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Global scale analysis on the extent of river
channel belts

Björn Nyberg 1,2 , Gijs Henstra3, Rob L. Gawthorpe 1, Rodmar Ravnås3 &
Juha Ahokas3

Rivers form channel belts that encompass the area of the river channel and its
associated levees, bars, splays and overbank landforms. The channel belt is
critical for understanding the physical river evolution through time, predicting
river behavior and management of freshwater resources. To date, there is no
global-scale, quantitative study of the extent of river channel belts. Here we
show, based on a pattern recognition algorithm, the global surface area of
channel belts at an approximate 1 km resolution is 30.5 × 105km2, seven times
larger than the extent of river channels. We find 52% of river channels asso-
ciated with the channel belts have a multi-threaded planform with the
remaining 48% being single-threaded by surface area. The global channel belt
(GCB) datasets provide newmethods for high-resolution global scale landform
classifications and for incorporating the channel belt into flood mitigation,
freshwater budgets, ecosystem accounting and biogeochemical analyses.

Rivers are widely recognized as an essential part for life on Earth
supporting ecosystems1,2, influencing our climate3 and providing
freshwater resources4. Rivers can also be destructivewith an estimated
1 billion people living in flood-prone regions causing an annual pro-
jected 1250 billion Euros in socio-economic damage by the year 20505.
The planform character of a river and its channel belt provides an
archive of the past river evolution and information on the expected
behavior of the river system in the future6. With river flooding events
expected to increase in both intensity and frequency during this cen-
tury due to climate change5, knowledge of the type of river system is
vital for flood adaptation strategies6. The channel belt environment
also supports unique riverine ecosystems and contribute to biogeo-
chemical cycles of carbon that remain understudied at a global scale2,7.
Once buried, channel belt deposits become part of the geological
record andmay form subsurface reservoirs that are important for CO2

sequestration8 and as freshwater aquifers4.
The river channel belt is defined as the corridor of river channel

migration formed during one river avulsion cycle9 (Fig. 1). The plan-
form characteristics that defines the channel belt extent includes: (1)
the active river channel itself and associated bars that are actively
accreting and/or migrating; (2) the immediate overbank with levees
and/or lateral splays, and (3) channel reaches (and associated bars,

levees and splays) that were abandoned not by nodal avulsions, but by
subordinate events such as meander cut-offs10. Floodplain material
within the channel-belt may include backswamp landforms deposited
between the bars, levees or splays associated with the active or aban-
doned river channels. The planform of the active river channel(s) may
be single-threaded channels ormulti-threaded channelswith anoverall
straight, sinuous, meandering, braided or anabranching river channel
morphology11,12. The bars associated with the active river channel
include point bars accreting on the inner bank of meandering river
channels, mid-channel (braid) bars formed inmiddle of a river channel
and lateral (side) bars attached to the riverbank.

In recent years, integration of data from satellite missions has
allowed compilation of detailed high-resolution global scale studies of
landcover and water surface change13–16. Yet, previous global scale
classifications of river systems are either limited to classifications of
drainage networks2,17, descriptions of river morphologies based on
high-resolution imagery18,19, or geometrical measurements of the river
channel belt based on a relatively small selection of manually inter-
preted river systems20. Only recently have Allen and Pavelsky3 calcu-
lated that the global surface area of rivers at a 30m2 resolution covers
an estimated 468,000 km2 or 0.35% of Earth’s non-glaciated land sur-
face. This work has also been expanded to show the historical change
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in river widths over the past 36 years based on water surface change21.
However, these studies do not map the extent of the channel belt
which is crucial for understanding the areal extent of river support for
different ecosystems and its impact on biogeochemical cycles, flood-
ing, and water resource management. A major challenge in mapping
the channel belt with traditional pixel-based classification techniques
is in capturing the number of different planform features across a
range of different climates, vegetation types and lithologies.

Here we build the global channel belt (GCB) map to characterize
the extent of channel belts for a cloud- and snow-free Landsat 8
composite image for the year 2020 consisting of 151,723 image scenes.

By implementing pattern recognition (Fig. 2) trained to 370 manually
interpreted river systems across a range of different climates and
geographical regions, we can predict the extent of channel belts to a
94% accuracy (see Methods; Supplementary Figs. 1 and 2). The
machine learning algorithm will also predict the single- or multi-
threaded character of the associated river channel on a spectrum
ranging between a 0 to 100% confidence. The confidence shows the
likelihoodof a river channel being single- ormulti-threaded, andwhere
0% implies neither river type. Furthermore, we define sub-
environments within the channel belt extent including the active
river channels and oxbow lakes in 2020 and the river channel

Fig. 1 | Channel belt Terminology—schematic illustration of the channel belt
extent that include the encompassing area of straight, sinuous, meandering,
braided and anabranching river channels (active and abandoned) and its
associated levees, bars, and overbank landforms. The current Global Channel
Belt model defines the observable extent of channel belts based on 30m Landsat

satellite imagery and its associated multi- or single-threaded river channel char-
acter as depicted by the dotted yellow andblue lines, respectively. Thismethodcan
identify landform patterns that define the channel belt extent and transition
between single and multi-threaded river types not feasible by traditional pixel-
based classification techniques.
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Fig. 2 | Global Channel Belt model—The Global Channel Belt (GCB) model is
based on a VGG-1936 machine learning algorithm for pattern recognition of
channel belt extent and single- or multi-threaded river character. The algo-
rithmuses 512 × 512 pixel tiles of Landsat 8 imagesmasked for non-riverine regions
using a series of convolutions and upscaling functions to simplify the prediction

for a 3-class prediction of the channel belt extent with an associated single-
threaded river channel, multi-threaded river channel or a background value. The
resulting channel belt prediction is used to describe the distribution of fluvial and
lacustrine environments. See methods for more detail. Landsat-8 images courtesy
of the U.S. Geological Survey.
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migration over the past 36 years (1984-2020). To increase the number
of training images, we implement traditional data augmentation
techniques22 combined with two years of image acquisitions (2016 and
2020). In addition, the number of training images required to con-
fidently identify planform features of the channel belt from non-
riverine landforms is reduced by implementing a targeted image
classification approach by masking the original Landsat 8 imagery for
non-riverine regions (Fig. 2; see Methods). The GCB model provide
new datasets for ecosystem accounting, freshwater resource man-
agement, analysis of biogeochemical cycles and flood mitigation stu-
dies, and the methods developed show the potential of a machine
learning approach in classifying landforms on a global scale.

Results
Global Channel Belt map
The observable extent of channel belts covers a surface area of
30.5 × 105km2 (Fig. 3; see data availability section for interactive
map), nearly 7 times larger than the documented extent of rivers3.
This value is based on the reported 50% confidence interval of the
GCB model at an ~1 km resolution (see Methods for validation).
Globally, 37% of channel belts are in Asia (11.4 × 105km2), followed by
23% in South America (7.4 × 105km2), 14% in North America
(4.3 × 105km2), 12% in Africa (3.6 × 105km2), 7% in Europe
(2.0 × 105km2) and another 6% in Oceania (1.8 × 105km2; Supplemen-
tary Table 1). Multi-threaded river channels associated with the
channel belt tend to dominate the larger rivers found in high latitude
areas such as Siberia and northwestern Canada and Alaska, as well as
tributary rivers in equatorial and temperate regions of the Amazon,
Congo, Bangladesh, India, and Pakistan. Single-threaded river chan-
nels are more common across Africa, North America, South America,
and Oceania with a lower occurrence in Europe and Asia (Supple-
mentary Table 1 and Supplementary Fig. 3).

Riverine and lacustrine environments
Based on the known extent of the predicted channel belt, we are fur-
ther able to produce a new global classification of riverine and lacus-
trine / wetland environments (Fig. 4). Here we classify planform
characteristics of waterbodies within the channel belt extent at the
30m Landsat resolution. Themap defines; (1) active river channels, (2)
oxbow lakes, (3) extent of river migration from 1984 to 2020, and (4)
the remaining channel belt extent including levees, bars, splays,
overbank and abandoned river channel landforms.

The active river channels are defined by the pixels that create long
elongated waterbody features (>~4.5 km long) based on an average
annual water discharge level for 2020. Smaller disconnected water-
bodies at the 30m resolution within the channel belt are defined as
oxbow lakes or smaller river reaches. River migration is defined by the
maximum seasonal waterbody extent (>1month of water detection) of
the active river channel (including avulsions) based on a 36-year
Landsat imagery time-series from 1984 to 202014. The remaining area
of the channel belt without an identified waterbody in 2020 or recent
river migration since 1984 are defined as the remaining channel belt
environment. Finally, waterbodies in 2020 that are defined outside the
channel belt are classified as either lakes or wetlands (see Methods for
further detail and validation).

Globally, the results show that the observable extent of channel
belts covers a surface area of 30.5 × 105 km2, which is similar to the
extent of lakes and wetlands at 30.6 × 105 km2. The distribution of
lakes and wetlands are most prevalent in high latitude regions,
whereas the channel belt environment becomes dominant inmid and
low latitude regions (Fig. 4). Within channel belts, the active river
channel extent in 2020 covered an area of 4.72 × 105km2 or 15% of the
total channel belt area. Oxbow lakes or smaller rivers represent an
additional 1.46 × 105km2 (5%), and an additional 2.70 × 105km2 (9%)
represent the extent of river migration over the past 36-years of
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Fig. 3 | Global scale analysis of channel belt extent—map shows the predicted
extent of channel belts and the single- versusmulti- threadplanformcharacter
of its river channel. Latitudinal and longitudinal plots show the proportion of

single versus multi- threaded river channels as a percentage of the total. See
data availability section for a detailed interactive map and publicly available
dataset.
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Landsat observations. The remaining 22.7 × 105km2 (71%) of the area
represent the remaining channel belt environment without water-
body features including abandoned channels and associated over-
bank, levees and splays. The most actively migrating river systems
over the past 36-years are associated with meandering rivers of
equatorial regions as well as the larger braided river systems of the
northern latitude regions and in foreland basins such as the Hima-
layas, Andes and Amur (Fig. 4). Based on the 50% confidence
threshold, 52% of active river channels in 2020 were multi-threaded
with the remaining 48% showing a more single-threaded character
(Fig. 3, Supplementary Table 1).

River channel characteristics
The hydrological, physio-climatic and tectonic conditions of the river
channel by surface area are summarized in Fig. 5 (seeMethods). Rivers
with medium or lower long-term averaged water discharge rivers
(<1000m3 s−1) represent approximately two-thirds of river channels by
surface area. Another third of river channels are characterized by a
high or very high (>1000m3 s−1) water discharge. In terms of mor-
phology, very low, as well as high and very high-water discharge rivers
are commonly multi-threaded at 56, 58 and 75%, respectively. In con-
trast, the global surface area of river channels with a low and medium
water discharged are only 40% multi-threaded (Fig. 5a).

Nearly 30% of river channels are associated with very hot (>20 °C
long-term averaged minimum air temperature of the coldest month)
andhighmoisture (>0.125 climatemoisture index, CMI) physioclimatic
conditions in equatorial regions. River channels in these regions are
slightly more single-threaded (56%; Fig. 5b). Cold (<−20 °C), low and
medium moisture (<−0.4–0.125 CMI) regions also contribute a sig-
nificant 20% of the total surface area of river channels and are 55%
multi-threaded in contrast to equatorial climates. Multi-threaded riv-
ers are dominant in warm and hot (−20–20 °C) low (<−0.4 CMI)
moisture regions, warm (−20–5 °C) and medium (−0.4–0.125 CMI)

moisture regions as well as cold and warm (<−20–5 °C) high elevation
(>750m) regions at 60%, 60% and 65%, respectively.

When viewed by tectonic settings, 50% of river channels occur in
passive margins, followed by foreland (27%) and intracratonic settings
(16%) (Fig. 5c). Extensional/strike-slip and forearc settings combined
define the remaining 7% of river channels. This distribution of river
channels is similar to the distributionof the tectonic regions globally23.
Bymorphology,wesee that theproportionofmulti-threaded to single-
threaded river channels is relatively equal throughout the different
tectonic regimes with intracratonic settings the most single-threaded
at 56% and passive margins the most multi-threaded at 56%.

Discussion
Global river analyses over the past few decades have primarily been
based on hydrological river networks that delineate rivers as lines of
river drainage based on digital elevation models2,17,24. More recently,
with increased computational power, have global scale analyses13

enabled the quantification of the surface area of river channels3. Yet
the previous studies do not map the areal extent of channel belts that
the current study shows are a significant region of riverine environ-
ments covering anestimated area that is 7 times larger than active river
channels (Figs. 2 and 3). Similarly, no existing global land cover, land
useorwater surface area changemap14–16,25 captures the landforms that
define the broader channel belt (Supplementary Fig. 4). As a result,
existing interpretations of the channel belt have previouslybeenbased
on manual interpretations19,26 limiting our understanding of the larger
riverine systems and their impact on biodiversity, climate and human
livelihoods on a global perspective.

The new GCB model uses recent advances in pattern recognition
to provide an objective and quantitative approach to identify land-
forms that define river channel belts. Machine learning is ideal to
identify planform characteristics of river systems given that fluvial
sedimentary processes leave distinct planform patterns such as
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meander scars and lateral accretion surfaces that can be trained and
learnt by convolutional neural networks. Previous algorithms used to
study surface area of rivers3 are based on the distinct spectral char-
acteristics of water alone based on methods primarily developed two
decades prior27. Our approach to increase the number of training
images through data augmentation and multi-year image acquisitions
combined with a targeted masked image classification technique
(Fig. 2) has allowed for a small training database of 370 river systems to
suitably train the machine learning algorithm (see Methods). The
resulting accuracy versus time-efficiency for analyzing remotely
sensed imagery at a global scale shows the potential to apply similar
methods to map a range of different sedimentary landforms that can
be used to relate landforms to causative surface processes.

As with any model, the accuracy of the prediction depends
on the reliability of the data inputs. Inherently, the model is
limited by the 30m Landsat imagery resolution split into roughly
512 × 512 pixel (~15 km2) tiles needed for the machine learning
computations at a global scale (Fig. 2; see Methods). A con-
sequence is that the model may fail to recognize either the small-
(<150m) or large-scale (>15 km) landforms that define the channel
belt extent. This may lead to under- or over-estimations at the

boundaries of the tiled images. Despite these limitations, our
results suggest the GCB model compares well to previously
described geomorphology of river systems at a roughly 1 km scale
resolution (see Methods).

The resulting GCBmodel offers valuable new datasets to explore
the impact of the river channel and its channel belt extent on
flooding, ecosystems, climate, and water resource management. For
instance, the landforms within the channel belt provides information
on the evolution of a river system and its past flood events that can
be used to predict future flood risks and potential flood extents1. The
dataset also builds on previous efforts to create a baseline study of
current riverine state for ecosystem accounting to measure the
impact of climate change on the environment2. The extent of the
river and its channel belt is also an important measure on the spatial
impact of riverine environments on ecosystems which is not
achieved by hydrological models2,24 alone. Furthermore, by com-
bining the river channel with hydrological and climatological
observations (Fig. 5), we can relate the controls and behavior of river
systems supporting different ecosystems.

Application of the GCB riverine and lacustrine environments
(Fig. 4) may improve biogeochemical flux calculations by improving
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estimates of water surface area contribution to CO2 outgassing and
carbon capture by photosynthesis across the channel belt3,7,28. More-
over, the role of the river channel and its channel belt in carbon burial
and release through sedimentation and erosion are known to be an
important contributor to terrestrial greenhouse emissions, but rela-
tively, poorly understood andquantified7. For instance, Repaschet al.29

note variations in erosion of the channel belt of the Rio Bermejo,
Argentina (Fig. 6) is an essential factor in carbon release of that river
system. The GCB model and landform pattern recognition method
provides delineations of riverine landforms important in terrestrial
carbon flux cycles that may further help to constrain global biogeo-
chemical estimates of carbon from rivers.

This study also presents the global-based analysis of the single-
versusmulti-threaded character of river channels by surface area at
48vs 52%, respectively (Fig. 3). Thedataset accurately showregional
trends such as the aforementioned multi- (e.g., braided) to single-
(e.g.,meandering) threaded river channel character observedalong
the Rio Bermejo in Argentina (Fig. 6)18,19,29. Dimensions of channel
belt landforms provide insights into the likely preservation and
geometry of sedimentary deposits improving subsurface reservoir
characterization in a range of applications, for example CO2

sequestration and groundwater resource management8,30. Further-
more, the confidence-based predictions of the machine learning
algorithm uniquely provide a quantitative estimate across a spec-
trum between end-member classifications (0–100%) allowing a
moreaccurateportrayalof thevariations thatexist in riversystems11.
Although the results do not replace more detailed river channel
metrics such as a braiding index, entropic braiding index31 or sinu-
osity measurements11, pixel-based classifications provide an area
dimension and are less computationally expensive than vector
based centerline and transect measurements21,32. The GCB model
achieving global scale predictions classifying 2-degree regions in
<1 h (see Methods), show the potential for near real-time pattern
recognition which is needed to classify the dynamic nature of river
landforms.

Methods
Training data mapping
A cloud and snow-free 2020 composite Landsat 8 imagery consisting
of 151,723 scenes was created in the Google Earth Engine13. We manu-
ally interpret the Landsat imagery by overlaying each image with
polygon interpretations that show the extent of the river and its
channel belt at a 1:100,000 to 1:500,000 scale (Fig. 7; Supplementary
Fig. 2). The interpreted area used in the training data range in size
between 15 km2 and 80 km2 with channel belt widths that range
between ~500m to 30 km (e.g., Ob River).

Manual interpretation of the channel belt training images is based
on the encompassing observations of; (1) active channels and asso-
ciated bars, (2) overbank features such as levees and lateral splays, and
(3) abandoned channels and its associated bar and overbank features
(Figs. 1 and 7). The mapped planform features thus include the active
river channel, point bars, mid-channel bars, lateral (side) bars, mean-
der scars (e.g., relic point bars), levees, splays and abandoned channels
(e.g., oxbow lakes, sediment filled channels)10. The extent of the
channel belt will also include floodplain material deposited between
the observed landforms associated with the river channel migration.
Each interpreted polygon of the channel belt extent was given an
attribute indicating the single- or multi-threaded character of the
active river channel. Interpreted polygons were then converted to an
image mask at the same 30m Landsat image resolution with any non-
interpreted region defined as a background value (Supplemen-
tary Fig. 2).

Single-threaded rivers are defined based on observations of
either a straight, sinuous or meandering river channel morphology
and its associated bar and overbank features. Figure 7a shows a
typical example from the Rio Madre De Dios in Bolivia of an active
meandering river channel and associated point-bar development
with oxbow lakes and meandering scar landforms that define the
channel belt extent. The Rakaia River in New Zealand and the Yukon
River in Alaska are examples of multi-threaded rivers defined by
multiple river channels creating well defined mid-channel bars and
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lateral side bars (Figs. 7c, d). In the case of a channel belt without an
active river channel, we utilize the landform features to identify the
likely river character (e.g., meander scars and abandoned mean-
dering river channel) or refer to the adjacent active river channel for
reference as was the case for the Ili River in Kazakhstan (Fig. 7b). The
single- versus multi-threaded river classification is less reliable for an
abandoned river channel (Fig. 3). Hence the reported values of sin-
gle- versusmulti-threaded rivers is based solely on the surface area of
the active river channel (Fig. 4), although we include the full pre-
dictions in Supplementary Table 1 of the Supplementary Material for
reference.

Sampling selection and data augmentation
A total of 790 localities were selected for training, 370 are riverine
examples and an additional 420 localities are non-riverine regions
covering a range of different climates, vegetation and landcovers.
The location of the training images are randomly selected on the
Earth’s surface using several iterations to optimize the accuracy
versus computational needs to train the algorithm. In total, we col-
lected a database containing 1090 images at a 512 × 512 tiled reso-
lution of both riverine and non-riverine examples for training. The
Landsat 8 composite image averaging the pixel values gathered over
the year likely represents a mean annual water discharge. While this
is a source of uncertainty, a lack of data on months of low water
discharge in global river systems prevents a more targeted image
selection approach as noted in previous studies3. However, this issue
is mitigated based on the pattern recognition approach classifying
not only the river, but also the planform character of its channel belt
as confirmed by the validation results (see Validation, Accuracy and
Comparison section).

To further increase the number of images, we extract both 2016
and 2020 Landsat-8 imagery to increase the total number of scenes to
308,253 scenes and thus also increase the training dataset to 2180
images. The assumption is that both the spectral signatures and river
morphologywill be different for eachyear for themachine to learn.We
limit this approach to 2 years to prevent overfitting the model and to
reduce the computational requirements for the machine learning
algorithm. In addition, we apply a series of common data augmenta-
tion techniques22 to the images by randomly cropping between 70 and
100% of the original image, rotation between 90 and 360 degrees, and
randomly flipping the resulting image. Given the scale invariance of
river systems, the subsequent cropping, rotation and flipping aug-
mentations will respect the morphology of the landforms that define
the channel belt while helping the model predict at different scales.

Global scale landsat-8 imagery processing
To reduce the number of images required to confidently identify river
morphologies from non-riverine features, we implement a targeted
image classification approach by masking the original Landsat 8 ima-
gery for non-riverine regions (Fig. 2). We remove Landsat imagery
pixels that contain amean slope >2 degrees within a 270mwindow (or
~3 pixels) based on the 90m resolution MERIT Digital Elevation
Model33. Mountainous rivers in confined valleys were included by
adding a 300m radius (or ~10x Landsat imagery resolution) around
river network lines with an upstream area >50 km2 and a water dis-
charge >0.1m3/s based on the free flowing rivers dataset17.

In addition, oceans identified by the Global Shoreline Vector34 and
previously defined lakes35 >10 km2 were masked. This ensured that
large waterbodies greater than the 512 × 512 (~15 km2) tiled resolution
used in the machine learning predictions were correctly identified
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threaded Ili River in Kazakhstan, c multi-threaded Rakaia River in New Zealand,
d multi-threaded Yukon River in Alaska, USA. Refer to main text for further detail.
Landsat-8 images courtesy of the U.S. Geological Survey.
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(Fig. 2). Combined, these steps significantly reduced the number of
training images required to identify the bounds of river channel belts
in both mountainous and lowland regions. Finally, we only consider a
false color RGB image using bands 6,5 and 4 of the Landsat 8 imagery
to reduce the number of required input parameters and to be suitable
for pre-trained machine learning models.

Machine learning model
The machine learning model was built in Tensorflow/Keras from a
pretrained VGG-19 model36 on the ImageNet dataset37 with a custom
decoder involving a series of 5 upscaling, convolutions and ReLU
activation functions (Fig. 2). Themodel was run with a batch size of 32
for 28 epochs based on a 3 run early stopping procedure on the
reported validation accuracy. The 2180 images in our dataset are split
into a trainingdataset for learning and validationdataset to test using a
70:30 ratio, respectively. Each epoch is refined based on an Adam
optimizer and loss measured by a sparse categorical cross entropy.
The model was trained on the Google Cloud AI platform using a n1
high-memory machine containing 64 virtual CPUs and 416GB of
memory. The resulting model contains 21,353,943 parameters

representing the internal variables of the machine learning algorithm
(e.g., convolutions) used to objectively classify the Landsat imagery
(Fig. 2). Each parameter is created and assessed by the machine
learning algorithm itself to design the best model based on the avail-
able training and validation dataset.

To apply themodel, the algorithm requires a 512 × 512 image input
and creates a 512 × 512 image prediction containing 3 layers of prob-
ability (0–100%), one for each of three categories: (i) single-threaded,
(ii) multi-threaded and (iii) background category. To limit potential
edge effects in the resulting prediction, we export the Landsat imagery
for Tensorflow as a series of 512 × 512 tiles with a 128 pixel overlap to
keep the central 384 × 384 pixels for the resulting output (Fig. 2). To
process the vast amount of data, we further split the data into 5064
2-degree tiles (~222 km2), each with its own 0.1 degree overlap and run
the model on five virtual machines on the Google Cloud Platform. Tile
based processing across multiple virtual machines allow for the high-
resolution global scale predictions at the 30m resolution to be pro-
cessed in ~32 h or <1 h per 2-degree tile. By combining the tiled pre-
dictions, we canproducea seamlessmapof global channel belt extents
(see data availability section).
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Riverine and lacustrine sedimentary map
The riverine and lacustrine map defines the active river channel in
2020, 36-years of river migration from 1984 to 2020, smaller rivers or
oxbow lakes in 2020 within the channel belt and the extent of lakes/
wetlands in 2020. The extent of the entire channel belt is classified
based on the 50% confidence boundary of the GCB model. The extent
of river migration is defined by at least 2 years of seasonal (>1month)
water occurrencedefinedby time-series analysis of 36-years of Landsat
imagery provided by the Global Surface Water Map v1.314. For the
average waterbody extent of 2020, we use the modified normalized
differencewater index (MNDWI) in Eq. 1with a0.6 index threshold on a
2020 Landsat 8 composite following the same established procedure
as many previous studies3,14,27.

MNDWI=green� SWIR=green+SWIR ð1Þ

where green is the green band and SWIR is the shortwave infrared
band. Large bodies of water >150 pixels connected within a 3 × 3 rec-
tangular search window and at least a 10% channel belt confidence are
assigned as the active river channel classification. Smaller bodies of
water with an area <150 pixels within the channel belt are assigned as
smaller river reaches or lakes. This class represents smaller river
reaches that are typically disconnected at the 30m Landsat resolution
or smaller oxbow lakes that are a part of the channel belt environment.
Finally, lakes and wetlands are defined as those permanent water-
bodies with an area >4 pixels that lie outside the defined channel belt
environment and within 100m from the defined coastline34. This
additional threshold was chosen to remove small clusters of pixel
classifications that are difficult to identify as a waterbody based on
Landsat imagery resolution.

River channel characteristics
To define characteristics of the active river channel, we combine the
GCB map in our study with existing data on hydrologic, physio-
climatic2 and tectonic23 descriptions (Fig. 5). Given that the hydro-
logical and physio-climatic descriptions of the GloRiC dataset2

describe only the river reach, we expand that information to river
extent by summarizing the information within sub-catchments of the
HydroSHEDS level 12 product24. The maximum river discharge and
largest sumof river reach length by climatewithin each sub-catchment
are assigned a pixel classification that is subsequently related to the
surface area of the GCB product. For the tectonic classification, the
catchment delineations of the GTSC dataset23 are overlain on the GCB
map for analysis.

Validation, accuracy and comparison
The machine learning classification of the channel belt extent shows a
96% accuracy to the training dataset and a 94% accuracy to the vali-
dation dataset with a loss of 0.13 and 0.15, respectively. Compared to
the 415 manually described river morphologies by Hartley et al.18, 170
were below the resolution of the GCB model and excluded from
comparison. Of the remaining 245 examples, the single- versus multi-
threaded prediction of the GCB model achieves an 84% accuracy
(Fig. 8a). Another 10% of the locations were partially correct capturing
one aspect of the river morphology while only 6% were incorrect. The
channel belt width of the 170 excluded examples range between 10m
and 1300m with a mean of 167m (+/− 197m) and a 95% confidence
interval at 623m. Hence, while the resolution of the Landsat imagery is
defined at 30m, several pixels are required to identify landforms that
define the river and its channel belt, thus lowering the resulting reso-
lution of the GCB model to ~1 km width.

The current GCB model shows a river surface area of 4.72 × 105

km2 (Supplementary Table 1) compared to the previously reported
4.7 × 105 km2 of Allen and Pavelsky3. Spatially, the discrepancy in river
surface area is shown to be higher in high latitude regions and lower in

mountainous regions (Fig. 8b). This is likely since the river channel belt
is lessdistinct in these regions and that the current study is basedon an
averaged river water discharge compared to a high-water discharge
river surface area of the previous study. In total, the GCB model cap-
tures 91% of the river delineations by Allen and Pavelsky3 within the
extent of the channel belt predictions.

Compared to the previously reported extent of lakes35, the
current study shows roughly a 4% larger surface area at 30.6 × 105km2

(Supplementary Table 1). The most significant increase in lake sur-
face area occurs along coastal wetlands and ephemeral salt lakes in
South America, India and the Arctic that were not considered in the
previous classification (Fig. 8c). In addition, lake levels have
increased in the Himalayas due to reported increase in glacial
melting38. A decrease is most prominent in central Asia and Australia
associated with water loss over the past three decades due to climate
change and excess water demand14. An underestimation of lake
extent in the Canadian shield and Scandinavia is likely a result in the
overestimation of the channel belt extent used to define lakes in the
current study. Overall, the new riverine and lacustrine map show a
good correlation at the global scale with <1% difference in pixels per
km2 (Fig. 8).

Data availability
The Global Channel Belt (GCB) data generated in this study have been
deposited in the Zenodo database under accession code https://doi.
org/10.5281/zenodo.7680163. An interactive map is available at
bjornburrnyberg.users.earthengine.app/view/gcbm.
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