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Immune cellular patterns of distribution
affect outcomes of patients with non-small
cell lung cancer

Edwin Roger Parra 1 , Jiexin Zhang 2, Mei Jiang1, Auriole Tamegnon1,
Renganayaki Krishna Pandurengan1, Carmen Behrens2, Luisa Solis 1,
Cara Haymaker 1, John Victor Heymach 3, Cesar Moran 4, Jack J. Lee 5,
Don Gibbons 3,6 & Ignacio Ivan Wistuba1,3

Studying the cellular geographic distribution in non-small cell lung cancer is
essential to understand the roles of cell populations in this type of tumor. In
this study, we characterize the spatial cellular distribution of immune cell
populations using 23 makers placed in five multiplex immunofluorescence
panels and their associations with clinicopathologic variables and outcomes.
Our results demonstrate two cellular distribution patterns—an unmixed pat-
tern mostly related to immunoprotective cells and a mixed pattern mostly
related to immunosuppressive cells. Distance analysis shows that T-cells
expressing immune checkpoints are closer to malignant cells than other cells.
Combining the cellular distribution patterns with cellular distances, we can
identify four groups related to inflamed and not-inflamed tumors. Cellular
distribution patterns and distance are associated with survival in univariate
and multivariable analyses. Spatial distribution is a tool to better understand
the tumor microenvironment, predict outcomes, and may can help select
therapeutic interventions.

Despite recent advances in chemotherapy and immunotherapy, lung
cancer, particularly non-small cell lung cancer (NSCLC), remains oneof
the most commonly diagnosed malignancies and often has poor
overall outcomes1. Several analyses of NSCLC patients showed that
adjuvant chemotherapy improved 5-year overall survival (OS) rates by
only 5.4%2. Another meta-analysis of 1154 patients with stage II-III
NSCLC showed that neoadjuvant chemotherapy with surgery was
superior to surgery alone but had no benefit compared with adjuvant
chemotherapy3. Moreover, the clinical effects of adjuvant tyrosine
kinase inhibitors or anaplastic lymphoma kinase inhibitors in NSCLC
remain limited4. Antibodies targeting immune checkpoints5 in NSCLC
were recently shown to have a survival benefit6,7, improving 5-year OS

rates in 20% of unselected patients and up to 40% of patients with high
PD-L1 expression8. However, despite these promising results, a sub-
stantial proportion of patients receiving these treatments exhibited
disease progression9.

Studying the interaction between malignant cells and tumor-
associated immune cells (TAICs) using spatial distribution is essential
to identify possible factors of tumor progression, relapse, or out-
comes. This has been demonstrated not only in NSCLC10 but also in
other tumor types, such as breast cancer11 and colon cancer12. Malig-
nant cells can utilize various pathways to avoid immune
surveillance13,14, and identifying such mechanisms of progression can
help identify potential new targeting strategies for lung cancer
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immunotherapy15. Spatial mapping characterization of the immune
can be related to prognostic indicators16, associated with the dys-
functional signature observed inmelanoma tumors17, or interfere with
other immune cells’ activation, maturation, and intratumoral
distribution18. In addition, immune cell regulation19 and distribution
can facilitate other cell inhibitors’ action in the tumor20, including a
pro-tumorigenicmicroenvironment that can resist treatment21. On the
other hand, the proximity of cytotoxic T-cells to tumor cells22 and the
densities of those cells can benefit outcomes23,24.

The current study aimed to characterize the cellular composition
of NSCLC and examine the spatial distribution of cell populations in
NSCLC using multiplex immunofluorescence (mIF) panels. We also
analyzed associations between cellular spatial distribution and clin-
icopathologic features and molecular profiles of NSCLC.

In the current study, we perform tumor immunoprofiling using 23
markers placed in five mIF panels staining on a cohort of NSCLC.
Overall, we identify two patterns of cellular distribution—mixed and
unmixed—related to T-cells, B-cells, macrophages, and PMNs as the
primary cell phenotypes. Immune cellular distribution patterns and
distance between malignant cells and various cell phenotypes show
different associations with clinicopathologic characteristics, including
smoking status, tumor size, final tumor stage, and mutational status.
We further leverage Kaplan–Meier survival curves and Cox propor-
tional hazards models showing that densities, distribution patterns,

and distances from malignant cells to different cell phenotypes are
also associated with outcomes. Finally, we can identify four groups of
cellular immunologic patterns associated with cellular phenotype
densities and outcomes according to the Cox proportional hazards
regression model.

Results
We analyzed expression of 23markers, including CK, CD3, CD8, CD68,
GZB, CD45RO, FOXP3, PD-1, PD-L1, B7-H3, B7-H4, IDO-1, VISTA, ICOS,
LAG3, OX40, TIM3, CD20, Arg-1, CD11b, CD14, CD66b, and CD33,
placed in five mIF panels. We identified different cell phenotypes by
marker co-expression, as shown in Fig. 1. Cordplot visualizationhelped
to show the inter-relationships between markers and the co-
expression of the markers together as well as by individual panel
(Fig. 1, Supplementary Fig. 1). Dimension reduction plots were used to
help visualize and identify the different cell phenotypes detected in
each mIF panel based on marker co-expression (Fig. 2).

Co-expression of immune checkpoint molecules on malig-
nant cells
The inter-relationships between markers through cord plots and
UMAP showed that multiple immune checkpoints are expressed
simultaneously bymalignant cells and TAICs.We found that PD-L1, B7-
H3, B7-H4, and IDO-1 immune checkpoints were expressed by
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Fig. 1 | Representative examples of multispectral images from non-small cell
lung cancer tissue microarray specimens, with their chord diagram of the
markers. Composite spectral mixing images from multiplex immunofluorescence
(mIF; 20×magnification, scale bars represent 50 µmoneach image) is shown for (A)
panel 1: cytokeratin (CK), CD3, CD8, PD-1, PD-L1, and CD68; (B) panel 2: CK, CD3,
CD8, CD45RO, granzyme B (GZB), and FOXP3; (C) panel 3: CK, CD3, PD-L1, B7-H3,
B7-H4, IDO-1; and VISTA; (D) panel 4: CK, CD3, ICOS, LAG3, OX40, TIM3, and CD20;
(E) panel 5: CK, Arg-1, CD11b, CD14, CD33, CD66b, and CD68. F Chord diagram

visualization showing the diversity of inter-relationships between markers’ co-
expression, including all the markers in the five mIF panels. Data from 225 samples
was used. Experiments and quantifications related to the presented results were
conducted once. The images were generated using Vectra-Polaris 1.0.13 scanner
system and InForm 2.4.8 image analysis software (Akoya Biosciences). The chord
diagram was generated using all tumor cores from all mIF panels by R studio
software version 3.6.1. (Source data is provided as a source data file).
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malignant cells, in various densities (Fig. 2, Supplementary Fig. 1). In
addition, our dataset captured some other cell populations less fre-
quently observed, such as malignant cells expressing OX40 and other
combinations of immune checkpoints (Fig. 2), which would be
expected to escape from the phenotypes listed in Supplementary
Table 1. A total of 14 malignant cell phenotypes were observed using

panel 2. This illustrates the heterogeneity of marker co-expression,
suggesting that several pathways may be activated in the malignant
cells as part of their escape from immune surveillance. Overall, the
cellular densities of the most frequently observed checkpoint mole-
cules were higher inmalignant cells from SCC than in those fromADC.
The most predominant immune checkpoint expressed in malignant
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cells from ADC and SCC was B7-H3 (median, 307.79 cells/mm2),
followed by PD-L1 (median, 77.265 cells/mm2), OX40 (median 25.38
cells/mm2), B7-H4 (median, 19.17 cells/mm2), and IDO-1 (median, 7.08
cells/mm2), and significantly higher densities of B7-H3 and B7-H4 were
observed inSCC than inADC (P <0.001 forboth immune checkpoints),
whereas significantly higher densities of IDO-1 were observed in ADC
than in SCC (P =0.015; Supplementary Table 2).

Characterization of T-cell and B-cell populations
Themost commonT-cell and B-cell subpopulation densities are shown
in Supplementary Table 2 and Supplementary Fig. 1. Although we
observed high amounts of classic T-cells and B-cells, such as CD3 +
CD8 + cytotoxic T-cells (median, 136.51 cells/mm2), CD3 +CD45RO+
memory T-cells (median, 57.39 cells/mm2), CD3 +CD8 +CD45RO+
cytotoxic memory T-cells (median, 25.44 cells/mm2), and CD20 +B-
cells (median, 80.07 cells/mm2),we also observed substantial densities
of suppressive T-cells such as CD3 +CD8negFOXP3 + regulatory T-cells
(median, 24.10 cells/mm2), as well as T-cells and B-cells expressing
other suppressivemarkers. Overall, we observed high densities of cells
expressing PD-1 (median, 39.53 cells/mm2) and PD-L1 (median, 41.935
cells/mm2), as well as CD3 + LAG3+ (median, 229.81 cells/mm2),
CD3 + ICOS + (median, 36.19 cells/mm2), CD3 +OX40+ (median, 12.07
cells/mm2), CD3 +B7-H3 + (median, 8.86 cells/mm2), and CD3 +
TIM3+ cells (median, 6.64 cells/mm2). We also observed high quan-
tities of B-cells expressing ICOS (median, 7.44 cells/mm2), OX40
(median, 4.72 cells/mm2), and LAG3 (median, 31.10 cells/mm2).
Checkpoints IDO-1 and VISTA in T-cells and TIM3 in B-cells were
observed in low densities. Other T and B subcellular populations were
identified using co-expression of the markers across panels, as shown
in Fig. 2, illustrating the variability of T-cell and B-cell phenotypes in
NSCLC, in particular with checkpoint inhibitors. In addition, a total of
48 T-cell and B-cells phenotypes were detected using panels 1, 2, 3, and
4. In ADC specimens (compared with SCC specimens), we observed
significantly higher densities of CD3 +CD8 + cytotoxic T-cells, CD3 +
CD45RO+memory T-cells, CD3 +CD8 +CD45RO+ cytotoxic memory
T-cells, CD3 + IDO-1 + T-cells, and CD3+ TIM3+ cells. However, very
low densities of CD3 + PD-L1 + cells were observed overall; this cell
phenotype was present at higher densities in SCC than in ADC (Sup-
plementary Table 2, Supplementary Fig. 1).

Macrophages and Myeloid-Derived Suppressor Cell (MDSC)
phenotypes
Eleven myeloid cell populations, including tumor-associated macro-
phages (TAMs), type II TAMs, and MDSCs, were observed in panel 5
(Fig. 2). High densities of CD68 +TAMs (median, 318.32 cells/mm2),
CD68 +CD11b +myeloid dendritic cells (median, 231.11 cells/mm2),
CD66b + PMNs (median, 83.79 cells/mm2), CD66b +CD11b + immature
PMNs (median, 33.58 cells/mm2), and CD11b + CD66b+CD33 +
granulocytic myeloid-derived suppressor cells (MDSC-PMNs; median,
11.44 cells/mm2) were predominantly observed in this NSCLC cohort,
suggesting an important myeloid-suppressive component in these
tumors. Other myeloid cells such as CD68 + Arg-1+ type II TAMs,
CD68 +Arg-1 + CD11b + immature type II TAMs, and CD11b +Arg-
1 + CD14 + CD33 +monocytic MDSCs were observed, but in very low
densities (Supplementary Table 2). Significantly higher densities of
CD68 +CD11b +myeloid dendritic cells, as well as CD66b + PMNs and

CD11b + CD66b + immature PMNs, were observed in SCC than in ADC
(Supplementary Fig. 1, Supplementary Table 2).

Patterns of cellular distribution in the tumormicroenvironment
After comparing the empirically derived G function curves from T-
cells, B-cells, PMNs, and macrophages (as critical markers) with the
theoretical Poisson function curve, we identified two patterns of
distribution: mixed or heterogeneous (score ranging from −10 to 10;
Fig. 3A) and unmixed or clustering (score >10; Fig. 3B), independent
of histologic type (ADC or SCC). To avoid bias in this analysis, we
used only the most abundant cell phenotypes (i.e., median >2 cells/
mm2) to identify these patterns. We found that 12 of 26 expected cell
phenotypes had a predominantmixed pattern (Fig. 3 C-D, examples),
and 13 had a dominant unmixed pattern (Figure E, example) in both
ADC and SCC (Table 1). Only CD3 + CD45RO + FOXP3 +memory reg-
ulatory T-cells showed significantly different patterns between ADC
and SCC (i.e., mixed pattern in ADC and unmixed in SCC; Table 1). In
addition, we identified two groups of cell phenotypes using this
approach: cells in direct contact with malignant cells (suppressive
T-cells andMDSC-PMNs) showing amixed pattern, and cells with less
contact with malignant cells (including macrophages, suppressor
macrophages, cytotoxic T-cells, andmemory T-cells; Fig. 3F) showing
an unmixed pattern. This suggests that in most tumor micro-
environments, immunosuppressive cell populations have the most
direct contact with malignant cells but are present in lower densities
than other types of cells. Interestingly, most cases showed CD20 + B-
cells in a mixed pattern, suggesting no activation of these cells into
tertiary lymphoid structures (TLS)where theB-cells are distributed in
clusters.

Cellular spatial distances of TAICs from malignant cells in the
tumor microenvironment
Using the median nearest neighbor distance from malignant cells to
various primary TAICs, we observed that in NSCLC, the median dis-
tance from malignant cells to CD3 + T-cells was 36.46 µm; to
CD20 + B-cells, 104.61 µm; to CD68 +macrophages, 42.24 µm; and to
CD66b + PMNs, 87.24 µm(Table 2).We characterized the distances of
subfamilies inside these median radii as close to malignant cells and
those outside these median radii as far from malignant cells. The
distances of 26 cell phenotypes were measured and analyzed to
malignant cells and malignant cells expressing checkpoint markers.
Using this dichotomy, we observed that T-cells expressing inhibitory
checkpoint markers, such as PD-L1 and B7-H3, which are abundant
T-cell phenotypes, were relatively close tomalignant cells expressing
checkpoint inhibitors PD-L1, B7-H3, B7-H4, IDO-1, and OX40 (Sup-
plementary Table 3). CD3 + PD-L1 + cells were observed next to B7-
H4 +malignant cells (median, 26.67 µm) and IDO-1+ malignant cells
(median, 24.07 µm). Although the median distance of CD68 +
macrophages from malignant cells was 42.24 µm, CD68 +
macrophages and PD-L1 +macrophages were closer to PD-L1neg

malignant cells (median, 12.90 µmand 51.89 µm, respectively) than to
PD-L1 +malignant cells (median, 42.31 µm and 119.71 µm, respec-
tively), suggesting that inhibitory signals are closer to PD-L1neg

malignant cells than to PD-L1 +malignant cells.
Additionally, upon examining the radii from malignant cells

to other distinct TAIC phenotypes, we observed that CD3 +CD8 +

Fig. 2 | Representative examples ofmultispectral images anduniformmanifold
approximation and projection (UMAP) to identify cell types from non-small
cell lung cancer tissue. Composite spectral mixing images from multiplex
immunofluorescence (mIF; 20× magnification, scale bars represent 50 µm on each
image) showing coloredmarker co-expression for (A) panel 1, (C) panel 2, (E) panel
3, (G) panel 4, and (I) panel 5. Color-coded UMAP visualizations show cell types
identified by mIF panels: (B) 13 major cell types identified in panel 1, (D) 14 major

cell types identified in panel 2, (F) 27 major cell types identified in panel 3, (H) 25
major cell types identified inpanel 4, and (J) 12major cell types identified in panel 5.
Data from 225 samples was used. Experiments and quantifications related to the
presented results were conducted once. mIF images were generated using Vectra-
Polaris 1.0.13 scanner system and InForm 2.4.8 image analysis software (Akoya
Biosciences), andUMAP visualizationsweregenerated using themarkers fromeach
mIF panel by Python v.3.8.9. (Source data is provided as a source data file).
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cytotoxic T-cell, CD3 +CD45RO+memory T-cell, CD3 +
CD8negFOXP3 + regulatory T-cell, B-cell, and myeloid cell subpopula-
tions were located relatively far from the overall malignant cells
compared with the other cell populations described below, as shown
in the heat map in Fig. 3G. CD3 +CD8negFOXP3 + regulatory T-cells
were close to CD3 +CD8+ cytotoxic T-cells (median, 26.73 µm),
CD3 +CD45RO+memory T-cells (median, 40.83 µm), and CD3 +
CD8 +CD45RO+ cytotoxic memory T-cells (median, 43.05 µm), sug-
gesting a possible inhibitory action from this T-cell phenotype to
cytotoxic and memory T-cells (Supplementary Table 2). Furthermore,
we observed that cytotoxic T-cells, memory T-cells, cytotoxic memory
T-cells, regulatory T-cells, and effector memory T-cells were sig-
nificantly closer to malignant cells in ADC than in SCC. In contrast, a
considerably closer distance frommalignant cells to T-cells expressing
LAG3, OX40, and TIM3 and B-cells expressing OX40 and LAG3 was
observed in SCC compared with ADC.

Cellular immunologic distribution landscape
By combining the cellular distribution patterns with the median dis-
tances of TAICs from malignant cells, we identified four cellular
immunologic distribution groups for each cell phenotype study across
the panels:

Group 1. Mixed pattern with close median distances to the
malignant cells

Group 2. Mixed pattern with long median distances to the
malignant cells

Group 3. Unmixed pattern with close median distances to the
malignant cells

Group 4. Unmixed pattern with long median distances to the
malignant cells

Given that CD3 +T-cells were the predominant cell population in
the tumormicroenvironment and across the panels, we observed that
group4 (unmixed patternwith longmedian distances to themalignant
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Fig. 3 | Nearest neighbor distance G function and theoretical Poisson curve
score graphs showing different cellular patterns of distance from cytoker-
atin + cells (malignant cells) to CD3+T-cells, and heat map representing dis-
tance patterns by histologic type. A, B Representative example of the scoring
system across tissue specimens and threshold to be considered part of the mixed
(A) or unmixed (B) pattern. Graphs represent the scoring system (left), point pat-
tern distributions related to the major T-cell population (middle), and G function
and theoretical Poisson curve area (right). Composite spectral mixing images from
multiplex immunofluorescence (mIF; 20× magnification, scale bars represent
50 µm on each image) showing a representative image of mixed pattern of mac-
rophages PD-L1 expression (C) and PD-1+ antigen experience T-cells (D), in the
bottom inside detail of the pattern (mIF; 40× magnification, scale bars represent
20 µm on each image). Unmixed pattern of CD8 + cytotoxic T-cells (E) and in their
bottom inside detail of the pattern (mIF; 40× magnification, scale bars represent
20 µmon each image). FModel interaction based on the G function and theoretical

Poisson curve score shows two groups of interaction between themost critical cell
phenotypesobserved andmalignant cells. Cell phenotypeswith a scoreof−10 to 10
were characterized as having a mixed/heterogeneous pattern indicating more
interaction with malignant cells, and cell phenotypes with a score of >10 were
characterized as having an unmixed/clustering pattern indicating less interaction
with malignant cells. G Median distance heat map representing the 27 most com-
mon tumor-associated immune cells near malignant cells (CK + ) across the multi-
plex immunofluorescence panels in adenocarcinomas (ADCs = 142 samples) and
squamous cell carcinomas (SCCs = 83), data from 225 samples was used. Experi-
ments and quantifications related to the presented results were conducted once.
Graphs and heat map were generated using R studio software version 3.6.1. mIF
images were generated using Vectra-Polaris 1.0.13 scanner system and InForm 2.4.8
image analysis software (Akoya Biosciences). (Source data is provided as a source
data file).
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cells) was the predominant group, which was observed in 36.8% of the
NSCLC specimens; followed by group 2 (mixed pattern with long
median distances to malignant cells), which was observed in 30.6% of
the specimens; group 1 (mixed pattern with close median distances to
the malignant cells), observed in 23.6% of the specimens; and finally
group 3 (unmixed pattern with close median distances to the malig-
nant cells), observed in 9.0% of the specimens. Furthermore, we
characterized the cellular phenotype densities related to these
groups (Table 3). We found that group 2 contained the highest cellular
densities of CD3 +T-cells, CD3 +CD8 + cytotoxic T-cells, CD3 +CD8 +
GZB + activated cytotoxic T-cells, and CD3 +CD45RO+memory
T-cells. However, we also observed higher densities of CD3 +
CD8negFOXP3 + regulatory T-cells, CD3 +CD45RO+ FOXP3 +
regulatory/memory T-cells, CD3 + PD-1+ antigen-experienced T-cells,
and CD3 +CD8 + PD-1+ antigen-experienced cytotoxic T-cells in group
2 than in other groups, suggesting that group 2 represents inflamed
tumors containing a diversity of cell phenotypes, both immunopro-
tective and immunosuppressive.

Furthermore, the predominant immune checkpoint expressed
by malignant cells in group 2 was IDO-1. In contrast, group 4, the

most predominant group in our cohort, showed significantly lower
densities of the cell phenotypes described in group 2. The highest
densities of malignant cells expressing B7-H3, B7-H4, and PD-L1
were observed in group 4, suggesting that group 4 represents “cold”
tumors driven by the inhibitory checkpoint markers expressed by
malignant cells. Group 1 and group 3 had cellular densities falling in
between those observed in groups 2 and 4; group 3 was the
least commonly observed pattern in our cohort. Group 1 had
higher expression of PD-L1 by malignant cells than did group 3,
and group 3 had higher expression of B7-H3 by malignant cells than
did group 1.

Association of cellular distribution patterns and spatial metrics
of TAICs with clinical variables
To study associations between clinical variables and cellular pat-
terns of distribution and spatial cellular distances from malignant
cells, we used the comparison of the G function curve with the
theoretical Poisson curve (26 patterns of cell phenotypes) and the
median distance from malignant cells to various cell phenotypes
(128 distances).

Table 1 | Patterns of cellular distribution according to histologic type (n = 225)

Panel Phenotype Pattern of malignant cellsa P†

NSCLC Adenocarcinoma Squamous cell carcinoma

1 CD3 + 27.96 25.05 38.86 0.942

CD3 +CD8 + 25.81 24.03 31.92 0.902

CD3 + PD-1+ 16.53 12.17 23.92 0.132

CD3 + PD-L1 + 20.19 19.45 22.64 0.386

CD3 +CD8 + PD-1+ 3.20 2.89 4.79 0.996

CD3 +CD8 + PD-L1 + 11.07 10.82 13.02 0.769

CD68 + 17.50 15.55 21.86 0.334

CD68 + PD-L1 + 9.33 8.10 9.81 0.889

2 CD3 + 27.30 22.98 37.84 0.933

CD3 +CD8 + 29.88 27.20 37.36 0.644

CD3 +CD8 +GZB + 0.36 0.04 0.89 0.372

CD3 +CD45RO+ 35.84 30.14 48.40 0.933

CD3 +CD8 +CD45RO+ 31.10 25.35 41.40 0.294

CD3 +CD8negFOXP3 + 29.55 26.75 37.41 0.428

CD3 +CD45RO+ FOXP3 + 24.30 8.92 14.80 <0.001

3 CD3 + 29.14 28.38 32.00 0.260

CD3 + B7-H3 + 26.49 25.31 28.83 0.816

CD3 + PD-L1 + 30.27 28.75 32.32 0.230

4 CD3 + 21.00 20.33 28.00 0.633

CD3 + ICOS + 12.00 11.59 14.00 0.647

CD3 + LAG3+ 22.30 19.03 29.50 0.633

CD3 +OX40+ 6.35 4.84 9.50 0.232

CD3 + TIM3 + 4.07 5.22 3.00 0.261

CD20+ 6.05 4.14 9.00 0.314

CD20+ ICOS + 4.11 2.15 7.00 0.342

CD20+OX40 + 3.00 2.82 3.50 0.954

CD20+ LAG3 + 10.89 8.95 15.50 0.280

5 CD68 + 19.64 17.31 24.76 0.884

CD68 +CD11b + 21.84 18.95 26.81 0.365

CD66b + 3.54 2.13 6.32 0.186

CD11b +CD66b + 4.00 2.54 8.50 0.720

CD11b +CD66b +CD33 + 3.00 1.96 6.00 0.113

Note: NSCLC, non-small cell lung cancer. For determining the patterns of distribution, 26 relevant cell phenotypes with densities >2 cell/mm2 were considered in the analysis according to NSCLC
and histologic types, totalizing 78 results. In addition, the data was used to correlate with clinicopathologic variables.
aA score of −10 to 10 indicates a mixed pattern, and a score >10 indicates an unmixed pattern.
† P-values indicate comparison between adenocarcinoma and squamous cell carcinoma using Kruskal-Wallis test and un-adjusted P-values.
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Cellular patterns of distribution in ADC specimens from patients
whowere smokers revealed a significantmixedpatternof CD3 + T-cells
compared with specimens from patients who were nonsmokers.
In contrast, a significant unmixed pattern of CD3 +CD8 +
CD45RO+ cytotoxic memory T-cells was observed in specimens from
smokers comparedwith nonsmokers (Fig. 4A). Comparedwith smaller
tumors (≤3.15 cm; themedian within the groupwas used as a cutoff for
tumor size comparisons), ADC tumors >3.15 cm showed a significant
mixed pattern of CD3 + PD-L1 + cells (Fig. 4B). ADC KRAS-mutant
tumors showed a significant mixed pattern of CD68 + PD-L1 + cells
compared with wild-type tumors (Fig. 4C). In SCC, tumors >3.8 cm
showed a significant unmixed pattern of CD11b +CD66b +
CD33+MDSC-PMNs compared with tumors ≤3.8 cm (Fig. 4D).

In ADC specimens from smokers, using the distance analysis, we
observed a significant close median distance from malignant cells to
suppressive TAIC phenotypes such as PD-L1 + T-cells, CD3 +CD8 +
cytotoxic T-cells expressing PD-L1,macrophages expressing PD-L1, and
ICOS +B-cells compared with nonsmokers. In ADC specimens from
nonsmokers, CD3 +CD8negFOXP3 + regulatory T-cells were located
significantly close tomalignant cells, close to CD3 +CD8+ cytotoxic T-

cells, and close to CD3 +CD45RO+memory T-cells than non-
smokers (Fig. 5A).

Among ADC specimens, tumors ≤3.15 cm showed CD3 + CD8 +
cytotoxic T-cells, CD3 + CD8 + CD45RO + FOXP3 + cytotoxic memory
T-cells, CD3 + CD8negFOXP3 + regulatory T-cells, CD3 + CD45RO +
memory regulatory T-cells, B-cells, and LAG3 + B-cells located sig-
nificantly closer tomalignant cells than in the larger tumors (Fig. 5B).
Significantly close distances from PD-L1 +macrophages to cytotoxic
CD3 + CD8 + T-cells were observed in stage II and III specimens
compared with stage I specimens. Moreover, significantly close dis-
tances from CD3 + CD8negFOXP3 + regulatory T-cells to cytotoxic
CD3 + CD8 + T-cells were observed in stage I and III compared with
stage II ADC specimens (Fig. 5C).

EGFR-mutant tumors had significantly closer distances from
CD3 + PD-1+PD-L1 + T-cells to malignant cells and from CD3 +CD8neg

FOXP3 + regulatory T-cells to CD3 +CD8 +GZB + activated cytotoxic
T-cells than did wild-type tumors in ADC (Fig. 5D).

In SCC, tumors larger than the median (>3.8 cm) showed sig-
nificantly closer distances from malignant cells to macrophages than
did smaller tumors (Fig. 5E).

Table 2 | Median distances from malignant cells for various cell phenotypes according to histologic type (n = 225)

Panel Phenotype Median distance from malignant cells, µm P*

NSCLC Adenocarcinoma Squamous cell carcinoma

1 CD3 + 29.28 26.88 38.38 0.002

CD3 +CD8 + 59.66 58.62 61.36 0.003

CD3 + PD-1+ 104.31 113.53 99.03 0.181

CD3 + PD-L1 + 105.56 105.02 105.56 0.870

CD3 +CD8 + PD-1 220.89 245.71 203.72 0.163

CD3 +CD8 + PD-L1 + 218.69 218.69 216.45 0.551

CD68 + 42.01 44.52 37.57 0.168

CD68 + PD-L1 + 113.40 111.04 113.41 0.778

2 CD3 + 30.42 27.66 42.28 <0.001

CD3 +CD8 + 60.40 54.07 78.40 <0.001

CD3 +CD8 +GZB + 240.62 243.26 238.91 0.576

CD3 +CD45RO+ 91.15 75.96 125.49 <0.001

CD3 +CD8 +CD45RO+ 140.69 114.36 186.28 0.001

CD3 +CD8negFOXP3 + 135.08 121.99 147.59 0.002

CD3 +CD45RO+ FOXP3 + 252.20 221.84 281.49 0.013

3 CD3 + 28.44 22.55 48.79 <0.001

CD3 + B7-H3 + 57.52 191.96 48.42 0.154

CD3 + PD-L1 + 125.09 135.49 115.57 0.203

4 CD3 + 36.46 29.56 43.22 0.023

CD3 + ICOS + 105.15 113.21 102.80 0.362

CD3 + LAG3 + 46.46 53.22 39.56 0.023

CD3 +OX40 + 201.04 233.01 184.20 0.019

CD3 + TIM3 + 256.75 295.88 230.01 0.007

CD20 + 104.61 118.82 91.79 0.060

CD20 + ICOS+ 257.72 277.59 232.22 0.084

CD20 +OX40 + 305.35 353.03 266.19 0.041

CD20 + TIM3 + 448.24 453.10 444.30 0.436

5 CD68 + 42.24 43.05 40.60 0.513

CD68 +CD11b + 51.81 51.13 52.30 0.613

CD66b+ 87.24 87.98 85.22 0.385

CD11b +CD66b+ 133.49 121.79 141.08 0.358

CD11b +CD66b+CD33 + 214.99 199.89 217.28 0.864

Note: NSCLC, non-small cell lung cancer. For determining the median distances, 26 relevant cell phenotypes with densities >2 cell/mm2 were considered in the analysis according to NSCLC and
histologic types, totalizing 78 results. In addition, the data was used to correlate with clinicopathologic variables.
*P-values indicate comparison between adenocarcinoma and squamous cell carcinoma using Kruskal-Wallis test and un-adjusted P-values.
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Associations between cellular patterns or distances and patient
outcomes
We next examined whether cellular distribution patterns of 26 TAICs
(Fig. 6A) or TAIC distances from malignant cells (Fig. 6B) were asso-
ciated with patient outcomes. Univariate analysis of cellular distribu-
tion patterns showed that the unmixed pattern of CD66b + PMNs was
associatedwithworseOS thanmixed patterns inADC (Fig. 6C). In SCC,
the mixed pattern in CD3 + PD-L1 + T-cells and CD3+CD8 +
GZB + activated cytotoxic T-cells was associated with better RFS than
theunmixedpattern (Supplementary Fig. 2A, B). ThemultivariableCox
proportional hazards model adjusted for histologic type, smoking
status, tumor size, KRASmutation status, and EGFRmutation status, as
shown in Supplementary Table 4, showed that patients with large
tumors (>3.8 cm), a KRASmutation, and a mixed CD3 + TIM3+ pattern
had worse OS than patients with tumors ≤1.5 cm, wild-type KRAS, and
an unmixed CD3 +TIM3 + pattern.

Using distances frommalignant cells to TAICs (Fig. 6B), univariate
analysis in our cohort showed that long distances of CD66b + PMNs
frommalignant cells in ADC was associated with better RFS than close

distances (Supplementary Fig. 2C). In SCC, long distances from
CD3 + PD-L1 + T-cells to malignant cells and close distances from
CD3 + ICOS +T-cells tomalignant cells were associatedwith better RFS
(Supplementary Fig. 2D, E). Furthermore, close distances from CD3 +
CD8 + cytotoxic T-cells, CD3 +CD8 +GZB + activated cytotoxic T-cells,
and CD68 +macrophages to malignant cells were associated with
better OS than long distances in ADC (Fig. 6D–F). In contrast, close
distances from CD3 +B7-H3 + T-cells to malignant cells were asso-
ciated with worse OS than long distances (Fig. 6G).

As shown in Supplementary Table 5, the Cox regression model
showed that ADC (compared with SCC), tumor size <1.5 cm, wild-type
KRAS, and closedistances frommalignant cells to overall CD3 + T-cells,
CD3 +CD8 +GZB + activated cytotoxic T-cells, CD3 +CD8 +
CD45RO+memory cytotoxic T-cells, and overall CD20 +B-cells were
associated with better OS. In addition, close distances frommalignant
cells to CD3 + PD-1 + , CD3 + PD-L1 + , CD3 + TIM3+ , CD3 + ICOS + , and
CD66b +CD11b + cells, observed in low densities in our cohort, were
also associated with better OS in the multivariable analysis. Factors
associated with worse OS included nonsmoker status, wild-type EGFR

Table 3 | Cell phenotype densities according the cellular immunologic distribution based on CD3 + T-cells in non-small cell
lung cancer (n = 225)

Phenotype 

Cellular immunologic distribution, cells/mm2 
P* Group 1 Group 2 Group 3 Group 4 

CK+ 2175.17 2055.61 2613.41 2633.56 0.229 

CK+PD-L1+ 109.72 94.18 99.80 136.66 0.039 
CK+B7-H3+ 215.08 172.92 492.08 508.67 0.004 
CK+B7-H4+ 10.06 1.60 0.00 13.82 0.051 
CK+IDO-1+ 16.79 41.86 1.76 5.99 0.049 
CK+OX40+ 29.65 27.09 52.35 20.63 0.597 

CD3+ 686.90 711.40 533.86 390.05 0.000 
CD3+CD8+ 131.30 202.77 117.19 98.01 0.000 
CD3+CD8+GZB+ 6.43 9.95 3.59 4.25 0.015 
CD3+CD45RO+ 92.81 153.95 57.41 43.69 0.000 
CD3+CD8+CD45RO+ 43.67 79.21 22.05 15.41 0.000 
CD3+CD8negFOXP3+ 16.84 35.99 20.05 25.34 0.018 
CD3+CD45RO+FOXP3+ 2.74 10.89 5.64 3.22 0.000 
CD3+PD-1+ 45.73 87.37 87.48 39.85 0.001 
CD3+CD8+PD-1+ 5.93 12.43 3.03 5.27 0.001 
CD3+PD-L1+ 55.76 76.63 54.91 38.72 0.032 
CD3+CD8+PD-L1+ 7.11 13.34 10.30 8.26 0.062 
CD3+PD-1+PD-L1+ 3.02 4.24 1.51 2.89 0.231 

CD3+B7-H3+ 6.32 13.25 15.22 4.46 0.475 

CD3+ICOS+ 42.13 39.97 30.10 29.22 0.715 

CD3+LAG3+ 287.44 282.12 166.21 169.76 0.065 
CD3+OX40+ 11.49 17.03 26.18 8.27 0.060 
CD3+TIM3+ 5.06 9.95 5.52 4.73 0.114 

CD20+ 98.02 114.67 19.71 59.69 0.278 

CD20+ICOS+ 9.73 8.41 2.62 6.68 0.512 

CD20+LAG3+ 25.90 48.29 14.62 28.62 0.285 

CD20+OX40+ 6.82 7.47 2.21 2.59 0.066 
CD68+ 315.81 375.91 321.90 293.16 0.852 

CD68+PD-L1+ 40.72 49.28 53.77 39.46 0.849 

CD68+CD11b+ 223.13 219.89 150.65 243.73 0.692 

CD66b+ 59.47 75.22 150.84 99.29 0.158 

CD66b+CD11b+ 30.90 28.25 36.87 37.35 0.142 

CD11b+CD66b+CD33+ 11.29 9.09 23.40 11.77 0.298 

Note: * Boldface indicates statistically significant difference using Kruskal–Wallis 1-way ANOVA test with un-adjusted P-values between groups. A total of 33 cell phenotypes are showing across the
four different cellular immunologic distribution groups. Variations of color from red (inflamed) to blue (Cold) indicate variations of median densities of different cell phenotypes from high to low
densities among the groups.

 

Inflamed Cold 
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mutation, and close distance from malignant cells to CD3 +
CD8negFOXP3 + regulatory T-cells, CD3 +CD45RO+ FOXP3 +memory/
regulatory T-cells, CD3 +CD8 + cytotoxic T-cells expressing PD-L1,
CD3 + T-cells expressing OX40+ , LAG3 + cells, and CD68 +

macrophages expressing PD-L1. Furthermore, we included cellular
densities from selected T-cell phenotypes, the patterns of distribution,
and distances relative to malignant cells in a multivariate analysis, as
shown in Table 4. This analysis revealed the lowest densities of overall
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Fig. 5 | Violin plots showing the significant associations between distances of
immune cell populations frommalignant cells and clinicopathologic features.
Significant differences in distance between malignant cells and immune cells are
shown by (A) smoker status, (B) tumor size, (C) final stage, and (D) mutation status
in lung adenocarcinoma (n = 142) specimens. E Significant differences in distances
between malignant cells and immune cells by tumor size are shown for lung
squamous cell carcinoma (n = 83) specimens. Violin plots showing the median bar

value, lower adjacent value and outside points. Kruskal-Wallis test was used in A to
E comparisons between groups. Data from 225 samples was used. Graphs were
generated using GraphPad Prism v.9.0.0 using the 128 measurements from
malignant cells to different tumor-associated immune cells (TAICs) and between
important TAICs and the relevant clinicopathologic information using un-adjusted
P-values. (Source data is provided as a source data file).
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Fig. 4 | Violin plots showing associations between patterns of immune cell
distribution and clinicopathologic features. Significant cellular distribution
scoring patterns between immune cells and malignant cells are shown by (A)
smoker status, (B) tumor size, and (C) KRAS mutation status for lung adenocarci-
noma (n = 142) specimens. D Significant cellular distribution scoring patterns
between malignant cells and immune cells are shown by tumor size for lung

squamous cell carcinoma (n = 83) specimens. Violin plots showing the median bar
value, lower adjacent value and outside points. Kruskal–Wallis test was used in
A–D comparisons between groups. Data from 225 samples was used. Graphs were
generated using GraphPad Prism v.9.0.0 using the 26 cell phenotypes distribution
patterns and the relevant clinicopathologic information usingun-adjusted P-values.
(Source data is provided as a source data file).
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T-cell CD3 + , cytotoxic T-cells CD3 +CD8 + , cytotoxic antigen-
experienced T-cells CD3 +CD8 + PD-1 + , and T-cell expression
PD-L1; and mixed pattern of memory T-cells CD3 +CD45RO+ and
T-cells antigen-experienced PD-L1 + , and closed distances to malig-
nant cells of regulatory T-cells CD3 +CD8negFOXP3 + , memory/reg-
ulatory T-cells CD3 +CD45RO+ FOXP3 + , and T-cells expressing PD-L1
as factors associated to worse OS. In contrast, patients with smaller
tumors ≤1.5 cm, lowest densities of memory/regulatory T-cells CD3 +
CD45RO+ FOXP3 + and antigen T-cells antigen-experienced PD-L1 + ,
and mixed pater of overall T-cells CD3 + , and close distances of

activated cytotoxic T-cells CD3 +CD8 +GZB+ relatively to the malig-
nant cells as factors associated with better survival. We also examined
the effects of the four groups of cellular immunologic distribution,
combining cellular patterns of TAIC distribution with TAIC distances
from malignant cells, on patient outcomes, adjusted for clin-
icopathologic characteristics (Supplementary Table 6). The Cox pro-
portional hazards regression model adjusted for histologic type,
smoking status, tumor size, KRAS mutation status, and EGFR
mutation status showed that factors associated with better OS inclu-
ded nonsmoker status, wild-type EGFR, and CD3 +T-cells and CD3 +

B

D

GFE

Mixed Pattern Unmixed Pattern Close Distance Long Distance
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Immune cell

A C
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Immune cell

20µm20µm20µm20µm

Fig. 6 | Kaplan–Meier analysis of overall survival (OS) by cellular patterns of
distribution and distance from malignant cells to various immune cell sub-
populations. A Composite spectral mixing images from a detail of multiplex
immunofluorescence (mIF; 40× magnification scale bars represent 50 µm on each
image) and illustration of the two different patterns of distribution, mixed and
unmixed. B Composite spectral mixing images from a detail of multiplex immu-
nofluorescence (mIF; 40×magnification, scale bars represent 50 µmoneach image)
and illustration of the distance metrics from malignant cells to different immune
cells. (C–G) Kaplan-Meier OS curves. Red lines indicate mixed pattern or close
(≤median) distances betweenmalignant cells and various cell phenotypes, and blue
lines indicate unmixed pattern or long (>median) distances between malignant
cells and various cell phenotypes. C Patients with CD66b+ granulocytes (PMNs)

with a mixed pattern had better OS than those with an unmixed pattern in lung
adenocarcinoma specimens. Close (≤median) distances frommalignant cells to (D)
CD3+CD8 + cytotoxic T-cells, (E) CD3 +CD8+GZB+ activated cytotoxic T-cells,
and (F) CD68 +macrophages and long (>median) distances frommalignant cells to
B7-H3+ T-cells were associated with better OS in lung adenocarcinoma specimens
using un-adjusted P-values. Data from 225 samples was used. Experiments and
quantifications related to the presented results were conducted once. The images
were generated using the Vectra-Polaris 1.0.13 scanner system and InForm 2.4.8
image analysis software (Akoya Biosciences), and Kaplan–Meier curves and log-
rank test were used and generated by the R studio software version 3.6.0. using the
distributionpatterns anddistances from the 26-cell phenotypeswith un-adjusted P-
values. (Source data is provided as a source data file).
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CD8 +CD45RO+ cytotoxic/memory T-cells in anunmixed patternwith
close median distances to malignant cells (group 3). In contrast,
CD3 +CD8negFOXP3 + unmixed pattern with closemedian distances to
malignant cells (group 3) and mixed pattern with long median

distances to malignant cells (group 2) and CD3 + PD-1+PD-L1 +
unmixedpatternwith closemediandistances tomalignant cells (group
3) were associated with worse OS, suggesting that the pattern of dis-
tribution and distance to malignant cells can influence survival.

Table 4 | Cox proportional hazards regressionmodel of overall survival in patients with non-small cell lung cancer compared
high and low densities, close with long distances and mixed with unmixed pattern relative to malignant cells, adjusted for
clinicopathologic variables

Variable B SE Wald HR 95% CI for Exp(B) P*

Histologic type (ADC vs SCC) −1.103 1.081 1.042 0.332 0.040–2.759 0.307

Smoker (no vs yes) 1.702 1.938 .772 5.485 0.123–244.607 0.380

Tumor size (≤1.5 cm vs >3.8 cm) −2.328 0.854 7.432 0.098 0.018–0.520 0.006

KRAS (wild-type vs mutant) 1.452 0.981 2.191 4.273 0.625–29.231 0.139

EGFR (wild-type vs mutant) −1.411 1.207 1.367 .244 0.023–2.597 0.242

Low vs high densities

CD3 + 3.377 0.996 11.506 29.289 4.161–206.159 0.001

CD3 +CD8 + 2.882 1.126 6.545 17.847 1.962–162.338 0.011

CD3 +CD8 +GZB + 0.524 1.296 0.164 1.689 0.133–21.429 0.686

CD3 +CD45RO + −2.725 1.669 2.665 0.066 0.002–1.727 0.103

CD3 +CD8 +CD45RO+ 0.644 1.288 0.250 1.905 0.153–23.766 0.617

CD3 +CD8negFOXP3 + 0.913 0.670 1.854 2.491 0.670–9.268 0.173

CD3 +CD45RO + FOXP3 + −4.203 1.485 8.008 0.015 0.001–0.275 0.005

CD3 + PD-1+ −0.142 0.798 0.032 0.868 0.182–4.143 0.859

CD3 +CD8 + PD-1+ 4.311 1.405 9.414 74.550 4.746–1170.936 0.002

CD3 + PD-L1 + 8.036 1.729 21.612 3090.038 104.373–91482.972 0.000

CD3 +CD8 + PD-L1 + 0.486 1.224 0.157 1.625 0.148–17.880 0.692

CD3 + PD-1+PD-L1 + −3.646 1.074 11.519 0.026 0.003–0.214 0.001

Mixed vs unmixed pattern

CD3 + −3.073 1.124 7.471 0.046 0.005–0.419 0.006

CD3 +CD8 + 0.995 1.241 .643 2.704 0.238–30.771 0.423

CD3 +CD8 +GZB + −0.593 .800 .551 .552 0.115–2.648 0.458

CD3 +CD45RO + 3.454 1.152 8.990 31.623 3.307–302.378 0.003

CD3 +CD8 +CD45RO+ 0.526 1.196 0.193 1.692 0.162–17.628 0.660

CD3 +CD8negFOXP3 + 7.917 61.229 0.017 2743.024 0.000–3.601E + 55 0.897

CD3 +CD45RO + FOXP3 + −1.087 0.844 1.661 0.337 0.065–1.761 0.197

CD3 + PD-1+ −1.861 1.136 2.683 0.155 0.017–1.442 0.101

CD3 +CD8 + PD-1+ 1.004 0.775 1.679 2.729 0.598–12.464 0.195

CD3 + PD-L1 + −.508 1.065 0.228 0.602 0.075–4.855 0.633

CD3 +CD8 + PD-L1 + 1.288 1.139 1.279 3.624 0.389–33.763 0.258

CD3 + PD-1+PD-L1 + 3.291 1.346 5.976 26.874 1.920–376.094 0.014

Close vs long distance from malignant cells

CD3 + −0.174 1.009 0.030 0.840 0.116–6.071 0.863

CD3 +CD8 + −1.376 1.253 1.206 0.253 0.022–2.945 0.272

CD3 +CD8 +GZB + −2.967 1.383 4.604 .051 0.003–0.773 0.032

CD3 +CD45RO + −1.248 1.281 0.949 0.287 0.023–3.537 0.330

CD3 +CD8 +CD45RO+ 1.043 1.273 0.672 2.839 0.234–34.388 0.412

CD3 +CD8negFOXP3 + 2.446 1.018 5.773 11.538 1.569–84.822 0.016

CD3 +CD45RO + FOXP3 + 3.032 1.150 6.956 20.735 2.179–197.331 0.008

CD3 + PD-1+ 1.461 1.100 1.763 4.311 0.499–37.260 0.184

CD3 +CD8 + PD-1+ 1.754 1.012 3.007 5.778 0.796–41.956 0.083

CD3 + PD-L1 + 5.445 1.706 10.188 231.550 8.178–6556.148 0.001

CD3 +CD8 + PD-L1 + 2.316 1.920 1.455 10.134 0.235–436.512 0.228

CD3 + PD-1+PD-L1 + −2.021 1.354 2.229 0.132 0.009–1.882 0.135

Note: B unstandardized regression weight, SE multiple linear regression, Wald Wald test, HR hazard ratio, CI confidence interval, ADC adenocarcinoma, SCC squamous cell carcinoma, GZB
granzyme B.
*Boldface indicates statistically significant difference using Cox proportional-hazards model with un-adjusted P-values for clinicopathologic variables.
The table shows the analysis of densities, and pattern of cellular distribution and distances relative tomalignant cells to the 12 relevant cell phenotypes of themultiplex immunofluorescence panels
adjusted by clinicopathologic features.
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Discussion
In the current study, we analyzed a TMA set containing tumor speci-
mens obtained from a large cohort of patients with stage I-III NSCLC
using 23 markers, including T-cell, B-cell, immune checkpoint, and
myeloid cell markers, placed in 5 mIF panels. Cord plots and UMAP
plots based on marker co-expression showed the diversity of cell
phenotypes across different panels inNSCLC.We found thatmalignant
cells expressing B7-H3 were most commonly observed, followed by
malignant cells expressing PD-L1, OX40, B7-H4, and IDO-1. These
checkpoints have adverse regulatory functions over T
lymphocytes25–28. Other immune checkpoints observed in our cohort,
such as OX40 and ICOS, have co-stimulatory signals for T-cell activa-
tion in normal and pathologic conditions29–31. Cord plots and UMAP
plots showed that various TAICs and malignant cells could express
these checkpoints reinforce our preliminary results using individual
markers in a similar cohort32,33. Although it was thought for a long time
that OX40 expression was restricted to activated conventional T-cells,
other TAICs, including malignant cells, have since been shown to
express this marker34, as was also shown in our preliminary report16.

Overall, we observed higher densities of immune checkpoint
markers in SCC than in ADC, particularly PD-L1, B7-H3, and B7-H4,
showing that these immune checkpoints are predominantly expressed
in solid tumors35, creating a more immunosuppressive microenviron-
ment. It is clear that in NSCLC, these immune checkpoint pathways are
expressed simultaneously and are an essential mechanism of immune
resistance against T-cell response36,37. Our findings in the current study
confirm our previous findings16,33 showing that malignant cells could
express more than one checkpoint marker simultaneously, indicating
that lung tumors can usemore than one pathway to avoid the immune
system38,39. Immune checkpoints are essential regulators of the
immune system, initiating a productive immune response, preventing
the onset of autoimmunity, or using tumors to avoid the immune
system40. In agreement with other studies31, our results show that
TAICs and malignant cells essentially drive these suppressive path-
ways. This knowledge of simultaneous co-expression can guide the
study of rational combinations of agents for potential new therapeutic
approaches.

Although we observed predominantly CD3 +CD8 + cytotoxic T-
cells, CD3 +CD45RO+memory T-cells, CD3 +CD8 +CD45RO+
cytotoxicmemoryT-cells, and CD20 +B-cells in the NSCLC specimens,
we also confirmed that TAICs express co-inhibitory and co-stimulatory
signatures, including PD-1, LAG3, TIM3, FOXP3, ICOS, and OX40, in
higher amounts in SCC than in ADC, as previously reported by our
group32,33. Similarly, we observed that CD68 +macrophages, CD68 +
CD11b +myeloid dendritic cells, and CD66b + PMNs are more pre-
dominant in SCC than in ADC. These observations suggest that various
immunosuppressive and immunoprotective cells are present in these
tumors, possibly reflecting the relation of these cells to other factors
such as smoking status, tumor size, mutational status, or chronic
obstructive pulmonary disease and their impact on patient survival,
which were previously shown by our group and others32,33,41. Although
myeloid cell phenotypes such as CD68 +Arg-1+ type II macrophages,
CD68 +Arg-1 + CD11b + type II immature TAMs, CD66b +CD11b +
immature PMNs, Arg-1 + CD33 +CD14 +CD11b +monocytic MDSCs,
and CD33+CD66b+CD11b +MDSC-PMNs were detected in low
densities, these were also present, playing their immunosuppressive
roles42.

Although we identified several immune signatures across the
panels in the current study and described densities association with
clinicopathologic information using the same cohort, in previous
studies32,33, we focused this time on the spatial relationships between
tumor and immune cells and between immune cells, which may pro-
vide insight into prognostic indicators as previously described16. In the
current study, we thus identified mixed and unmixed cellular dis-
tribution patterns, likely related to the dysfunctional signature

observed in melanoma tumor tissues17. We also observed two groups
of cells in relation to malignant cells: an immunosuppressive group,
which has a predominant mixed pattern indicating close interaction
with malignant cells, and an immunoprotective group, which had an
unmixed pattern with apparently less interaction with malignant cells.
The immunoprotective group included CD3 +CD8 + cytotoxic T-cells,
CD3 +CD8 +CD45RO+ cytotoxic memory T-cells, and CD3 +
CD45RO+memory T-cells. We observed in our study that overall
CD68 +macrophages have a predominant unmixed pattern. On the
other hand, CD20 +B-cells showed, in most cases, a mixed pattern,
infiltrating throughout the tumor but not forming organized networks
or structured as TLS, suggesting a deficiency in orchestrating the
activation, maturation, and intratumoral distribution of other immune
cells18.

Analysis of nearest neighbor median distance from malignant
cells showed that CD3 + T-cells and CD68 +macrophages were closer
to malignant cells than were CD20 +B-cells and CD66b+ PMNs.
Although CD3 +CD8 + cytotoxic T-cells were among the most abun-
dant cells, showing higher densities compared with the other cell
phenotypes, in both ADC and SCC specimens, not many of these cells
were close to malignant cells. In contrast, T-cells expressing PD-L1, B7-
H3, B7-H4, IDO-1, and OX40, which were less abundant, were located
close to the malignant cells, suggesting that the distance from malig-
nant cells and pattern of distribution, rather than the density of these
cells, play a critical role in cancer. Although CD3 +CD45RO+memory
T-cells, CD3 +CD8negFOXP3 + regulatory T-cells, B-cells, and most
myeloid cells were located relatively far from malignant cells com-
pared with the other T-cell inhibitors, CD3 +CD8negFOXP3 + regulatory
T-cells play a solid immunosuppressive role in the tumor environment
by releasing inhibitory cytokines19, facilitating the action of other cell
inhibitors. Cellular distribution patterns and cellular distances are not
frequently studied and are not very well understood, but these pat-
terns can give us essential information about tumor tissue biological
processes related to different tumor characteristics20.

The association of cellular distribution patterns with clin-
icopathologic features can help us better understand the biological
behavior of tumors. For example, we observed that ADC specimens
from smokers overall had a mixed pattern of distribution of overall
CD3 + T cells and an unmixed pattern of CD3 +CD8 +
CD45RO+ effectormemoryT-cells. The largestADC tumors showedan
unmixed pattern of CD3 + PD-L1 + cells. In ADC KRAS-mutant tumors,
we observed a mixed pattern of CD68+ PD-L1 + cells. In SCC, we
observed changes in cellular distribution patterns predominantly in
MDSC populations, which showed a mixed pattern of CD11b +
CD66b +CD33+ cells in smaller tumors. Spatial metrics showed that
ADC specimens from smokers have close median distances from
malignant cells to PD-L1 + T-cells and CD3 +CD8+ cytotoxic T-cells
expressing PD-L1. This can be interpreted as tobacco’s immunosup-
pressive effect on the tumor microenvironment35. In contrast, ADC
specimens from nonsmokers showed that CD3 +CD8negFOXP3 +
regulatory T-cells were relatively close to malignant cells and, most
importantly, CD3 +CD8 + cytotoxic T-cells and CD3 +CD45RO+
memory T-cells were also close to malignant cells, suggesting a dif-
ferent spatial arrangement andmaybe inhibitorymechanism than that
observed in tumors from smokers. Small tumors in ADCwere enriched
in inhibitory signals; in particular, CD3 +CD8negFOXP3 + regulatory T-
cells, CD3 +CD45RO+ FOXP3 +memory regulatory T-cells, IDO-1 + T-
cells, IDO-1 + B-cells, and LAG3+B-cells were relatively close to the
malignant cells compared with the distances observed in larger
tumors. In SCC, large tumors showed closer distances frommalignant
cells toCD68 +macrophages and IDO-1 + T-cells thandid small tumors.
In addition, stage I and III ADCs showed closer proximity of CD3 +
CD8negFOXP3 + regulatory T-cells to cytotoxic CD3 +CD8 +T-cells than
did stage II tumors, suggesting changes according to the stage of the
tumor. Finally, EGFR-mutant tumors showed close distances from
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suppressor cells, such as CD3 + PD-1+PD-L1 + T-cells, to malignant cells
and from CD3 +CD8negFOXP3 + regulatory T-cells to CD3 +CD8 +
GZB + activated cytotoxic T-cells, explaining in part the non-
responsiveness of these types of tumors to immune checkpoint
blockade. It is known that most, if not all, malignancies trigger an
innate inflammatory response that builds up a pro-tumorigenic
microenvironment that can resist treatment21. This suggests that the
close proximity of immunosuppressive cells to malignant cells may
increase the interactions between these cells in NSCLC, asweobserved
in the current study, which may enable tumors to avoid the immune
system.

We found that not only densities but distribution patterns and
distances from malignant cells to different cell phenotypes could be
associatedwith outcomes. Limitedpenetration amongmalignant cells,
indicated by an unmixed pattern of distribution of MDSC-PMNs, was
associated with poor RFS, and an unmixed pattern of CD66b + PMNs
and MDSC-PMNs was associated with poor OS in ADC. These findings
suggest that these cell phenotypes are acting as a barrier, limiting the
actions of other activated T-cells. MDSCs are known to suppress T-cell
activation and toxicity using variousmechanisms43. Amixed pattern of
CD3 +CD8 +GZB + activated cytotoxic T-cells was associated with
better RFS, suggesting that the close proximity of these cells to
malignant cells could prevent tumor recurrence in SCC. Furthermore,
the Cox proportional hazards model confirmed that patients with a
mixed CD3 + TIM3+ T-cell pattern, large tumors, and KRAS mutations
had worse OS.

Kaplan–Meier curves showed that in ADC, close distances from
malignant cells to PMNs and MDSC-PNMs were associated with worse
RFS compared with long distances. In SCC, close distances from
malignant cells to PD-L1 + T-cells and long distances to ICOS + T-cells
were associated with worse RFS. Our data also showed that close dis-
tances from CD3 +CD8+ cytotoxic T-cells, CD3 +CD8 +GZB +
activated cytotoxic T-cells, and macrophages to malignant cells was
associated with better OS than long distances in ADC, suggesting that
the cell-to-cell proximity of these cells mitigates the suppressive effect
of inhibitory cells, and supporting the findings of Barua et al22. We also
found that close distance from malignant cells to B7-H3 + T-cells was
associated with worse OS. Additionally, the Cox regression model
confirmed that close distances from CD3 +CD8negFOXP3 + regulatory
T-cells, CD3 +CD45RO+ FOXP3 + regulatory/memory T-cells, CD3 +
CD8 + cytotoxic T-cells expressing PD-L1, CD3 +OX40 +T-cells, CD3 +
LAG3 +T-cells, and CD68 +macrophages PD-L1 + to malignant cells
predicted poor prognosis. This suggests that the cellular spatial dis-
tribution of specific cell phenotypes is an independent factor asso-
ciated with poor or better prognosis and can be used to select
combinations of therapeutic strategies and determine patient
prognosis20, not only in NSCLC but also in other cancers12. Including
T-cell densities, the pattern of distribution, and distances relative to
malignant cells in a Cox regression model we identified that densities
of cytotoxic T-cells CD3 +CD8 + and distances of activated cytotoxic
T-cells CD3 +CD8 +GZB+ to malignant cells are important prognostic
factors in NSCLC, as previous reports in the literature23,24. Finally, by
combining patterns of cellular distribution with cellular distances, we
identified four groups of cellular immunologic patterns. The pre-
dominant group observed in our cohort was group 2, characterized by
high densities of T-cell phenotypes but low densities of immune
checkpoints expressed by malignant cells, compared with the other
groups, suggesting that the group 2 pattern could indicate an inflamed
tumor. In contrast, group 4 showed overall the lowest densities of
T-cells but highest densities of immune checkpoints expressed by
malignant cells, suggesting that the group 4 pattern indicates “cold”
tumors. Multivariable analysis showed that a mixed pattern with long
distances or an unmixed pattern with close distances from malignant
cells to CD3 +CD8negFOXP3 + regulatory T-cells is associated with
worse OS, as was an unmixed pattern with close distances from

malignant cells to CD3 + PD-1+PD-L1 + cells. Overall, these findings
suggest that the location and distance of suppressive cell signatures,
such as regulatory T-cells, from malignant cells as identified by Barua
et al22 and others, i.e., by checkpoint T-cell inhibitors, can contribute to
an immunosuppressive microenvironment, which may be responsible
for poor prognosis. These findings highlight the importance of better
understanding the complex relationships betweenmalignant cells and
immune cells in terms of their spatial distribution to direct the study of
new therapeutic approaches.

The current study has some limitations. First, althoughourNSCLC
specimens were collected retrospectively, which allowed us a large
enough sample to examine varying cell phenotypes, those phenotypes
were displaced in different independent mIF panels, which limited the
integration of the different cell phenotypes. Second, most of the
patients from our cohort were smokers, which can influence the ana-
lysis between nonsmokers and smokers. Lastly, our specimens were
placed in TMA format, whichmay induce under- or overrepresentation
of the marker levels and spatial distribution owing to tumor
heterogeneity.

In summary, our data showed that tumor cells and TAICs could
produce multiple inhibitory factors in NSCLC. In studying the spatial
distribution of various cellular populations, we could identify other
associations between these cells and clinicopathologic variables in
surgically resected ADC and SCC specimens. In addition, we identified
several associations between specific cellular patterns of distribution
and their distances that can negatively or positively influence patient
outcomes; however, validation of our findings using a similar cohort of
patients is needed.

Methods
Tissue specimens and microarray
We examined specimens from 225 patients with stage I-III primary
NSCLC, 142 of which were adenocarcinomas (ADCs) and 83 squamous
cell carcinomas (SCCs). The patients had not received neoadjuvant
therapy and were evaluated and underwent surgical resection at The
University of Texas MD Anderson Cancer Center between 1997 and
2012. Available tissue specimens were obtained from the Lung Cancer
Specialized Program of Research Excellence tissue bank at University
of Texas MD Anderson Cancer Center, following informed written
consent obtained from all study participants under protocols
approved by the MD Anderson Institutional Review Board
(P50CA70907). Tumors were classified using the 8th American Joint
Committee on Cancer guidelines44. Tissue microarray (TMA) sections
were prepared using triplicate 1-mm-diameter cores from formalin-
fixed and paraffin-embedded representative tumor blocks45. Clinical
and pathologic information, including demographic data, age, sex,
tobacco history, smoking status, tumor size, tumor stage, adjuvant
treatment, andmutational tumor status (KRAS or EGFR), was collected
from medical records. Follow-up information for recurrence-free sur-
vival (RFS) and OS rates were also retrieved from the patients’ elec-
tronic medical records (Supplementary Table 7).

mIF staining and analysis
mIF staining was performed usingmethods similar to those previously
described and validated16. Briefly, formalin-fixed, paraffin-embedded
TMAsections of 4-µmthicknesswere stained using 5 panels containing
the following antibodies: panel 1, cytokeratin (CK), CD3, CD8, PD-1, PD-
L1, and CD68; panel 2, CK, CD3, CD8, CD45RO, granzyme B (GZB), and
FOXP3; panel 3, CK, CD3, PD-L1, B7-H3, B7-H4, IDO-1, and VISTA; panel
4, CK, CD3, ICOS, LAG3,OX40, TIM3, andCD20; and panel 5, CK, Arg-1,
CD11b, CD14, CD33, CD66b, and CD68. All markers were stained in
sequence using their respective fluorophore contained in the Opal 7
IHCkit (catalog #NEL797001KT; Akoya Biosciences,Marlborough,MA)
for the panels with 6 antibodies, and coumarin fluorophore (catalog
#NEL703001KT; Akoya Biosciences) was added in the panels with 7

Article https://doi.org/10.1038/s41467-023-37905-y

Nature Communications |         (2023) 14:2364 13



antibodies (Supplementary Table 8). Positive (human reactive tonsils)
and negative or autofluorescence controls (human reactive tonsils
including the antibodies but without any fluorophores) were included
in each run of staining46. Supplementary Fig. 3 shows representative
individual marker expressions from the TMA across the panels. The
stained slideswere scanned using themultispectralmicroscope Vectra
Polaris 1.0.13 imaging system (Akoya Biosciences) under fluorescence
conditions at low magnification (10×), and then each core was viewed
at high magnification (20×). Each core from the TMAs was analyzed
using the InForm 2.4.0 digital image analysis software (Akoya Bios-
ciences). Marker co-localizationwas used to identify themost relevant
specific cell phenotypes from each mIF panel, as shown in Supple-
mentary Table 1. Densities of each cell phenotype were quantified, and
the final data were expressed as the number of cells/mm2. Experiments
and quantifications related to the presented results were conducted
once. The datawere consolidated using R studio 3.5.3 (Phenopter 0.2.2
packet; https://rdrr.io/github/akoyabio/phenoptrReports/f/, Akoya
Biosciences).

Immune cell phenotype characterization
We created cord plots to visualize cell phenotypes interaction based
on the co-expression of markers using the markers from each mIF
panel. Additionally, dimensional reduction was applied using uniform
manifold approximation and projection [UMAP, (https://github.com/
lmcinnes/umap)] to visualize all possible cell phenotypes observed in
each panel using the tumor cores47,48. The results were plotted using R
studio software v.3.6.1 and Python v. 3.8.9.

Spatial cellular distribution analysis
To define spatial pattern distributions and cellular interactions
between CK +malignant cells and TAICs, we compared the empirically
derived cross G function curve (https://research.csiro.au/software/r-
workshop-notes) with the theoretical Poisson curve (median distances
of the specific cells from malignant cells between samples), obtained
by assuming the same intensity (absolute number of cells) pattern is
observed in each sample49, to characterize patterns of cellular dis-
tribution and possible interactions between the cells. A total of 26 cell
phenotypes, including T-cells, B-cells, granulocytes, myeloid cells, and
macrophages, were studied using this approach, excluding the cell
phenotypes with <2 cells/mm2 as the median value (Table 1) to avoid
any biases in the analysis. Furthermore, using the spatial point pattern
distribution of the cell phenotypes relative to malignant cells, we
measured the distance from CK+malignant cells to the 26 cell phe-
notypes mentioned above (Table 1) and from CK+ PD-L1 + , CK + PD-
L1neg, CK + B7-H3 + , CK + B7-H4 + , CK + IDO-1+ and CD3 +CD8neg

FOXP3 + to different cell phenotype included in the panels (Supple-
mentary Table 3) using a matrix created with each cell’s X and Y
coordinates in R studio software v.3.6.1. A total of 128 distances were
measure. We applied the median nearest neighbor function (Phe-
nopter 0.2.2 packet; https://rdrr.io/github/akoyabio/
phenoptrReports/f/, Akoya Biosciences) from CK+malignant cells to
CD3 + T-cells, CD20 +B-cells, CD68 +macrophages, and CD66b +
granulocytic cells (PMNs), as well as to the other cell phenotypes, to
determine where these TAICs were located; specifically, whether the
TAICs were close to (equal to or less than the median distance) or far
from (more than the median distance) the CK +malignant cells47.

We expanded the characterizationof cellular distributionpatterns
and distances, combining the results of the leading 26 cell phenotypes
to identify four groupsof cellular immunologic distribution from these
cell phenotypes:

Group 1. Mixed pattern with close median distances to the
malignant cells

Group 2. Mixed pattern with long median distances to the
malignant cells

Group 3. Unmixed pattern with close median distances to the
malignant cells

Group 4. Unmixed pattern with long median distances to the
malignant cells

Finally, usingCD3 + T-cells as a predominant cell population in the
tumor samples, we identified four groups of cells and their associated
cell phenotype densities to characterize possible differences in tumor
microenvironments.

Statistical methods
Because our principal focus was not to measure cellular phenotype
densities, the densities and distances of various cell phenotypes from
malignant cells were dichotomized: values greater than the median
were considered high density or long distance and values equal to or
lower than the median were considered low density or close distance.
For patterns of cellular distribution, a score ranging from −10 to 10 in
the comparison of the G function curve with the theoretical Poisson
curve indicated amixed pattern and a score >10 indicated an unmixed
pattern, for various TAICs. Nonparametric tests were used to assess
associations in the patterns of cellular distribution (26 cell pheno-
types) and spatial distance analysis frommalignant cells to TAICs (128
distances), and associations between cellular distribution patterns and
clinicopathologic features were evaluated using the Wilcoxon rank-
sum or Kruskal-Wallis test. For univariate analyses, only the most
abundant cell phenotypes (>2 cells/mm2) were used, and the Kaplan-
Meier method and log-rank test were used to determine whether
patterns of cellular distribution, cellular distances, or cellular immu-
nologic distribution groups were associated with RFS or OS. Addi-
tionally, Cox proportional hazards models were used to evaluate
associations between cellular distribution, cellular distances, and the
four immunologic cellular distribution groups, controlling for clin-
icopathologic characteristics. Un-adjusted P-value of less than 0.05
was considered statistically significant. All analyses and data visuali-
zationwere performed inR 3.6.0 and 3.6.1 (releasedApril 2019; https://
www.r-project.org), R studio 3.5.3 (Phenopter 0.2.2 packet; https://
rdrr.io/github/akoyabio/phenoptrReports/f/, Akoya Biosciences),
Python v.3.8.9, and/or GraphPad Prism v.9.0.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study
are available within themanuscript and its supplementary information
files. The data is provided as a source data file. Other relevant de-
identified data images related to the current study are available in the
repository, https://bitbucket.org/chuymtz/tma3/src/master/ from the
corresponding author (E.R.P) upon academic request and will require
the researcher to sign a data access agreement with the University of
Texas MD Anderson Cancer Center after approval. Source data are
provided with this paper.
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