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Global patterns and edaphic-climatic con-
trols of soil carbon decomposition kinetics
predicted from incubation experiments

Daifeng Xiang1,2, Gangsheng Wang 1,2 , Jing Tian1,2 & Wanyu Li1,2

Knowledge about global patterns of the decomposition kinetics of distinct soil
organic matter (SOM) pools is crucial to robust estimates of land-atmosphere
carbon fluxes under climate change. However, the current Earth system
models often adopt globally-consistent reference SOM decomposition rates
(kref), ignoring effects from edaphic-climate heterogeneity. Here, we compile a
comprehensive set of edaphic-climatic and SOM decomposition data from
published incubation experiments and employ machine-learning techniques
todevelopmodels capable of predicting the expected sizes andkref ofmultiple
SOM pools (fast, slow, and passive). We show that soil texture dominates the
turnover of the fast pools, whereas pH predominantly regulates passive SOM
decomposition. This suggests that pH-sensitive bacterial decomposers might
have larger effects on stable SOM decomposition than previously believed.
Using these predictive models, we provide a 1-km resolution global-scale
dataset of the sizes and kref of these SOM pools, which may improve global
biogeochemical model parameterization and predictions.

Soil contains a variety of soil organic matter (SOM) and stores more
than double the carbon (C) in the atmosphere1. With intensified global
climate change, soil plays an increasingly important role in regulating
global C cycling2. Earth systemmodels (ESMs) have been conceived to
explain global patterns of C stocks and fluxes aswell as to project their
responses and feedbacks to the climate system3,4. Accurate modeling
of SOM decomposition processes in ESMs is therefore critical for
understanding carbon-climate feedbacks2,3,5. The SOM decomposition
processes have been modeled to be regulated by biotic and abiotic
factors, including microbial activity6, soil texture7, soil pH8, tempera-
ture, and moisture conditions9,10. Contemporary ESMs typically
represent complex SOMdecompositionwith a few SOMpools via first-
order kinetics, where each SOM pool often has a globally consistent
reference (or potential) decomposition rate11,12. To calculate the actual
time-variant decomposition rate, the reference decomposition rate
(kref) is further modified by local soil and environmental conditions,
such as soil depth, temperature, and moisture, in ecosystem models
and ESMs9,13–17. However, the kref of SOM from different locations is
generally developed with their own calibration datasets, which is

divergent because of diverse edaphic-climatic conditions18–20. Thus,
challenges remain in quantifying the effects of potential edaphic-
climate heterogeneity on the kref in ESMs, largely owing to the lack of
the synthesis of global-scale data,whichmight introducebias inglobal-
scale simulations and lead to diverse and unrealistic global C cycle
projections15,21.

A numberof past synthesis studies havebeendone to examine the
sizes of different SOM pools and their respective first-order decom-
position rates using laboratory incubation data22–30. Acceptable per-
formances have been achieved through fitting incubation datasets by
first-order kinetics models with one, two, or three pools31–33. The two-
pool models are often characterized by a fast pool and a slow pool34,35,
and a third pool called “passive pool” is commonly added to the three-
pool model36,37. The fast (or active) SOM is mainly comprised of fresh
plant and animal residues that are readily decomposed in a short time,
e.g., from a few days to one year13. The passive SOM is often physico-
chemically protected, making it difficult to access and decompose by
microorganisms38, and its turnover usually lasts for hundreds to
thousands of years13. The slow SOM, consisting primarily of detritus as
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well as partially decomposed cells and tissues, often requires decades
to decay, which is somewhere between fast and passive SOM13,39. The
dramatic variation of kref among different SOM pools is primarily an
ecosystem property, including physicochemical and biological
impacts of environmental factors40. For convenience, these pool
names (fast, slow, and passive) will be adopted in this study to distin-
guish SOM pools with varying kref. In short, these incubation-based
model-data integration studies show that kref varies widely across soils
and ecosystems even under the same laboratory conditions (e.g.,
temperature and moisture). However, far less attention has been paid
to the synthesis and generalization of the abundant laboratory-derived
first-order kinetics parameters for more accurate representation of
heterogeneous SOM decomposition processes in ESMs41. It is yet
unsure whether certain patterns hold across diverse soils at the
global scale.

Here, based on literature-reported soil incubation experiments
and public datasets such as ISCN (the International Soil Carbon Net-
work) and SIDB (the Soil Incubation DataBase)29,42, we attempted to fill
this gap by generating the global distribution of SOM decomposition
kinetics parameters as a reference for globalmodeling. To address this
need, we compiled a dataset with 859 records from 59 laboratory
incubation experiments with soils from diverse climate zones and
ecosystems (see Fig. 1a and Supplementary Data). We focused on the
kref of different SOM pools, as well as the initial size of each pool (as a
percentage of the bulk SOM pool). To explore the relationship
between the decomposition kinetics parameters and edaphic-climatic
variables43, we examined three models, i.e., the traditional multiple
linear regression (MLR) and two machine learning approaches—gra-
dient boosting machine (GBM) and random forest (RF) (see Methods).
We primarily focused on edaphic-climatic variables as they have gen-
erally been used as a proxy to represent the variation in soil commu-
nity activity mediating global biogeochemical cycling44,45. We found
that the machine learning methods, especially RF, outcompeted MLR
in predicting the decomposition kinetics parameters. Analysis of
variable importance based on the RF model shows that soil texture
(clay and sand fraction) had the most significant impact on the
decomposition of the fast SOM pool, while pH dominated that of the
slowest SOM pool. Accordingly, the kref of different SOM pools
exhibited remarkable regional characteristics on a global scale and
vary dramatically with latitude.

Results
Variability of the first-order decomposition kinetics
Our results revealed a significant difference in the fast-pool reference
decomposition rate (k1ref) between the two-pool model (M2) and the
three-pool model (M3) as per the Kruskal-Wallis (KW) test (p<0.001,
Figs. 1b and 1c), but no significant difference in the decay rate of the slow
pool (k2ref) between these two models (p=0.28; Figs. 1b and 1c). The
parameter k1ref had a median of 0.12 d−1 (90% Confidence Interval (90%
CI): 3.7 × 10−3–0.59 d−1) in the two-pool model but 0.029 d−1 (90% CI:
4.2 × 10−3–0.50 d−1) in the three-pool model. As for the slow pool, the
medians of k2ref were 1.1 × 10

−3d−1 (90%CI: 5.02 × 10−5–2.00× 10−2 d−1) and
6.8 × 10−4d−1 (90% CI: 1.21 × 10−4–3.80× 10−2 d−1) for the two- and three-
pool model, respectively. The reference decomposition rate of the
passive pool in the three-pool model was 1−3 orders ofmagnitude lower
than that of the slow pool (median k3ref = 1.06 × 10−5 d−1 with 90% CI of
5.30× 10−7–7.00× 10−4 d−1).

The kref values of typical SOM decomposition models are gen-
erally within the 50% CI of our synthetic analysis. As a typical two-pool
model, the ANIMO model46 sets the kref of fast and slow pool to 5.5 ×
10−3 d−1 and 6.0 × 10−4 d−1, respectively; while the DAISY model47 sets
them to 5.0 × 10−2 d−1 and 5.0 × 10−3 d−1 (Fig. 1b). In the CLMcnmodel13,
the default kref value of fast, slow and passive pool are 7.1 × 10−2 d−1,
1.4 × 10−3 d−1, and 1.0 × 10−4 d−1, respectively, while these values are 3.0 ×
10−2 d−1, 1.1 × 10−3 d−1, and 9.0 × 10−6 d−1, respectively, in the DATCENT

model48 (Fig. 1c). Except for the fast pool in the two-pool ANIMO
model, the kref values in these four typicalmodels arewithin the 50%CI
of the laboratory incubation experimental data, indicating that our
synthesis of lab-derived first-order kinetics were representative.
Additionally, the performances of the fitted first-order model in our
compiled dataset were satisfactory with almost all R2 (coefficient of
determination) greater than 0.8 (see Supplementary Fig. 1), further
strengthening our confidence in the adequacy of the compileddataset.

Predictive modelling of SOM decomposition kinetics
parameters
We first attempted to predict the first-order decomposition para-
meters (kref and relative sizes) by eleven explanatory variables,
including (i) two climatic variables: mean annual precipitation (MAP,
mm) andmean annual temperature (MAT, °C), which reflect the effect
of regional climate characteristics; (ii) five edaphic variables: sand
fraction (Sand, %), clay fraction (Clay, %), soil pH (pH), soil organic
carbon content (SOC, g kg−1), and microbial biomass carbon content
(MBC, g C m−2); (iii) two topographic variables: elevation (Elev, m) and
terrain slope (Slope, degree or °); (iv) one vegetation variable: nor-
malized difference vegetation index (NDVI, dimensionless); and (v)
one variable representing the experimental condition: laboratory
incubation temperature (IncT, °C).

The Spearman correlation analysis shows that there was a
weak or little correlation between any two of these explanatory
variables, except a high correlation between MAP and MAT
(Spearman correlation coefficient ρ = 0.822) and between Elev
and Slope (ρ = −0.775) (Supplementary Fig. 2). Feature selection
was then adopted to find the best subset of explanatory variables
toward efficient modeling49. We used the Akaike Information
Criterion (AIC)50 to select the best model among the models
trained with and without feature selection. AIC accounts for both
model fitting performance (the mean squared error) and com-
plexity (the number of explanatory variables and the number of
observations) and a lower AIC means better performance.

Compared to the models trained with all the eleven explanatory
variables,models trainedwith feature selection achieved a lower AIC in
most of the cases pertaining to the threemethods (GBM, RF, andMLR)
and eight first-order model parameters (Supplementary Fig. 3; Sup-
plementary Table 1): two reference decomposition rates (M2-k1ref and
M2-k2ref) and one pool size (M2-f1) in the two-pool model (M2), and
three reference decomposition rates (M3-k1ref, M3-k2ref, and M3-k3ref)
and two pool sizes (M3-f1 andM3-f2) in the three-poolmodel (M3). We
did not need to predict the slow pool size (M2-f2) or the passive pool
size (M3-f3) since they could be calculated whenM2-f1, M3-f1, and M3-
f2 were determined. Therefore, in the following, wemainly focused on
the results with respect to the overall best model trained with feature
selection.

Our analyses indicate that the RFmodel, with the lowest AIC and
the highest R2 (coefficient of determination) and ρc (concordance
correlation coefficient51, see Methods) was slightly better than the
GBM model in predicting the first-order model parameters (refer-
ence decomposition rates and SOM pool sizes) (Fig. 2). Results show
consistentmodel performances evaluated by the twometrics (i.e., R2

and ρc, see Supplementary Table 1). The machine learning models
(RF and GBM) performed significantly better than the traditional
MLR model, revealing non-linear relationship between the kinetics
parameters and the explanatory factors. The R2 values of the RF
model were 1.83–35 folds higher than those of the MLR method for
the two-poolmodel (Fig. 2a–c) and the three-poolmodel (Fig. 2d–h).
In addition, the RMSEn (normalized root mean square error, see
Methods) values of RF were 1.41–3 times lower than those of MLR
(Supplementary Table 1). The RF method performed well in both
model training (randomly selecting 75% of the full dataset;
R2 = 0.62–0.94) and model testing (the remaining 25% data;

Article https://doi.org/10.1038/s41467-023-37900-3

Nature Communications |         (2023) 14:2171 2



90 °S

60 °S

30 °S

0

30 °N

60 °N

90 °N

180 °W 120 °W 60 °W 0 60 °E 120 °E 180 °E
Longitude

La
tit

ud
e

a

10−7

10−5

10−3

10−1

1

k1ref k2ref

Two−pool model (M2)

R
ef

er
en

ce
 d

ec
om

po
si

tio
n 

ra
te

 (
d−1

)

Model

ANIMO

DAISY

b

k1ref k2ref k3ref

Three−pool model (M3)

Model

CLMcn

DAYCENT

c

0

25

50

75

100

f1 f2
Two−pool model (M2)

R
el

at
iv

e 
po

ol
 s

iz
e 

(%
)

d

f1 f2 f3
Three−pool model (M3)

e

222 207 274 243 212

232 232 275 275 275

Fig. 1 | Geographic locations of soil sampling sites and comparison of soil
organicmatter (SOM) decomposition kinetics parameters. aGlobal distribution
of sampling sites. b, c Reference decomposition rates (k1ref, k2ref, and k3ref) for the
fast, slow, and passive SOM pool in the two-pool model (M2) and the three-pool
model (M3), respectively. d, e Relative sizes (f1, f2, and f3) for the fast, slow, and
passive SOM pool in the two- and three-pool model, respectively. In b–e the band

reflects the probability density distribution of parameter values, the box represents
the first and third quantile, the horizontal line in the box represents the median
value, the vertical lines represent minimum and maximum values, the solid dots
represent outliers, and the numbers shown in each panel represent sample sizes.
The four models are ANIMO46, DAISY47, CLMcn13, and DAYCENT48.
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R2 = 0.52–0.77) of the eight first-order model parameters exceptM2-
k1ref, where a low R2 was found in model testing (see Supplementary
Table 1). This indicates that RF could be used to reliably predict the
decomposition kinetics parameters. The use of the full dataset (i.e.,
100% for training) in the RF method slightly improved the perfor-
mance compared to the model trained with 75% of the dataset
(Supplementary Table 1). In view of the overall higher predictive
power of RF than the other two approaches (i.e., GBM and MLR), we
further used the RF models trained with the full dataset to analyze

the relative importance of explanatory variables and predicted the
first-order model parameters, particularly the decomposition rates,
at the global scale.

Relative importance of explanatory variables
TheRF-based variable importance analyses revealed that the dominant
predictors for kref varied across the SOMpools (Fig. 3). In the two-pool
model, Sand (56.4% in terms of its relative importance) dominated kref
of the fast pool (M2-k1ref), followed byMBC (42.6%) (Fig. 3a). However,
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soil pH (32.1%), NDVI (17.7%), and MAP (17.2%) became the most
important predictors for the slow pool decay rate (M2-k2ref) (Fig. 3b).

As for the three-pool model (M3), Clay (25.3%), pH (23.9%), and
SOC (22.1%) were the primary regulators for the fast-pool decom-
position rate (M3-k1ref). As for M3-k2ref, the top three influencing
variables wereMAP (49.7%), Slope (19%), and Clay (17.8%), whereas soil
pH (44.8%), MAP (32.2%), and SOC (8.9%) ranked top three among all
factors in predicting the passive-pool decay rate (M3-k3ref).

In short, soil texture and pH prevailed in the kref of the fast pool
and the slowest pool (slow pool in M2 and passive pool in M3),
respectively, whereas MAP stood out in predicting M3-k2ref. Terrain

slope only had an important impact on M3-k2ref. Similar results
appeared when all the eleven predictors were considered without
feature selection (Supplementary Fig. 4). The partial dependence plots
presented high variabilities in the explanatory variables for predicting
kref (Supplementary Fig. 5). More specifically, soil texture, especially
sand fraction, had a moderate effect on the two-pool (M2) kref across
the entire value range (Supplementary Fig. 5a and 5b) but a strong
effect on the three-pool (M3) kref at both ends of the value range
(Supplementary Fig. 5c and 5e). Climatic factors, particularly MAP,
exhibited an intense influence on M3-k2ref and M3-k3ref at both ends
(Supplementary Fig. 5d and 5e). However, pH, the dominant controller,
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showed a subtlemarginal effect on kref (Supplementary Fig. 5c and 5e),
which was likely due to variable interactions and vulnerable explana-
tory power of the partial dependence for complex models52,53.

Global prediction of decomposition kinetics parameters
The three-pool first-ordermodels representmore detailed description
of the SOM decomposition kinetics. In addition, the three-pool model
presented similar features to the two-pool model as per the variable
importance (Fig. 3). Consequently, we predict the first-order kinetics
parameters as per the three-pool model (M3) at global scale based on
the best RF model with feature selection.

For the fast pool (M3-k1ref), the predicted values spanned across
two orders of magnitude (1.42 × 10−2–4.42 × 10−1 d−1) with a median of
8.57 × 10−2 d−1 (90% CI: 2.21 × 10−2–3.24 × 10−1 d−1) at the global scale,
which exhibited significant spatial variability and varied sharply with
latitude (Figs. 4a and 4b). Significantly larger M3-k1ref values (in yellow
color) were mainly distributed in coastal areas, such as northwestern
Europe, eastern Asia as well as eastern and western part of North
America. By contrast, extremely lowM3-k1ref values (indark blue color)
were mainly located in highlands represented by the Mongolian Pla-
teau and part of desert areas in Africa (Fig. 4a). Along the latitude, M3-
k1ref exhibits significant variability with themost active decomposition
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activity occurring at around 15 degrees of southern hemisphere and
much lower values beyond 30 degrees north latitude (Fig. 4b).

For the slow pool (M3-k2ref), SOM tended to decompose faster in
regions of northern North America, southeastern South America and
southern Africa, with M3-k2ref ranging from 2.08 × 10−4 to 5.76 × 10−2

d−1 (median = 1.99 × 10−3 d−1 and 90% CI: 6.61 × 10−4–1.36 × 10−2 d−1)
(Fig. 4c). Furthermore, M3-k2ref manifested a bimodal pattern and
reached peaks around the equator and c.a. 60 degrees north latitude
(Fig. 4d). The kref of the passive pool (M3-k3ref) was about two orders
of magnitude lower than M3-k2ref and ranged between 9.60 × 10−6

and 2.53 × 10−4 d−1 (median = 2.57 × 10−5 d−1 and 90% CI:
1.58 × 10−5–5.54 × 10−5 d−1). Contrary to the slow pool, M3-k3ref was
higher in desert areas such as the Sahara Desert but lower in the
Amazon Rainforest (Fig. 4e). Similar to the fast and slow pools, M3-
k3ref fluctuated greatly with latitude and attains higher values around
the equator and c.a. 60 degrees north latitude, with extremely low
values appearing in areas above 70 degrees north latitude (Fig. 4f).

In addition, we predicted the relative sizes of SOM pools in the
three-pool model. Results indicate that M3-f3 shares the largest pro-
portion of SOM andM3-f1 is the smallest one globally (Supplementary
Fig. 6). M3-f1 was expected to averagely share a proportion of 3.0%
(median = 2.6%, 90%CI: 0.9%–5.7%). In high latitudes (e.g., greater than
60 degrees) of the northern hemisphere, highlands (represented by
theQinghai-Tibet Plateau) and tropical rainforest areas represented by
the Amazon Rainforest, M3-f1 was smaller compared to other regions
(Supplementary Fig. 6a and 6b). As for the slow pool, the predicted
pool sizes (M3-f2) had an average of 30.1% (median = 31.7%, 90% CI:
5.8%–47.6%) and inclined to be lower in high (e.g., > 60 degrees)
northern latitude areas, especially the Arctic, whereas higher propor-
tions were expected to occur in low latitudes, especially the tropical
rainforest region in Africa (Supplementary Fig. 6c and 6d). Corre-
spondingly, M3-f3 had a global average of 66.9% (median = 64.6%, 90%
CI: 50.3%–93.0%), which is larger than the sum of the other two pool
sizes. As opposed to the fast and slow pools, M3-f3 was anticipated to
obtain higher values in high northern latitudes (Supplementary Fig. 6e
and 6f).

The uncertainty in the predicted kref across globe exhibited high
spatial variabilitywhen considering theuncertainty of input data or the
RFmodel structure. The input global dataset, e.g., soil pH, had relative
uncertainty (ReUn =Width90%CI/Mean, seeMethods) between 0.15 and
0.79, with an average ReUn of 0.49 globally. (Supplementary Fig. 7).
The corresponding ReUn of kref increased with the complexity of the
SOMpool, showing global averageReUnof0.14, 0.44, and0.84 forM3-
k1ref, M3-k2ref, and M3-k3ref, respectively (Supplementary Fig. 8).
However, the global mean ReUn of kref caused by the model structure
uncertainty (see Methods) was comparable among the three pools
(Fig. 5), but much higher than the ReUn due to the pH uncertainty,
especially in regions with poor data, such as the Amazon Rainforest,
theAustraliandesert areas and high latitudes (e.g., >60degrees north).

Discussion
Important factors controlling SOM decomposition rates of dif-
ferent pools
While there is no consensus on the best way to partition bulk SOM into
distinct fractions with internally homogeneous characteristics and
turnover rates, the consistent differences across fractions in our ana-
lysis suggest that it is acceptable to partition bulk soil into conceptual
pools that differ in their turnover rates owing to abiotic and biotic
mechanisms38,44. The relationships of these SOM fractions with
climatic-edaphic factors can offer insights into the sensitivity of soil C
to climate change and anthropogenic activities.

As a key proxy of soil physical properties, soil texture54, especially
clay content, exhibited strong influence onM3-k1ref andM3-k2ref. Higher
soil respiration was generally measured from finer-textured soil with a
higher proportion of clay within a specific threshold, where microbial

activity was higher as a result of greater soil water holding capacity and
nutrient availability55–57. However, a higher clay content means a poten-
tially higher proportion of mineral-associated organic matter which
could be prevented from microbial utilization, leading to the reduction
of SOM decomposition rates58,59. Additionally, although water holding
capacity was found higher in finer-textured soil60, soil moisture under
laboratory conditions was usually maintained at a constant value (e.g.,
60%water holding capacity), resulting in the inability to assess the direct
impact of soil water content on soil respiration61. There is possibly a
more nuanced indirect effect but that is not explored right now in
this study.

The influenceofMAPon the referenceSOMdecomposition rates in
the three-pool model ranked first in the slow pool and second in the
passive pool. As indicatedbyprevious studies, soil respiration tended to
exhibit a negatively asymmetric relationship with precipitation and be
more sensitive to decreasing precipitation in arid or semiarid grassland
ecosystem such as the Northern Tibet Plateau and Inner Mongolia62–64.
However, in humid areas such as forests and river deltas, the relation-
ship was positively asymmetric with relatively lower increment
in precipitation and negatively asymmetric with relatively higher
precipitation65,66. The inconsistent soil respiration responses to pre-
cipitation between different ecosystems could be explained by the dif-
ferential responses of plant production andmicrobial communities67,68.
Specifically, increasing precipitation in an arid or semiarid area could
increase the bacterial and fungal abundance67, stimulating the release of
soil carbon under laboratory incubation; while a small amount of pre-
cipitation in humid area could rapidly result in the saturation of soil
moisture and the reduction of oxygen diffusion, depressing biological
activities of roots and microorganisms65,69,70. In addition, terrain slope
has a significant impact on SOC storage by affecting the transport and
migration of soil nutrient and soil moisture71, thus affecting SOM
decomposition rate.

We show that pH is the most important predictor for the reference
decomposition rate of the passive pool (M3-k3ref). Studies have shown
that pH has a direct impact on microbial activities and enzyme pro-
duction, and either low or high pH could contribute to reduction of soil
respiration72,73. Soil acidification could constrain agronomic productivity
and increase the concentration of toxic metal cations which restrain the
growth and maintenance of microorganisms74,75, while soil salinization
prevents microorganisms from effectively utilizing SOM76,77. Soil pH
consistently explains a large proportion of the presence of bacterial
functioning and the variation in bacterial phyla across studies44. It has
been suggested that bacteria aremore sensitive to pH variation with the
highest activation under a neutral pH condition, whereas, fungi have a
wider optimal survival pH ranging from 5 to 9 units74,77,78. Therefore, a
change in pH generally has a more significant impact on bacteria than
fungi. This suggest that bacterial decomposersmight have larger effects
on the decomposition of passive SOM than previously believed45, as
indicated by recent work that both fungi and bacteria are entailed in
breaking down complex substrates in soil79. Passive SOM is a mixture of
organic substances that have been modified from their original form.
While fungi are the dominant decomposers of plant-derived complex
compounds (such as lignin and cellulose)77,80,81, more bacteria are cap-
able of decomposing fungal and bacterial biomass that exist in the
passive SOM pool79.

In summary, according to our synthesis of laboratory incubation
data, soil texture and pH prevail in the decomposition rates of the fast
pools (fast pool in M2 and M3) and the slowest pool (slow pool in M2
and passive pool in M3), respectively, followed by climatic conditions
(particularly MAP).

Regional characteristics of predicted reference SOM decom-
position rates
Global-scale prediction of SOM persistence and vulnerabilities under
climate change requires the ability to accurately quantify SOM
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decomposition rates82. Our results show that kref comprises a spectrum
ranging from 9.60 × 10−6 to 4.42 × 10−1 d−1. The parameterization of
terrestrial C models and ESMs to better predict global C dynamics
requires building a better representation of the reference decom-
position rates of different SOM pools globally83.

The global prediction of kinetic parameters herein depicts
strong spatial heterogeneity, which is directly related to the relative
importance and distribution characteristics of the edaphic-climatic
predictors (see Supplementary Fig. 9). The following discussion is
based on our global prediction of SOM kinetics parameters derived
from the compiled soil incubation dataset. Noting that the soil

samples in this study are under-represented in areas such as the
Arctic, the Sahara Desert and the Amazon Rainforest. In tropical
rainforest regions of South America (i.e., the Amazon Rainforest)
and Africa, the kref values of the fast and slow pools are higher than
adjacent areas, while the opposite was found for the passive pool,
where higher kref values mainly result from relatively lower clay
content and pH (Supplementary Fig. 9d and 9f). Precisely, soil in
humid tropical forests with slightly lower clay content is less prob-
able to encounter physical protection of mineral-associated organic
matter, resulting in higher kref of the fast and slow pools58. However,
the significantly lower pH (e.g., <5 units) constrains fungal
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Fig. 5 | Global relative uncertainty (ReUn) and latitudinal pattern of the
reference decomposition rates (kref) of the three soil organic matter (SOM)
pools predicted by the Random Forest (RF) model with feature selection.
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decomposition of chemically-recalcitrant SOM84. In the Australian
desert areas, the response of kref to the explanatory factors is con-
trary to that of the Amazon Rainforest, which is probably because
the relatively high pH (e.g., 7−9 units) limits bacterial activities but
maximizes fungal energy efficiency78,85. On the Tibetan Plateau, the
extremely high altitude tends to be accompanied by longer freezing
period restricting diffusion of substrate as well as microbial activ-
ities, which makes the impact of elevation on SOM decomposition
noticeable and induces all SOM pools especially passive pool to
decompose slowly though the soil has similar clay content and pH to
that of Australian desert areas86. The global prediction of kref in this
study reflects the spatial distribution characteristics of the pre-
dictive factors and is therefore valuable for developing and testing
global scale models.

In conclusion, our study based on laboratory incubation data
illustrates the controlling role of various edaphic-climatic predictors
for the expected decomposition of different SOMpools. Generally, soil
texture, particularly clay content, dominates the active SOM pool
turnover presumably by limiting water holding capacity as well as
oxygen diffusion, whereas pH determines the reference decomposi-
tion rate of the passive or stable SOM pool probably by regulating
microbial activities of bacteria and fungi. In addition to soil texture and
pH, climatic conditions (particularly MAP), SOC content, and terrain
slope exhibit secondary influence on the SOM decomposition rates.
Because of the non-monotonous impacts and spatial variation of
influencing factors, the global prediction of kinetic parameters shows
prominent regional characteristics. Notably, limited or even missing
data for areas such as the Arctic, the Sahara Desert and the Amazon
Rainforest weaken our confidence in predictions for these areas.
However, our results exhibit important implications for the general-
ized application of the first-order kinetics assumption. Applying the
results from this study could further improve the parameterization of
ESMs at the global scale to yield more robust estimates of land-
atmosphere carbon fluxes, advancing our understanding of carbon-
climate feedbacks under a changing climate.

Methods
First-order kinetics model
The decomposition of soil organic matter (SOM) is catalyzed by var-
ious enzymes secreted by microbes or plants, involving a variety of
biochemical and physical reactions which have not yet been fully
understood. To mathematically describe the SOM decomposition
processes, many studies simplify the internal mechanism and follow
the first-order kinetics assumption with the differential equation
expressed as:87,88

dS
dt = � k � S ð1Þ

where S is the substrate concentration (mass units, e.g., mg C g–1 soil),
and k is the decomposition rate constant (time units, e.g., d−1 or year−1)
of the substrate.

The analytic solution to Eq. (1) is:

S tð Þ= S 0ð Þ � e�kt ð2Þ

where S(t) is the substrate concentration at time t, and S(0) is the initial
substrate concentration. When it comes to multiple SOM pools, the
form of the solution can be expressed as:

S tð Þ= S 0ð Þ � Pn
i = 1

f i � e�kit
� �

ð3Þ

Pn
i= 1

f i = 1 ð4Þ

where n is the number of SOM pools, which is usually set to two or
three corresponding to a two-pool or three-pool model; fi is the initial
fraction of SOM pool i; and ki is the reference decomposition rate of
SOM pool i.

Equation (3) calculates the remaining substrate of all SOMpools at
time t. Subsequently, the total C loss (i.e., cumulativeCO2flux, denoted
by Rcum(t)) and the mineralized C flux rate R(t) could be calculated by
the following expressions:

Rcum tð Þ= S 0ð Þ � 1� Pn
i = 1

f i � e�kit

� �
ð5Þ

R tð Þ= lim
4t!0

Rcum t +4tð Þ�Rcum tð Þ
4t = S 0ð Þ � Pn

i = 1
ki � f i � e�kit ð6Þ

Incubation dataset compilation
Wecompiled a global dataset of estimated values of first-order kinetics
parameters by fitting against measured data from laboratory incuba-
tion experiments conducted pertaining to various climate zones and
ecosystems. By setting keywords to first-order, incubation, SOM, soil
respiration, multi-pool, two-pool or three-pool, we searched the Web
of Science, Google Scholar and China National Knowledge Infra-
structure (CNKI, http://www.cnki. net). Finally, we obtained 859
records from 59 publications with detailed information of evaluation
criteria (e.g., coefficient of determination (R2), RootMeanSquare Error
(RMSE), Akaike Information Criterion (AIC), and/or Bayesian Informa-
tion Criterion (BIC)) and fitted first-order kinetics parameters includ-
ing the reference decomposition rates and the initial pool sizes. We
recorded experimental information such as geographic location, ele-
vation (Elev, units: m), mean annual precipitation (MAP, units: mm),
mean annual temperature (MAT, units: °C) and ecosystem type of the
sampling location, soil texture (sand, silt, and clay fractions, units: %),
soil pH, and soil moisture (units: percentages of soil water holding
capacity), incubation temperature (IncT, units: °C), incubation
experiment duration (units: day), measured variables (CO2, CO2 +CH4,
13CO2), fitted values of kinetic parameters (SOM pool relative sizes,
units: %; reference decomposition rate, units: d−1) and model evalua-
tion indexes (i.e., R2, RMSE, AIC, and BIC) (Supplementary Data).

In the case that the fitted kinetics parameters were presented in
the form of graphs, we extracted the values by using WebPlotDigitizer
4.5 (https://apps.automeris.io/wpd/index.zh_CN.html). For studies not
providing the fitted kinetics parameters (relative pool sizes and decay
rates), we used a two- or three-pool first-order kinetics model to fit the
measured soil respiration data by the Nonlinear Least Squares (NLS)
method89, where we chose the Gauss-Newton algorithm to minimize
the residual sum of squares (RSS). To picture the global distribution of
incubation experiments, the study sites were displayed on the map,
most of which were distributed between 25 and 50 degrees north
latitude especially in North America and China.

To check the reliability of the compiled dataset, we collected the
default values of kinetic parameters of well-knownmodels, such as the
Community Land Model with Carbon Nitrogen Biogeochemistry
(CLMcn)13, Daily Century Model (DAYCENT)48, Agricultural Nitrogen
Model (ANIMO)46 and DAISY47. We converted all the reference
decomposition rates to the same units (i.e., d–1).

Controlling factors identification and global datasets collection
To analyze the impact of edaphic-climate conditions on the SOM
decomposition kinetics parameters, we selected numerical factors as
independent variables from our compiled dataset, such as MAP, MAT,
sand and clay fraction (Sand andClay), pH, Elev, and IncT. Althoughwe
useddata from laboratory incubations,wealso includedMAPandMAT
for the soil origin locations to reflect the effect of regional climate
characteristics. We involved sand and clay fraction to characterize the
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effect of soil texture. Simultaneously, we included pH to represent the
soil acidity and alkalinity impact. Elevation and laboratory incubation
temperature represent the topographic influence and the environ-
mental impact of lab incubation experiments, respectively. Soil
moisture in these laboratory incubation experiments was usually
maintained at a constant value (i.e., 60%water holding capacity),which
is too homogeneous to be treated as an independent variable in this
study. Apart from the seven documented variables, we included soil
organic carbon (SOC) and microbial biomass carbon (MBC) as the
explanatory variables as they directly characterize SOM and microbial
community, respectively90. In addition to elevation, terrain slope
(Slope) was considered for its significant impact on SOM storage by
affecting migration and transformation of soil nutrient71. We used the
normalized difference vegetation index (NDVI), a commonly used
indicator of vegetation coverage91, as a proxy of vegetation for pre-
dicting the SOM decomposition kinetics parameters.

We collected global datasets of the aforementioned eleven
explanatory variables to fill missing values of the compiled
dataset and predict the global patterns of first-order kinetic
parameters. The WorldClim version 2.1 monthly historical climate
data, released in January 2020, was chosen to analyze the impact
of climatic factors, which is an average of the period 1970−2000
and available at spatial resolutions between 1 to 340 square
kilometers92. We downloaded and calculated MAP and MAT with a
1-km spatial resolution. For global soil properties data, we refer-
red to the SoilGrids version published in 2017 from the Interna-
tional Soil Reference and Information Centre (ISRIC), including
sand, clay, and silt fraction (%), soil organic carbon (g kg−1) and
pH values at a 1-km spatial resolution93. Global MBC data was
obtained through the Oak Ridge National Laboratory (ORNL)
Distributed Active Archive Center (DAAC)94, which was compiled
from a comprehensive survey of publications from the late 1970s
to 2012. For global elevation data, we integrated the sixteen
blocked DEM datasets with 1 km spatial resolution from National
Centers for Environmental Information (NCEI) of National Ocea-
nic and Atmospheric Administration (NOAA) (https://www.ngdc.
noaa.gov/mgg/topo/DATATILES/elev/) to obtain a global dis-
tribution of terrestrial elevation and calculated terrain slope by
ArcGIS 10.2. Global NDVI data was obtained through the NASA
Making Earth System Data Records for Use in Research Environ-
ments (MEaSUREs) Vegetation Index and Phenology (VIP) global
datasets (doi:10.5067/MEaSUREs/VIP/VIPPHEN_NDVI.004), con-
taining yearly average of the period 1981−2014 and available at
0.05-degree spatial resolutions.

Notably, the adopted global soil properties (Sand, Clay, pH, and
SOC) datasets remove the Antarctic part covered by glaciers and only
include 60 degrees south to 90 degrees north latitude, while the other
datasets (MAP, MAT, Elev, Slope, MBC, and NDVI) cover all latitudes of
the globe. We kept them within the same extent ranging from 60
degrees south and 90 degrees north latitude by applying the function
“crop” in R package “raster”.

Statistical analysis
The non-parametric Kruskal-Wallis (KW) test was adopted to inves-
tigate the difference of fast and slow pool kinetic parameters
(especially the reference decomposition rates, i.e., kref) between the
two-pool and three-pool model at a significance level of 0.05. To
verify whether these variables were independent of each other, the
Spearman Correlation Analysis (SCA), which does not require the
variables to satisfy a normal distribution, was employed to detect
the correlation between any two of the eleven explanatory
variables95. All statistical analysis was carried out using R software
4.0.296. Correlation strength is classified as per Xia (2020), utilizing
the Spearman correlation coefficient (ρ) values and significance test
index p-values.

Feature selection and predictive modelling
We selected MAP, MAT, Sand, Clay, pH, SOC, MBC, Elev, Slope, NDVI,
and IncT as explanatory variables. More parameters usually contribute
to better model performance, but also lead to higher model com-
plexity and uncertainty. To obtain the optimal combination of inde-
pendent variables, we used recursive feature elimination (RFE)
method, an effective feature selection method for regression trees
models97, to screen out unimportant variables. Specifically, we used
the function “rfe” in R package “caret” to train the models with dif-
ferent predictors combinations based on 10-fold cross-validation and
elected the optimal combination of independent variables by max-
imizing the goodness-of-fit between predicted and observed SOM
decomposition kinetics parameters.

To erect a reliable relationship between kinetic parameters and
explanatory predictors, we elected the multivariable linear regression
(MLR)98, gradient boosting machine (GBM) and random forest (RF)99.
The MLR, with its simple model structure, is commonly used as a
statistical approach to describe the linear association of independent
variables with one dependent variable100. The GBM, one of the boost-
ing methods, is an efficient machine learning algorithm for dealing
with regression and classification problems, where sequential decision
trees are trained and linearly integrated to minimize the loss function
of the previously trained decision trees on the gradient descent
direction101. The RF, widely used in many research fields for detecting
nonlinear associations, is a powerful machine learning approach that
can avoid overfittingbygrowing each tree of all decision trees102. There
are four hyperparameters in GBM model, including the number of
trees (i.e., n.trees), complexity of the tree (i.e., interaction.depth),
learning rate (i.e., shrinkage), and theminimumnumber of training set
samples in a node to commence splitting (i.e., n.minobsinnode)103. To
optimize the hyperparameters of GBM, we adopted the grid search
method104 by setting n.trees to 10–200, interaction.depth to 1–7, and
shrinkage to 0.01 and 0.1, while keeping n.minobsinnode to a constant
value (i.e., 10)103. For RF, we set the maximum number of allowed trees
to 100 and controlled the only one user-selected parameter mtry, the
numbers of covariates used in tree splits, between 2 and the number of
independent variables minus 1.

We evaluated modeling performance with metrics such as coef-
ficient of determination (R2)105, concordance correlation coefficient
(ρc)

51, RMSE106, RMSEn and AIC:107

R2 = 1�
Pn

i= 1
yisim�yi

obsð Þ2Pn

i= 1
yi
obs

��yobsð Þ2 ð7Þ

ρc =
2�
Pn

i = 1
yisim��ysimð Þ yi

obs
��yobsð Þ

n� �ysim��yobsð Þ2 +Pn
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yisim�yi

obsð Þ2
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ð9Þ
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yQ3
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�yQ1
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ð10Þ

AIC =n � ln
Pn

i= 1
yisim�yi

obsð Þ2
n +2 � p ð11Þ

where n is the number of observations, p is the number of explanatory
variables; yi

obs
and yisim denote the ith observed and simulated value,

respectively; �yobs and �ysim are the mean value of observed and
simulated data, respectively;yQ1

obs and yQ3
obs represent the first and third

quartile of the observations, respectively. A higher R2 and ρc, and a
lower RMSEn and AIC, represents better model performance.

We developed the predictive model with regard to eight kinetics
parameters, i.e, M2-k1ref, M2-k2ref, M2-f1, M3-k1ref, M3-k2ref, M3-k3ref,

Article https://doi.org/10.1038/s41467-023-37900-3

Nature Communications |         (2023) 14:2171 10

https://www.ngdc.noaa.gov/mgg/topo/DATATILES/elev/
https://www.ngdc.noaa.gov/mgg/topo/DATATILES/elev/


M3-f1, and M3-f2, where M2 and M3 denote the two-pool model and
the three-pool model, respectively; k1ref, k2ref, and k3ref are the refer-
ence decomposition rates of the fast, slow, and passive SOM pools,
respectively; and f1 and f2 denote the relative sizes of the fast and slow
SOM pools, respectively. For each kinetics parameter, we constructed
MLR, GBM, and RF models based on the compiled dataset with and
without feature selection by applying the basic functions of “lm”,
“gbm” and “rf” method in the R package “caret”, respectively.

We used the function ‘createDataPartition’ in the R package ‘caret’
to partition the training and testing datasets. That is to say, we trained
the models by randomly selecting 75% of the full dataset and tested
with the remaining 25% of the dataset. Alternatively, k-fold cross-vali-
dation can be used as a model validation method, where the data for
model training is further partitioned into k equal subsets and each
subset is left out for validationwhile the remaining subsets are used for
model training101,108. To reduce the uncertainty of stochastic sampling
and find the best predictive models, we trained the machine learning
models for 100 times and searched the optimal models bymaximizing
R2. In each run, we used repeated ten-fold cross-validation as the
resampling method and set the repeat times to three while model
training. We examined the three approaches (MLR, GBM, and RF) with
split-sample (i.e., 75% for training and 25% for testing) and full dataset
separately. We selected the best predictive model as per the
lowest AIC.

Relative importance and partial dependence analysis of expla-
natory variables
For each kinetic parameter, we estimated the relative importance of
explanatory predictors by applying “varImp” function in the R package
“caret” to the best predictive model109. The values of relative impor-
tance of all variables were summed up to be 100 (%). To reveal how the
SOM kinetic parameters respond to the changes in explanatory pre-
dictors, we conducted the partial dependence analysis by using func-
tion “partial” in the R package “pdp” and normalized the values of all
explanatory predictors to 0−1.

Global prediction of SOM decomposition kinetics parameters
We resampled the global datasets of selected independent variables to
a common grid cell (i.e., 1-km spatial resolution) by “bilinear” method
and derived global datasets of the SOM decomposition kinetics para-
meters at a 1-km resolution (about 0.0083°) based on the optimal
predictive models. For the analysis of global patterns, we resampled
the derived datasets to 0.5° spatial resolution by “bilinear”method inR
software 4.0.2 and obtained maps of global prediction of SOM
decomposition kinetics parameters.

Notably, the adopted global soil properties (Sand, Clay, pH, and
SOC) datasets have predicted values with high uncertainties97. How-
ever, the uncertainties for these variables at 1 km resolution are not
provided publicly except for pH, preventing us from a comprehensive
assessment of the uncertainty of our final product caused by these
input uncertainties. Therefore, we only quantified the grid-by-rid
relative uncertainties of the reference decomposition rates in the
three-pool model caused by the uncertainty in pH, whose 90% con-
fidence intervalwas given. The relative uncertainty (ReUn) of a variable
is quantified by

ReUn=
Width90%CI

Mean
ð12Þ

where Width90%CI and Mean denote the width of the 90% confidence
interval and the mean value, respectively.

Subsequently, the quantification of the ReUn of a predicted vari-
able (e.g., M3-k3ref) owing to the pH uncertainty on each grid was
similar to Eq. (12), where the Width90%CI was defined as the difference

in M3-k3ref predicted by the 95% percentile pH and the 5%
percentile pH.

In addition, we derived the grid-by-grid uncertainty due to
machine learning model structure by computing the ReUn of a pre-
dicted decomposition parameter based on 100 decision trees of the
best RF model99. This model structure uncertainty was owing to
resampling of data and unexplained variability not captured by the
current RF model99. Subsequently, we calculated the mean values and
90% confidence intervals as per latitudes to analyze the latitudinal
patterns of the predicted global kinetic parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The soil decomposition kinetics data generated in this study are pro-
vided in the Supplementary Information/Source Data file ‘Supple-
mentary Software.rar’.

Code availability
Source code is provided in the file ‘Supplementary Software.rar’.
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