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Certification of non-classicality in all links of
a photonic star network without assuming
quantum mechanics

Ning-Ning Wang1,2,3,9, Alejandro Pozas-Kerstjens 4,9 , Chao Zhang 1,2,3 ,
Bi-Heng Liu1,2,3, Yun-Feng Huang 1,2,3 , Chuan-Feng Li 1,2,3 ,
Guang-Can Guo1,2,3, Nicolas Gisin5,6 & Armin Tavakoli 7,8

Networks composed of independent sources of entangled particles that con-
nect distant users are a rapidly developing quantum technology and an
increasingly promising test-bed for fundamental physics. Here we address the
certification of their post-classical properties through demonstrations of full
network nonlocality. Full network nonlocality goes beyond standard non-
locality in networks by falsifying any model in which at least one source is
classical, even if all the other sources are limited only by the no-signaling
principle. We report on the observation of full network nonlocality in a star-
shaped network featuring three independent sources of photonic qubits and
joint three-qubit entanglement-swapping measurements. Our results demon-
strate that experimental observation of full network nonlocality beyond the
bilocal scenario is possible with current technology.

Quantum technologies promise interesting new approaches to areas
such as computing, communication, sensing and high-precision mea-
surements. Abranch that is becoming increasingly interesting is that of
quantum networks. Quantum networks are infrastructures that con-
nect distant quantum devices to each other via a given network
architecture. Connections can consist in quantum communication
channels or the distribution of entangled particles between different
devices. The technological assets for quantum networks have been
developing rapidly in recent years and many implementations of
communication-oriented networks, often geared towards quantum
key distribution, have been reported, see e.g., refs. 1–9. Potential
future applications of quantum networks include the idea of a quan-
tum internet10,11 connecting quantum devices12, which is closely linked
with the development of quantum repeaters for long-distance
communication13,14.

However, quantum networks are not only of technological inter-
est. In the last decade, networks based on the distribution of entangled
particles from multiple independent sources have become a relevant
platform for studying fundamental physics (see the review article15). A
research programme has been focused on investigating counterparts
to local hidden variable models and the violation of inequalities in the
spirit of Bell’s theorem tailored for networks; see e.g., refs. 16–20. The
introduction of multiple independent sources in networks is known to
make these scenarios considerably different from the traditional Bell
experiments, which include only a single source, thereby enabling for
example nonlocality21 and device-independent randomness22 without
inputs, new forms of entanglement swapping23, and foundational
insights to quantum theory24. This has led to considerable interest in
experimental implementations of network nonlocality25–36. These
experiments are typically based on optical platforms, and those that
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involve entanglement swapping—which is believed to be at the heart of
what sets network nonlocality apart from standard Bell nonlocality15—

are focused on the simplest network in which one party independently
shares an entangled pair with each of two other parties, often also
known as the bilocal network.

The violation of a network Bell inequality certifies that the net-
work cannot be modelled exclusively by classical means. However,
such a certification does not reveal much about the non-classicality of
the network. For example, it is sufficient for one pair of parties, located
somewherewithin a large network, to perform a standard Bell test and
report a violation in order for the entire network to be certified as
network nonlocal37. Thus, it reveals only that nonlocality is present
somewhere within the network. What is therefore of natural interest is
to consider stronger tests of classicality, that askwhether nonlocality is
present everywhere in the network, thereby certifying the non-
classicality of the entire network architecture. The most basic way to
do so is to separately test a number of standard Bell inequalities, one
for each source involving all parties connected by it. However, this
approach ignores that the sources are all independent and part of a
network, and therefore also involves no entangled measurements.
Recently, full network nonlocality has been put forward as a more
general concept that formalises the idea of certifying nonlocality in all
sources of a network38. Correlations in a network are called fully
nonlocal if they are impossible to reproduce when at least one source
in the network distributes classical physical systems. Importantly, in
full network nonlocality no assumption is required that the network
obeys quantummechanics. Indeed, if correlations can bemodelled by
one source being classical and all other sources in the network only
being constrained by the principles of no-signalling and independence
(NSI), then full network nonlocality is not achieved. An interesting fact
is that the largest reported quantum violation of the most widely
knownnetworkBell inequality, namely that introduced in ref. 17 for the
bilocal network, is known to admit a simulation using only one non-
local source, and thus it cannot reveal full network nonlocality38.
Therefore, the certification of non-classicality in the entire network
requires different theoretical criteria and different experimental tests.
Hitherto, two demonstrations of full network nonlocality have been
reported; both focused on the simplest quantum network and using
the protocols proposed in the original work38. The full nonlocality
reported in ref. 39 uses sophisticated entangled measurements but
ought to beunderstoodas aproof-of-principle sincequbits that should
be macroscopically separated, as in real networks, are encoded onto
the same photon. The very recent demonstration reported in ref. 40
uses a simpler protocol developed in the original work38.

However, demonstrating full network nonlocality beyond the
simplest network, in amanner that both achieves the certification in an
interesting way, i.e., using entangled measurements, and remains
compatible with state-of-the-art photonics experiments, constitutes a
challenge. Nevertheless, it is also a relevant path to embark on since
the long-term aims of quantum network technology involve many
sources and many parties. While there are many possible network
configurations, a particularly interesting architecture for showcasing
more advanced capabilities is a star configuration; a central node party
is pairwise connected to n separate parties via independent sources of
bipartite entanglement. Star networks are a natural architecture when
multiple distant users are jointly connected via a central server, and
they have consequently been the focus of considerable previous the-
oretical work in network nonlocality18,41–44. While the original theore-
tical work38 does propose tests of full network nonlocality in an
n = 3 star network, the associated quantum protocol requires mea-
surements that are exceptionally demanding on separate optical car-
riers and have to the best of our knowledge never been realised in any
quantum mechanics context.

Here, we propose a new, tailor-made, test of full nonlocality
for n = 3-branch star network, as illustrated in Fig. 1, and

experimentally demonstrate its relevance for optical systems in a
six-photon experiment based on polarisation qubits. Our proto-
col leverages three-qubit entanglement swapping, but does so in
a manner that is compatible with passive linear optics and
achievable with a small number of optical interferences. To con-
struct the test, we merge techniques for bounding classical45 and
NSI46 correlations in networks. Our results serve as an early step
towards the central goal of taking quantum networks that certify
genuine notions of non-classicality to larger scales.

Results
Full nonlocality test for the star network
Consider the three-branch star network in Fig. 1. The central node
party, B, performs a fixed measurement and outputs a result b. The
three-branch parties, A(1),A(2) and A(3), take inputs x1, x2 and x3,
respectively, and return respective outputs a1, a2, and a3. The network
has three sources, each of which connects one of the branch parties to
the central node party. It is said that the correlations
p(a1, a2, a3, b∣x1, x2, x3) are network nonlocal if they cannot admit a
local model in which the output of each party is influenced only by
their input and a local variable, λi, associated with the source it con-
nects to, namely

pða1,a2,a3,b∣x1, x2, x3Þ
=

X
λ1 ,λ2,λ3

pðλ1Þpðλ2Þpðλ3Þpðb∣λ1, λ2, λ3Þpða1∣x1, λ1Þpða2∣x2, λ2Þpða3∣x3, λ3Þ

ð1Þ

Full network nonlocality is a stronger notion of non-classicality. In
order for thenetworkcorrelations tobe fully nonlocal, theymust elude
any model in which just one source is associated with a local variable
while all the other sources are viewed as NSI. The latters are thus only
constrainedby thenetwork architectureand special relativity. Notably,
such no-signalling correlations are well-known to go beyond the pre-
dictions allowed in quantum theory. For simplicity, say that the source
connecting A(1) and B distributes classical physical systems, associated
with a local variable λ, whereas the other two sources are NSI. The
achievable correlations take the form

pða1,a2,a3,b∣x1, x2, x3Þ=
X
λ

pðλÞpða1∣x1, λÞpða2,a3,b∣x2, x3, λÞ, ð2Þ

where p(λ) is the distribution of the local variable, p(a1∣x1, λ) is the
function according to which A(1) produces her outcome a1 given input
x1 and the physical system in state λ, and p(a2, a3, b∣x2, x3, λ) is a tri-
partite distribution only constrained by NSI. The latter implies that (i)

S1

S2

S3

B

(1)A

(2)A

(3)A

x1

x2

x3

Fig. 1 | The three-branch star network. Bipartite physical systems, generated at
the sources Si, are distributed to the yellow parties, which perform measurements
in the systems received. The branch parties have a choice of measurement to
perform in the systems received, illustrated with the circles denoted by xi.
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the choice of input of one party does not influence the output of any
other party, which means that

P
a2
pða2,a3,b∣x2, x3, λÞ=pða3,b∣x3, λÞ

and
P

a3
pða2,a3,b∣x2, x3, λÞ=pða2,b∣x2, λÞ, and (ii) that once we mar-

ginalise the node corresponding to the central party, the joint prob-
abilities of the unconnected parties A(2) and A(3) are independent, i.e.,
that p(a2, a3∣x2, x3) =∑b,λp(λ)p(a2, a3, b∣x2, x3, λ) = p(a2∣x2)p(a3∣x3). In
order to certify full network nonlocality, we similarly insist that no
model of the form Eq. (2) is possible also when we permute the posi-
tion of the classical source to any one of the three possible
configurations.

Characterising the distributions that take the form of Eq. (2)
is hard due to the well-known non-convexity of correlations in
networks with independent sources. However, techniques have
been developed for relaxing problems in this spirit; providing
sequences of necessary conditions for a probability distribution
admitting a classical45, quantum47 or NSI46 model in a given net-
work. Our purpose, namely to falsify a model of the form Eq. (2)
(up to permutations of the position of the classical source) can be
viewed as a hybrid situation between the classical and NSI net-
work correlation problems. We can combine these so-called
inflation tools to analyse our problem38. The heart of the idea of
these methods is to consider a larger network than the star
configuration, which is built from copies of the components
(namely, p(λ), p(a1∣x1, λ), and p(a2, a3, b∣x2, x3, λ)) of the network of
our interest. It is then possible to formulate a necessary condition
for a model Eq. (2) as a linear program, which can be solved using
standard methods. The larger the inflation of the original net-
work, the more demanding becomes the linear program and the
more accurate becomes the relaxation. If a candidate distribution
fails to pass the linear programming test for a given inflation, it
cannot admit a model Eq. (2). If the same distribution also fails to
pass the analogous inflation test for the other two possible con-
figurations of the classical source, then it is certified as fully
network nonlocal. Importantly, for each of the three cases, one
can obtain a certificate of the failure of the hypothesised model
by evaluating the dual of the corresponding linear program48.
This comes in the form of an inequality in the probability ele-
ments p(a1, a2, a3, b∣x1, x2, x3), which is violated by the candidate
distribution. Such a criterion can also detect full network non-
locality for other distributions and thus also applies to noisy
circumstances.

In this work, we consider the distribution
p(a1, a2, a3, b∣x1, x2, x3) that is generated in Fig. 1 when the three
sources of the network distribute maximally entangled qubit
states, ∣ϕ+ � = ð∣00i+ ∣11iÞ= ffiffiffi

2
p

, the central party performs a two-
outcome entanglement-swapping measurement on their three
qubits given by f∣GHZihGHZ∣,l� ∣GHZihGHZ∣g with
∣GHZi= ð∣000i+ ∣111iÞ=

ffiffiffi
2

p
being the Greenberger-Horne-Zeilinger

(GHZ) state, and the branch parties each choose one of the same
two measurements, namely

Að1Þ
0 =Að2Þ

0 =Að3Þ
0 = sinθ0σX + cosθ0σZ ,

Að1Þ
1 =Að2Þ

1 =Að3Þ
1 = sinθ1σX + cosθ1σZ ,

ð3Þ

where σX and σZ denote the corresponding Pauli matrices. Following
the hybrid inflationmethod, for some values of θ0 and θ1, the resulting
distribution becomes fully network nonlocal. We have systematically
considered different choices of the angles (θ0, θ1) and found that the
best choice of angles is θ0 ≈ − 1.865 and θ1 ≈ −0.4146. In a moment we
will see how they emerge from our explicit full network nonlocality
test. The proof of full network nonlocality is given by the impossibility
of finding a suitable distribution in a concrete inflation of the three-
branch star network, which is described in the “Methods” section.
Analysing the certificate of infeasibility in the linear programme
associated with the inflation, based on the above angles, one can

extract the following criterion satisfied by the model Eq. (2),

I 1 = � hAð1Þ
0 Að2Þ

0 Að3Þ
0 Bi � hAð1Þ

1 Að2Þ
0 Að3Þ

0 Bi � hAð1Þ
0 Að2Þ

0 Að3Þ
1 Bi+ hAð1Þ

1 Að2Þ
0 Að3Þ

1 Bi
� hAð1Þ

0 Að2Þ
0 Að3Þ

0 i � hAð1Þ
1 Að2Þ

0 Að3Þ
0 i � hAð1Þ

0 Að2Þ
0 Að3Þ

1 i + hAð1Þ
1 Að2Þ

0 Að3Þ
1 i � hAð1Þ

0 Að3Þ
0 Bi

� hAð1Þ
1 Að3Þ

0 Bi � hAð1Þ
0 Að3Þ

1 Bi + hAð1Þ
1 Að3Þ

1 Bi � hAð1Þ
0 Að3Þ

0 i � hAð1Þ
1 Að3Þ

0 i � hAð1Þ
0 Að3Þ

1 i
+ hAð1Þ

1 Að3Þ
1 i � 2hAð2Þ

0 Bi � 2hAð2Þ
0 i � 2hBi � 2

≤ 0,

ð4Þ

where hAð1Þ
x1
Að2Þ
x2
Að3Þ
x3
Bi=Pa1 ,a2,a3,b

ð�1Þa1 +a2 +a3 +bpða1,a2,a3,b∣x1, x2, x3Þ,
and analogously for the remaining correlators by removing the cor-
responding factors inside the sum. Thus, any distribution
p(a1, a2, a3, b∣x1, x2, x3) that violates Eq. (4) cannot be realised by having
a classical source connectingA(1) and B and twoNSI sources between B,
and A(2) and A(3), respectively.

The inequality Eq. (4) can be interpreted as the CHSH inequality
between parties A(1) and A(3) when both remaining parties output 0 and
partyA(2) measures x2 = 0. Thus, it is fundamentally different from tests
of non-classicality of a single source by violating a Bell inequality
between one branch party and the central one. Moreover, in order to
violate Eq. (4), not only (at least) several sourcesmust be non-classical,
but also the central party must perform an entangling measurement.

The symmetry of the network and the candidate probability dis-
tribution allow us to obtain inequalities analogous to Eq. (4) also for
the two remaining arrangements of the classical source in the network.
Similarly, the violation of these inequalities witness the non-classicality
of the sources connecting B with A(2) and A(3), respectively, by per-
forming the cyclic permutations A(1)→A(2)→A(3)→A(1) and A(1)→A(3)→
A(2)→A(1), giving rise to inequalities I2 ≤0 and I3 ≤0. Therefore, a
simultaneous violation of all three inequalities I i ≤0 for i = 1, 2, 3
implies that no source in the network admits a classical description,
i.e., full network nonlocality is observed.

In the quantum model, due to permutation symmetry for the
parties in our chosen strategy, all three values of I i will be identical.We
can evaluate this value for any pair of angles (θ0, θ1). Moreover, for the
purposes of the experiment, we also consider a simple noise model in
which the sources are assumed to emit isotropic states
v∣ϕ+ � ϕ+�

∣+ ð1� vÞl=4 with visibility v. The quantum value of the Bell
parameter then becomes

v2

4
v sinθ0 sin2θ1 � 2 sin θ0 sinθ1 � sin2θ0

� �
� 2 cos θ0 cosθ1 � cos2θ0 + cos

2θ1 �
2
v2

� �

ð5Þ

Themaximal value is 0.1859 and occurs at θ0 ≈ − 1.865 and θ1 = −0.415.
For this choice, violation is achieved whenever v ≈0.882. This noise
tolerance is crucial for experimental purposes. Notably, the visibility
can bemarginally lowered to v ≈0.881 by choosing angles θ0 ≈ − 1.908
and θ1 ≈ −0.367, which for a noiseless setting give the slightly sub-
optimal violation 0.1843. In a similar way, by consideringmore general
measurements, AðiÞ

j = sinθj cosϕjσX + sinθj sinϕjσY + cosθjσZ , one
can achieve the larger violation of the inequalities of ð

ffiffiffi
2

p
�

1Þ=2≈0:2071 (for θ0 = θ1 =π/2 and ϕ0 =ϕ1/3 =π/4), at the cost of a
larger critical visibility of v = 2−1/6 ≈0.891.

Optical three-branch quantum star
We build the quantum star network by using three “sandwich-like”
spontaneous parametric down-conversion (SPDC) sources. Each
source produces polarisation-entangled photon pairs to supply the
entangled photonic link. The experimental setup is illustrated in Fig. 2.
Three photons (each from a source) are sent to the central node B,
while the other three photons are distributed to three-branch parties
A(1),A(2), and A(3), respectively, to construct the star network. The qubits
are encoded in the polarisation degree of freedomof the photons. Our
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sandwich-like Einstein-Podolsky-Rosen (EPR) sources employ beam-
like type-II phasematching, which achieves high brightness (0.3MHz),
high fidelity (98%) and high collection efficiency (40%) at the same
time. The high performance of the photon sources is crucial to the
success of the experiment.

The prerequisite for certifying nonlocality in a quantum network
is that all the photon sources in the network are independent. Tomeet
this requirement in the experiment, we split a single laser beam into
three and pump three SPDC sources in parallel. Photon pairs are thus
generated in separate nonlinear crystals. However, as the pump beams
are generated by the same laser, correlations may still be present. In
order to improve the independence, we insert a randomly rotated
glass slice (controlled by independent quantum random number
generators) before each source to randomise the phase of the pump
beam.We set the angle of the glass slice to refresh every ~20ms, which
is much faster than the six-fold coincidence rate (~0.5 Hz) in our
experiment, thus effectively erasing any coherence between the three
pump beams on the time scale of the network.

At the central node, we extend the widely used Bell-state mea-
surement device to three qubits, as shown in the insert of Fig. 2. The
received photons are injected into an optical interferometer, which
consists of two cascaded PBSs and three 22.5∘ HWPs at each output.
Delay lines and interference filters are introduced to make the
interfering photons indistinguishable in arrival time and spectrum. If
we postselect the output case when there is one and only one photon
in each output (with a success probability of 1/4), the input state can
be projected into ∣GHZi or ∣GHZ�i= ð∣000i � ∣111iÞ=

ffiffiffi
2

p
according to

different detected events. When the GHZ-state projection is suc-
cessful, we record the eventswhen all wing parties detect one photon
and then obtain a six-fold coincidence. The measurement device at
each branch party is a polarisation analysis system, which consists of
a HWP, a PBS and two fibre-coupled single-photon detectors. The
HWP ismounted on a rotation stage and controlled by aQRNG.When
the input is 0 (1), the HWPwill be set at θ0/4 (θ1/4), which can project

the input state into the eigenbasis of the A0 (A1) measurement
operator, and the output 0 (1) is recorded when the transmitted
(reflected) detector fires.

Experimental results
During the experiment, we switch the measurement settings of the
three wing parties every 15 s (excluding the rotation time of the
motors), and collect a total of 155019 six-photon coincidence
events in 19200 switching cycles. The measured results of
p(a1, a2, a3∣b = 0, x1, x2, x3) are shown in Fig. 3. Then we measure the
projection probability p(b = 0). Themeasured result is 0.1297 ±0.0027
where the standard deviation represents statistical error. The value
slightly larger than the theoretical prediction, 1/8 = 0.125, is due to the
systematic error of higher-order emission noise in our system. Finally
we calculate p(a1, a2, a3, b =0∣x1, x2, x3) = p(a1, a2, a3∣b =0, x1, x2, x3)
× p(b =0) and the values for the inequalities I i, which correspond to
I 1 = 0:0598±0:0041, I2 =0:0404±0:0040 and I3 =0:0471 ±0:0041.
The values obtained exceed the corresponding non-FNN bounds by
more than 10 standard deviations. The p-values associated with the
violations of the three inequalities are 1.143 × 10−49, 1.747 × 10−25, and
4.864 × 10−32, respectively. Note that our experimental demonstration
is subject to the common loopholes in nonlocality experiments,
namely the locality loophole and the postselection loophole49.

Via state tomography, we find that the fidelity of the three EPR
sources is 0.9793 ±0.0001, 0.9788 ±0.0001 and 0.9811 ± 0.0001,
respectively. Similarly, we find viameasurement tomography a fidelity
of 0.8205 ±0.0040 for the three-qubit GHZ projection in the node.
Finally, to evidence the independence of the sources not only in the
experimental setup but also in the data, we have performed additional
measurements, experimentally determining themarginal probabilities
p(ai, aj∣xi, xj), and computed their mutual information31,39. As we show
in Supplementary Table 1, we find that the mutual information very
nearly vanishes in all cases, as expected from truly independent
sources.

EPR source

o

e

e1

e2

e3

B

input x3

outcome a3

x1

a1

a2

x2

Sandwich-like
BBO

Optical
Window

Spatial
Compensation

Temporal
Compensation

PBS HWP IF FC

Fig. 2 | Sketch of the experimental setup. Three SPDC sources distribute maxi-
mally entangled photon pairs to build a 3-star quantum network. The three extra-
ordinary photons (red spheres) sent to the central node are spatially and
temporally overlapped on two cascaded PBSs to complete the Hong-Ou-Mandel
interference, as shown in the left insert. The three ordinary photons (blue spheres)
are sent to the wing parties to realise single-qubit measurements in Eq. (3). The

SPDC source is based on a sandwich-like BBO-HWP-BBO crystal and is pumped by
an ultraviolet pumppulse (390-nm, 80-MHz, 140-fs). A randomly rotated glass slice
is inserted before each source to randomise the phase of the laser pulse before
hitting on the sandwich crystal. PBS polarisation beam splitter, HWP half-wave
plate, IF interference filter, FC fibre coupler, QRNG quantum random number
generator, BBO beta barium borate.
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Discussion
Guaranteeing non-classical properties in quantum networks is an
increasingly relevant problem and, as is also the case with more
elementary bipartite systems, nonlocality provides a powerful ave-
nue for this purpose.Whereas standard network nonlocality is known
to be insufficient for guaranteeing the non-classical properties of a
whole network architecture, the stronger concept of full network
nonlocality bettermeets the challenge. Here, we have reported on an
optical demonstration of full network nonlocality in a star-shaped
network involving four parties, three independent sources of EPR
pairs and three-qubit entanglement-swapping measurements. The
realisation of strong forms of quantum correlations inmore complex
networks is also a motivation for the development of quantum
information protocols for parties limited by a network architecture.
This direction of research, with notable exceptions47,50, is mostly
unexplored. Importantly, our demonstration showcases full network
nonlocality without assuming that the sources in the network are
limited by quantum mechanics, thus achieving the certification of
non-classicality without requiring knowledge of a physicalmodel.We
note that an alternative avenue also is possible in which the nonlocal
resources are assumed to be limited by quantummechanics. This will
lead to a less fundamentally motivated certification, but still suitable
for quantum networks, having less demanding fidelity requirements
in experiments.

Our results constitute a foundational step in taking more genu-
ine forms of optical network nonlocality beyond the simplest four-
photon scenario. On the theoretical side, we have showed not only
the ability of hybrid inflation methods to provide nontrivial tests for
larger networks, but also that these can be tailored for experimen-
tally friendly protocols. On the experimental side, we have shown
that a six-photon network with multi-qubit entanglement swapping
can be implemented at a sufficiently high quality and efficiency to
pass these comparatively demanding tests of classicality. Never-
theless, our experiment leaves open the detection and locality
loopholes, but recent experiments based on the simplest
network28,51,52 offer a potential avenue towards closing the latter
loophole also for larger networks by carefully synchronising the
signals from the independent sources. Similarly, more stringent
implementations of independent sources, that do not rely on the
quantum-inspired idea of a randomised phase, have been imple-
mented separately34,53,54 and their incorporation into the larger net-
work considered here and beyond is a natural next step.

In addition to the above, two more basic challenges for pro-
ceeding to nonlocality and entanglement-swapping tests in networks
larger than ours are (i) the production of multipartite quantum states
at a viable rate and (ii) the implementation of high-quality multi-qubit
entanglement-swapping at a viable rate. Whereas sophisticated forms
of multi-photon entanglement have been reported55, the associated
rates arenotwell-suited for network considerations. Notably, however,
recent advances based on time-multiplexing and feed-forward56 offer a
path to better rates. Moreover, deterministic entanglement swapping
with passive linear optics is many times not possible without auxiliary
photons57 and, while probabilistic entanglement swapping, as in our
experiment, is possible, it typically comes with success rates rapidly
decreasing in the number of qubits58. An potentially interesting path
towards larger quantum networks is then to consider light-matter
entanglement and more standard deterministic multi-qubit entangle-
ment swapping31.

Methods
Full network nonlocality inequalities from inflation
Inflation allows to derive necessary conditions for distributions com-
patiblewith a given networkby analysing hypothetical scenarioswhere
one had access to multiple copies of the elements in the network. For
instance, take the network in Fig. 1, and assume that S1 is a source of
classical shared randomness. Since classical shared randomness canbe
cloned, one couldmakemultiple copies of it and send them tomultiple

a b
quantum
  bound

C-NS-NS
  bound

Fig. 3 | Experimental results. a Estimation of the branch parties' probability dis-
tributions conditioned to a successful GHZ-state projection in the central node. The
distributions are obtained by normalising the raw experimental data in each mea-
surement setting. b The measured results for the three inequalities for testing full

network nonlocality. The theoretical maximum value is equal to 0.1859 (the
quantum bound) for all inequalities. The error bars represent one standard devia-
tion and are deduced from the photon statistical error of the raw data.
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Fig. 4 | The inflationof the three-branchstarnetworkused for obtainingEq. (4).
Assuming that the source connecting to A(1) is classical, one can clone the infor-
mation sent to it and distribute the copies to copies A(1).
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copies of the party A(1) as in Fig. 4. Any distribution generated in this
newnetwork,pinf ða11

,a12
,a13

,a2,a3,b∣x11
, x12

, x13
, x2, x3Þ, would satisfy:

(i) Positivity and normalisation, namely

pinf ða11
,a12

,a13
,a2,a3,b∣x11 , x12 , x13

, x2, x3Þ≥0 ð6Þ

X
a11

,a12
,a13

a2,a3,b

pinf ða11
,a12

,a13
,a2,a3,b∣x11

, x12
, x13

, x2, x3Þ= 1
ð7Þ

(ii) No-signalling between the parties, i.e.,

X
a11

pinf ða11
,a12

,a13
,a2,a3,b∣x11 , x12 , x13

, x2, x3Þ

�
X
a11

pinf ða11
,a12

,a13
,a2,a3,b∣~x11

, x12
, x13 , x2, x3Þ=0,

ð8Þ

for any values of x11
and ~x11 , and analogously for the rest of the parties.

(iii) SinceAð11Þ,Að12Þ andAð13Þ are all copies of the sameparty,A(1), and in
every round they all receive the same information from the local
hidden variable, they all produce the same outcome in every
round, and thus the distributionpinf is invariant under relabellings
of Að11Þ, Að12Þ and Að13Þ, namely

pinf ða11
,a12

,a13
,a2,a3,b∣x11 , x12 , x13 , x2, x3Þ

� pinf ða1πð1Þ
,a1πð2Þ

,a1πð3Þ
,a2,a3,b∣x1πð1Þ

, x1πð2Þ
, x1πð3Þ , x2, x3Þ=0

ð9Þ

for any permutation π∈ {1↔ 2, 1↔ 3, 2↔ 3, 1→ 2→ 3→ 1, 1→ 3→ 2→ 1}.
(iv) When marginalising two of the copies of A(1), the network is the

original one of Fig. 1, and thus

X
a12

,a13

pinf ða1,a12
,a13

,a2,a3,b∣x1, x12 , x13 , x2, x3Þ=pða1,a2,a3,b∣x1, x2, x3Þ:

ð10Þ

The set of conditions (6)–(10) are necessary for a distribution
p(a1, a2, a3, b∣x1, x2, x3) to be compatiblewith Fig. 1, but theymaynot be
sufficient. For instance, we have not imposed that themarginalisations
over the central party factorise. In any case, if no pinf exists that
satisfies equations (6)–(10), then it is not possible to generate the
p(a1, a2, a3, b∣x1, x2, x3) under scrutiny in the original network of Fig. 1.

The set of equalities (6)–(10) can be written in a convenient form
as A � pinf ≥ b, where the entries of the vector pinf are the elements of
pinf ða1,a12

,a13
,a2,a3,b∣x1, x12

, x13
, x2, x3Þ, the matrix A contains the

coefficients associated with the probabilities in the left-hand sides of
Eqs. (6)–(10), and the vector b contains the corresponding right-hand
sides. This means that the problem of finding a pinf satisfying condi-
tions (6)–(10) can be solved using linear programming. Importantly, in
linear programming the impossibility of finding a feasible solution
comes accompanied by a vector that satisfies y ⋅A =0 and y ⋅ b > 048.
Since in Eqs. (6)–(10) the coefficients of A are independent of p and
thus y ⋅A = 0 always, one can understand the inequality y ⋅ b > 0 as a
witness, whose satisfaction by a particular distribution signals it as
FNN. As we show in the computational appendix59, the inequality in Eq.
(4) is thewitness associatedwith the linear programmedefined by Eqs.

o1 e1 o2 e2 o3 e3

    PBS
@390nm

    HWP
@390nm

   Mirror
@390nm

    Fiber

o1 o2 o3e1 e2 e3
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    EPR 
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(1)A (2)A (3)A

B

Sandwich-like
         BBO

Optical
Window

       Spatial
Compensation

     Temporal
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     HWP@780nm

     3nm IF

     8nm IF

     PBS@780nm

Distribution

 Mode-lock
Ti:sapphire

Frequency
   doubler

Dichroic 
  Mirror

QRNG QRNG QRNG

QRNG QRNG QRNG

Fig. 5 | Detailed experimental setup. An ultraviolet pulse is generated by a fre-
quency doubler and is divided into three parallel beams. The relative phases
between these three beams are erased before they hit the sandwich crystals.
Ordinary photons from the EPR sources are sent to the branchparties and different

measurement settings are selected according to the random input. Extraordinary
photons are projected into the GHZ state at the central node. PBS polarisation
beam splitter, HWP half-wave plate, IF interference filter, QRNG quantum random
number generator, BBO, beta barium borate.
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(6)–(10), with a global change of sign so that FNN is witnessed by the
violation of the inequality.

Experimental details
Here we describe the detailed experimental implementation of the
optical three-branch star network. The detailed experimental setup is
shown in Fig. 5.

EPR source. The three sources of EPR states are generated by a same
mode-locked Ti:sapphire laser. The parent laser pulse has a central
wavelength of 779 nm, a duration of 140 fs, and a repetition rate of
80MHz, that firstly passes through a frequency doubler in order to
generate an ultraviolet pump pulse. This pump pulse is split into three
beams of equal power by means of polarisation beam-splitters and
half-wave plates. Each of the three split beams has a pump power of
260mW, and is used to pump an independent spontaneous para-
metric down-conversion (SPDC) source that generates the EPR states.
The SPDC source is based on a sandwich-like structure composed of a
true-zero-order half-wave plate (THWP) in between of two 2mm-thick
beta bariumborate (BBO) crystals. The twoBBO crystals are identically
cut for beam-like type-II phase matching, in order to benefit from the
high brightness and high collection efficiency of the source. The pump
photon has equal probability to be downconverted in both BBO crys-
tals, which both produce photon pairs in the polarisation state
∣Hi1∣V i2. If the pair is generated in the first crystal, the passing
through the THWP rotates it to the state ∣V i1∣Hi2. Therefore, after
spatial and temporal compensations, the produced state is
ð∣Hi1∣V i2 + ∣V i1∣Hi2Þ=

ffiffiffi
2

p
. Then we use a HWP to transform the state to

the Bell state ð∣HHi+ ∣VV iÞ=
ffiffiffi
2

p
required for the experiment. For doing

so, we use a spectral filter of 3 nm for each extraordinary photon (ei in
Fig. 5) and of 8 nm for each ordinary photon (oi in Fig. 5). The counting
rate for each source is about 0.3 MHz and the collection efficiency is
about 40%.

To characterise the EPR sources, we perform state tomography
of each source. The reconstructed matrices are shown in Fig. 6. The
fidelity of the states F = 〈ϕ+∣ρexp∣ϕ+〉 are calculated to be
0.9793 ±0.0001, 0.9788 ±0.0001, 0.9811 ± 0.0001, respectively.

Source independence. The pump beams to the three EPR sources
come from the same laser pulse, which could insert unintended

correlations between them. In order to ensure that the three sources
are independent, we insert a randomly rotated glass slice in eachpump
beam before hitting the SPDC sources. This destroys any coherence
between the beams. The N-BK7 glass slices have a thickness of 5 mm
and are calibrated for normal incidence of the pump beam. The glass
slice is mounted on a motorised rotation stage and controlled by a
QRNG, which generates random real numbers in the interval [0, 1].
These random numbers are mapped uniformly to rotation angles in
[0∘, 0. 6∘] with resolution of 0.01∘, corresponding to random phase
shifts between 0 and 2π. The maximal rotation of the glass slices,
namely 0. 6∘, introduces an optical path change of ~410 nm.We refresh
the angle of eachglass slice every ~20ms,which ismuch faster than the
six-fold coincidence rate in the experiment (~0.5 Hz), thus effectively
erasing any relative phase between the pump beams on the time scale
of the network. The measured degree of source independence can be
found in the Supplementary Note 2.

GHZ measurement. The central party in the star network performs a
two-outcome GHZ measurement, which consists of the projectors
f∣GHZihGHZ∣,l� ∣GHZihGHZ∣g. We implement this measurement, as
depicted in the bottom part of Fig. 5, using two cascaded polarising
beam-splitters (PBSs) and three 22.5∘ HWPs, one at each output. In this
device, the projection onto ∣GHZi GHZh ∣ corresponds to having one
detection at each port, with none or two of them in the reflected
detectors. We characterise this measurement in Fig. 7 via measure-
ment tomography, finding a fidelity to the ideal projector onto the
GHZ state of 0.8205 ± 0.0040. When considering ideal sources but an
imperfectGHZmeasurement withwhite noise, the required fidelity for
theGHZmeasurement in order to observe a violation of Eq. (4) (and its
corresponding versions for the remaining situations) is 0.763.

Note that only terms corresponding to the projection onto
∣GHZi GHZh ∣ are necessary to compute the quantities I i. However, the
measurement device built is also capable of detecting a projection
onto ∣GHZ�i GHZ�h ∣, which corresponds to having one detection at
eachport, with one of all of them in the reflected detectors. This allows
to use our device for more complicated protocols where the central
party performs a three-outcome measurement.

Estimation of p(b =0). The GHZ measurement device employed does
not use photon-number resolved detectors, and thus is unable to
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Fig. 6 | Tomographic results of the three EPR sources. The top and bottomplots
in each column show, respectively, the real and imaginary parts of the recon-
structed density matrices corresponding to the states distributed by the sources

(left) S1, (centre) S2, and (right) S3 in Fig. 1. This is, the panels correspond to a S1, real
part; b S2, real part; c S3, real part; d S1, imaginary part; e S2, imaginary part; f S3,
imaginary part.
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detect the events where two photons go into the same output port.
This has the consequence that the configuration of the device with the
HWPs at 22. 5∘ cannot distinguish between events where the projection
is performed onto another state and events where photons are lost. In
order to calculate the number of successful runs (i.e., the number of
events where no photons are lost) and to estimate p(b =0) by #(GHZ
events)/#(succ. runs), we rotate the three HWPs in the central node to
0∘ and record the number of six-photon events in the whole experi-
ment (three in the central node, and one more for each branch party).
In order to reduce the experimental fluctuations, we switch between
the three HWPs being at 0∘ or at 22. 5∘ every 60 s. After 2 h of mea-
surement, we collect 15562 total six-photon events and 2019 successful
projection events, thus estimating the probability of projection onto
the ∣GHZi state to be p(b =0) = 0.1297 ±0.0027.

Data availability
The raw data that support the findings of this study are mainly avail-
able in Supplementary Information. Additional data are available from
the corresponding authors upon request.

Code availability
The code used to construct the full network nonlocality inequalities is
available at https://www.github.com/apozas/three-star-fnn.
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