses.

Power and interim analysis simulations
To illustrate how the analysis method can affect the outcome of
immunotherapy trials, we use several simulation approaches to cal-
culate the power of trials. Power simulations were performed as fol-
lows: a varying number of clinical trials were simulated per data point.
The survival data from each trial was analyzed with a log-rank test
(dependent on the proportional hazard assumption) or proportions
test (Pearson’s chi-squared test; independent of the proportional
hazard assumption), and we counted the number of positive trials
(defined as p <0.05). The percentage of positive trials indicates the
power of the trial. A harmful trial is defined as a positive trial with an
effect size that favors untreated patients.

Data digitization & reconstruction
For some survival curves, the rawdata was not available. Therefore, we
extracted data points from the Kaplan–Meier curves with WebPlotDi-
gitizer 4.6 (https://apps.automeris.io/wpd/), and individual patient
data was reconstructed with the IPDfromKM package in R.

Analyses
Analyses and visualizationswere performed inR. The complete list of R
packages used throughout this manuscript is provided in Supple-
mentary Table 1. The R code used to perform all analyses is available at
https://github.com/jtextor/insilico-trials. For hazard estimates in
Fig. 4, Supplementary Fig. 2–4, B spline estimation as implemented in
the R package “bshazard” version 1.1 was used73.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All simulated data used to generate the figures is available at this
paper’s GitHub repository at https://github.com/jtextor/insilico-
trials74. The digitized survival curves from the CA184-024 trial35 and
theCheckMate066 trial36 are also available at the same repository. The
survival data of the NCCTG lung cancer cohort34 are available publicly
as part of the R package “survival” version 3.3-164 (and most other
versions of this package). Source data are provided with this paper.

Code availability
C++ code that implements models M1, M2 and M3, and an R package
thatwraps theC++ codeusing Rcpp75 is available at this paper’s GitHub
repository at https://github.com/jtextor/insilico-trials/models/
TumorImmuneModels/74. The R code used to perform all analyses
and generate all plots shown in this paper is also available at the same
repository74. An interactive, web-based implementation of ourmodels,
written in JavaScript and HTML, is available at the same repository and
directly accessible at https://computational-immunology.org/models/
immunotherapy-trials/.
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