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A blueprint for a synthetic genetic feedback
optimizer

Andras Gyorgy 1 , Amor Menezes 2 & Murat Arcak3

Biomolecular control enables leveraging cells as biomanufacturing factories.
Despite recent advancements, we currently lack genetically encoded modules
that can be deployed to dynamically fine-tune and optimize cellular perfor-
mance. Here, we address this shortcoming by presenting the blueprint of a
genetic feedback module to optimize a broadly defined performance metric
by adjusting the production and decay rate of a (set of) regulator species. We
demonstrate that the optimizer can be implemented by combining available
synthetic biology parts and components, and that it can be readily integrated
with existing pathways and genetically encoded biosensors to ensure its suc-
cessful deployment in a variety of settings. We further illustrate that the
optimizer successfully locates and tracks the optimum in diverse contexts
when relying on mass action kinetics-based dynamics and parameter values
typical in Escherichia coli.

Biological systems continuously sense and respond to changes in their
environment by relying on sophisticated regulatory mechanisms to
ensure both optimality and robustness, eventually leading to con-
siderable complexity1. Synthetic biology seeks to (re)program cellular
processes bydesigning and combining standardizedbiological parts in
a modular fashion2, often enhanced by computational approaches3, to
deploy synthetic gene circuits in a variety of contexts that range from
biotherapeutics to environmental sciences4.

Unfortunately, geneticmodules regularly fail and requiremultiple
design iterations5 as a result of unmodeled interactions among circuit
components and the host organism6,7, frequently resulting in per-
plexing behaviors8,9. Further exacerbating this problem, genetic
modules developed in one strain canbehave fundamentally differently
when deployed in other organism chassis10,11. Therefore, context-
dependence presents a major obstacle to rationally and robustly
controlling cellular processes, to creating novel functionalities, and to
fine-tuning existing ones6,12. Metabolic burden, for instance, couples
the expression of independent proteins and can significantly reduce
cellular growth rate13–19 (Fig. 1a).

While screening for optimal genetic realizations is now well-
established by varying a diverse array of biochemical properties20–23,
such static approaches are unable to adaptively respond to

disturbances and shifts in the environment. To address this chal-
lenge, dynamic gene expression control24–26 offers a promising
solution, using a system-level approach that combines quantitative
tools from a wide array of disciplines27–30. Recently, an especially
fruitful direction has been to borrow ideas from control theory to
analyze and design genetic feedback systems31,32. Notably, integral
feedback has been proposed33 to ensure perfect adaptation, that is,
to return to a desired setpoint after a perturbation. Although it is not
without limitations34, this simple biological feedback control module
has been successfully implemented in a variety of settings: in vivo35,36

using both RNA-based and protein-based mechanisms, and
in vitro37,38 in bacteria, as well as in mammalian cells39, and the design
has even been extended in the form of a proportional-integral-
derivative controller40.

While these results represent amajor leap inour ability to robustly
control cellular behavior, they rely on an explicitly defined reference
signal. Often times, however, the desired reference signal is defined
only implicitly (i.e., where performance is maximized), and it con-
tinuously shifts due to fluctuations in the cellular environment, for
instance, to ensure optimal resource re-allocation for maximal
growth41. Therefore, wemust develop genetic modules that can locate
and track these implicit reference signals to create synthetic circuits
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that can sense and respond to environmental changes and adjust their
activity for optimal performance25,26.

To address this central challenge, here we develop and present a
blueprint for a genetic optimizer module that dynamically adjusts the
production and decay rates of a set of regulator species to ensure
optimal cellular performance. Our approach relies on interconnecting
commonbiomolecular sensors and actuators (e.g., logic gates, bistable
switches, oscillators) that are readily available, using the traditional
feedback loop architecture (Fig. 1a). As we illustrate through multiple
application examples, our optimizer successfully locates and tracks an
implicitly defined and time-varying optimum in diverse contexts when
relying on mass action kinetics-based dynamics and parameter values
typical in Escherichia coli (E. coli). While the basic idea underpinning
our results can be most easily understood considering idealized

modules (e.g., completely symmetric toggle switches, absence of
dilution), we also probe these assumptions and show that our
approach works well even when considering non-ideal implementa-
tions. We further demonstrate that closed loop performance is robust
to stochastic noise and disturbances (e.g., time-varying parameters
due to various sources of context-dependence), and that our proposed
optimizer can be easily integrated with existing pathways and geneti-
cally encoded biosensors to ensure its successful deployment in a
variety of settings.

Results
Problem formulation
Our goal is to construct a genetic network to control the concentration
of a set of regulator species x so that cellular performance F(x, θy) is

genetic
optimizer

cellular
performance

regulator
dynamics

Delay

Comparator

Logic

slower reporter dynamics

in
cr

ea
si

ng
 d

el
ay

b

a

c

0 300time
0

1

x -0.1

0

0.1
u

1

0 300time
-0.1

0

0.1

u
2

0 300time
0

1

x -0.1

0

0.1

u
1

00time
-0.1

0

0.1

u
2

optimum optimum

0 3 
xtime

0

1

x

0 3 
xtime

0

1

x

0 3 
xtime

0

1

x

0 3 
xtime

0

1

x

slow regulator dynamics (    = 100) fast regulator dynamics (    = 10)

x x

optimum x optimum x

optimum x optimum x

optimum #1

regulator concentration

ce
llu

la
r 

pe
rf

or
m

an
ce

optimum #2

regulator

synthesis of
target protein

cellular growth

cellular
performance

resource
competition

condition #1
condition #2

Fig. 1 | Genetic optimizers can ensure maximal cellular performance. Simula-
tion parameters and further details are provided in Supplementary Section 5.
a Population-level production of a target gene is maximized when growth rate and
cellular synthesis rate are balanced93. The corresponding optimal concentration of
a regulatormay depend onboth cellular and environmental conditions, and can be
automatically adjusted by a genetic optimizer. b Gradient-based optimization can
successfully track the time-varying optimum, but cannot be immediately

translated to a genetic circuit because it may result in infeasible negative quan-
tities. Decreasing ϵx yields faster convergence at the expense of greater control
inputs u1 and u2. c Calculating u1 and u2 based on the trend of x and y ensures
convergence to the optimum x*. In the four panels at right, ϵy increases by an order
ofmagnitude going from left to right (leading to slower y dynamics), and the delay
td increases by an order of magnitude going from top to bottom.
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maximized, where θy are (possibly time-dependent) biophysical para-
meters. We only assume that this performance is measurable via the
reporter signal y, but it is otherwise unknown. We take the optimal
concentration x* as a reference signal, and we seek to implement
reference tracking where the time-varying setpoint is defined only
implicitly (i.e., where performance is maximized). Finally, we wish to
achieve this tracking (i) robustly, that is, in the presence of dis-
turbances, uncertainties, and noise; and (ii) by relying on standard
biological parts that are readily available and can be easily combined.

Let x 2 Rn and y 2 R denote the concentration vector of the
controlled regulator species and the reporter (proxy for cellular per-
formance) that we wish to maximize by adjusting the control signal
u 2 Rk . The dynamics of the regulator species take the general formof

ϵx _x = f ðx,u,θxÞ, ð1Þ

where dot denotes differentiationwith respect to time, θx is a vector of
(possibly time-dependent) parameters (e.g., transcription and trans-
lation rates, dissociation constants, degradation rates), and ϵx char-
acterizes the timescale on which x evolves. Regarding the reporter, we
consider the general formulation of

ϵy _y= Fðx,θyÞ � y ð2Þ

to account for potential regulatory delays, where θy contains time-
dependent parameters as above, and ϵy characterizes the timescale on
which y evolves. The lag between x and y increases with ϵy/ϵx: for
instance, ϵy/ϵx→0 corresponds to the case when changes in x are
observable in y instantaneously according to y = F(x, θy).

Considering the dynamics (1)–(2), we seek a feedback optimizer
(Fig. 1a) of the form

ϵz _z = gz ðz, x, y,θzÞ, u= guðz, θuÞ, ð3Þ

where z and u are the internal state and the output of the optimizer,
respectively, together with their time-dependent parameter vectors θz
and θu, and ϵz characterizes the timescale of the optimizer species.
Although any one of ϵx, ϵy, and ϵz can be eliminated by rescaling time
(Supplementary Section 1.1), we keep them all to illustrate their effects
throughout the paper.

Assuming that F(x, θy) has a unique global time-dependent opti-
mum at x* (if this is not the case, our approach only yields local
optimality), we seek to design the optimizer to ensure that (i) trajec-
tories of the closed loop system (1)–(3) converge towards the unique
optimum x*; and (ii) the integrated system is biologically realizable and
relies only on non-negative signals.

Gradient ascent and approximate gradient ascent
To illustrate the main idea underpinning the proposed optimizer
module, we first consider a single species x that is produced and
degraded according to ϵx _x =u1 � u2x (Supplementary Section 1.1),
where u1 and u2 represent control signals regulating the production
and degradation of x, respectively. In the absence of biological con-
straints, a potential choice for the optimizer is a gradient-based system
with the feedback law u1 =∇xF(x, θy) and u2 = −∇xF(x, θy), where
∇xF(x, θy) denotes the gradient of F(x, θy). The closed loop dynamics
ϵx _x = 1 + xð Þ∇xFðx,θyÞ realizes gradient ascent by converging to x = x*

where ∇xF(x, θy) = 0, thus tracking the time-varying optimum (Fig. 1b).
Moreover, it is sufficient to simply swap the signs in the control laws
above to implement minimization (gradient descent). Unfortunately,
this approach has two fundamental limitations: (i) it requires explicit
knowledge of the gradient ∇xF(x, θy); and (ii) u1 and u2 can become
negative (Fig. 1b, gray regions).

The gradient-based control law above can be phrased as: x should
be increased if the gradient of cellular performance is positive, and

decreased otherwise. To overcome the first issue (reliance on the gra-
dient), we can rephrase the control law as: x should be increased if x and
y are increasing or decreasing together, and decreased otherwise. To
implement this, we must keep track of the change in both x and y: let
wd(t) =w(t − td) for the timedelay td >0 so thatΔx= x − xd andΔy = y − yd
represent the changes in x and y, respectively. With this, x should be
increased when ΔxΔy >0, and decreased otherwise (Fig. 1a), corre-
sponding to u1 > 0, u2 = 0 and u1 = 0, u2 > 0, respectively. Unfortunately,
this solution still suffers from the second issue highlighted above, as Δx
andΔy can take on negative values. To avoid this, wemust keep track of
whether x is increasing or decreasing via the non-negative indicator
signals x+ = h(x − xd) and x−=h(xd− x) where h( ⋅ ) is defined as h(w) = 1
for w >0 and h(w) = 0 otherwise. The indicator signals y+, y−≥0 are
defined similarly.With this, x needs to be increased (u1 > 0, u2 = 0) when
either x+, y+ >0 or x−, y−>0, and it needs to be decreased (u1 = 0, u2 > 0)
otherwise. This can be implemented via the control law

u1 = x + y+ + x�y�, u2 = x + y� + x�y+ ð4Þ

to ensure that trajectories of the closed loop system converge towards
the optimum (Fig. 1c), largely unaffected by the value of ϵy and td
(Supplementary Fig. 1). As expected, however, once the lag between x
and y (governed by ϵy), or the delay between x and xd or y and yd
(governed by td) approach the timescale of the regulator dynamics
(governed by ϵx), closed loop performance quickly deteriorates.

In summary, the proposed optimizer overcomes the major issues
of the gradient-based solution (reliance on the gradient and negative
signals) without compromising closed loop performance. As illustrated
in Fig. 1c, this is achieved by combining three crucial modules: (i) delay
of x and y toobtain xd and yd, respectively; (ii) comparisonof xwith xd to
obtain the indicator signals x+ and x−, and similarly for y; and (iii)
computation of the control signals u1 and u2 based on the indicators
according to (4). Before presenting the whole integrated system, we
next detail how these idealized and abstract functions can be realized
individually by relying on standard synthetic biologymodules, and how
their biophysical parameters should be selected for optimal perfor-
mance that is robust to stochastic noise and disturbances.

Delay module
Thedelayed signalxd that tracksxwitha lag canbe implementedusing a
variety of modules that selectively synthesize/activate the former only
in the presence of the latter (and similarly for yd and y), as illustrated in
Fig. 2. Such a positive relationship can be captured via the dynamics

ϵd _xd =αdx � xd , ϵd _yd =αdy� yd , ð5Þ

where αd ≈ 1 denotes the production rate constant (following non-
dimensionalization, see Supplementary Section 1.2), whereas ϵd reg-
ulates the timescale of the delay module (e.g., greater ϵd yields slower
dynamics). When αd = 1, we obtain that xd→ x and yd→ y. Thus, the
signals xd and yd track x and y without steady state error (in case of
constant reference signals). We first assume that the delay module is
tuned to guarantee perfect tracking (αd = 1). Later, wewill demonstrate
that the optimizer works even when this is not ensured (provided
that αd ≈ 1).

The value of ϵdneeds tobe sufficiently small so that tracking is fast
enough and the optimizer remains responsive to changes in x (and y).
This observation from Fig. 1c is echoed in the simulation data pre-
sented in Fig. 2: as long as the timescale on which the reporter and the
delayed signals evolve is sufficiently fast compared to the dynamics of
the regulator (i.e., ϵd, ϵy≪ ϵx), closed loop performance of the optimi-
zer module is largely unaffected by the exact value of ϵd and ϵy.
Unsurprisingly, there is a sharp decline in closed loop performance as
the timescale of either the reporter or the delay module approaches
that of the regulator (Supplementary Fig. 2).
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Comparator module
Wenext need to compare xwith xd and ywith yd to obtain the indicator
signals x+, x−, y+, and y− (Fig. 1c). The comparator module provides
these signals by combining three parts: the delay module from the
previous section, bistable switches42, and an oscillator43,44 to periodi-
cally activate/deactivate regulatory interactions (Fig. 3a).

For the sake of simplicity, here we assume that the output c of a
genetic oscillator alternates between two values: c =0 and c = 1 during
phase 1 and phase 2, respectively. We rely on this periodic signal to
switch the comparator with inputs xd and x and outputs x− and x+
between two modes according to

ϵc _x� = ð1� cÞ αc,1xd � x�
� �

+ c αc,2

1 + x2+
� x�

� �
,

ϵc _x + = ð1� cÞ αc,1x � x +

� �
+ c αc,2

1 + x2�
� x +

� �
,

where αc,1 and αc,2 are production rate constants (de-dimensionalized,
see Supplementary Section 1.3), and ϵc characterizes the timescale of
the comparator dynamics.

During phase 1 (c =0), the system behaves as the delay module in
Fig. 2: the indicator signals x+ and x− track the reference signals x and

xd, respectively (Fig. 3b). Assuming that this tracking occurs on a
timescale faster than that of x and xd, during phase 1 x and xd are
effectively frozen and x+ and x− converge to these values if αc,1 = 1
(Fig. 3c). Therefore, at the end of phase 1, the values of x and xd are
stored in x+ and x−, respectively.

During phase 2 (c = 1), the comparator behaves as a bistable switch
to implement a memory module, such that the initial conditions of x+
and x− are the frozen values of x and xd, respectively. A balanced toggle
switch (i.e., αc,2 is identical for x+ and x−) forces convergence to the x+-
dominated stable fixed point if x+ > x− at the beginning of phase 2 (i.e.,
if x > xd at the beginning of phase 1), and to the x−-dominated stable
fixed point if x− > x+ at the beginning of phase 2 (i.e., if xd > x at the
beginning of phase 1). Importantly, the location of these stable fixed
points is independent of the difference between x and xd at the
beginning of phase 1 (Fig. 3b and Supplementary Section 1.3). There-
fore, at the end of phase 2, the output of the comparator depends only
on the sign of x − xd (at the beginning of phase 1), but not on its
magnitude (Fig. 3c), a crucial feature of the proposed design to ensure
the compatibility of dynamic ranges between the comparator and the
logic module (Fig. 1c). Another comparator with inputs yd and y and
outputs y− and y+ behaves similarly.

x+

x–

phase 1

phase 2

b

(x, xd)

d

xtime

0

1

x

0 10

optimum

a

C
o

m
p

ar
at

o
r x

x+

xd

x–

c

0

1

x 
an

d 
x d

time
0

c,2

x +
 a

nd
 x

-

0

0 3

3

time

x-

x+

xd

x

Fig. 3 | The comparator module generates the indicator signals based on the
actual and delayed signals for both the regulator and the reporter. Simulation
parameters and further details are provided in Supplementary Section 5. a The
signal c alternates between two states (c =0 and c = 1) with period τ, activating two
different sets of regulatory interactions94. b During phase 1, (x+, x−) tracks the

reference (x, xd), whereas during phase 2, (x+, x−) converges to either of the stable
fixed points based on the sign of x − xd. c The signals x+ and x− switch between their
ON and OFF states depending on whether x < xd or x > xd (phase 1 is depicted in
gray). d Closed loop performance is largely unaffected by the value of αc,2.

0 10
xtime

0

1

x

0 10
xtime

0

1

x

0 10
xtime

0

1

x

0 10
xtime

0

1

x
0 10

xtime

0

1

x

0 10
xtime

0

1

x

0 10
xtime

0

1

x

0 10
xtime

0

1

x

0 10
xtime

0

1

x

Delay

optimum optimum optimum

optimum optimum optimum

optimum optimum optimum

x

xdyd

y

Fig. 2 | The delay module ensures tracking of the regulator and the reporter
signals. Light, medium, and dark red correspond to ϵd = ϵy/2, ϵd = ϵy, and ϵd = 2ϵy,
respectively. The panel in the top left corner corresponds to ϵy = ϵx/100, and ϵy

increases towards the lower right panel where ϵy = ϵx/10 (sample points are spaced
equidistantly on a logarithmic scale). Simulation parameters and further details are
provided in Supplementary Section 5.

Article https://doi.org/10.1038/s41467-023-37903-0

Nature Communications |         (2023) 14:2554 4



While αc,1 ≈ 1 is essential for precise tracking, the behavior of the
optimizer is considerably less impacted by the value of αc,2 as long as
bistability is ensured (αc,2 > 2). For instance, closed loop performance
and the time it takes to reach either of the stable fixed points display
negligible dependence on αc,2 (Fig. 3d and Supplementary Fig. 3b).
Although here we assume that the bistable switch is perfectly
balanced,we later demonstrate that closed loopperformancedoes not
appreciably deteriorate in the presence of moderate levels of
imbalance.

Logic module
The final module in the optimizer (Fig. 1c) combines the indicator
signals x+, x−, y+, and y− to generate u1 and u2 by approximating the
control law in (4). This can be done by relying on standard logic
gates45,46, as illustrated in Fig. 4. For the sake of simplicity, here we
assume that these logic gates operate on a faster timescale than any
other module in Fig. 1c (Supplementary Section 1.4). Therefore, the
behavior of the logic gates can be approximated by utilizing their
quasi-steady state input-output mappings45. In particular, considering
the common mathematical model of AND (∧ ) and OR (∨ ) gates with
input signals A and B (Supplementary Section 1.4), the outputs are
given by

H^ðA,BÞ=
An

An +Kn
^

Bn

Bn +Kn
^
, H_ðA,BÞ=

An

An +Kn
_
+

Bn

Bn +Kn
_
,

withHill coefficientn anddissociation constantsK∧ andK∨ for theAND
andORgates, respectively. The input-outputmapping of the proposed
circuit in Fig. 4 is thus given by u1 =H_ H^ x + ,y+

� �
,H^ x�,y�

� �� �

and u2 =H_ H^ x + ,y�
� �

,H^ x�,y+

� �� �
.

We next investigate how the dynamic range of the indicator sig-
nals, the Hill coefficient, and the dissociation constants of the logic
gates affect closed loop performance. As illustrated in Fig. 4, the
behavior is insensitive to the dissociation constants K∧ and K∨, to the
input dynamic range (determined by αc,2, see Supplementary Sec-
tion 1.3), and to the Hill coefficient n (Supplementary Fig. 4). Thus, the
value of these parameters represent non-critical design choices, unlike
the timescale on which the logic module evolves. As expected,

the optimizer successfully locates the optimum as long as the
dynamics of the logicmodule evolve on a timescale faster than that of
the comparator module (so that the quasi-steady state approximation
above is accurate on the slower timescale of the system), however,
further speed reduction causes closed loop performance to quickly
deteriorate (Supplementary Fig. 5).

Closed loop performance of the simplified optimizer
Before outlining a concrete molecular implementation of the whole
integrated system, here we analyze closed loop performance and
accuracy when considering the abstract modules introduced above.
We first assume that the delay module ensures reference tracking with
no error and that the comparator module realizes perfect comparison
of its input signals when generating the output indicator signals. We
then focus on a less ideal but more practical realization of the opti-
mizer module, and reveal how the presence of errors in delay and
comparison affect closed loop performance.

The time it takes to approach the optimum x* depends on the
position of the initial value x0 relative to x*. However, closed loop
performance after this initial transient is virtually identical for all
(x0, x*) pairs in the absence of tracking and comparison error (Sup-
plementary Fig. 6a). Importantly, closed loop performance is robust to
environmental disturbances that cause drastic shifts in the optimum
and also to noise (Fig. 5a). Furthermore, as long as the delay module
evolves on a timescale faster than the regulator (ϵd≪ ϵx), closed loop
performance is insensitive to the value of ϵd, as expected: e.g., a 10-fold
increase in the value of ϵd yields virtually no change (red and green
curves in Fig. 5a).

Once the optimum is reached, trajectories oscillate around it due
to the periodic behavior of the comparator module. The amplitude of
these oscillations increases with τ/ϵx, where τ is the period of the
oscillator in the comparatormodule and ϵx characterizes the timescale
of the regulator dynamics (Supplementary Section 1.5). This result can
be interpreted as follows: lower values of ϵx correspond to faster
control (yieldingmore rapid changes in x over the same time interval),
whereas greater values of τ correspond to longer durations when the
control action is maintained (but not recalculated and adjusted even if
the optimum is reached and crossed). Therefore, decreasing ϵx or
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increasing τ, thus increasing the ratio τ/ϵx, eventually leads to more
pronounced (occasional) steps in the wrong direction, before these
errors are inevitably corrected. These unwanted oscillations can be
mitigated by rendering the dynamics of the regulator slower
(increasing ϵx), or by selecting a clock with shorter period (decreas-
ing τ).

The results so far are underpinned by two crucial assumptions: (i)
perfect tracking by the delay module (αd = 1); and (ii) perfect com-
parison by the comparator module (αc,2 is identical for both species).
Therefore, we next explore how closed loop performance is affected
when these assumptions do not hold true. Tracking occurs with steady
state error when αd ≠ 1 (Fig. 5b), thus we may erroneously conclude
that x is increasing even though xd > x, simply because αd > 1 (Fig. 5b).
Similarly, unless αc,2 is identical for both species in the comparators,
comparison of the indicator signals x− and x+ can introduce error as
trajectories may incorrectly converge to the x+-dominated stable fixed
point even when x− > x+ at the start of phase 2 (red in Fig. 5c). These
errors then propagate through the logic module, eventually leading to
incorrect control signals. Tracking error (αd ≠ 1) leads to more pro-
nounced oscillations around the optimum, whereas substantial
asymmetry in αc,2 can render the optimizer unreliable (red in Fig. 5c).
However, reducing this asymmetry to more modest levels (for
instance, via RBS and promoter engineering, or by leveraging decoy
sites, see Supplementary Section 1.3) eliminates such performance
degradation (green in Fig. 5c). Therefore, while closed loop perfor-
mance may deteriorate with overwhelming errors in either tracking or
comparison, the optimizer displays robust behavior in the presence of
moderate levels of error.

Implementation with existing synthetic biology modules
The proposed genetic optimizer can be readily implemented by
combining existing synthetic biology modules relying on standard
parts and components, as we illustrate in Fig. 6. To ensure correct
functioning of the optimizer, modules evolve on two different

timescales: the regulator, the reporter, the delay module, and the
phase selector oscillator are governed by dynamics that are slower
than those of the toggle switch-based memory modules and the logic
gates, which guides the design choices in Fig. 6.

Production and removal of the regulator x is coordinated by the
outputs of the logic module: while u1 activates synthesis of x, u2 sti-
mulates its degradation by upregulating the transcription of the pro-
tease v that targets xby recognizing thedegradation tag fused to it. For
instance, appending the Mesoplasma florum (M. florum) ssrA tag (mf-
ssrA) to the C terminus of x results in its inducible degradation upon
expression of the M. florum Lon protease (mf-Lon) v, operating inde-
pendently from and orthogonally to the host degradation
pathways47,48. Alternatively, instead of expressing themf-Lon protease,
v can encode the adapter SspB, tethering protein targets fused with a
modified ssrA tag to ClpXP for controlled degradation49. To ensure
that the removal of x is primarily due to controlled degradation via v,
the regulator is also equipped with weak self-activation to balance the
impact of dilution due to cell growth.

The rest of the genetic optimizer operating on the slower time-
scale can be implemented using common transcription factors50. For
instance, the phase selector oscillator can be realized using the
repressilator43,44 that consists of three repressor proteins, one of them
(r) co-expressed with an activator (a), so that these two can together
coordinate periodic shifting between phase 1 and phase 2 of the
comparators. Similarly, transcriptional control underpins the imple-
mentation of delaying x and y to obtain xd and yd. While in Fig. 6 we
assume that the regulator x impacts y via transcriptional activation and
that y acts as an activator, crucially, the proposed optimizer module
works even when the impact of x on y is mediated via more complex
pathways, or when the reporter acts as a repressor, as we demonstrate
in the subsequent section.

As RNA-based solutions enable considerably faster information
processing, the indicator signals are implemented by relying on
CRISPRi, thus x+, x−, y+, and y− are gRNAs. During phase 1, x+ and x− are
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Simulation parameters and further details are provided in Supplementary Sec-
tion 5. a In the absence of additive noise (dark red and dark green), trajectories are
confined within the gray region around the time-varying optimum x* (blue) when
ϵy =0 (SupplementarySection 1.5). In the presenceof stochastic noise (light red and

light green), closed loop trajectoriesmay temporarily leave this region. The value of
ϵd is 10-times greater for (light and dark) green than for (light and dark) red.
b Performance decreases as the tracking error in the delay module increases.
c Shaded regions correspond to initial conditions such that trajectories converge to
an incorrect stable fixed point.
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expressed from promoters under the induction of x and xd to track
them with a delay. During phase 2, x+ and x− mutually repress each
other to form a CRISPRi-based bistable switch by recruiting dCas951.
Comparison of y and yd is realized similarly via y+ and y−. To alternate
between phase 1 and phase 2, promoters of the gRNAs are under the
coordinated control of the repressor r and the activator a (Fig. 6). To
ensure reliable switching between the phases, promoter leakiness
could be minimized via stringent multi-level control of gene
expression52.

Finally, the logic module is realized using STAR-based AND and
OR gates due to their highly programmable and orthogonal nature53,54.
To interface thesewith theCRISPRi-based indicator signals, we first co-
express STARs (�x + , �x�, �y+ , and �y�) with the gRNAs of the comparator
module (x+, x−, y+, and y−) during phase 2. This can be achieved by
duplicating the transcriptional units encoding gRNAs, only this time
expressing STARs (Fig. 6). As a result, the AND gates can take these
STARs that serve as proxy for the indicator signals to generate the
intermediate STARs q++, q+−, q−+, and q−−, either by performing signal
integration at the level of the target RNA53, or at the level of the STAR

by splitting it into two halves corresponding to the linear and the
terminator hairpin binding regions alongside with an interaction
sequence to promote their assembly54. Similarly, the OR gates take
these intermediate STARs to regulate the expression of the transcrip-
tion factors u1 and u2 by interacting with the intrinsic terminator
hairpins that prevent their transcription (either q++ or q−− for the for-
mer, and either q+− or q−+ for the latter). Production of x is then
modulated by u1, whereas its controlled removal by u2 (via v), thus
closing the feedback loop.

Each module featured in Fig. 6 has already been successfully
implemented, and considering the mass action kinetics-based model
of the whole integrated system (Supplementary Section 2.1), the
optimizer locates and tracks the optimum when relying on parameter
values typical in E. coli (Supplementary Section 2.2). Furthermore,
closed loop performance is robust to considerable parameter varia-
tions, ranging from changes in the period of the phase selector oscil-
lator through shifts in the production and degradation rates of the
regulator to the shape of the application-specific objective function
(Supplementary Figs. 8–14). Next, we demonstrate that the optimizer
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included in Supplementary Section 2.1, together with detailed discussion of the
typical range ofmodel parameters in Supplementary Section 2.2, and their selected
values in Supplementary Table 1. Here, we assume that the host genome is already
equipped with a dCas9 expression cassette95, otherwise the optimizer must also
include it.
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ensures equally robust closed loop performance in a wide variety of
contexts.

The optimizer tracks the optimum in diverse contexts
In Fig. 6, we considered the casewhen the regulator xdirectly activates
the production of the reporter y. Here, we illustrate not only that
closed loop performance remains similar when considering more
complex regulatory schemes and different objective functions
(detailed mathematical models are provided in Supplementary Sec-
tion 3), but also that the optimizer requires only minor modifications
to implement minimization instead of maximization, or even multi-
species optimization (Fig. 7). As a concrete application example, in
Fig. 8 we demonstrate that the genetic optimizer can be deployed for
optimal growth rate regulation in the presence of cellular stress. In all
examples featured in Figs. 7 and 8, we rely on themass action kinetics-
basedmodel of the whole integrated system outlined in Fig. 6 without
any changes to the typical biophysical parameter values featured in
Supplementary Table 1.

Starting with the case of simple activation in Fig. 7a, while the
production rate of y initially increases with x, the overall relationship
between the regulator and the reporter may become non-monotonic
due to metabolic burden9. Considering either a non-smooth objective
function or a smooth bell shaped curve (Supplementary Figs. 11–14),
the optimizer successfully locates the optimum, demonstrating that
the shape of the objective function has negligible impact on closed
loop performance. Closed loop performance also remains practically
identicalwhen the impactofxon y ismediated via a regulatory cascade
that may even contain self-regulation (Fig. 7a). The behavior is robust
to changes in theparameter values of the regulatedpathwayaswell. To
illustrate this, consider first the regulatory cascade in Fig. 7b equipped
with a negative feedback loop. The optimizer quickly locates the new
optimum and reliably tracks it subsequent to abrupt changes in the
dissociation constants κx, κw, and κz. The optimum is also rapidly
reached when x impacts the expression of y via an incoherent type-1
feed-forward loop after substantial perturbations in the dissociation
constant κx, the inducer concentration w, or the production rate
constant βz (Fig. 7b).

To locate and track the minimum instead of the maximum, gra-
dient descent canbe realizedby simply swappingu1 andu2 either in the
output stage of the logicmodule so that the former promotes removal
of x (via the protease v) and the latter its synthesis (alternative #1 in
Fig. 7c), or when activating the expression of x and v, respectively
(alternative #2 in Fig. 7c). This may prove helpful, for instance, when
we wish to maximize the concentration of the repressor ~y, thus it may
not be used to directly obtain the delayed signal yd. While we could co-
express an activator together with ~y and rely on the latter to maximize
the former, this may result in additional metabolic burden and issues
related to compositional context8. Alternatively, we can minimize a
target y of the repressor ~y, thus indirectly maximizing ~y without any
negative impact on closed loop performance (Fig. 7c).

To demonstrate that the proposed optimizer can be deployed
even when multiple regulators need to be tuned together to locate
the optimum, consider the multi-species optimization problem
depicted in Fig. 7d. Instead of seeking the optimum x* = ðx*

1,x
*
2, . . . ,x

*
NÞ

in all coordinates simultaneously, we focus on each controlled vari-
able xi separately. By decomposing the multi-dimensional optimiza-
tion problem into a collection of N one-dimensional problems, each
of them takes the form of the previously considered scalar case.
Thus, we can deploy a realization of the controller from Fig. 6 for the
regulation of each xi (their independently controlled removal can be
realized by complementing the M. florum-based solution in Fig. 6
with orthogonal protease:cleavage site pairs from Potyvirus55), acti-
vated one-by-one in a cyclical structure, for instance, by using a ring
oscillator with N species56, as illustrated in Fig. 7e. Data in Fig. 7d
confirm that closed loop performance does not deteriorate even

when multiple species need to be regulated to ensure optimal
performance.

Finally, consider growth rate control in the presence of cellular
stress (Fig. 8). Termed as the speedometer of growth rate57, the alar-
mone (p)ppGpp is the primary regulator of both growth and RNA
synthesis during exponential growth58,59 via a strong inverse
relationship60,61. To ensure optimal (p)ppGpp concentration, cells
carefully balance the expression levels of RelA/SpoT Homolog (RSH)
proteins to catalyze the synthesis and hydrolysis of (p)ppGpp62.
Leveraging this, the feedforward controller developed in ref. 63 and
outlined in Fig. 8a can be deployed to exogenously adjust growth rate
via SpoTH.While expression of SpoTHhas a positive impact on growth
rate at moderate levels as a result of (p)ppGpp hydrolysis64, its over-
expression can result in considerable metabolic burden, thus giving
rise to the non-monotonic relationship between SpoTH expression
andgrowth rate observed in ref. 63 and illustrated in Fig. 8b. By placing
the protein y under the control of an rrn P1 promoter, we create a
proxy signal for ribosome production and growth rate65,66, and ensure
that the optimizer indirectlymaximizes growth rate via y by leveraging
that rRNA synthesis is the rate-limiting step in ribosome production58,
yielding a strong inverse relationship between (p)ppGpp concentra-
tion and both ribosome synthesis and growth67. Data presented in
Fig. 8c, d demonstrate that (i) optimal regulation of SpoTH, and thus of
(p)ppGpp expression can substantially mitigate the negative impact of
cellular stress on growth rate; (ii) performance with the optimizer
approaches the theoretical optimum that can be achieved by careful
exogenous tuning of SpoTH expression; and (iii) closed loop behavior
is robust to considerable stochastic noise and parameter variations
(Supplementary Figs. 16–20).

Taken together, these results demonstrate that the optimizer can
be successfully deployed in a variety of contexts when relying on (i) an
implementation combining existing synthetic biology parts and com-
ponents; (ii) mass action kinetics-based dynamics; and (iii) biologically
plausible parameter values typical in E. coli.

Discussion
Synthetic biology promises to revolutionize multiple sectors ranging
from metabolic engineering25 to sustainable biomanufacturing68. By
rearranging existing regulatory linkages and introducing novel ones,
experimental techniques complemented by computational tools69,70

offer a particularly lucrative research direction to utilize cells as
microscopic factories for the dynamic regulation of metabolic path-
ways. Accordingly, recent years have seen an explosion of studies
focusing on controller design for genetic systems31–40,71 to ensure that
synthetic circuits function robustly in different host organisms and
cellular contexts. Complementing these efforts, the optimizer module
developed here acts as a feedback controller and steers the regulated
genetic system towards the optimum, but crucially, without having
explicit knowledge of either its location, the objective function itself,
or the pathway that needs to be regulated.

Our results also highlight how existing regulatory solutions
based on exogenous control can be enhanced by combining them
with the proposed genetic optimizer without compromising perfor-
mance or requiring anymodification to already developed pathways.
Both the regulator x and the reporter y can be implemented using
widely available transcription factors50, and synthesis of y can be
made responsive to amultitude of signals and analytes relying on the
vast collection of protein-based and RNA-based biosensors72–75. For
instance, transcription of y can be modulated by expressing it from
the cognate promoter of a ligand inducible transcription factor73,76,
whereasmetabolite-sensing riboswitches can be deployed to directly
impact translation initiation77,78. The optimizer can thus be easily
interfaced with the vast collection of biosensors that is continuously
expanded via genome mining, rational design, and screening based
on directed evolution74,75,79,80. Consequently, we expect that our
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genetic optimizer can be deployed in a variety of domains to regulate
cellular performance along multiple dimensions for dynamic and
optimal control of microbial cell factories, to ensure the affordable
and sustainable synthesis of a vast array of products ranging from
biofuels to pharmaceuticals81,82. We anticipate the main limitation to
stem from the delay between changes in the regulator x and its
impact on the reporter y, as excessive lag can lead to deteriorating
performance (Supplementary Fig. 15). Additionally, while the opti-
mizer is unable to respond to shifts that are faster than the oscillator
period, it can successfully track changes that occur less rapidly
(Figs. 7b, d and 8d and Supplementary Fig. 17). As a result, we expect

that the proposed implementation of the optimizer is especially
well-suited in contexts where shifts in the culture environment
occur slowly (on a timescale ranging from hours to days), which is
typical in many fed-batch culture-based metabolic engineering
applications83–85.

The biomolecular circuit outlined in Fig. 6 is underpinned by
existing synthetic biology modules (although their integration may
require considerable experimental fine-tuning), and it can be success-
fully deployed in diverse settings as we illustrate through multiple
application examples in Figs. 7 and 8 to ensure optimal closed loop
performance that is robust to parameter variations and stochastic
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Fig. 7 | The genetic optimizer can be successfully deployed in diverse contexts.
Detailed mathematical models and additional data are provided in Supplementary
Section 3, together with simulation parameters in Supplementary Section 5. In
a, c, mean and error bars denote the average of x and its standard deviation,
averaged over 100 independent simulations with randomly selected initial condi-
tions. In b, d, thin red curves correspond to 30 independent closed loop trajec-
tories with random initial points. a The optimizer locates the static optimum. b The

optimizer tracks the time-varying optimum (blue) as parameters fluctuate (indi-
cated by the arrowheads). c The expression of ~y can bemaximized byminimizing y.
d The optimizer tracks the time-varying optimum (blue) even when y is regulated
by multiple species. The thick red curves denote the average of 30 independent
simulations. e Genetic layout of the multi-dimensional optimizer re-using and
modifying the modules originally featured in Fig. 6.
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noise, without requiring any application-specific tuning of its para-
meters. Considering the parameter values summarized in Supplemen-
tary Table 1 and their typical ranges discussed in Supplementary
Section 2.2, the concrete molecular implementation of the whole inte-
grated system in Fig. 6 is expected to have a bioenergetic cost similar to
genetic circuits86 that have already been implemented without nega-
tively impacting growth rate (Supplementary Section 4). Finally, as the
coarse-grained mechanistic model underpinning our approach reveals
fundamental principles that ensure correct functioning, we envision
that other realizations of the proposed genetic optimizer will be
implemented by incorporating synthetic components from a diverse
set of kits similar to recent approaches52,87, combining plasmid copy
number control88, transcriptional regulation42,43, post-translational
modification89, RNA-based interactions36,71, and especially fast phos-
photransfer processes90.

Biomolecular controllersoffer a promising avenue towards robust
and optimal gene regulation, an essential feature of complex synthetic
systems. The rationally designed pathway-independent optimizer
presentedherebuildson ideas rooted in control theory to implement a
genetic feedback module that ensures convergence to, and tracking
of, the time-varying optimumeven in the presenceof disturbances and
stochastic noise. The blueprint of this module can be realized in a
versatile fashion, relying on the large variety of already existing
bioengineering parts.

Methods
Deterministic simulations
Data corresponding to deterministic dynamics were obtained using
the ode45 solver of MATLAB.

Stochastic simulations
Data corresponding to stochastic dynamics were obtained as follows.
Define the discretization 0 = t0 < t1 <⋯ < tN = T over the time interval
[0, T] with ti = iδ where δ = T/N is the stepsize, and introduce
ΔWn =W(tn+1) −W(tn) where W is a d-dimensional standard Wiener
process. The solution of the d-dimensional system of (Itô) stochastic
differential equations

dX ðtÞ=μðX ðtÞ,ΘÞdt + σðX ðtÞ,ΘÞdW ðtÞ, X ð0Þ= x0,

with μ 2 Rd drift and σ 2 Rd ×d diffusion coefficient according to the
multi-dimensional Euler–Maruyama scheme91,92 is given by

Xn + 1 =Xn + δμ ðXn,ΘÞ+ σðXn,ΘÞΔWn, X0 = x0,

where Xj denotes the numerical approximation of X(tj).

Data collection
Simulation data were generated using MATLAB (version R2022b).

Data analysis
Simulation data were analyzed and plotted using MATLAB (version
R2022b). Figures were created using Adobe Illustrator (version 26.5).
Overleaf (version v2) online LaTeX editor was used to prepare and
compile the manuscript.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
The manuscript does not rely on custom mathematical algorithms or
software. Simulationdatawere generated and analyzed as described in
the “Methods” by considering the models detailed in the Supplemen-
tary Information using built-in MATLAB functions. The MATLAB code
for implementing and deploying the optimizer for the examples fea-
tured in the manuscript, along with instructions on how to modify it
for other application examples, are publicly available at https://github.
com/qbionet/genetic-optimizer. Additional information is available
from the corresponding author upon request.
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