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Hidden vulnerability of US Atlantic coast to
sea-level rise due to vertical land motion

Leonard O. Ohenhen 1,2 , Manoochehr Shirzaei 1,2, Chandrakanta Ojha3 &
Matthew L. Kirwan 4

The vulnerability of coastal environments to sea-level rise varies spatially, par-
ticularly due to local land subsidence. However, high-resolution observations
andmodels of coastal subsidence are scarce, hindering anaccurate vulnerability
assessment. We use satellite data from 2007 to 2020 to create high-resolution
map of subsidence rate atmm-level accuracy for different land covers along the
~3,500 km longUSAtlantic coast. Here,we show that subsidence rate exceeding
3mm per year affects most coastal areas, including wetlands, forests, agri-
cultural areas, and developed regions. Coastal marshes represent the dominant
land cover type along the US Atlantic coast and are particularly vulnerable to
subsidence.We estimate that 58 to 100%of coastalmarshes are losing elevation
relative to sea level and show that previous studies substantially underestimate
marsh vulnerability by not fully accounting for subsidence.

Coastal zones—the low-elevation (<10 meters above sea level) zone at
the land-water interface – provide essential habitat, ecosystem, and
environmental functions. Landward, coastal areashostone-thirdof the
world’s population, and 15 out of 20 present-day megacities are loca-
ted within low-elevation coastal zones1. Toward the sea, most coast-
lines are sheltered by coastal wetland ecosystems, providing
invaluable physical, chemical, biological, and socioeconomic benefits
such as food production, water filtration, preservation of biodiversity,
shoreline protection, storm buffering, sediment retention, nutrient
cycling, and carbon sequestration2–8. Due to their utility and dyna-
mism, coastal zones are highly vulnerable and sensitive to hazards
related to changing environmental and climatic conditions9–13.

Coastal areas are particularly vulnerable to the effects of global
climate change14, which has caused sea level rise (SLR) to accelerate
from~1.7 to ~3.35mmper year in the last century15, with a predicted rise
of 1mormore by 2100 (ref. 16). Driven by SLR, coastal zones are facing
serious threats from coastal flooding, erosion, storms, and saltwater
incursion into estuaries and coastal aquifers10–13,17. These hazards are
exacerbated by regional influences on relative SLR, such as ocean
currents, coast morphology, and local rates of vertical land motion
(VLM) (i.e., subsidence or uplift, including changes in surface elevation
due to deposition or erosion)18. Subsidence associated with local fluid

extraction, sediment compaction, and aquifer-system compaction
significantly influence relative sea levels. Subsidence-influenced
relative sea levels may exacerbate flood risks, promote the saliniza-
tion of soil and water supplies, corrosion and weakening of infra-
structures, and the devaluation, decreased functionality, and loss of
wetlands9,19–24.

The US Atlantic coast is the most populous coast in the US,
hosting more than a third of the US population. Portions of this coast
are typically recognized as a hotspot of SLR25, primarily due to wide-
spread land subsidence related to the compactionof young sediments,
groundwater extraction13,14,18, and glacial isostatic adjustment (GIA)26.
This ~3,500 km long coast hosts a diverse coastal ecosystem, including
36million hectares ofwetlandsworth ~US$360billion27–29. Relative SLR
has caused an increase in coastal flooding in the region, particularly
during the last decade30 (Fig. 1). Increased flooding has resulted in
the frequent disruption of economic activities in several cities on
the US Atlantic coasts and the prolonged inundation of wetland
ecosystems31–35. The loss of wetlands may result in an increase in the
susceptibility, risk levels, and vulnerability of the entire coast to coastal
hazards36.

Because of the spatially variable coastal ecosystem characteristics
anddynamic natureof coastal risk, current observations andmodels of

Received: 2 August 2022

Accepted: 28 March 2023

Check for updates

1Department of Geosciences, Virginia Tech, Blacksburg, VA, USA. 2Virginia Tech National Security Institute, Blacksburg, VA, USA. 3Department of Earth and
Environmental Science, IISER Mohali, Punjab, India. 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia, USA.

e-mail: ohleonard@vt.edu

Nature Communications |         (2023) 14:2038 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4794-495X
http://orcid.org/0000-0003-4794-495X
http://orcid.org/0000-0003-4794-495X
http://orcid.org/0000-0003-4794-495X
http://orcid.org/0000-0003-4794-495X
http://orcid.org/0000-0003-0086-3722
http://orcid.org/0000-0003-0086-3722
http://orcid.org/0000-0003-0086-3722
http://orcid.org/0000-0003-0086-3722
http://orcid.org/0000-0003-0086-3722
http://orcid.org/0000-0002-0658-3038
http://orcid.org/0000-0002-0658-3038
http://orcid.org/0000-0002-0658-3038
http://orcid.org/0000-0002-0658-3038
http://orcid.org/0000-0002-0658-3038
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37853-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37853-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37853-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37853-7&domain=pdf
mailto:ohleonard@vt.edu


coastal vulnerabilities are inadequate due to sparse and often point-
wise measurements of VLM4,9,37,38. Due to their vast extent and difficult
terrain, coastal wetlands monitoring is a challenging endeavor that
restricts ground-based operations39. While field observations may
provide accurate in-situ data for wetlandmonitoring, these techniques
are impractical for large-scale and frequent wetland monitoring40.
Moreover, comparisons between wetland accretion data obtained
from ground-based observations and relative SLR do not fully account
for both shallow and deep subsidence38, so existing coastal wetland
vulnerability assessments likely underestimate the vulnerability of
coastal ecosystems41–45. Interferometric synthetic aperture radar
(InSAR) overcomes these challenges providing unprecedented spatio-
temporal resolution on elevation change and has proved useful for
monitoring various land cover types and analyzing dynamic wetland
changes39,40,46–50. InSAR measurements provide cost-effective and up-
to-date wetland data, which offers improved accuracy and increased
spatial density and extent of VLM measurements19,20,51.

Here, we present VLM rate map for the US Atlantic coast at ~50-m
resolution and mm-level precision using a combination of Sentinel-1
and Advanced Land Observing Satellite (ALOS) satellites with obser-
vations at global navigation satellite system (GNSS) stations. This spa-
tially semi-continuous map shows broad-scale patterns of subsidence
exceeding 3mm per year across the US Atlantic coast with some
localized zones of uplift. We explore the exposure of different coastal
ecosystems in the region using the produced VLM rates with wetlands,
forests, agricultural areas, and developed areas having the most sig-
nificant exposure to subsidence. Using these VLM rates, we provide
vulnerability estimates of coastal wetlands for the US Atlantic coast.

Results
Spatially semi-continuous vertical land motion for the US
Atlantic coast
We combined several synthetic aperture radar (SAR) datasets from
Sentinel-1A/B (2015–2020) and ALOS (2007–2011) satellites with 173

Fig. 1 | Study area and Datasets. The study area is the US Atlantic coast (New
Hampshire to Florida). The interferometric datasets include acquisition from
Sentinel-1A/B C-band satellites (blue rectangles) spanning 2015–2020 obtained in
ascending orbits and advanced land observing satellite (ALOS) L-band (red rec-
tangles) spanning 2007–2011 and acquisitions obtained in and ascending orbits.
The path and frame parameters of the SAR datasets are summarized in Supple-
mentary table 1. Frequency of flooding along the USAtlantic coast are shown as bar
charts. This bar chart shows the average number of flood days per decade at 11 tide

gauge stations along US Atlantic coasts30. Each small bar graph compares each
decade: 1981–1990 in yellow, 1991–2000 in green, 2001–2010 in blue, and
2011–2020 in purple. Note: The tide gauge station names are displayed with each
bar chart. State Codes: ME Maine, MAMassachusetts, NY New York, NJ New Jersey,
MDMaryland, DEDelaware, VA Virginia, NCNorth Carolina, SC South Carolina, and
GA Georgia. U.S. National, state, and great lakes boundaries are based on public
domain vector data byWorld DataBank (https://data.worldbank.org/) generated in
MATLAB.
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GNSS observations (2007–2020) to characterize land deformation
within ~100 km inland of the US Atlantic coast. The SAR dataset
included several frames collected in ascending orbit geometry (Fig. 1
and Supplementary Table 1). The combined datasets were processed
using a multitemporal wavelet‐based InSAR (WabInSAR) algorithm52,53

to generate three-dimensional (3D) line-of-sight (LOS) velocity (Sup-
plementary Fig. 1, seemethods). A unified weighted least-squares joint
optimization model was then applied to combine the LOS velocities
with the horizontal and vertical displacement velocities of the GNSS
observations to determine the 3D deformation field at each of the ~38
million elite pixels. The model validation was implemented via an
analysis of the standard deviation (SD) associated with each InSAR
pixel (i.e., precision) and a comparison of the InSAR VLM with inde-
pendent GNSS data as ground truth (i.e., accuracy) (see methods and
supplementary Figs. 2 and 3).

The horizontal (east and north) velocities along the US Atlantic
coast are shown in Supplementary Fig. 2a, c. The horizontal rate shows
the relative motion of the North American plate in the northwest
direction, consistent with earlier works54. Figure 2a shows the VLM
rates with positive values indicating uplift and negative values indi-
cating subsidence. The VLMmap showsmostly subsidence, with some

localized uplift in the region. From the ~38 million pixels map of VLM,
90% of the pixels show subsidence (Supplementary Fig. 4), high-
lighting the broad-scale spatial pattern of subsidence across the US
Atlantic coast. The subsidence rates across the east coast are spatially
variable, with rates exceeding 3mm per year in most cities (Fig. 2c).
The major cities undergoing subsidence in the region are Boston, MA;
NewYork, NY; Atlantic city, NJ; Lewes, DE; Norfolk, VA; andCharleston,
SC. In Charleston, Brunswick, and the Chesapeake Bay, subsidence
exceeds 5mm per year (Fig. 2c). High subsidence rates in the Chesa-
peake Bay are primarily observed in areas surrounding Delaware Bay
and the Peninsula, with some localized uplift. This observed uplift is
consistent with the current groundwater recharge rate in the region,
manifested in rising hydraulic head levels55 (Supplementary Fig. 5).

Sea level projections rarely accurately account for local land
subsidence, contributing to uncertainties in assessing sea level change.
For instance, the rates of VLM in the IPCC Sixth Assessment Report of
global sea level change projections56,57 use a constant long-term
background rate of change estimated from historical tide gauge
trends57,58. Estimates of VLM from tide gauges do not account for
subsidence in shallow strata and are likely to underestimate VLM or
represent only minimum values57. To assess uncertainties in the

Fig. 2 | Vertical landmotion (VLM) across theUSAtlantic coast. a EstimatedVLM
rate. The circles show the location of GNSS validation observations color-coded
with their respective vertical velocities. bHistogram comparing GNSS vertical rates
with estimated VLM rates. The standard deviation (SD) of the difference between
the two datasets is 1.3mmper year. c Land subsidence (representing negative VLM)
across theUS Atlantic Coast. The black rectangles indicate the extent of study areas
for Chesapeake Bay area and Georgia, South Carolina, and North Carolina (GA-SC-

NC) area shown in Fig. 4. State Codes: MEMaine, NHNewHampshire, VT Vermont,
MAMassachusetts, RI Rhode Island, NY New York, PA Pennsylvania, NJ New Jersey,
WVWest Virginia, OHOhio, DE Delaware, VA Virginia, NC North Carolina, SC South
Carolina, GA Georgia, and FL Florida. National, state, and great lakes boundaries in
a, c are based on public domain vector data by World DataBank (https://data.
worldbank.org/) generated in MATLAB.
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current sea level projection data, we compared a linear projection of
our VLM rates from 2020 to 2100 with the linear projection of VLM
used in the IPCC over the same period at 12 tide gauge stations on the
US Atlantic coast (Fig. 3 and Supplementary Table 2). To compare the
IPCC’s VLM rateswith the contemporaneous rate of our InSARVLM,we
averaged the VLM rates of InSAR pixels within a 200m radius of the
tide gauges to reduce localized high VLM rates, we used the SD of each
InSAR VLM to estimate the error ranges (see methods). The results
show that the IPCC sea level change due to VLM was underestimated
(considering the % difference) at 7 tide gauge stations (Woods Hole,
Atlantic City, Cape May, Beaufort, Wilmington, Charleston I, and Tri-
dent Pier; Fig. 3 and Supplementary Table 2) and overestimated
(considering the % difference) at 1 tide gauge station (Sewells Point;
Fig. 3 and Supplementary Table 2), with 4 tide gauge stations within a
20% difference error range (Boston, Bridgeport, Lewes, and Miami
Beach; Fig. 3 and Supplementary Table 2). At Cape May, Charleston I,
and Trident Pier, the contrasts between the IPCC projected VLM rates
and the projected InSAR VLM rates are significant (greater than 1mm
per year), which highlights significant uncertainties in the rates of local
and regional projected relative sea level change.

Coastal land cover exposure to subsidence
Using the US Geological Survey (USGS) 2019 National Land Cover
(NLC) map29, we estimated the exposure of different coastal systems
along the US Atlantic coast to subsidence. To this end, we interpolated
VLM rates over NLC pixels, and exposure to subsidence is defined
based on the percentage of InSAR pixels in each land cover type. The
NLC is a 30-meter grid map, which provides spatial characteristics of

the land surface, such as area of developed land, barren land, forests,
shrub/scrub, grassland, pasture and hay, cultivated crops, and wet-
lands (Fig. 4a, d). The NLC and their corresponding percentage of land
cover on the US Atlantic coast are wetlands, forests, cultivated crops,
and developed regions, which account for 44.5%, 26.3%, 16.8%, and
8.1%, respectively (Table 1). The average rate of VLM for themajor NLC
classifications ranges from −1.3mm per year to −1.7mm per year
(Table 1). Agricultural lands (and barren lands) along the US Atlantic
coast show some of the highest rates of subsidence in all measured
NLC types,with amean subsidence rate and SDof 1.7 ± 1.3mmper year
(see methods section for a description of the SD associated with the
NLC). The maximum rate of sinking for agricultural areas/cultivated
crops exceeds 11.8mm per year, the maximum subsidence rate
observed for any NLC type in this study. The areas the NLC noted as
barren lands represent the mostly coastal rock/sand/clay strip bor-
dering the Atlantic Ocean. Subsidence on barren lands may be the
result of retreating barren lands due to erosion in response to rising
sea levels.

TheNLC types exposed to subsidence are highlighted in Fig. 4 and
Table 1 for two regions with exceptionally rapid subsidence rates. The
first region is the Chesapeake Bay area, the largest estuary in the US,
where subsidence has been extensively documented in existing
literature59–62. For the Chesapeake Bay area, subsidence occurs mainly
in forests, wetlands, and cultivated crops (Fig. 4 and Table 1). The
subsidence rate for the major NLC types are 2.6 ± 1.4mm per year,
2.5 ± 1.4mm per year, and 2.1 ± 0.8mm per year for wetlands, agri-
cultural lands, and forests, respectively (Table 1). In the Chesapeake
Bay’s Delmarva area, agrarian lands (cultivated crops and Pasture/Hay)

Fig. 3 | Sea-level change due to vertical land motion (VLM). Comparison of sea-
level change (millimeters) due to vertical land motion from IPCC Sixth Assessment
Report56,57 with sea-level change (millimeters) usingVLMestimate from this study at
12 tide gauge stations. a Boston, Massachusetts (MA), b Woods Hole, MA,
c Bridgeport, Connecticut (CT), d Atlantic City, New Jersey (NJ), e Cape May, NJ,
f Lewes, Delaware (DE), g Sewells Point, Virginia (VA), h Beaufort, North Carolina
(NC), i Wilmington, North Carolina (NC), j Charleston I, South Carolina (SC),
k Trident Pier, Florida (FL), l Miami Beach, FL. The solid red line shows the IPCC

VLM sea-level change is 50th percentile and the shaded ranges show the 5th−95th

percentile. The solid blue line shows the InSAR VLM sea-level change from this
study, and the shaded ranges are 2 standard deviations. Note: the negative rates of
VLM (or subsidence) result in a positive sea level change. The blue shaded region is
narrow at some tide gauges due to small standard deviation values (e.g., Woods
Hole, Bridgeport, and Sewells Point). The percent (%) difference is calculated as:
IPCC VLM�InSAR VLM

ðIPCC VLM + InSAR VLM=2Þ × 100. A negative % difference indicates underestimation and a
positive difference indicates overestimation, with a ± 20% error buffer.
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affected by subsidence account for most of the exposed NLC
(Fig. 4a–c). On the coast of Georgia (GA), South Carolina (SC), and
North Carolina (NC) (referred to as GA-SC-NC throughout) the major
subsiding cities are Brunswick (GA), Savannah (SC), and Charleston
(SC), with rates exceeding 4mm per year (Fig. 4d–f). The major NLC
undergoing subsidence in the region are wetlands and forests,
accounting for 88.3% of all NLC (61.2% for wetlands and 27.1% for
forests) (Fig. 4f and Table 1).

Coastal wetland vulnerability
Subsidence is a major threat to wetlands across the US Atlantic coast
and is rarely fully accounted for in estimates of wetland

vulnerability41,43. We calculated the vertical vulnerability of marsh
pixels along the U.S. Atlantic coast using the vertical resilience (VR)
index. The VR is a standard index used to estimate an accretion deficit
(i.e. wetland accretion rate minus the relative SLR)38,63,64. Marshes with
VR values greater than 0.5mm per year were considered aggrading
relative to SLR and thus not vulnerable to contemporary SLR.VR values
less than −0.5mm per year indicate marshes that are becoming more
inundated and therefore vulnerable to SLR, while VR values between
−0.5mm per year and 0.5mm per year indicate marshes that have
largely accreted to keep pace with SLR64 (see methods). To integrate
our estimates of VLM and their uncertainties into estimations of wet-
land VR, we modified the VR formulation as the VLM minus SLR and

Fig. 4 | Examples of regions with significant exposure to land subsidence.
aNational land cover (NLC)map for the Chesapeake Bay area29. b Land Subsidence
across the Chesapeake Bay area. Background is the global multi-resolution topo-
graphy (GMRT) made with GeoMapApp (www.geomapapp.org)100. c Frequency
distribution of subsidence for different NLC in the Chesapeake Bay area. The per-
centage of exposure to subsidence and the average subsidence rate for the dif-
ferent NLC are shown in Table 1. N is the number of pixels and VLM is vertical land

motion.dNLCmap for theGeorgia, SouthCarolina, andNorthCarolina (GA-SC-NC)
area29. e Land Subsidence across the GA-SC-NC coast. Background is GMRT made
withGeoMapApp (www.geomapapp.org)100. f Frequencydistributionof subsidence
for different NLC in the GA-SC-NC area. The percentage of exposure to subsidence
and the average subsidence rate for the different NLC are shown in Table 1. N is the
number of pixels and VLM is vertical land motion.

Table 1 | National land cover (NLC) exposure to land subsidence

NLC US Atlantic Coast Chesapeake Bay GA-SC-NC

% Exposure VLM (mm per year) % Exposure VLM (mm per year) % Exposure VLM (mm per year)

Developed 8.1 −1.3 ± 0.8 5.4 −2.1 ± 0.7 2.0 −1.6 ± 0.8

Barren Land 0.5 −1.7 ± 1.1 0.4 −2.8 ± 1.5 0.3 −2.1 ± 1.2

Forest 26.3 −1.4 ± 0.9 20.2 −2.1 ± 0.8 27.1 −1.6 ± 0.9

Shrub/Scrub 0.7 −1.2 ± 1.0 0.2 −2.0 ± 1.0 1.3 −1.5 ± 0.9

Grassland 1.0 −1.3 ± 1.0 0.3 −2.0 ± 0.8 2.1 −1.5 ± 0.9

Pasture/Hay 2.1 −1.1 ± 0.9 1.8 −2.0 ± 0.5 0.4 −2.2 ± 1.3

Cultivated Crops 16.8 −1.7 ± 1.3 36.2 −2.5 ± 1.4 5.2 −1.3 ± 0.7

Wetlands 44.5 −1.5 ± 1.2 35.5 −2.6 ± 1.4 61.6 −1.7 ± 1.0

GA-SC-NCrefers to thecoast of Georgia (GA), SouthCarolina (SC), andNorthCarolina (NC). Theuncertainty is obtainedas the standarddeviation associatedwith the InSARvertical landmotion (VLM)
obtained using Eq. (8).
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created a 90% confidence interval for VR (Eq. 9). The assessment of
wetland vulnerability using InSAR provides a holistic measure of both
surface elevation gain or loss due to sediment accumulation and
compaction, incorporating both effects of deep and shallow sub-
sidence on wetlands43,45. Additionally, unlike point estimates of
accretion rate, which are measured at discrete locations41 and some-
times extrapolated across entire watersheds38, InSAR-based VLM pro-
vides a semi-continuous measurement of the accretion rate of each
point along the wetland with a pixels dimension of ~50m. We further
correct the tide gauge measurements for the effect of local VLM by
using observations from nearby GNSS stations. Because marsh accre-
tion and vertical vulnerability can be highly dependent on marsh
elevation64, we also distinguished between low and high-elevation
marshes utilizing elevations normalized to mean high water65 (see
methods section).

The VR maps for low- and high-elevation wetlands across the US
Atlantic coast are shown in Fig. 5a–d. The analysis indicates that
57.6–100% of marshes are losing elevation relative to SLR (Fig. 5 and
Supplementary Fig. 6), with little dependence on existing marsh ele-
vation (low- or high-elevation). In contrast, we observe accretion def-
icits in only 43% (low-elevation) and 53% (high-elevation) marshes
based on previously compiled accretion rates from a limited number
of discrete points38,64 (Supplementary Fig. 7a, b). By resampling VLM
rates for the sites with accretion data, we show the discrepancy is due
primarily to the inclusion of subsidence in the VLM data and is not
sensitive tomarsh elevation (Supplementary Fig. 7c, d). Therefore, our
results suggest unprecedented marsh vulnerability on the US Atlantic
coast that is directly linked to large-scale subsidence (Fig. 2c).

Discussion
Long-term and immediate effects of SLR include increased flooding,
saltwater intrusion into surface waters and groundwaters, and the
decline of coastal wetlands and marshes66. However, in some places,
the contribution from land subsidence could be ten times greater than
that of the global mean SLR67. The combined effect of land subsidence
and SLR increases socioeconomic and ecosystem exposure to coastal
hazards10,13,21,51,66. Our spatially semi-continuous VLM rate map for the
US Atlantic coast presents unprecedented spatial and high-precision
data for the region. Givenongoing subsidenceon theUSAtlantic coast,
the major NLC types with the most significant exposure include
developed regions, cultivated crops, forests, and wetlands.

The Atlantic coast of the US has an estimated population of over
118 million, with some of the most populated cities in the US such as
Boston (MA), New York City (NY), Norfolk (VA), Charlotte (NC), Balti-
more (MD), and Miami (FL) (Fig. 2c). Several of these cities are already
notable areas of persistent flooding30,34,35,68 (Fig. 1), and ongoing sub-
sidence rates exceeding 3mm per year will amplify future inundation.

Agricultural lands along the US Atlantic coast show some of the
highest rates of subsidence in all measured NLC types. Subsidence
affects agricultural lands globally, likely due to the extensive ground-
water overdraft for irrigation and subsequent compaction of
aquifers50,69,70, or the oxidation of organic materials71,72. For low-
elevation agrarian areas around the coasts, the effect of subsidence on
agricultural lands is both immediate and transformative, causing
increased saltwater intrusion, storm surges flooding, and inundation,
which leads to imbalances in nutrient concentrations, dead soils, and
eventually the loss of agricultural lands73. The loss of agricultural lands
would have a significant, far-reaching impact on the economy of the
affected regions.

The observed subsidence of forest landmayalso contribute to the
rapid expansion of ‘ghost forests’ along the US Atlantic coast through
the impacts of saltwater intrusion74,75. Rates of coastal forest retreat are
directly linked to the rate of relative SLR75 and are leading to funda-
mental ecological shifts75–79. More than 8% of forested coastal wetlands
have been displaced along the North American Atlantic coastal plain80,

and forest retreat has led to associated increases in marsh area81.
Among the implications of that change is the loss of carbon stored in
the aboveground biomass of trees75,82, which is only partially com-
pensated by the carbon stored in developing marsh soils82.

The response of marshes to SLR is hotly debated, and based in
part on their ability to accrete vertically at a rate equivalent to relative
SLR4,64,82–85. Here, we show through measurements of VLM across the
entire Atlantic Coast that the current balance between VLM and rela-
tive SLR is negative in 58–100% of marshes (754–1300 km2). These
measurements are consistent with observations of nonlinear increases
in subsidence with accretion that amplify march vulnerability (e.g.,
ref. 45), and localized observations of ecological shifts toward flood-
tolerant vegetation where accretion deficits exist (e.g., ref. 86). How-
ever, we do not account for future accelerations in either the rate of
SLR or vertical accretion. Nevertheless, our estimates of VLM uniquely
show that subsidence can tip the accretionary balance of marshes
towards submergence, and that vulnerability assessment that does not
fully account for subsidence will underestimate marsh vulnerability.

Our current vulnerability estimates are valid under current rates
of subsidence and SLR and the upper bounds of the vulnerability
estimates may represent the worst-case scenario for wetlands on the
US Atlantic coast. However, considering future projections of relative
SLR (e.g., accelerated rates of SLR under various representative con-
centration pathway (RCP) scenarios) may exacerbate the wetland
vulnerability estimates with a significant impact on the entire coastal
ecosystem.

Accurately accounting for the contributionof VLMand thedrivers
of wetland loss are essential for understanding and predicting coastal
inundation hazards. Local rates of relative SLR often vary vastly from
regional SLR. This disparity is influenced mainly by regional ocean
dynamics and the strong contribution of local land subsidence to
eustatic SLR. However, current projections of relative SLR under-
estimate/overestimate the contribution of VLM (Fig. 3), which under-
mines the reliability of inundationmodels. Our findings emphasize the
role of InSAR VLMmeasurements in refining local and regional rates of
relative SLR and ensuring the accuracy of coastal inundation models.
Wetlands—nature’s flood control structures and erosion buffers—pro-
tect large sections of the coast5,27,87. Notably, many of the world’s
coastal megacities are located on river deltas, which are subsidence
centers; sinking faster than the rising seas (e.g., Mekong (Vietnam), the
Mississippi (USA), Niger (Nigeria), Nile (Egypt), Ganges Brahmaputra
(India/Bangladesh), ChaoPhraya (Thailand), and Yangtze (China))88. In
these environments, the resilience of human habitats is inextricably
linked to the survival and preservation of wetland ecosystems89. Thus,
high-resolution estimates of VLM must be incorporated into wetland
survival metrics to ensure the effective implementation of sustainable
coastal adaptation strategies.

Methods
SAR analysis
The SAR datasets contain 3057 images acquired in ascending orbit
geometry spanning 2015–2020 for the Sentinel-1 datasets and
2007–2011 ALOS datasets. The datasets contain 15 and 81 frames for
the Sentinel-1 and ALOS satellites, respectively (Fig. 1 and Supple-
mentary table 1). Tominimize the errors associatedwith InSARwetland
monitoring and tomaximize the pixels over wetlands, we screened the
SAR (Sentinel-1) images by implementing a statistical framework for
flood mapping90, prioritizing images obtained during low tides; with
the maximum exposed surface. For the Sentinel-1 dataset, we gener-
ated 7005 interferograms using maximum temporal and perpendi-
cular baselines of 500 days and 700m, respectively. While for the
ALOS dataset, we generated 13,055 interferograms with maximum
temporal and perpendicular baselines of 1500 days and 2500m,
respectively. The Sentinel-1 and ALOS data combination allows for a
broader temporal spread of data and produces a more robust result.
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Fig. 5 | Wetland vulnerability across the US Atlantic coast. a Lower bound of
vertical resilience (VR) for low-elevation wetlands (Background Image: Google,
Earthstar). b Upper bound of VR for low-elevation wetlands (Background Image:
Google, Earthstar). c Lower bound of VR for high-elevation wetlands (Background
Image: Google, Earthstar). d Upper bound of VR for high-elevation wetlands
(Background Image: Google, Earthstar). VR is calculated as vertical land motion
(VLM)minus sea level rise. The upper bounds and lower bounds are calculated as ±

2 SD. Red colors indicate submerging wetlands (VR < −0.5mm per year), blues
indicate aggrading wetlands (VR >0.5mm per year), and whites indicate main-
taining wetlands (−0.5mm per year ≤ VR≤0.5mm per year). Note that the scatter
plots are exclusive to wetland areas, whereas the large-scale map provides the
illusion of non-wetland pixels by magnifying each point. A close-up map of the
wetland vulnerability in the Chesapeake Bay region is provided in Supple-
mental Fig. 6.
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We applied the multitemporal wavelet‐based InSAR (WabInSAR)
algorithm to generate high-resolution time series of deformation for
each SAR frame52,53,91,92. The wavelet‐based analyses applied to the
interferograms involved identifying and removing noisy pixels, redu-
cing the effects of topographically‐correlated atmospheric phase
delay, spatially uncorrelated DEM error52,53 and ionospheric errors93.
The geometrical phase was calculated and removed using the 30-m
Shuttle Radar Topography Mission (SRTM) digital elevation model94

and the satellite’s precise ephemeris data52. Next, the average inter-
ferometric coherence and time series of the complex interferometric
phase noise were analyzed to identify the elite pixels53. The so-called
elite pixels are those with an average coherence larger than 0.7 and a
normally distributed temporal interferometric noise53. We obtained
the absolute estimate of the phase change for elite pixels via an
iterative 2D sparse phase unwrapping algorithm. Each unwrapped
interferogram was corrected for the effect of orbital error95 and the
topography-correlated component of atmospheric delay52. Using a
robust regression that implements a reweighted least square, we
inverted the phase changes from the interferograms95. We applied a
high-pass filter, using continuous wavelet transforms to reduce the
temporal component of the atmospheric delay. We then calculated
each elite pixel’s velocities along the LOS direction as the slope of the
best-fitting line to the associated time series using a reweighted least-
squares estimation. Lastly, we geocoded all data sets to obtain precise
locations of elite pixels in a geographic reference frame. The final LOS
velocity for each frame ismosaiced togenerate two large-scalemapsof
LOS displacements for Sentinel-1 and ALOS datasets96. We transform
the LOS velocities from local to a global reference frame by using an
affine transformation51 to mitigate error propagation associated with
the mosaic process and reduce the long-wavelength errors and resi-
dual orbital errors. The final locations of elite pixels for Sentinel-1 and
ALOS datasets and 173 GNSS stations used in this study are shown in
Supplementary Fig. 8a, b. For each GNSS station, we selected only
stations with at least 50 measurements yearly between 2007 to 2020
for our analysis (Supplementary Fig. 9). Supplementary Fig. 1a, b shows
the final LOS velocity for both Sentinel-1 and ALOS datasets.

The obtained LOS velocity comprises projections of 3D displace-
ment velocity on Sentinel-1 and ALOS satellites’ LOS directions. Con-
sequently, we devise an approach to decompose the LOS velocity in
combination with GNSS observations, into horizontal and vertical
components, with the east (E), north (N), and vertical (U) velocities. To
this end, we first resampled the LOS velocities of the Sentinel-1 dataset
on the location of pixels within the ALOS dataset using the nearest
neighbor algorithm. Next, we implemented a Kriging interpolation
approach with inverse distance weighting to interpolate 132 GNSS
horizontal and vertical velocities (76% of all GNSS observations) on the
location of elite pixels within the ALOS dataset. This procedure pro-
vides five observations per pixel, including two LOS observations and
three GNSS velocities.

Assume yalos, ysen
� �

and σ2
alos, σ

2
sen

� �
as the interpolated LOS

velocities and the variances for a given pixel, where the subscripts alos
and sen indicate ALOS and Sentinel-1, respectively. The stochastic
model to combine the LOS velocities with the GNSS datasets to gen-
erate a high-resolutionmapof the E,N, andUvelocities aregivenbyEq.
(1):

yalos =C
alos
e E +Calos

n N +Calos
u U + εalos

ysen =C
sen
e E +Csen

n N +Csen
u U + εsen

EGNSS = E + εe

NGNSS =N + εn

UGNSS =U + εu

ð1Þ

WhereC represents the unit vectors projecting 3D displacements onto
the LOS and is a function of the heading and incidence angles, ε is the

observation error equal to the standard deviation (σ), which is
assumed to be normally distributed. From Eq. (1), E, N, and U are
unknown and differs from EGNSS, NGNSS, UGNSS which are the observed
interpolated east, north, and up GNSS velocities. We assigned a σ of
3mm per year and 1mm per year for the ALOS and Sentinel LOS
velocities, respectively based on previous studies51,96. We used the
provided error by Nevada Geodetic Laboratory97 for the GNSS velo-
cities. This stochastic model is known as a unified weighted least-
squares adjustment and can be represented in matrix form in Eq. (2),
and the solution is given by Eq. (3):

yalos
ysen
EGNSS

NGNSS

UGNSS

0
BBBBBB@

1
CCCCCCA

=

Calos
e Calos

n Calos
u

Csen
e Csen

n Csen
u

1 0 0

0 1 0

0 0 1

0
BBBBBB@

1
CCCCCCA

E

N

U

0
B@

1
CA ð2Þ

X = GTPG
� ��1

GTPL ð3Þ

Where X represents the unknowns, G is the Green’s function, L is the
observations, and P is the weight matrix, which is inversely propor-
tional to the observant variance (σ2).

L= ðyalosysenEGNSSNGNSSUGNSSÞT

X = ðENUÞT

G=

Calos
e Calos

n Calos
u

Csen
e Csen

n Csen
u

1 0 0

0 1 0

0 0 1

0
BBBBBB@

1
CCCCCCA

P =

σ�2
alos 0 0 0 0

0 σ�2
sen 0 0 0

0 0 σ�2
e 0 0

0 0 0 σ�2
n 0

0 0 0 0 σ�2
u

0
BBBBBB@

1
CCCCCCA

ð4Þ

To assign a weight to interpolated GNSS values, we use the fol-
lowing relation that assigns to each pixel a weight proportional to that
of its nearest GNSS station, whereD is the distance in km and se, sn, and
su are the interpolated SD of the east, north, and up GNSS velocities,
respectively. The denominator value of 10 is the average distance
between GNSS stations. We chose the uncertainty to increase with
distance, tested other values, and found that a denominator of 10
yields a 3D displacement field that best fits independent GNSS mea-
surements.

σe = se* 1 + D
10

� �

σn = sn* 1 + D
10

� �

σu = su* 1 + D
10

� � ð5Þ

The E, N, and U velocities are shown in Supplementary Fig. 2
and Fig. 2.

Error analysis and validations
Here we examine the quality of our results in terms of precision (i.e.,
stand deviation) and accuracy (i.e., closeness to the true value). To this
end, we first employ the concept of error propagation98 to obtain
parameter’s variance-covariance matrix, given observation errors. The
combination of ALOS, Sentinel-1, and GNSS data increases the redun-
dancy and enables adjusting the observation errors51. Thus, the
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parameter variance-covariance matrix98 is given by Eq. (6):

QXX =
rT Pr
df

GTPG
� ��1 ð6Þ

where df is the degrees of freedom = 2 and r are the residuals given by
Eq. (7):

r = L� GX ð7Þ

Supplementary Fig. 3a–c shows the SD of each pixel for the E, N,
and U velocities evaluated from Eq. (6). The spatial distribution shows
thatmost SDvalues are less than 3mmper year (SupplementaryFig. 3).
However, the SD around the Chesapeake Bay is relatively higher. A
higher SD value reflects the reliability of reportedVLM rates and canbe
due to the limited number ofGNSS stations used in the adjustment, the
relatively higher SD of the available GNSS station in the region, and
variations in the rate of surface deformation between ALOS and
Sentinel-1 periods51.

Next, we perform additional validation tests to assess the accu-
racy of our results. To this end, we compared the derived horizontal
and vertical velocities with observations from 41 independent GNSS
stations selected randomly, as ground truth. The comparisonwasdone
by averaging the measurements of pixels within a radius of 200m for
each GNSS station used in the validation. Next, we evaluate the dif-
ference between InSAR and GNSS estimates of 3D displacement field.
We found a SDof0.22, 0.18, and 1.28mmper year for thedifferences in
E, N, and U velocities, respectively (Supplementary Fig. 2b, d and
Fig. 2b). The mean of the differences is insignificant and near zero.

The reported uncertainties or SD throughout the study (the InSAR
VLM projections at tide gauges and NLC) are averaged standard
deviations associated with InSAR pixels obtained using Eq. (8):

s = 1=n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i

SD2
i

vuut ð8Þ

Where SDi is the ith InSAR pixel standard deviation derived using Eq.
(6) and n is the number of pixels within 200m of each GNSS or tide
gauge being averaged, or those associated with the VLM of the
NLC type.

The east, north, and VLM rates and standard deviations are
avialble at https://doi.org/10.7294/19350959.

National land cover data
The land cover data were obtained from the 2019 National Land Cover
(NLC) Database managed by USGS29. The NLC database provides 30-
meter resolution data on land surface characteristics and land surface
change at the Landsat ThematicMapper (TM). TheNLCdata for the US
east coast has 15 principal features, viz open water, developed (open
space, low intensity, medium intensity, high intensity), barren land,
forest (deciduous forest, evergreen forest, mixed forest), shrub/scrub,
grassland, pasture/hay, cultivated crops, and wetlands (woody wet-
lands, emergent herbaceous wetlands). We combined VLM velocity
with the NLC by resampling the VLM velocity for the different NLC and
extracted the VLM corresponding to each NLC pixels. Next, we sim-
plified the NLC by classifying NLCwith similar characteristics to obtain
only 8 NLC categories (developed, barren land, forest, shrub/scrub,
grassland, pasture/hay, cultivated crops, and wetlands).

Wetland vulnerability
We analyzed wetland vulnerability using vertical resilience to SLR. To
characterize the vertical resilience of wetlands, we first obtained the
relevant data, including the point accretion rate, SLR, and the location
of wetlands for the US Atlantic coast. The accretion data included 182

data points from Georgia to New Hampshire obtained by combining
the reported accretion rates for the US Atlantic coast from Holmquist
et al.38 and Kirwan et al.64 (Supplementary Fig. 7e). We screened the
accretion data to only include 137 rates based on 137Cs-dated cores and
horizon markers. The Tide gauge measurements were obtained from
the National Oceanic and Atmospheric Association (NOAA) sea level
trends, datum periods span 1900 to 2020 (ref. 99) and corrected for
VLM to obtain absolute SLR using the median up the velocity of GNSS
stations within a radius of 800m (Supplementary Fig. 10a, b). We
compiled the wetland data by mapping all wetlands in the US Atlantic
coast from the 30m grid map of relative tidal marsh elevation pro-
vided by Holmquist &Windham-Myers65. This map is a comprehensive
database of wetland elevation across the conterminous US normalized
to mean high water (MHW), which combines estuarine and freshwater
wetlands from NOAA Coastal Change Analysis Program (C-CAP) and
tidal wetlands from the National Wetlands Inventory (NWI).

We adopted the Holmquist & Windham-Myers65 elevation nor-
malized to MHW (ZMHW) to differentiate between low- and high-
elevation wetlands. We implemented ZMHW= 1.0 as a reasonable cri-
terion to differentiate low- and high-elevation wetlands, according to
the recommendation by Holmquist & Windham-Myers65. High-
elevation wetlands are characterized as infrequently inundated,
while and low-elevation wetlands are frequently inundated. We thus
defined wetlands with ZMHW ≥ 1.0 as high-elevation wetlands and
ZMHW< 1.0 as low-elevation wetlands. The ZMHW for the 137 accretion
data shows a broader range of accretion rates for ZMHW< 1.0 than
ZMHW ≥ 1.0 (Supplementary Fig. 11a). However, the VLM rates at loca-
tions with accretion data measurements displayed no identifiable
characteristic to distinguish low- and high-elevation wetlands (Sup-
plementary Fig. 11b). Toobtain the VLMandSLR for thewetlands in the
US Atlantic coast, we resampled the VLM rate on the wetland pixels,
discarding pixels ≥10m away from the InSAR pixels and interpolated
the corrected SLR data on the wetland pixels. The final wetland map
contained ~1.4 million pixels, covering approximately 1300 km2. Using
elevation rate data from Saintilan et al.45, we attempted validation of
the VLM data over wetlands. The elevation rate data for wetlands was
collected using SET-MH stations that incorporates both accretion rate
and subsidence on wetlands. For the comparison, we only included
stations within a 10m radius of InSAR pixels consistent with the radius
for wetland pixel selection. Only two of the fourty-three SET-MH sta-
tions on the US Atlantic coast were located within a 10-meter radius of
the InSAR pixels. This suggests that the site prioritization of SET-MH
monitoring stations and the location of InSAR wetland pixels are dif-
ferent. These disparities may be due to the fact that SET-MH mon-
itoring stations are potentially placed in permanently/frequently
flooded zones, as their locations are influenced by human apriori
knowledge. In contrast, InSAR pixels are based on wetland surface
exposure and favor less inundated areas. However, InSAR data repre-
sents the greater number of subsamples of wetlands on theUSAtlantic
coast compared to point SET-MH measurements. The comparison of
the SET-MH elevation change rates to the InSAR VLM rates is shown
in supplementary table 3 and shows consistency between the
measurements.

We calculated the vertical resilience (VR) as the VLM minus SLR
(Eq. 9), modifying the standard equation of net accretion (RSLR sub-
tracted from accretion). To account for observation uncertainties in
the VR estimates, we used 2 times the SDof VLM rate to establish a 90%
confidence interval (Eq. 9) and obtain a lower and upper bound on VR.
A VR value larger than 0.5mm per year indicates aggrading wetlands,
while a VR value less than −0.5mm per year indicates submerging
wetlands. A VR value between −0.5mm per year and 0.5mm per year
indicates wetlands that can keep pace with SLR. This threshold was
necessary to account for uncertainties in the measurements, the
dependence of sea level rates on the recording period, and the
potential for short-term marsh accretion rates to fluctuate with
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historical SLR rates64.

VR =VLM � SLR

VRlowerbound =VLM +2SD� SLR

VRupperbound =VLM � 2SD� SLR
ð9Þ

The upper and lower bounds of VR calculated at 90% confidence
range for low- and high-elevation wetlands following Eq. (9) are shown
in Fig. 5a–d. Supplementary Fig. 7a, b shows the VR calculated as
accretion rate minus the relative SLR for the pointwise aggradation
data, while Supplementary Fig. 7c, d shows the VR calculated for
pointwise data following Eq. (9).

Data availability
The east, north, VLM rates, and standard deviations data generated in
this study have been deposited in the figshare database [https://doi.
org/10.7294/19350959]. The global navigation satellite system (GNSS)
velocity data used in this study are available from the NevadaGeodetic
Lab [http://geodesy.unr.edu]. The Synthetic Aperture Radar (SAR)
datasets used in this study are available from the Alaska Satellite
Facilities [www.asf.alaska.edu]. The national land cover (NLC) data
used in this study are available from the U.S. Geological Survey
[https://www.usgs.gov/centers/eros/science/national-land-cover-
database]. The global multi-resolution topography (GMRT) used in in
Fig. 4 was made with GeoMapApp [www.geomapapp.org]. The tide
gage data used in this study are available from the National Oceanic
and Atmospheric Administration [https://tidesandcurrents.noaa.gov].
Thewetland normalized tomean highwater data used in this study are
available from the Oak Ridge National Labs Distributed Active Archive
Center [https://doi.org/10.3334/ORNLDAAC/1844]. The groundwater
data used in this study presented in supplementary Fig. 5 is available
from the U.S. Geological Survey water data [https://waterdata.usgs.
gov/nwis]. Source data are provided with this paper.

Code availability
The WabInSAR code used to perform the synthetic aperture radar
(SAR) analysis is available athttps://sites.google.com/vt.edu/eadar-lab/
software?authuser=0.
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