
Article https://doi.org/10.1038/s41467-023-37886-y

Dynamic machine vision with retinomorphic
photomemristor-reservoir computing

Hongwei Tan 1 & Sebastiaan van Dijken 1

Dynamic machine vision requires recognizing the past and predicting the
future of a moving object based on present vision. Current machine vision
systems accomplish this by processing numerous image frames or using
complex algorithms. Here, we report motion recognition and prediction in
recurrent photomemristor networks. In our system, a retinomorphic photo-
memristor array, working as dynamic vision reservoir, embeds past motion
frames as hidden states into the present frame through inherent dynamic
memory. The informative present frame facilitates accurate recognition of
past and prediction of future motions with machine learning algorithms. This
in-sensor motion processing capability eliminates redundant data flows and
promotes real-time perception ofmoving objects for dynamicmachine vision.

Dynamic machine vision (DMV) technology has numerous significant
applications in video analysis, robotic vision, self-driving technology,
and intelligent transport1,2. The ability to use present vision to recog-
nize past motion and predict future trajectories is crucial in DMV3,4.
Current imaging systems utilize multiple modules, including sensors,
signal converters, memory, and processors, to recognize and predict
motion by analyzing massive frame-by-frame image sequences and
using complex algorithms5,6, engendering redundant data flows and
high-energy consumption.

Different frommodern image sensing andprocessing systems, the
biological architecture of humanvision is highly capable of recognizing
and predicting motion, for instance, aiding humans in the perception
of danger in wildlife or traffic7–9. In recent years, inspired by the bio-
logical vision system wherein visual short-term memory plays a key
role10,11, retinomorphic image sensors with memory capability1, such as
switchable photovoltaic sensors12, non-volatile phototransistors13,14,
and memristors15, have shown adaptive and all-in-one sensing cap-
ability, facilitating in-sensor computing, self-adaptive imaging, and
motion detection. Besides, in-sensor reservoir computing systemswith
spatiotemporal processing capabilities have been demonstrated for
language learning15 and image classification16. However, motion
recognition and prediction (MRP) within a compact dynamic sensing
system, which is crucial for DMV technology, has not been realized yet.

Here, we report recurrent photomemristor networks consistingof
a retinomorphic photomemristor array (PMA) operating as a dynamic
vision reservoir and readout networks for processing (Fig. 1a). In the

retinomorphic photomemristor-reservoir computing (RP-RC) system
(Fig. 1b), the inherent dynamic memory of the PMA stores spatio-
temporal information of a frame-by-frame visual sequence as hidden
states (h) in the last frame. The dynamic PMA reservoir, containing all
the past spatiotemporal visual information, is used for various
dynamic processing tasks through the training of readout networks.
To demonstrate the spatiotemporal processing capability of the RP-RC
system, we implement the classification of videos playing English
words ending with the same letter but with different spatiotemporal
dynamics for language learning. Furthermore, we realize the most
crucial DMV task—motion recognition and trajectory prediction—in
the RP-RC system using classification and inherent memory associa-
tion by the readout networks, providing a promising neuromorphic
platform for in-sensor DMV.

Results
Retinomorphic photomemristor-reservoir computing (RP-RC)
system
Hardware-based DMV requires retinomorphic sensors with inherent
dynamic processing and memory1. Photomemristors that integrate
sensing, processing, and memory capabilities17,18 are an ideal candi-
date for this task. In recent years, photomemristors have been stu-
died in neuromorphic vision and processing systems for image
classification19–23 and human action recognition23. Here, we exploit
photomemristors for MRP based on an informative frame with
embedded memorized information from multiple previous frames.
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To implement the RP-RC system, we fabricated a 5 × 5 PMA (inset of
Fig. 1c) with an indium tin oxide (ITO)/ZnO/Nb-doped SrTiO3 (NSTO)
structure. In the photomemristors, optically and electrically con-
trolled charging and migration of oxygen vacancies changes the
Schottky barrier at the ZnO/NSTO interface20, triggering a dynamic
optoelectronic memristive response (Supplementary Fig. 1). As
shown in Fig. 1c–e, illumination of the photomemristors by light
increases the output current by 2–3 orders of magnitude and the
signal decays gradually after the light is switched off (Fig. 1c). The
dynamic states and decay time depend on the number of optical
pulses (Supplementary Fig. 2). The high on/off ratio of ~102 in
response to 100ms light pulses (Supplementary Fig. 1b and Supple-
mentary Table 1) and the wide continuous range of dynamic analog
states (Fig. 1d, e and Supplementary Fig. 2) attained by light stimu-
lation enables photosensing with inherent dynamic memory
as rich hidden states, which is an essential requirement for retino-
morphic sensors in MRP. To test the speed of photosensing with
memory by the PMA, we increased the frequency of the optical input
to 60Hz (Supplementary Fig. 3), corresponding to the frequency of
commercial displays. Again, a large continuous range of dynamic
analog states is measured up to hundreds of optical pulses,
demonstrating adequate in-sensor memory for the processing of
hidden states. Finally, we note that the photomemristive response of

the PMA is highly uniform (Supplementary Figs. 4 and 5). While
readout training could in part compensate for device-to-device var-
iations in the output current, this hardware feature is relevant for
complex DMV tasks.

Spatiotemporal processing of the RP-RC system
To demonstrate dynamic vision recognition by our RP-RC system,
we used videos playing words letter-by-letter as input and a simple
readout network to classify the spatiotemporal information
(Fig. 2a). The input words in the videos are ‘APPLE’, ‘LIME’, ‘OLIVE’,
‘DATE’, and ‘GRAPE’, which all end with the letter ‘E’. In conventional
image sensors, the last frame of the videos (the letter ‘E’) would be
similar for all words (Supplementary Fig. 6). However, in our reti-
nomorphic PMA, the last frame (h5) does not only contain infor-
mation on the last letter ‘E’, but also of all previously played letters
because of its inherent dynamic memory (Supplementary Note 1
and Fig. 2b). For instance, the spatiotemporal information of the
video playing ‘A-P-P-L-E’ (Fig. 2c) determines the classification vec-
tors of the final output frame (h5), as shown in the first column of
Fig. 2d. The videos playing the other words contain different spa-
tiotemporal information. Because the output currents recorded
during the projection of the last letter ‘E’ (ΔI5) do not only depend
on the present illumination state but also on the number and timing
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Fig. 1 | Retinomorphic photomemristor-reservoir computing (RP-RC) system.
a Schematic of the RP-RC system with a retinomorphic photomemristor array
(PMA) operating as dynamic vision reservoir and a readout network. The PMA
senses multiple frames of a video and temporally stores them in the last frame for
further processing in the readout network. b Structure of the RP-RC system. X, h,
and Y indicate the optical inputs, hidden states, and output currents.
cPhotomemristive switchingbehavior of the PMA.The illumination time is 20 s and
the decay curves are measured about 1, 3, 7, 20min after the light source is turned

off. The inset illustrates the input of programmed light pulses and an optical image
of the PMA. d Sensing, accumulating, and memory of optical inputs (X) using
100ms pulses at a repetition rate of 0.5 Hz and a photomemristor bias voltage of
1.0 V. The PMA senses and temporally memorizes optical information through the
slowly decaying photocurrent. e 300 dynamic analog hidden states of the retino-
morphic PMA measured after applying 1 to 300 optical pulses with a duration of
100ms at a repetition rate of 0.5 Hz.
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of previously received optical inputs (Fig. 2e), the PMA current map
(Supplementary Figs. 7 and 8) and vectors of h5 (Fig. 2d) are unique
for each video. The features of the last frame that are read out by the
artificial neural network (ANN) thus combine information of the last
letter ‘E’ (Supplementary Fig. 9) and all other letters. Utilizing the
spatiotemporal differences, we trained the readout ANN to classify
the videos. The ANN has 25 inputs corresponding to the 25 photo-
memristors of the PMA, and 5 outputs to classify the videos. The
recognition accuracies are 97.3% and 91.3% (Supplementary
Fig. 10a–d) after 200 training epochs with Gaussian noise factors of
σ = 0.15 and σ = 0.30, respectively. The confusion matrices show
~100% and ~90% test accuracy with σ = 0.15 and σ = 0.30 (Supple-
mentary Fig. 10a–d), enabling accurate DMV tasks. To underline the
key role of inherent dynamic memory in dynamic data processing
by the RP-RC system, we operated the same PMA without hidden
states using the same readout network structure to recognize the
videos. In this conventional sensing mode, the readout network
uses the peak values of the PMA photoresponse (see constant peaks
in Fig. 1d) rather than the memristive states (variable output cur-
rents between optical inputs in Fig. 1d). The recognition accuracy
achieved using conventional image sensing is just 36.2% for σ = 0.30
after 200 training epochs (Supplementary Fig. 10e, f), i.e., much
lower than the 91.3% attained with the use of hidden states. This

comparison demonstrates the importance and potential of the
inherent dynamic memory in the PMA for efficient dynamic vision
processing.

In the brain, deepmemory usually results in better perception. To
evaluate the relation betweenmemory and recognition accuracy inour
RP-RC system, we tuned the inherent memory of the PMA by applying
different bias voltages (Vbias = 0.8, 1.0, and 1.2 V) across the photo-
memristor Schottky junctions (Fig. 2f). Results for the same videos are
shown in Fig. 2g and h and Supplementary Fig. 11. The data demon-
strate that the recognition accuracy increases from 78% at 0.8 V to
100% at 1.2 V (Fig. 2h and Supplementary Fig. 11c) because of increased
memory of previous frames (Fig. 2f and Supplementary Fig. 11b). This
memory-dependent dynamic recognition, which resembles memory-
dependent perception in the brain, could enable intelligent sensors
with tunable attention.

Motion recognition and prediction (MRP)
Besides video-of-words recognition, the capabilities of the RP-RC sys-
tem with hidden memory states can be extended to motion recogni-
tion. To demonstrate this, we played three frames representing the
motion of an object (a simulated person) at different speeds (slow,
medium, fast) (Supplementary Fig. 12). For motion recognition, we
used the same PMA and a simple readout ANN with 25 inputs and 3
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Fig. 2 | Memory-dependent dynamic vision recognition. a Videos playing
‘APPLE’, ‘LIME’, ‘OLIVE’, ‘DATE’, and ‘GRAPE’ letter-by-letter, all ending with ‘E’, are
used as input to the retinomorphic PMA. Only the photomemristor currents of the
last frame (h5) recorded after playing the letter ‘E’ are used as vectors for recog-
nition by the readout network. b Example of how the PMAmemorizes the letter ‘A’.
After an illumination time of 100ms, the letter ‘A’ fades in 2 s. cOutput currents of
the 25 photomemristors in the PMA recorded while playing the word ‘A-P-P-L-E’
letter-by-letter. The light pulses illuminate the PMA for 100ms, the frame-to-frame
rate is 2Hz, and the bias voltage is 1 V.d Feature vectors of the last frame (letter ‘E’)
for the five videos. The vectors are obtained by normalizing the photomemristor

currents that are recorded after the 5th frame in (c). e Change in the photo-
memristor output current of the last frame as a function of the number of pre-
viously received optical pulses. The error bars represent the standard deviation.
f Photomemristor output current measured at different bias voltages (Vbias = 0.8 V,
1.0 V, and 1.2 V) for five optical pulses with a duration of 100ms and a repetition
rate of 2Hz. The memory states (currents between optical pulses) increase with
bias voltage. g, h Training and test accuracy for datasets recorded with different
bias voltages in the same video classification task. The accuracy increases from 82%
for training and 78% for testing at Vbias = 0.8 V to 100% for both training and testing
at Vbias = 1.2 V.
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outputs (Fig. 3a). The feature vectors of the last frame (h3) are different
for the three moving speeds because of differences in the hidden
memory states (Fig. 3b). Normally, it is impossible to recognize the
direction of motion for a completely symmetric object using just one
frame. However, in our system, owing to the accumulative photo-
memristive effect, the imprint of dynamic memory states from pre-
vious object positions enables the correct prediction of future
trajectories. Moreover, the imprint is stronger when the object moves
fast because of the accumulative dynamic photomemristive response
(Fig. 3c and Supplementary Fig. 13). Utilizing the spatiotemporal dif-
ferences in motion imprint, we trained the readout ANN to recognize
the motion speed. After 100 training epochs, the training accuracy
reaches 100% (σ =0.15) and 97% (σ =0.3) (Fig. 3d and Supplementary
Fig. 14), with ~100% test accuracy of the motion speed (Fig. 3e and
Supplementary Fig. 14c).

Motion prediction is a crucial task in DMV4,5. Inspired by biolo-
gical spatiotemporal vision prediction24, our RP-RC system uses
learned inherent spatiotemporal sequences in an autoencoder net-
work (Supplementary Fig. 15a) to encode the present vision frame
and accurately predict the future frames of moving objects (Fig. 3f).

The autoencoder has 25 inputs corresponding to the 25 photo-
memristors of the PMA, 10 hidden representations associating input
and prediction, and 25 outputs corresponding to the pixels of pre-
dicted future frames (ht+1, ht+2, etc.) with the same dimension as the
input frame (ht). When the PMA detects a motion, the system uses
the hidden states of the first three motion frames (h1, h2, h3) to train
the autoencoder by using h1 and h2, and h2 and h3 as the input and
output, respectively. After training the autoencoder with two
motions (a symmetric simulated personmoving to the left or moving
to the right), the RP-RC system successfully predicts the future
frames of motion with the first frame as input (X1) (Fig. 3g, h). Under
optical input X1, the PMA produces the vectors of the first frame h1.
With h1 as autoencoder input, the system successfully predicts h2,
and then h3 using h2 as the recurrent input. The final output Y (right
columns in Fig. 3g, h) is generated by applying a step function to the
hidden memory hi, demonstrating the correct prediction of the two
motions. To extend the field of view of the prediction, we introduced
a shifting operation to simulate eyeball movement or head rotation
towards the target25. Continuous prediction of motion enabled by
this feature is demonstrated in Supplementary Fig. 15b. Moreover, by
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Fig. 3 | Motion recognition and prediction. a Programmed light pulses repre-
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photomemristor output currents recorded after playing the last frame (h3) are used
as features for recognition by the readout network. b Feature vectors of hidden
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ferent speeds of motion. The imprint factors are calculated by averaging the nor-
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Fig. 2b) in b. The selected pixels are all illuminated by optical pulses during object
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hiddenmemory states. The error bars represent the standard deviation. d Training
and validation accuracy of the readout network. e Confusion matrix of motion
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final output Y is obtained by applying a step function to h. i Predicted position and
moved distance (D) at t = 9 s following the detection of an object moving to the
right at three different speeds.
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combining motion speed recognition and trajectory prediction, the
RP-RC system correctly predicts the exact positions of objects that
move with different speeds and into different directions, which is
important in traffic assessment and other significant DMV applica-
tions. As shown in Supplementary Fig. 16, the readout network
first recognizes the speed (time per step) of a moving object using
the present frame (as in Fig. 3a–e) and the trained autoencoder
predicts the trajectories at a certain future time. From this, the
position of the moving object can be calculated accurately. For
example, in Fig. 3i, the position of a moving person is predicted 9 s
into the future by recognizing the moving speed and predicting the
number of steps taken (9 steps for slow, 18 steps for medium,
45 steps for fast motion). By combining the steps and trajectories,
accurate positions at any time can be predicted (Supplementary
Fig. 16). Prediction results for a completely symmetric object
moving right/left at different speeds are shown in Supplementary
Movies 1 and 2.

Intelligent traffic simulation
Safety and efficiency are the most important factors in future intelli-
gent and autonomous traffic, requiring dynamic and accurate recog-
nition and prediction. To demonstrate the potential application of the
RP-RC system for future intelligent traffic, we simulated a situation
where a robot and a car, both equippedwith our RP-RC system,meet at
a crosswalk (Fig. 4a). In the simulation, the RP-RC system consists of a
PMA with 48 × 48 photomemristors, a convolutional neural network
(CNN) for speed recognition, and a convolutional autoencoder (CAE)
for trajectory prediction (Fig. 4b). As shown in Fig. 4a,Wand Lmark the
width and length of the crosswalk, xcar indicates the distance between

the car and the crosswalk at t =0, and xrobot specifies the distance
between the robot and the crosswalk at the same time. Trained by past
motion frames using the dynamic memory of the PMA, the CNN
recognizes the object speeds (vcar and vrobot) from the present frames
(Supplementary Fig. 17) with >90% average test accuracy (Supple-
mentary Fig. 18) and the PMA-trained CAE (Supplementary Fig. 19)
correctly predicts future motion trajectories of the robot and the car,
as shown in the upper and lower dashed squares of Fig. 4a. Prediction
results of a car and a robotmoving right and left at different speeds are
shown in Supplementary Movies 3 and 4, demonstrating motion
recognition andprediction capabilities for accurate positionprediction
over a long period of time. If both the car and robot approach the
crosswalk, in the car vision (Fig. 4c), the decision (slow down or keep
speed) made at t =0 depends on the predicted position of the robot
when the car arrives at the crosswalk (t = xcar/vcar). Considering both
safety and efficiency, if the robot at t = xcar/vcar is predicted to be on the
crosswalk (dashed square in Fig. 4c), the car slows down. Similarly, in
the robot vision, the robot will either slow down or keep its speed
based on the predicted position of the car at t = xrobot/vrobot (Fig. 4d).
Based on these safety rules, visual decision maps for the car and the
robot can be calculated (Fig. 4e, f and Supplementary Note 2). In the
maps, the orange and blue parts indicating ‘slow down’ and ‘keep
speed’ decisions depend on the car and robot parameters recognized
by the RP-RC systems and the width and length of the crosswalk.
Moreover, the decision maps are dynamic, as the variables xcar, vcar,
xrobot, vrobot are changing in real-time. Examples of dynamic decision-
making by the car and robot are shown in Fig. 4g, h. The car or robot
slows down when the pink marker indicating their position is in the
yellowarea and they retain their speedwhen themarker enters theblue
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area of the dynamic decision map. Dynamic visual decision-making
based on MRP by the RP-RC system, as demonstrated here, is relevant
for compact DMV applications in future hybrid or autonomous intel-
ligent traffic.

In the brain, cortices process multimodal environmental infor-
mation by crossmodal association. For instance, audio-to-motion
prediction plays a vital role in a person’s ability to anticipate danger
and in the communication between dolphins26 (https://cymascope.
com/oceanography/). To emulate crossmodal prediction using a
single compressed frame, we associated motion recognition and
prediction in our RP-RC system with audio inputs through cross-
modal learning (Fig. 5a). In this scheme, the system converts audio
signals to Mel-frequency cepstral coefficients (MFCC) features and a
deep neural network (DNN) processes the features to crossmodally
recognize the first frame of motion (X1’). Feeding this first frame into
a PMA-trained CAE (see also Fig. 4) then provides the prediction of
continuous motion, as illustrated in Fig. 5b. As an example, we
demonstrate audio-to-motion prediction of a moving car or person.
The audio input signals are ‘A person is moving right’, ‘A person is
moving left’, ‘A car is moving right’, and ‘A car is moving left’ (‘Audio
signal’ in Fig. 5c). The MFCC features corresponding to these audio
inputs (‘Feature’ in Fig. 5c) train the DNN, leading to crossmodal
recognition of the first motion frame (X1’ in Fig. 5c and Supple-
mentary Fig. 20). Next, the PMA-trained CAE already employed
in Fig. 4 encodes the recognized vision frame and predicts the
next frame. The predicted frame is then fed back to the CAE to
predict the next frame, etc., thus realizing continuous crossmodal

audio-to-motion prediction (Predicted motion Y in Fig. 5c and Sup-
plementary Fig. 21). Conceptual crossmodal motion prediction will
further enhance robotic dynamic vision for human-machine traffic
communication, autonomous driving, and intelligent transport
technology.

Discussion
We have demonstrated a retinomorphic photomemristor-reservoir
computing (RP-RC) system consisting of a photomemristor array
(PMA) and readout networks. The inherent dynamic memory of the
PMA compresses spatiotemporal vision information into a single
frame, eliminating redundant data flow and facilitating various
dynamic visual tasks. Spatiotemporal analysis is important for
dynamic information processing. In previous research, ionic
memristors27 and phase-change memtransistors28 with tunable
plasticity have emulated the dynamics of synapses for temporal
data classification and forecasting. These reservoir computing sys-
tems detect the temporal data streams externally. Traditional vision
sensing systems analyze dynamic vision using multiple frames with
intra-frame compression, which requires frequent data transmis-
sion between separate sensing, memory, and processing modules.
Our RP-RC system senses, memorizes, and processes optical-image
sequences with a single PMA. This compact in-sensor memory and
computing solution exploits a photomemristive effect with short-
term memory for in-frame/photomemristor compression, facilitat-
ing motion recognition and prediction, and power efficiency. Fur-
thermore, because the bias voltage across the Schottky junctions
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a Schematic of the audio-to-motion data flow, including audio feature extraction,
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crossmodal audio-to-motion prediction system. The PMA-trained CAE is identical
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crossmodal recognition by a trained DNN. The recognition accuracy of X1’ through
audio input is 90% for 120 random test datasets (Supplementary Fig. 20). Audio-to-
motion prediction is successful for three of the four motions (the first 25 predicted
frames are shown). Themotionof ‘Aperson ismoving right’ is predicted successfully
for the first 9 frames but then fades (Supplementary Fig. 21). By giving another
audio input at step 9, the correct prediction ofmotion is re-establishedwithweaker
residual imprints from the previous frames.
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tunes the photomemristor output currents, the sensing and mem-
ory functions are adjustable for speed, accuracy, or other require-
ments of intelligent in-sensor processing tasks. Additionally, our
recurrent photomemristor networks can be easily extended to
other modalities via crossmodal learning, fulfilling the requirement
of applications in multimodal environments. Although the 3.1 eV
bandgap of ZnO limits the photoresponse range of the current
photomemristor to 320–400 nm (UV–blue light), broadening of
this response to the visible range is possible by doping ZnO with
Co29 or using other materials with narrower bandgaps. A compar-
ison of our photomemristor-based system with other reservoir
computing systems and traditional vision sensors is given in Sup-
plementary Tables 1 and 2. Above all, the demonstrated recurrent
photomemristor networks hold great potential for urgent dynamic
machine vision (DMV) applications requiring accurate on-site
motion perception and prediction.

Methods
Fabrication of photomemristor array (PMA)
The PMA consisted of indium tin oxide (ITO)/ZnO/Nb-doped SrTiO3

(NSTO) junctions fabricated by atomic-layer deposition (ALD), pho-
tolithography, etching, and magnetron sputtering. Conductive NSTO
substrateswere used as the bottomelectrode of the photomemristors.
To form a Schottky barrier, photosensitive ZnO films with a thickness
of 60 nmwere deposited bymagnetron sputtering (5.8 × 10−3 mbar, Ar
16 sccm, O 4 sccm, power 60W) on top of the NSTO substrates.
Transparent and conductive ITO top electrodes were grown by mag-
netron sputtering (3.4 × 10−3 mbar, Ar 10 sccm, power 50W). The
photomemristors had a working area of 100 µm× 100 µm. Besides the
working area, an insulation Al2O3 layer was deposited by ALD between
the ZnO film and the ITO electrode wires and pads. The working areas
were opened by wet etching.

Characterization of photomemristor array (PMA)
The photomemristor array was measured using an electrical mea-
surement system consisting of a Keithley 4200 semiconductor char-
acterization unit, a Keithley 2400 source meter, an Agilent B1500A
semiconductor device parameter analyzer, a Tektronix AFG 1062
arbitrary function generator, a Keysight DSO1024A oscilloscope, and
a blue LED with shadow masks functioning as the optical input. The
intensity of the blue light pulses was 0.65 ± 0.06mWmm−2, which was
calibrated by a Thorlabs FD11A photodetector and an Ocean Optics
USB2000 + optical spectrometer. Programmed light pulses were used
to simulate image and optical motion sequence inputs. The current
map of the PMA was recorded by an Agilent B1500A semiconductor
device parameter analyzer one-by-one under one-by-one optical
input. The bias voltages were applied on the ITO electrodes.

Readout network for video recognition of words
The word classification network had 25 input neurons corresponding
to the 5 × 5 PMA, and 5 output neurons corresponding to 5 classes of
videos playing words all ending with the letter ‘E’. 1200 datasets (900
datasets for training and 300 datasets for testing) were generated by
adding Gaussian noise to the recorded output currents for training.
This method was chosen over themodification of input frames (i.e. via
pixel flipping30) because it is more practical for videos. The noise rates
were 15% and 30%. We trained the network with a batch size of 25 and
200 training epochs and achieved an accuracy of 97.3% and 91.3% on
the test dataset with noise rates of 15% and 30%, respectively (Sup-
plementary Fig. 10a–d).

Readout network for video recognition of motion
The motion speed classification network had 25 input neurons cor-
responding to the 5 × 5 PMA, and 3 output neurons corresponding to
three classes of speeds. 1200 datasets (900 datasets for training and

300 datasets for testing) were generated by adding noise
to the experimental data with noise rates of 15% and 30%. We trained
the network with a batch size of 25 and 100 training epochs and
achieved an accuracy of 100% and 97% on the test dataset with noise
rates of 15% and 30%, respectively (Fig. 3d and Supplemen-
tary Fig. 14).

Autoencoder network for motion prediction
An autoencoder network was used for motion prediction. The
encoder part had 25 input neurons and 10 output neurons, and the
decoder part had 10 input neurons and 25 output neurons (Sup-
plementary Fig. 15a). The activation functions were softmax and
sigmoid for the encoder and decoder. The loss function was a mean
squared error function. 96,000 datasets (72,000 for training and
24,000 for testing) were generated by adding noise to the experi-
mental data with a noise rate of 15%. We trained the autoencoder
with a batch size of 100 and 100 training epochs. After training, the
RP-RC system successfully predicted the motions with the first
frame as input (Fig. 3g, h).

Convolutional neural network (CNN) for motion speed
classification
ACNNwas used to classify themotion speeds of a robot and a car. The
CNN had 4 Conv2D layers and 4 MaxPooling2D layers to extract the
features in the present frame (h3) with thememory of previous frames.
A fully connected layer was used to classify the features. 16,800
datasets (12,000 for training, 2400 for validating, and 2400 for test-
ing) were generated with a noise factor of 10%. We trained the CNN
with a batch size of 100 and 100 training epochs. More details can be
found in Supplementary Figs. S17 and S18.

Convolutional autoencoder (CAE) for motion prediction
To implement complexmotion prediction (person and carmotion), a
convolutional autoencoder (CAE)31 was used to predict motion
frames. The CAE is an unsupervised neural networkmodel for feature
extraction of images. The input and output frames had 48 × 48 pixels
(Supplementary Fig. 19). The CAE had 4 Conv2D layers and 4 Max-
Pooling2D layers at the encoding side, and 4 Conv2DTranspose lay-
ers at the decoding side (Fig. 4b). 64,000 datasets (32,000 for
training and 32,000 for testing) were generated by adding noise to
simulated motions (Supplementary Fig. 19) with a noise rate of 10%.
We trained the CAE with a batch size of 160 and 400 training epochs.
After training, the CAE successfully predicted the frames of
motion. (Fig. 4a).

Deep neural network (DNN) for crossmodal learning (CML)
A DNN was used for audio recognition and the generation of the first
frame of motion (Fig. 5 and Supplementary Fig. 20). The DNN had 52
input neurons corresponding to Mel features of audio signals32, 25
neurons in the first hidden layer, 15 neurons in the second hidden
layer, and 2304 output neurons corresponding to 48 × 48 pixels of
the first frame in the simulated motion. The activation functions
were relu and sigmoid for the hidden and output layers.
The loss function was amean squared error function. 97,920 datasets
of Mel features (81,600 for training and 16,320 for testing) were
generated by adding noise to the experimental audio data with a
noise of 10%. We trained the DNN with a batch size of 200 and 150
training epochs. After training, the DNN successfully predicted
the first frame of motion (X1) upon audio input (Supplementary
Fig. 20) with a test accuracy of ~90%. Then the recognized X1 frame
was used as input to the trained convolutional autoencoder (CAE) in
Fig. 4 for continuous motion prediction (Fig. 5 and Supplemen-
tary Fig. 21).

All the algorithms were written in Python on the TensorFlow
platform.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data underlying the figures in the main manuscript and
Supplementary Information are provided as Source Data file. The data
that support the findings of this study are available from the corre-
sponding authors upon reasonable request. Source data are provided
with this paper.

Code availability
The code that supports the results within this paper and the other
findings of this study are available from the corresponding authors
upon reasonable request.
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