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Damage dynamics and the role of chance in
the timing of E. coli cell death

Yifan Yang 1,2 , Omer Karin1, Avi Mayo 1, Xiaohu Song2, Peipei Chen 2,3,
Ana L. Santos2,4, Ariel B. Lindner 2 & Uri Alon 1

Genetically identical cells in the same stressful condition die at different times.
The origin of this stochasticity is unclear; it may arise from different initial
conditions that affect the time of demise, or from a stochastic damage accu-
mulation mechanism that erases the initial conditions and instead amplifies
noise to generate different lifespans. To address this requires measuring
damage dynamics in individual cells over the lifespan, but this has rarely been
achieved. Here, we used a microfluidic device to measure membrane damage
in 635 carbon-starved Escherichia coli cells at high temporal resolution.Wefind
that initial conditions of damage, size or cell-cycle phase do not explain most
of the lifespan variation. Instead, the data points to a stochastic mechanism in
which noise is amplified by a rising production of damage that saturates its
own removal. Surprisingly, the relative variation in damage drops with age:
cells becomemore similar to eachother in termsof relative damage, indicating
increasing determinism with age. Thus, chance erases initial conditions and
then gives way to increasingly deterministic dynamics that dominate the life-
span distribution.

Genetically identical organisms placed in the same conditions die at
different times1–5. This non-genetic variation is shared also by single-
celled organisms, such as starving Escherichia coli (E. coli)4 and aging
yeast6.

Twopossibilities have been raised tounderstand this stochasticity
of death times1,2,7,8. The first is that the initial states of individuals are
different and affect the eventual time of demise2,8. The second is that
initial conditions are rapidly erased by stochastic accumulation of
damage over time, and stochasticity further accumulates to cause the
different lifespans7. The nature of this stochastic accumulation is
unclear.

To understand the role of chance and initial conditions in the
timing of cell death, it is essential to measure overtime the damage
that causes death in individual cells. This, however, has rarely
been done.

Here we use carbon-starved E. coli in microfluidic chambers to
study the role of stochasticity and initial conditions in the time of cell

death. The cells have a risk of death that rises exponentiallywith age4,
known as the Gompertz law, which also characterizes mortality in
other microorganisms and animals9. We use the well-established
bacterial viability marker propidium iodide10 to measure membrane
damage in individual cells in the microfluidic device. We find that
initial conditions of damage or cell-cycle phase do not strongly cor-
relate with time of death. Instead, the data suggests a specific
mechanistic model for the stochastic dynamics of the damage that
causes death. In this model, damage-producing units such as unfol-
ded protein complexes rise at a constant rate and produce damage,
whose removal processes saturate at high damage levels. This
saturation amplifies noise and leads to different individual dynamics,
explaining the majority of variation in lifespan. Surprisingly, the
relative damage variation among cells drops with age, indicating that
stochasticity erases initial conditions, but then becomes less domi-
nant and damage dynamics becomes increasingly deterministic
with age.
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Results
E. coli damage dynamics in individual cells
We tracked individually starved E. coli cells by time-lapse microscopy
using a microfluidic system called the mother machine11 (Fig. 1a, Sup-
plementary Fig. 1, Supplementary Movie 1). Individual cells from the
same clone were loaded onto an array of dead-end micro-channels
(6μm long and 1.1μmhigh and wide) that open onto a main channel12.
The micro-channels exposed the individual cells to a homogenous
medium refreshed by flow in the main channel in which the cells were
starved for carbon.

The device prevented cells from interacting. This bypasses the
effects of feeding on the remains of perished cells that occur in batch
culture starvation which lead to an exponential survival curve with a
constant risk of death13 rather than the Gompertz law observed in the
microfluidic device4.

To allowdifferent initial cell-cycle phases and cell sizes, we loaded
the cells onto the chip from a culture in exponential growth. Thus,
some cells have recently divided whereas others are about to divide.
The chip was then thoroughly washed to eliminate traces of carbon
nutrient4.

To follow the physiological deterioration process of each cell, we
focused onmembrane integrity as an indicator of damage. Membrane
integrity is critical to a cell’s survival14–16 and is affected by many phy-
siological parameters, including pH, redox balance, energy metabo-
lism and translation fidelity17.

We measured membrane integrity with propidium iodide (PI), a
well-established non-toxic dye for bacterial viability4. PI becomes
fluorescent only when it penetrates the cell membrane and binds to
DNA. Due to its relatively large size and charge, PI cannot cross the
membrane when the membrane is functionally intact. We therefore
used the rate of PI uptake to quantify the integrity of bacterial mem-
branes (Fig. 1b). PI uptake rate was calculated from the image time-
series of each bacterium at resolution of 1 h (Methods). Experimental
noise of the fluorescence image time-series is estimated at about 6%
(Supplementary Fig. 2). PI-base viability in the assay compared well
with another viability stain which has a distinct, protein-based
mechanism (Supplementary Fig. 3).

According to the Arrhenius equation, PI uptake rate is inversely
proportional to the exponential of the potential barrier that the PI
molecule has to cross to enter the cell. We therefore definemembrane
damage X(t) as the log of the PI uptake rate normalized to the mean
uptake rate of the initial population (Methods). Cell death was deter-
mined by damage levels exceeding a threshold, Xc. The value of Xc is
determined by themaximalX(t) observed before cells reachpreviously
established lifespans4.

Cells survived for an average of 82 h (Fig. 1c), and showed an
exponentially rising risk of death (Fig. 1e), namely the Gompertz law4.
Cells rarely die in the first 40 h, and then begin to die more and more
frequently, leading to a sigmoidal survival curve. The relative variation
of death times was 24%, where 5% of the cells died by 42 h, and 95%
died by 106 h.

From the time-series of PI fluorescence we measured the damage
X(t) in 635 individual bacterial cells at 8 time points, which correspond
to 8 non-overlapping windows of 7 h each between 20h and
80h (Fig. 1b–d). We do not consider the initial 20 h period since it is a
time over which cells adapt to the starvation conditions in the device,
nor the data after 80 h since most cells are dead.

Initial damage and cell-cycle phase do not correlate with life-
span in most cells
We askedwhether initial conditions, namely the cell state when loaded
onto the chip, might explain the variations in lifespan (Fig. 2a). There
was a negative correlation between initial damage and lifespan
(Spearman r = −0.41, p < 0.001). This correlation was primarily due to a
subset of 3% of the cells that hadhigh initial damage (PI uptake rate >4,

compared to the mean uptake rate of 0.87 in the remaining cells).
These initially damaged cells had a short lifespan, averaging 48 h.

We therefore divided the cells into two populations, with initial
uptake rate above and below 4 (Fig. 2b, c), which we call the high
damage and low damage groups. The high damage group showed a
strong correlation between initial damage and lifespan (Spearman
r = −0.70, n = 17, p = 0.002). The low damage group, which comprised
97% of the cells, showed low correlation (Spearman r = −0.15,
n = 503, p = 0.001).

We also investigated the effect of cell-cycle phases by noting the
initial size of the cell and number and timing of reductive divisions on
the chip18.Wefind that cell size hasonlyweak correlationswith lifespan
(Spearman r = −0.09) (Fig. 2d), as did the time of last division (Spear-
man r = −0.11) (Fig. 2e) and number of divisions (Spearman r = −0.06).

Multiple regression shows that initial conditions explain a total of
27%of the variation for all cells, and 9%of the variation for themajority
- 97% of the cells - with low initial damage (Fig. 2f). We conclude that in
the traits measurable in this experiment, the initial conditions explain
only a minority of the variation in lifespan.

Damage dynamics rise and fall suggesting a stochastic
mechanism
We next sought to characterize the stochastic dynamics of damage,
defined as PI uptake rate, over time. Damage in each cell did not
accumulate monotonically. Instead, damage rose and fell in each cell,
with fluctuations larger than can be explained by experimental noise
(Fig. 1f). This indicates that damage is produced and removed on the
timescale of hours. These fluctuations occurred around a mean tra-
jectory that accelerated with age on the scale of tens of hours. This
suggests two timescales: in addition to the fast timescales of hours, a
slower timescale of tens of hours over which damage production and
removal rates change.

Notably, we find that cells become more similar in relative terms
as they age. Although the mean damage and its standard deviation
both rise with age (Fig. 3a, b, f), the standard deviation rises more
slowly than themean. As a result, the relative variation drops with age,
as measured by the coefficient of variation CV = SD/mean (Fig. 3c).
1/CV rose approximately linearly with age above 50 h.

The increasing relative similarity between cells with age is seen
also in the damage distributions at each timepoint. At early ages the
distribution is skewed to the right, but skewness reduces with age
(Fig. 3d), as the distribution becomes more symmetric. The long-
itudinal nature of the data allowed us to calculate the autocorrelation
of damage. Correlation time increased with age. This means that a cell
with damage above or below the population average remained so for
longer at old ages (Fig. 3e). Plotting damage as a function of remaining
lifetime shows that X = ln(normalized PI uptake) becomes less dis-
persed the closer the cell is to death (Fig. 3g).

These findings indicate that the damage dynamics has aspects
that become more deterministic with age.

Damage dynamics indicate a saturated-repair stochastic model
To elucidate the stochastic mechanism that can give rise to these
damage statistics, we modeled damage production and removal
with noise. We exploited the separation of timescales in the data,
namely the rapid fluctuations of damage around a slowly rising
mean trajectory. Therefore, we explored models in which damage
is produced and repaired quickly compared to the lifespan,
whereas the rates of damage production and removal change
slowly with age t. Damage removal and production were also
allowed to depend on the amount of damage to include the
possibility of feedback and saturation effects.

We use as a damage variable X = ln(normalized PI uptake)
to represent the loss of the free-energy barrier posed by the
membrane in units of kBT. We consider a general stochastic
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Fig. 1 | Damage dynamics in starving E. coli cells. a Individual E. coli cells were
placed in microfluidic channels with medium flow. Propidium iodide (PI) added to
the medium crosses the membrane and stains DNA when membrane integrity is
compromised.bMembrane damagewasmeasured by the temporal derivative of PI
fluorescence. Shown are, for two individual cells (red and cyan), the fluorescence
signals (top) andderivedPI uptake rates in7 h timewindows (bottom).cColormaps
of normalized fluorescence time-series (background and peak intensities normal-
ized to 0 and 1, colored as black to bright red), with individual cells ranked by
lifespan. d Colormaps of membrane damage computed from the PI rate of change,
with individual cells ranked by lifespan. Solid black line indicates time of death.
e Cumulative risk of death as a function of age shows an exponential regime.

Cumulative risk of death is defined as negative natural logarithm of survivorship
and is equal to the integral of the hazard function. The blue region corresponds to
95% confidence intervals. Death conditions are as previously defined4. f Cellular
damage fluctuates around a rising trajectory, subsampled to 7h time windows.
Trajectories are colored according to their time of death (red: after 84h; yellow:
between 77h and 84h; yellow-green: between 70h and 77 h; green, cyan… etc.).
Circles indicate the last timewindowbeforedeath. Data shownhere are the same as
those in (d). PI uptake rate is normalized so that the initial timepoints start close to 1
(see Methods). g PI uptake rate distributions and best-fit to a type-2 generalized
beta distribution with the ratio between shape parameters p/(p + q), plotted versus
age in (h), see Methods. Source data of (c–h) are provided in the Source Data file.
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model dX/dt = production − removal + noise, or mathematically
dX/dt =G(X,t) +

ffiffiffiffiffiffi
2σ

p
ξ , where ξ is white noise of amplitude σ.

To define theproduction and removal terms thatmake upG(X,t),
we used timescale separation, by assuming that at each time point
the damage distribution among cells P(X,t) is a steady-state solution
of the equation. The analytical solution for the steady-state
is P(X,t) = e−U(X,t)/σ, where U(X,t) is a potential function defined by
∂U/∂X = −G(X,t). This is analogous to the Boltzmann distribution in
statistical mechanics.

Using the measured distribution of damage at different time-
points, P(X,t), we estimated U, differentiated it to provide G(X,t) and
hence the production-removal terms in the model.

To facilitate this process, we characterized the experimental
damage distributions P(X,t) by comparing them to 15 commonly-used
distribution functions with 3–4 parameters (Supplementary Fig. 4,
Supplementary Data 1). The best fit for the PI uptake distribution was a
type-2 generalized beta distribution19 with shape parameters whose

ratio, p/(p + q), rises approximately linearly with age (Fig. 1h). The
stochastic process which gives rise to this distribution is (see
Methods):

dX
dt

= ηt � βf ðX Þ+
ffiffiffiffiffiffi
2σ

p
ξ ð1Þ

In this inferred mechanism (Fig. 4a) damage production rises
linearly with age as ηt, and damage removal is a saturating function of
damage, f Xð Þ= eaX

eaX + eaκ (Fig. 4b, c). The parameters are a production
slope η = ð5:1 ±0:3Þ× 10�3kBTh

�2 and removal parameters
a=0:33 ±0:02ðkBTÞ�1, β = 1:12 ±0:12kBTh

�1 and κ =0:29 ±0:07kBT
The white noise amplitude is σ =0:157 ±0:006ðkBTÞ2h�1.

Notably, thismodel is in the same class as the saturated repair (SR)
model established for aging inmice20, in the sense that the production
rate of damage rises linearly with age and damage inhibits or saturates
its own removal. The only difference is that themouse SRmodel used a
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Fig. 2 | Initial conditions do not account for most of the variations in lifespan.
a Initial damage levels (PI uptake rate) and lifespan of all cells in the experiment.
Yellow boxes indicate groups of cells with high and low initial damage, each shown
separately in (b, c). b For cells with high initial damage (PI uptake rate >4, n = 17
cells), initial damage correlates with lifespan. c For cells with low initial damage (<4,
n = 503 cells), the correlation between initial damage and lifespan is weak. d Initial

cell size and lifespan of all cells in the experiment. e Time of last division and
lifespan for all cells in the experiment. f Fraction of lifespan variation explained by
initial conditions according to multiple regression. Left are all cells, right are cells
with low (<4) initial damage. Blue lines and shaded regions inpanels (a–c) represent
linear regression lines and associated 95% confidence intervals respectively. Source
data are provided as a Source Data file.
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different saturating removal function, f(X) = X/(κ + X). Hence, we call
the model of Eq. (1) the membrane-potential-SR model or MP-SR
model. We note that the MP-SR removal function f Xð Þ= eaX

eaX + eaκ can be
interpreted as a two-state partition function that senses the loss of
membrane potential X.

TheMP-SRmodel captures the statistics of the observed PI uptake
dynamics (Fig. 4d–g). It shows a reduction in the relative variation,
CV = SD/mean (Fig. 4f), despite a super-linear rise in bothmean and SD
(Fig. 4d, e). The inverse CV, 1/CV, rises linearly with age as in the data.

Themodel also captures the reducing skewnesswith age (Fig. 4g).
Hence, the MP-SR model captures the dynamics of damage in the
experiment.

To compute the distribution of lifespans in the MP-SR model, we
modeled death as damage X exceeding a threshold Xc20. Death is
thereforemodeled as afirst-hitting-time of theMP-SRmodel, whichwe
computed numerically and analytically (Supplementary Information)
using Kramer’s approximation21,22. The model provides an exponential
increase in the risk of death that slows at very old ages, namely the
Gompertz law (Fig. 4h), and a Weibull-like sigmoidal survival curve
(Fig. 4i), as experimentally observed. This Gompertzian exponential
increase is due in the model to the linear rise in damage production,
which causes the potential U to drop linearly with time; since crossing
this barrier goes exponentially in U, the risk of death rises exponen-
tially with time.

The differences in lifespan between individuals in the inferred
stochastic mechanism is due to the fact that noise is effectively
amplified by the saturation of damage removal. The slope of produc-
tion minus removal becomes flat at old ages; fluctuations are not
pulled back strongly towards equilibrium by the effective potential U
(Fig. 4c). This is at the heart of how noise can generate different life-
spans for cells with identical physiological parameters.

We conclude that PI-uptake trajectories and their reducing rela-
tive variation are well-explained by an SR-typemodel in which damage
production (loss of membrane barrier function) rate rises linearly with
age whereas damage removal saturates.

The SR and MP-SR models make a further prediction that may be
called ‘shortening twilight’23,24. Twilight is the remaining lifespan after a
given damage threshold is crossed, and the model predicts that twi-
light shortens with age. This shortening twilight prediction is borne
out by the E. coli damage data (Supplementary Fig. 5).

Dynamics in a strain deleted for stress-response regulation
agrees with model predictions
We repeated the experiment with an E. coli strain deleted for a master
regulator of the stress response, RpoS25. Since this strain has reduced
stress response, the model makes specific predictions. Reduced stress
response should increase the rate of damage production η and/or
decrease the rate of damage removal β. These changes in parameters
are predicted to result in a shorter lifespan, higher Gompertz slope
and, to the extent that β is decreased, a shallower survival curve
(changes in η do not affect survival curve steepness20). The model
further predicts that damage mean and SD should be higher than the
wildtype strain whereas damage CV and skewness should be lower
than the wildtype strain.

We tested these predictions using damage measurements from
n = 141 ΔrpoS cells in themicrofluidic assay (Fig. 5a, b). The data agrees
with the model predictions. Lifetime was reduced by 54% (CI: 51–58%)
(Fig. 5a), and the Gompertz slope was higher by 56% (CI: 29–89%)
(Fig. 5c). The survival curve was only mildly shallower (Fig. 5d), indi-
cating that the parameter β was not strongly affected by the RpoS
deletion. Damage mean and SD were higher (Fig. 5e, f), and CV and
skewness were lower than the wildtype strain (Fig. 5g, h) as predicted.
The findings indicate that the main effect of the RpoS deletion is an
increase in the damage accumulation rate parameter η. The model
dynamics with increased η and capture the observed dynamics as
shown in Fig. 5i, l. We conclude that the model can explain damage
dynamics in a strain with reduced stress response.

Discussion
We studied the role of chance and initial conditions on lifespan by
measuring membrane damage over time in starved E. coli cells in a
microfluidic device. Initial conditions in each cell, such as initial
damage, cell size or cell-cycle phase, did not strongly correlate with
time of death in most cells. Instead, damage fluctuated in each cell
around a risingmean trajectory. Unexpectedly, the relative variation in
damage dropped with age. This indicates an increasing determinism
with age, where damage levels become more similar in relative terms
the older the cells are. Correlation times increased and distributions
became less skewed, further indicating rising determinism. Themodel
correctly predicted dynamics in an E. coli strain deleted for the stress
response regulator RpoS.

a b c

d e

Age

30 h
40 h
50 h
60 h
70 h

Remaining lifespan (h)

D
am

ag
e 

(P
I u

pt
ak

e 
ra

te
)

f

Damage (PI uptake rate)

Pr
ob

. D
en

si
ty

g
Sk

ew

Age (h)

C.
V.

Age (h)

M
ea

n

Age (h)

S.
D

.

Age (h)

Au
to

co
rr

el
at

io
n

Age (h)

Fig. 3 | Damage dynamics show increasing determinismwith age. Statistics of E.
colimembrane damage for all cells alive at a given age (n = 635 cells): Mean (a) and
standard deviation (b) increase with age; but coefficient of variation (c) decreases,
indicating reduced relative heterogeneity in the damage distribution. d Skewness
drops with age. e Autocorrelation of damage (Δt = 7 h) increases with age, showing

increasing persistence. All error bars indicate means +/− standard errors estimated
from bootstrapping. f Probability distribution of damage in younger (52.5 h blue
dashed line) versus older (72.5 h yellow solid line) cells. g Log PI uptake rate as a
functionof remaining lifespanbecomes less variable close todeath. Sourcedata are
in the Source Data file.
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We used our dynamical damage measurements to infer a sto-
chastic mechanism that provides the dynamics and survival curves. In
this mechanism, damage is produced at a rate that rises linearly with
age, and damage-removal saturates at high damage levels. We called
the mechanism the membrane-potential saturating repair (MP-SR)
model. The MP-SR model predicts well the effects on damage
dynamics of deleting the stress regulator RpoS. Our findings suggest
that chance fluctuations, amplified by saturating removal of damage,
play a major role in explaining why genetically identical bacterial cells
in the same conditions die at different times.

The damage dynamics measured here have statistical features
that differ from random walks and from most previously suggested
models of aging26–28. Themean rises faster than the standard deviation,
so that the relative heterogeneity between cells at a given age declines.
This can be quantitated as a drop in the coefficient of variation, CV =
SD/mean, such that 1/CV rises roughly linearly with age. This is an
unusual feature in stochastic processes in general, and in previous
theoreticalmodelsof aging includingnetworkmodels26,27, the Strehler-
Mildvanmodel28, the cascading failuremodel7, fixed frailtymodel8 and
Ornstein-Uhlenbeck type models which do not provide a drop in
damage CV with age.

The presentMP-SRmechanismhas twomain features that require
biological explanations. The first feature is the linear rise with age of
the damage production rate, ηt. This linear rise can be explained by
assuming that damage arises from ‘damage-producing units’, such as
unfolded-protein complexes, that are added at a constant rate and
cannot be resolved or removed29–35. If these complexes assimilate new

unfolded proteins at a constant rate, and cannot be removed, their
total mass should rise linearly with time. Such unfolded protein com-
plexes are known to be toxic to cells32; they cause damage such as
dysregulated proteostasis36, which can lead to membrane damage37,38.

Mathematically, if cells accumulate damage-producing units P at a
constant rate ν, and these units cannot be removed, their number rises
linearly with age, P = νt. Each unit produces damage at rate u, so that
total damage production rate rises linearly with time as ηt with η = νμ.

Organisms thatmanage to dilute such damage-producing units P,
such as organisms with indefinite growth, are predicted to have dif-
ferent damage dynamics, in which P does not rise indefinitely. Such
dilution occurs in growing and dividing bacterial cells32,33, but not in
the non-growing starved cells studied here. Other examples of damage
dilution may occur in eukaryotic cells with symmetric division such as
fission yeast; in contrast, budding yeast with asymmetric divisions
show aging and eventual death of the mother cell which retains
damage rather than passing it to daughter cells.

The second feature of the MP-SR model is the saturation of
damage removal, which is crucial for the present dynamical hallmarks.
The relevant removal mechanisms in E. coli include chaperones and
proteases36, as well as enzymatic systems that repair proton leakage39,
oxidative damage40 and maintain membrane structural integrity41.
Such enzymatic repair mechanisms should naturally saturate at high
damage levels.

The inferred stochastic mechanism in E. coli is similar to a
mechanism inferred in the context of mice aging by Karin et al. Karin
et al. used stochastic trajectories of senescent cells inmice, cells which
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Source data (both simulated trajectories and statistics) are provided in the Source
Data file.
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are growth arrested cells that cause inflammation, to infer a mechan-
ism for senescent-cell accumulation20. This mechanism, called the
saturating removal (SR) model, is a stochastic differential equation
with a production rate that rises linearly with age and a removal rate
that saturates, so that high senescent cell levels slow their own
removal. The removal terms in the SR and MP-SR models both satu-
rate; the difference between themmay stem from the type of damage:
X is senescent cell abundance in the SR model, an extensive variable,
whereas X is membrane integrity in the MP-SR model in units of
potential, which is intensive and can enter the dynamics in terms of
Boltzmann-like factors.

Karin et al. experimentally confirmed a prediction of the SR
model, that senescent cell turnover slowswith age20. The SRmodelwas
generalized to other forms of damage, and explains observations on
aging such as the Gompertz law, heterochronic parabiosis42, age-
relateddisease incidence inhumans43 and the scaling of survival curves
in C. elegans5,20. Interestingly, the human frailty index shows similar
dynamical features, including a reduction in CVwith age44. Both the SR
and MP-SR model provide shortening twilight24, in which remaining
lifespan after a threshold damage is crossed is reduced with the age.

The similarity between the present study on E. coli cells and the
model of Karin et al. of mammalian aging hints at a possible

Fig. 5 | Damage dynamics in a strain that has reduced stress response (ΔrpoS)
agree with model predictions. a Colormaps of normalized fluorescence time-
series ofΔrpoS cells (in the same style asFig. 1c), with individuals rankedby lifespan.
b Colormaps of estimated PI uptake rates of ΔrpoS cells ranked by lifespan.
c Cumulative hazard shows increased Gompertz slope. d Survivorship shows
reduced lifespan (inset), and survivorship versus normalized age shows a mildly
shallower survival curve. Solid lines and color bands in panels (c, d) indicatemeans

and 95% confidence intervals respectively. Measured damage statistics
(n = 141 cells) include (e) CV (f) mean, (g) SD and (h) skewness. Analytical results of
MP-SRmodel with increased η show similar dynamics for the (i) CV, (j)mean, (k) SD
and (l) Skewness. Error bars in panels (e–h) indicate means +/− standard errors
estimated from bootstrapping. Source data of (a–h) are provided in the Source
Data file.

Article https://doi.org/10.1038/s41467-023-37930-x

Nature Communications |         (2023) 14:2209 7



universality in mechanisms of aging, in which chance plays a large
role in the differing lifespans of genetically identical organisms.
Although themolecular forms of damage and lifespan timescales are
different between E. coli and mice, the features of linearly rising
production and saturating removal may be more general and give
rise to similar damage dynamics, with reducing relative hetero-
geneity with age.

It would be interesting to measure longitudinal damage trajec-
tories in other organisms to explore whether linear-production-and-
saturating-removalmodels might apply more generally. In the context
of bacteria, it would be important to explore the dynamics of damage
in cells challenged with antibiotics, in order to better understand the
role of chance in the function of these drugs.

Methods
Microfluidic chip fabrication
The negative master mould for the modified mother machines was
fabricated on top of silicon wafers in two steps. First, arrays of dead-
end channels (2000 × 6 μm long) were fabricated via electron-beam
lithography (EBL) in a specialized micro-fabrication facility. It was
necessary to use EBL for these channels due to the high precision
requirements for the cross-section dimensions (both height and
width have to be between 1.1 and 1.2 μm). They had to be large
enough to allow single cells to enter yet narrow enough so that
multiple cells could not be squeezed in the same channel. In the
second step, using standard photolithographymethods, the negative
mould for the main channel was overlaid perpendicular to the dead-
end channels. The main channel is 10mm long, 50μm wide and
10 μm deep.

For each run of the bacterial starvation experiment, microfluidic
chips were fabricated by casting PDMS structures out of negative
master moulds. Uncured PDMS mixes (RTV-615, Momentive Perfor-
manceMaterials) were poured to a thickness of 3mmonto the silicon
wafer carrying the master moulds, and then de-gassed under
vacuuming and spread out via gravity for 2 h. The PDMS was then
partially heat cured at 80 °C for an hour to form solid yet flexible
PDMS blocks with patterned surfaces. After drilling inlets and outlets
through the flow channel, the PDMS blocks were bound to cover
glasses suitable for microscopy, using oxygen plasma (90 s, 1000
mTorr). Lastly, the assemblies were cured fully at 80 °C overnight
and so that the PDMS structure was sealed permanently to the glass
cover slide.

On the day of the experiment, the microfluidic chip was again
treated by oxygen plasma for 90 s so that its surfaces were activated,
and then injected with 20% (v/v) polyethylene glycol 400 solution for
at least 1 h to prevent bacterial adhesion.

Material and equipment
During the process of media preparation, sterilization, cell culture and
fluidic infusion, we generally avoided disposable lab plasticware in
favor of glass or equipment whose wetted surfaces are coated with
fluoropolymer such as polytetrafluoroethylene (PTFE). This step
avoided a pitfall in which trace concentrations of carbon and energy-
rich chemicals leached into the media, such as phthalate plasticisers
commonly used in PVC tubings. Because in the mother machine we
subjected a relatively small number of cells (<10,000) to constantly
refreshing volumes (5 μl per hour) of media, such compounds can
serve as carbon sources and allow the cells to grow, circumventing the
goal of our experiments4. Medium was filter-sterilized (0.2μm) to
avoid contamination by volatiles during autoclaving, and glassware
was sterilized by dry heat.

Bacterial growth and loading
All culture media were filter-sterilized before use to remove dust
particles, which might otherwise block the microfluidic channels.

E. coli wildtype strain MG1655 with a chromosomal-inserted con-
stitutively CFP-expressing cassette (PrrnB2) was grown overnight
in M9 minimal media (supplemented by 2mM MgSO4, and 0.1 mM
CaCl2) at 37 °C with 40mM succinate as carbon source, and
diluted 250-fold into 50ml of the same media in 250ml Erlen-
meyer flasks. This subculture was grown to exponential phase
(OD600 ~0.1) at 37 °C and then transferred to glass centrifugation
tubes and harvested by centrifugation at 6000 g (Relative Cen-
trifugal Force) for 15 min. The bacterial pellet was resuspended,
washed with fresh carbon-free M9 media and centrifuged 3 more
times. The resulting pellet was resuspended a final time with 20 μl
M9 media. This final suspension was manually injected into the
main channel of the microfluidic chip, and forced into the dead-
end channels by centrifugation at 1000 rpm for 15 min. After
centrifugation, the main channel is washed thoroughly by carbon-
free M9 media to remove all cells that remain there.

Microfluidic and microscopy setup
After the microfluidic chip was loaded with cells, it was connected
to a linear, flow-controlled fluidic system driven by a high-
precision syringe pump (Harvard Apparatus PHD 2000 Pro-
grammable) and GC-grade glass/PTFE syringes (Hamilton Gaslight
1000 series). As mentioned above, PTFE tubing and glass syringes
are used to avoid leaching of plasticizers into the media. This is
critical for this type of microfluidic starvation experiments, as
E. coli are able to uptake as carbon sources the trace concentra-
tions of plasticizers in the media when it is constantly refreshed
by the microfluidic flow. The syringes are preloaded with filter-
sterilized M9 minimal media without carbon source, supple-
mented with propidium iodide (PI, 5 μg/ml). The chip was first
washed at 100 µl per hour for 30min and then the flow rate was
halved every 15 min to a final flow rate of 5 µl per hour. In the
meantime, the chip was mounted and stabilized onto the objec-
tive stage of an inverted microscope (Nikon ECLIPSE Ti2, 100× oil-
immersion objective, controlled with MetaMorph software) with
temperature controlled at 37 °C. Phase-contrast and fluorescence
(PI signal excitation, 546/12 nm; emission, 605/75 nm; CFP exci-
tation 436/20 nm; emission 480/40 nm) images were auto-
matically taken for up to 90 imaging positions every hour for up
to 120 h. Focus was maintained by the hardware-based Perfect
Focus System (PFS) from Nikon.

Image analysis
We used an image analysis method12 specifically designed for mother
machines, implemented as an ImageJ plugin (ImageJ 1.48 v, Java
1.6.0_65 32-bit). The regions in the time-lapse images of each dead-end
channel were detected and cut out of the image stacks and displayed
chronologically from left to right on the same image (Supplementary
Fig. 1b). Cells were segmented using theCFP (constitutively expressed)
fluorescent image. The segmentation approach was semi-automatic
and consisted of automatic segmentation, lineage assignment and
manual correction. First, the central region of the cells was detected
using statistical p-value thresholding, assuming that the observed
intensities are spatially distributed as Gaussian functions. Then these
central regions were used as seeds to add recursively neighboring
pointswith similar intensities to form labeled regions. The result of this
automatic process is an accurately segmented image with occasional
over segmentation errors. Then labeled regions from different time
points in the same dead-end channels were assigned together with
arrows to track the same cell through time. These automatically seg-
mented and tracked cells are then manually corrected to account for
over-segmentation errors and mis-assignment due to sudden move-
ments of the cells. For each segmented and tracked cell through time,
we used the segmented CFP contours to extract the average PI fluor-
escence signal.

Article https://doi.org/10.1038/s41467-023-37930-x

Nature Communications |         (2023) 14:2209 8



Measurements of membrane damage
Our general approach is to use the time derivative of fluorescence to
calculate the rate constant of PI uptake, which in turn is a proxy for
membrane damage.

We model the PI fluorescence time series with one slow and one
fast chemical reaction. The slow reaction is PI uptake PIext ! PIin with
rate constant r, and the fast reaction is PI binding to DNA once inside
the cell ½PI�in + ½DNA� () ½PI : DNA�, assumed reversible and at equi-
librium with equilibrium constant K, so that K ½DNA�½PI�in = ½PI : DNA�.

First, we focus on the rate of PI uptake. The Arrhenius equation
states that the logarithm of the rate constant scales linearly with acti-
vation energy, in this case, an energetic barrier representing the
integrity of the cell membrane. Thus, we defined membrane damage
X(t) as the reduction of this energy barrier compared to a healthy
baseline. X(t) has the unit of kBT, where T is the experimental tem-
perature 310 K and kB is the Boltzmann constant. We can choose the
unit appropriately, i.e. to be kBT, so that X(t) can be made unitless.
Under these definitions, the rate constant is r =A0e

X tð Þ, where T is the
experimental temperature 310K and kB is the Boltzmann constant.
Then the PI uptake rate is A0e

X tð Þð½PI�ext � ½PI�inÞ.
Having defined the relation between membrane damage and PI

uptake rate, our task is the estimation of the latter using fluorescence
time-series. Since PI only becomes fluorescent when bound to DNA,
average fluorescence intensity is proportional to the bound formof PI:
½Fluo�= JF ½PI : DNA�. Since the binding of PI to DNA is assumed to be at
equilibrium, we have ½PI : DNA�= ð½PI�in + ½PI : DNA�Þ K ½DNA�

1 +K ½DNA�. Thus, the
timederivativeoffluorescence should beproportional to the PI uptake
rate:

d½Fluo�
dt

=A0e
X tð Þð½PI�ext � ½PI�inÞ

JFK ½DNA�
1 +K ½DNA� : ð2Þ

To obtain relative fluorescence time-series we normalize
for each cell its fluorescence signal ½Fluo� by its observed
maximum ½Fluo�max = JFK ½DNA�½PI�ext . The relative time series is
thussðtÞ= ½Fluo�=½Fluo�max = ½PI�in=½PI�ext . Membrane damage can be
calculated from the experimentally observed relativefluorescence sðtÞ:

dsðtÞ
dt

=
d½Fluo�

dt
=½Fluo�max =

A0e
X ðtÞ

1 +K ½DNA� ½1� sðtÞ� ð3Þ

and thus we obtain the formula used in our analysis

A1e
X ðtÞ =

dsðtÞ=dt
1� sðtÞ , ð4Þ

where A1 =A0=ð1 +K ½DNA�Þ.
A1 is an Arrhenius-type pre-exponential factor with a unit of

inverse time. It is assumed to be constant, because DNA concentra-
tion should be constant among the non-growing cells in our experi-
ment. The value of A1 is not relevant to the dynamics of damage, thus
we used A1=1/600 so that initial timepoints start close to PI uptake
rates of 1.

Time-series analysis and numerical differentiation
The fluorescence series was zeroed by the background and then
divided by the maximum fluorescence for each cell to arrive at s(t)
defined above. To arrive at estimates for PI uptake rate, dsðtÞ=dt

1�sðtÞ , we
performed numerical differentiation of s(t) in a fashion that
reduces the impact of experimental noise. In the present time-
lapse microscopy experiments where single cells inside micro-
fluidic chambers are imaged, experimental noise is driven by
fluctuations in focus on the z-axis. This type of noise is approxi-
mately multiplicative and non-correlated in neighboring 1 h time
points (Supplementary Fig. 2). We therefore smoothed the log-

transformed data ln[s(t)] in time windows of 7 h with a Wiener
filter. Then dln[s(t)]/dt were estimated using linear regression in
non-overlapping 7 h windows. The resulting time derivatives are
multiplied by the s(t)/[1-s(t)] to arrive at A1e

X ðtÞ.
The typical values of X(t) during the lifetime of the bacteria begin

around 0.01Xc and rise to cross Xc = 50 at 80–100 h.

Marginal damage distributions. We searched for an analytical form
for the probability distribution function that can fit the damage dis-
tributions at various ages with age-dependent parameters. We tested
15 commonly used probability distributions. Each distribution has a
probability density function f(Z/b; Θ), where Z is the value of the ran-
dom variable, Θ is the vector for the shape parameters and b is the
scaling parameter. We fit this to the empirical damage distribution Zit

of cell i at age t, by maximizing the likelihood Σif ðZit=bt ;ΘtÞ as a
function of parameters bt ,Θt, using the scipy.stats package (version
1.7.3) of python. The goodness of fit was evaluated by the one-sample
Kolmogorov–Smirnov (K–S) test. The tested distributions, theK–S test
statistics and associated p-value are shown in Supplementary Data 1
and Supplementary Fig. 4.

The three distribution functions that best fit themarginal damage
distributions, Burr, Burr12 and Fisk, are all special cases of the gen-
eralizedbeta distributionof the secondkind (GB2)19, whoseprobability
density function is:

f GB2 Zð Þ=abaqZ
ap�1

ba + Za� ��p�q
=Betaðp,qÞ, ð5Þ

where p and q are dimensionless shape parameters, and a and b
describe the cooperativity and scale of the observed damage proxy Z,
the PI uptake rate. GB2 becomes a Burr (Burr Type III) distribution
when q = 1 and a Burr12 distribution when p = 1, and the Fisk distribu-
tion when p = q = 1. Since the damagewe seek is X = ln(Z), we transform
to obtain:

PðX Þ= f GB2ðZ ÞdZ=dX ∼ eapX ba + Za� ��p�q
: ð6Þ

Derivation of the MP-SR model
Wemodel the dynamicswith a stochastic differential equation (SDE) in
the form of

dX=dt =GðX , tÞ+
ffiffiffiffiffiffi
2σ

p
ξ =production� removal +

ffiffiffiffiffiffi
2σ

p
ξ , ð7Þ

where both production and removal rates of damage can depend on
damage level X and age t. We assume that the production and removal
of damage happen much faster than the age-related change in
parameters. Thus, we can make the approximation that the observed
damage distributions in the previous section are quasi-steady-state
distributions of the SDE. The quasi-steady-state distribution can be
written as the Boltzmann distribution PðX Þ∼ e�UðX ,tÞ=σ , where the
potential function U is defined by GðX ,tÞ= � ∂U=∂X .

Using the best-fit GB2 distribution P(X) of Eq. (6), we find the
potential up to an irrelevant constant:

UðX , tÞ= σ p+ qð Þln ba + eaX
� �� σapX : ð8Þ

The two terms of this potential function naturally relate to
damage production and removal terms. Thus, via differentiation
of U with respect to X we find: production= σap,removal =
σaðp+qÞeax=ðeax + eaκÞ. By redefining the GB2 parameters
b= eκ ,p= ηt

aσ,q=
βt�ηt
aσ , the MP-SR model for damage dynamics in E. coli

is given by:

dX=dt = ηt � βt
eaX

eaX + eaκ
+

ffiffiffiffiffiffi
2σ

p
ξ : ð9Þ
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The GB2 parameters that best fit the experimental data show that
p/(p + q) rises approximately linearly with time (Fig. 1h) and that b and
a remain approximately constant. We conclude that the observed
damage distributions are well-described by an SR-type process with
ηt =ηt and βt =β as in Eq. (1).

Fitting of the MP-SR model to the damage trajectories
In order to account for the uncertainty of biological age at the start of
the experiments, themodel used in fitting the data includes additional
constant damage production η0. The model equation is
dX
dt = η0 + ηt � β eaX

eaX + eaκ +
ffiffiffiffiffiffi
2σ

p
ξ . We seek the MP-SR model parameters

θ̂= ðη̂, β̂, σ̂, â, κ̂, η̂0Þ that maximize the likelihood of the observed
damage trajectories. For a given parameter vector of theMP-SRmodel
θ, the log-likelihood of the observing the experimental data under this
model can bewritten as LLðθÞ=ΣiΣjlnfP½ðtj,Xij

Þ∣ðtj�1,Xi j�1ð ÞÞ;θ�g, where
P½ðtj,Xij

Þ∣ðtj�1,Xiðj�1ÞÞ;θ� denotes the transition probability of cell i

fromobserved damageofXi(j-1) at age tj-1 toXij at age tj, given by theMP-
SR model with parameter θ. Our likelihood maximization algorithm
includes simulation-based likelihood calculations and an iterative
interval-halving parameter search strategy. At each iteration, in the
6-dimensional parameter space, we set up a grid of parameters at
which log-likelihoods are calculated. For each parameter θ and each of
the transitions given by the data (n = 6651), we estimate the transition
probabilities P½ðtj,Xij

Þ∣ðtj�1,Xiðj�1ÞÞ;θ� by simulating the MP-SR model

with parameter θ initiating from (tj−1, Xi(j−1)) to tj 1000 times using the
Mathematica (version 12) function “ItoProcess”, and estimate the
probability density at Xij by applying the function “Smooth-
KernelDistribution”. Log-likelihoods are estimated by summing the log
transition probabilities, and confidence intervals of log-likelihoods are
constructed by bootstrapping the cells. Comparing the log-likelihoods
across the parameter grid locates the region of parameter space for
the next search iteration. Convergence is reached when (1) optimal
parameters are located in the interior of the search grid; (2) log-
likelihood differences between the optimal parameter and neighbor-
ing alternatives are within confidence intervals. The estimated para-

meter θ̂ is the parameter that achieves the maximum log-likelihood
throughout all iterations. These simulation-based log-likelihood eva-
luations take a large amount of computing power and are done on a
computer cluster. Themaximum-likelihood parameters we located for

wildtype E. coli are η̂= ð5:1 ±0:3Þ× 10�3kBTh
�2, β̂= 1:12 ±0:12kBTh

�1,

σ̂ =0:157±0:006ðkBTÞ2h�1, â=0:33 ±0:02ðkBTÞ�1, κ̂ =0:29 ±0:07kBT

and η̂0 =0:36±0:05kBTh
�1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper, including the long-
itudinal time-series which are the main results of our experiments
and the primary data that all subsequent analysis and modeling
depends on. In addition, all data and statistics underlying
Figs. 1d–h, 2a–e, 3a–e, g, 4d–i, 5e–h, Supplementary Fig. 4 in are
included in the Source Data file. All other data are available from
the corresponding authors upon request. Source data are pro-
vided with this paper.

Code availability
Custom codes written in Python 3.7 and Mathematica 12 for analysis,
statistics and modeling can be found in the following link: https://
github.com/y1fanyang/coliDamageDynamics. Image analysis data can
also be found in this link.
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