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Widespread global disparities between
modelled and observed mid-depth ocean
currents

Fenzhen Su 1,2,3,4,14 , Rong Fan1,2,14, Fengqin Yan1,2, Michael Meadows 3,5,6,
Vincent Lyne 7, Po Hu8, Xiangzhou Song 9, Tianyu Zhang10, Zenghong Liu11,
Chenghu Zhou 1,2, Tao Pei 1,2, Xiaomei Yang1,2, Yunyan Du1,2, Zexun Wei 12,
Fan Wang 8, Yiquan Qi9 & Fei Chai11,13

The mid-depth ocean circulation is critically linked to actual changes in the
long-term global climate system. However, in the past few decades, predic-
tions based on ocean circulationmodels highlight the lack of data, knowledge,
and long-term implications in climate change assessment. Here, using 842,421
observations produced by Argo floats from 2001-2020, and Lagrangian
simulations, we show that only 3.8% of themid-depth oceans, including part of
the equatorial Pacific Ocean and the Antarctic Circumpolar Current, can be
regarded as accurately modelled, while other regions exhibit significant
underestimations in mean current velocity. Knowledge of ocean circulation is
generally more complete in the low-latitude oceans but is especially poor in
high latitude regions. Accordingly, we propose improvements in forecasting,
model representation of stochasticity, and enhancement of observations of
ocean currents. The study demonstrates that knowledge and model repre-
sentations of global circulation are substantially compromised by inaccuracies
of significant magnitude and direction, with important implications for mod-
elled predictions of currents, temperature, carbon dioxide sequestration, and
sea-level rise trends.

The oceans, covering more than 70% of the earth’s surface and con-
taining 95% of all water, critically modulate climate change through
carbon dioxide sequestration and by absorbing excess heat1–11. Dyna-
mically, the large-scale ocean circulation plays a key role in the Earth’s

climate systemby redistributing the heat of the ocean12,13. Stratification
arises through the processes of vertical mixing, one of the products of
which is the mid-depth ocean near 1000m between variable waters
near the surface and stable waters at greater depth14. Interactions
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between surface currents and thermohaline currents inject changes
into the mid-depth ocean near 1000m. In turn, mid-depth ocean cir-
culation has a significant impact on the global ocean as a whole by
altering the physical characteristics of ocean waters15–18 that play a
fundamental role in the longer-term evolution of Earth’s climate sys-
tem.However, knowledge ofmid-depth ocean circulation is hampered
by the lack of direct observations and novel methods are therefore
needed to improve data, modeling accuracy in order to resolve the
mechanism of mid-depth ocean circulation and related processes.

In the past two decades, over 4000 floats from the Argo program
provided more than two million profiles of water column properties
from the upper 2000-m depth of the global ocean10,19,20. These enable
the construction of satellite-tracked sea-surface profiles and cycles for
direct estimation of mid-depth ocean velocities, and spatio-temporal
circulation patterns from regional to global scales20–33. Argo velocities
derived in this manner are Lagrangian, whereas ocean circulation
models are Eulerian, resulting in systematic biases of current velocity
when the coordinates are transformed34–36. Based on simulated Argo
experiments37 it has been suggested that Argo floats accelerate near
strong mean flows due to the eddy‐mean flow interaction effect,
although other potential biases and their implications for models
remain highly uncertain. Using comprehensive and quantitative
methods, we present here the detailed assessment and validation of
global ocean circulation model skills near 1000m depth.

Results
Sparse well-modelled mid-depth ocean
Lagrangian velocities near 1,000m depth for all the earth’s oceans
were computed and multiple accuracy indicators were used to com-
pare Argo float velocities with simulated velocities from global circu-
lation models. The assessment is based on 842,421 Argo float
observation displacements over 20 years, together with float simula-
tion experiments. The goal is to map the areas of the oceans that are
more reliably modelled and classify them in terms of how much is
known about spatial variations in mid-ocean circulation. Global 1000-
m ocean velocities were obtained from three eddy-permitting and
daily-mean ocean general circulation models, including ECCO2 (Esti-
mating theCirculationandClimate of theOceanmodel, Phase II), OFES
(the Ocean General Circulation Model for the Earth Simulator) and
CMEMS GLORYS12 (Global Ocean Reanalysis and Simulations), and
Argo velocities were acquired from the ANDRO dataset. Indicators of
differences (see Supplementary Materials for details) comprise: DOD
(Difference of Direction); DOV (Difference of Velocity); PDOV (Per-
centage of Velocity Difference); SD (Separation Distance); SS (Skill
Score based on the cumulative simulated separation distance nor-
malized by the cumulative observed displacement). We describe the
distribution of each of these statistics before presenting the results of
cluster analysis to reveal the linkages between indicators and overall
spatial patterns of the clusters.

Fig. 1 shows the global spatial distribution of the well-modelled
areas, defined as areas where DOD is less than 30° and PDOV is less
than 50%. The two most critical indicators are adopted, and the
effect of parameter thresholds on the results can be seen in Sup-
plementary Table 1. Overall, only 1.3–3.8% of the global oceans are
considered to have a robust or reliable prediction of the 1000-m
depth circulation and hence, improved velocity fieldmagnitude and
direction data are needed for more than 96% of the global ocean.
This deficiency therefore calls into question the reliability of pre-
dictions of the long-term implications of mid-depth ocean circula-
tion changes. Meanwhile, several regions are better modelled,
including the Antarctic Circumpolar Current and the equatorial
Pacific Ocean, which is the largest spatially continuous well-
modelled area that enables more reliable estimates of ocean cur-
rent dynamics in the 1000-m layer.

Spatial patterns of widespread global disparities
TheglobaldistributionofDOD inFig. 2 shows thatDOD in at least 81.1%
of the oceans exceeds 45° or more (as shown by the most accurate
model CMEMS), meaning that accurate simulation of circulation
direction at 1000-m is lacking in more than four-fifths of the global
oceans. However, there are considerable areas with better repre-
sentation, where DOD is below 45°, notably in the equatorial Pacific
Ocean and the Indian Ocean but also parts of the Antarctic Cir-
cumpolar Current, the Agulhas Current, the Gulf Stream and the Bra-
zilian Current (as the darkest cool colors in Fig. 2 shows).

The global spatial distribution of DOV for ECCO2 and OFES in
Fig. 2 and Supplementary Fig. 2 shows that observed velocities are
greater than simulated values near the equator (6°N-10°S) and espe-
cially across most of the western boundary current regions. Globally,
DOV for ECCO2 exceeds 3 cm/s across 51.12 million km2. Regions with
the most significant positive DOV anomalies include the Agulhas
Current andGulf Stream,where DOV reaches its highest values (16 cm/
s) and PDOV reaches a maximum of 92.7%. In the Antarctic Cir-
cumpolar Current regions, positive and negative values of DOV are
staggered, but negative PDOV dominates the overall spatial pattern
and simulated velocities are in general much greater than observed
values andmore than twice the observed velocities across 1.02 million
km2 of the global oceans (PDOV> 100%). As for CMEMS (Fig. 2-f),
similar underestimation of velocities is shown near the equator and
parts of the western boundary current regions.
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Fig. 1 | Global distribution of well-modelled areas for models, 1.415% for
ECCO2(a), 1.325% for OFES(b), and 3.843% for CMEMS(c). The well-modelled
areas are highlighted by blue dots.
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Significant kinetic deviations exist in zonal and meridional velo-
city (Supplementary Fig. 10) and in the mean velocity fields (Supple-
mentary Fig. 11). These systematic biases may be caused by lack of
eddy kinetic energy (Supplementary Fig. 12). Significant under-
estimation of eddy kinetic energy is observed in almost all the western
boundary current regions.

We also analyzed the SD and SS to reflect an overall combined
accuracy statistic. As shown in Supplementary Fig. 3 and Supplemen-
tary Fig. 4, the spatial pattern of SD corresponds very well with
observed velocity measurements (Supplementary Fig. 11-a), high SD
occurs in the Southern Ocean, in the western boundary current
regions, and near the equator. The SS in the low-latitude oceans is
generally greater than in other oceans in ECCO2 and OFES, although
sporadic high SS signals are also seen in the middle to high-latitude
oceans. Meanwhile, SS for CMEMS shows high SS signals in both low-
latitude oceans and Antarctic Circumpolar Current regions.

The results suggest that there is a relatively accurate prediction of
circulation characteristics across large areas of the low-latitude
oceans, viz. −8°N to 8°S (Fig. 1). Overall, relatively high SS suggests
adequate agreement between observed and simulated current direc-
tions (DOD<45°, Fig. 2) in most of the equatorial Pacific Ocean, the
north Indian Ocean, and part of the middle Atlantic Ocean. Positive
continuous spatial characteristics of SS (>0.5) are evident in both the
equatorial Pacific Ocean and the northern Indian Ocean. In addition,
there are positive signals (such as DOD and SS) indicating that the
Antarctic Circumpolar Current regions are better modelled, but the
evidence is relatively weak and even then only for the CMEMS
simulation.

In the mid-latitude oceans, the strong and persistent western
boundary currents show characteristics different to those of other
open oceans. In these regions, both simulated and observed velocities
are high (Supplementary Fig. 11). DOD results are poor (typically > 80°
in ECCO2 and OFES) in most of the mid-latitude oceans. Moreover,
there are markedly positive DOV signals (> 3 cm/s) in the main path-
ways of the Agulhas Current, Gulf Stream, Kuroshio Current, Brazilian
Current and East Australian Current. For the Gulf Stream (together
with its extension), observed velocities exceed those simulated in all
models, even up to 70% (Supplementary Fig. 2). In addition, SS is
generally low (SS < 0.4) across the mid-latitude oceans.

Of the high-latitude oceans, the Southern Ocean, most especially
around the Antarctic Circumpolar Current (ACC) system, exhibits
relatively good agreement between simulated and observed dis-
placements (Fig. 1; Fig. 2). The core pathways of the ACC are reflected
in themean velocity of Argo floats, revealing strong jet currents, which
are also evident in the south Indian Ocean, south Pacific Ocean and
southwest Atlantic Ocean (Supplementary Fig. 11-a). Several of the
indicators exhibit clear, spatially continuous patterns along the cur-
rent pathways, with lower DOD, higher SD and both positive and
negative DOV signals. Exceptionally high simulation velocities (PDOV
is < −100% in some cases) are a key feature of these regions. But SS
values differ between models, showing lower signals in ECCO2 and
OFES, and higher in CMEMS (generally above 0.5).

Statistical characteristics of widespread global disparities
Based on statistical K-means clustering analysis of the indicators (see
Supplementary Table 2), the global ocean yields four clusters, each
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Fig. 2 | Global spatial distribution of DOD (Difference of direction) and DOV
(Difference of velocity) for ECCO2 (a, b), OFES (c, d), CMEMS (e, f ). The (a, c, e)
panels: mean DOD during 2001–2020 (shaded color). Warm (Cool) color indicates

that observed velocity offloat displacements exceeds (lags) simulated velocity. The
(b, d, f ) panels: averaged DOV during 2001–2020 (shaded color).
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with a characteristic coherent profile (Fig. 3). A visual assessmentof the
clusters in Fig. 3-b leads to the following observations relating to
accuracy and spatial distribution of the different indicators. Clusters
are clearly distributed along latitudinal zones, although the boundary
current regions, particularly evident in Cluster-4, do extend long-
itudinally. Spatial patterns are strongly evident, especially for Cluster-3
and Cluster-4 which are distributed in low latitudes and higher lati-
tudes, while other cluster areas mainly occur at mid-latitudes.

The largest cluster, Cluster-1, covers 40.4% of the oceans with
significantly higher DOD, and is widely distributed in themid-latitudes,
including the extended boundary currents regions. Although dis-
tributed in similar latitudes, Cluster-2 exhibits poorer ocean current
accuracy, with the highest values for DOD and lowest values for SS
(average below 0.2), while DOV in this cluster is negative, indicating
that velocity is markedly overestimated here. Cluster-3 occupies 14.2%
of the oceans, including parts of the equatorial PacificOcean, the north
IndianOcean and theAntarctic Circumpolar Current, whereDOD,DOV
and SD all lie below global mean values. Ocean current accuracy is
adequate in regions where this cluster is located. Cluster-4 has the
highest DOV and SD values along with higher velocity, and is located
across almost all of the Western Boundary Currents and their exten-
sions, as well as most of the Antarctic Circumpolar Current. Accord-
ingly, the ocean current velocity in these regions is severely
underestimated.

Discussion
Overall, our integrated assessment analyses show significant and
extensive discrepancies between modelled and observed velocity
fields across the oceans, mainly associated with energy under-
estimation and direction bias. On a global scale, those areas of the
oceans that are more accurately modelled include the equatorial
Pacific Ocean, the northern Indian Ocean, and part of the Southern
Ocean. Regionally, the low-latitude oceans including the equatorial
Pacific Ocean, the north Indian Ocean and the middle of the Atlantic
Ocean exhibit better agreement in terms of both amplitude and
direction of circulation dynamics compared with themiddle and high-
latitude oceans. Estimation of circulation needs to be improved in the
mid- to high-latitudes, where underestimation of both average current

energy and direction deviation is evident. The Western Boundary
Currents, the most prominent features of mid-latitude ocean circula-
tion, are known for their complex current structure and complex
topographic interaction processes and prove particularly challenging
to estimate accurately.

Of particular importance is the finding that circulation energy is
underestimated across almost all of the global oceans. This arises in
part because high-frequency dynamics are poorly resolved in ocean
circulation models and also due to the inadequate solutions of sub-
grid processes, such as the lack of eddy kinetic energy illustrated in
Supplementary Fig. 12. Moreover, parameterizations of sub-grid pro-
cesses result in a series of errors, a situation which remains still the
most advanced challenge in ocean modelling38,39. Taking tidal pro-
cesses as an example, previous studies have confirmed that tidal cur-
rents traversing rough bathymetry could induce turbulence and
mixing to accelerate mid-depth ocean circulation40–42.

Our analysis further demonstrates that circulation accuracy tends
to be poor in oceans with slower mean currents, such as the north
Pacific Ocean and the north Atlantic Ocean. There is evidence of
intrinsic chaotic variability in theseoceans that is not easily resolvedby
oceancirculationmodels43.Mesoscale features andunstableprocesses
such as eddies and instability waves may also result in simulation
errors especially in regions of weak amplitudes44.

As noted by Fox-Kemper, Adcroft et al.38, numerical and para-
meterization improvements will continue to define the state of the art
in ocean circulation modelling. In the future, we expect ocean circu-
lation models to represent observed quantities of ocean flows more
faithfully through: (a)More intensive andqualifiedobservations. There
is a pressing need for more observations in the mid-depth ocean. A
proposal to improve the sampling density of the Argo program parti-
cularly in parts of theworld oceanwhereclimate impacts are especially
strong, was raised by Riser, Freeland et al.20. Here we recommend
enhancement of observations in the mid-depth ocean, such as
by increasing the float deployment and adding an inertial navigation
component in float design which can provide locations at
greater frequency during the parking period. (b) More productive
parameterization. The ocean is a nonconstant and nonuniform
dynamical system with high-frequency variations. Thus, productive

-
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a c
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Fig. 3 | Multivariate K-means clustering analysis results for 4 clusters. a The
clustering map shows spatial distribution, and (b) the column chart summarizes
normalized indicators of displacement disparity for each cluster. c The separate

clustering maps show the spatial distribution of each cluster. The clustering indi-
cators are DOD (Difference of direction), DOV (Difference of velocity), SD
(Separation distance) and SS (Skill score).
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parameterization is particularly challenging and much needed. To
strengthen the prediction skill of mid-depth ocean currents, the
parameterizationof globalmodelling is expected tobe improved, such
as depth-dependent eddy diffusivity and viscosity45,46, internal mixing
with spatio-temporal variability47, ice-ocean basal friction48,49. (c) Finer
resolution. With the rapid growth of high-performance computing
techniques and cloud-based platforms, higher-resolution global
oceanic circulation modelling systems may provide better estimates
for certain regions50–52. (d) Last but not least, wewould like to point out
the recent breakthrough in modelling large-scale ocean currents
through exact solutions to the geophysical fluid dynamics governing
equations53–57. This kind of pioneering mathematical analysis of geo-
physical currents may prompt further in-depth theoretical studies58.

Possible sources of uncertainty in this study are as follows. Firstly,
observation of absolute velocity based on the Argo float satellite-
tracked system (ARGOS and GPS) is subject to a systematic displace-
ment error of between 8 to 1500m33,59. Unpredictable float movement
at the ocean surface occurs frequently due to wind, wave and surface
current processes. Shear displacement caused by vertical currents
during descending and ascending is an additional source of error. The
ANDROdataset hasbeenpartially corrected for both types of error and
the error could be further adjusted, for example using an Argo simu-
lation system to derive accurate systematic errors37. A further caveat is
that ocean circulation models generate mean conditions and are not
suited to resolving fine-scale spatial and high-frequency temporal
variability. The output of ocean circulation models used in our work
has similar deficiencies. Notwithstanding these uncertainties, our
study offers important insights that improve the awareness of the
representational accuracy of ocean circulation in models, and enhan-
ces regional observations.

The study highlights discrepancies between modelled and
observed ocean circulation in terms of spatial structure, intensity, and
direction that must be accounted for in ocean modeling and predic-
tion. In so doing, our analysis exposes those areas of the mid-depth
ocean that are most poorly resolved in terms of circulation and that
should, therefore, be prioritized for observation and simulation
towards the goal of optimizing ocean circulation models.

In conclusion, mean current velocities in the mid-depth oceans
appear to be significantly underestimated due to the fact that high-
frequency dynamical processes, such as tidal mixing, are not well
captured in simulations. Although the equatorial Pacific Ocean, north
Indian Ocean and part of the Southern Ocean are better modelled,
excessive direction biases (over 75°) are detected across more than
60% of the global oceans, especially in areas where the circulation
system is weak. Given deficiencies in the observational record, such
stochasticity needs to be incorporated into ocean models through
parameterization of eddy diffusivities and mixing parameters. Clear
patterns of spatial clustering are revealed, with characteristics for well-
modelled oceans of several assessment indicators changing rapidly
with increasing latitude, on average. The major contribution of this
study lies in revealing the nature and scale of the disparity betweenour
scientific knowledge of ocean circulation and the actual ocean envir-
onment. Our analysis can help guide recommendations for more
intensive observation and modeling approaches in order to decrease
the extensive and significant biases betweenmodels and observations.

Methods
Argo displacements dataset
Calculation of 1000-m current velocities from Argo floats relies on
measurement of displacement, which is the difference between the
location of the last surface-fixed position before departure from the
sea surface and the first fixed position after arrival at the sea surface,
together with the time interval, typically 9–10 days20,33,60,61. For obser-
vations, in this study we use the ANDRO (Argo New Displacements
Rannou and Ollitrault) displacements59. The ANDRO has over 843,000

displacements in individual cycles operating from September 1995 to
July 2020. Maximum coverage density is 4.32 floats/100 km2. ANDRO
covers 86.8% of the global ocean. Of these areas, 34.7% have a total
parking time of 300 days, 60.3% have 200 days, and 84.8% have
100 days.

Global ocean circulation models velocity dataset
Global velocity fields used for Lagrangian tracking analysis are pro-
vided by the ECCO2 (Estimating the Circulation and Climate of the
Oceanmodel, Phase II),OFES (theOceanGeneral CirculationModel for
the Earth Simulator) and CMEMS GLORYS12 (Global Ocean Reanalysis
and Simulations).

ECCO2 produces a physically consistent estimate of global ocean
circulation. The circulationmodel assimilates a huge number of in-situ
and satellite observations based on the Massachusetts Institute of
Technology general circulation model (MITgcm), using Green’s func-
tion optimization62. Here, we used the three-day current velocity field
datasets from 2001 to 2020, with an eddy-permitting horizontal
resolution (approximately 18 km), and 50 vertical levels within the
depth range 5 to 5906m.

OFES can perform fifty-year integrations of eddy-resolving ocean
simulations in the world ocean63. It is based on the Modular Ocean
Model (MOM3) which was developed at the Geophysical Fluid
Dynamics Laboratory/the National Oceanic and Atmospheric Admin-
istration (GFDL/NOAA). The output over 2001-2019 with 1-day average
and 1/10° horizontal resolution is used. OFES simulations were con-
ducted on the Earth Simulator under the support of JAMSTEC (Japan
Agency for Marine-Earth Science and Technology).

CMEMS GLORYS12 reanalysis provided a 3D description of the
ocean circulation at themesoscale64. It was designed and implemented
using the current real-time global forecasting CMEMS (Copernicus
Marine Environment Monitoring Service) system and driven by the
NEMO3.1 ocean/sea-ice general circulationmodel. Ocean observations
were assimilated by a reduced-order Kalman filter, including along-
track altimeter sea-level anomaly, satellite sea-surface temperature,
sea-ice concentration, and in-situ temperature and salinity (T/S) ver-
tical profiles. The reanalysis covered the 1993-2020 period, with a 1/12°
horizontal resolution and 50 vertical levels. The daily mean velocity
output was used in this work.

Regional ocean circulation model velocity dataset
Regional velocity fields used for the kinetics comparison test are
provided by the DopAnV3R3-ini200765,66 (Doppio Analysis Version 3
Release 3). The DopAnV3R3-ini2007 is a ROMS-based (Regional Ocean
Modeling System) data assimilative reanalysis focusing on the Mid-
Atlantic Bight and Gulf of Maine regions of the northwestern North
Atlantic. The reanalysis uses four-dimensional variational (4D-Var) data
assimilation (DA) derived from comprehensive observational data
from in situ platforms, coastal radars, and satellites66. The velocity
fields output from the DopAnV3R3-ini2007 (available online https://
www.seanoe.org/data/00785/89673/) is provided on a 7-kmhorizontal
grid within 40 vertical levels from the coastal ocean to deep sea and
covers the period 2007-2021.

Kinetics comparison test
To address potential underpowering below the mesoscale of global
ocean circulationmodels, velocity fields output from the DopAnV3R3-
ini2007 (a ROMS-based reanalysis), is used to compare with the velo-
city fields output from global ocean circulation models. Lagrangian
simulation analysis mentioned in the next section is used here. The
simulation traverses the Gulf Stream zone and covers 2014–2018, viz.
the 5 years that exhibit the largest Argo displacements, while no dif-
fusivity is set here. For each model, 1102 simulated floats (equal to
displacements number of displacements available to Argo) are
released. The velocity comparison result between simulated floats
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advected by the ROMS model and global models is shown in Supple-
mentary Fig. 5.

Lagrangian simulation
At the parking stage, Argo floats drift near the 1000m depth. To
reproduce the behavior of real floats during its parking stage,
Lagrangian particle tracking analysis was applied. Lagrangian tracking
analysis has been used in many studies to model seawater motion and
material transport67. We used the freely available open-source
Lagrangian particle trajectory tool OpenDrift68 to compute simulated
float trajectories. The spatial and temporal velocity fields were
smoothed using bilinear interpolation. A second-order Runge-Kutta
scheme was adopted as the advection method to derive numerical
particle positions (we refer to the simulated Argo float as a “numerical
particle”). The analysis tool is designed to operate in off-line mode, so
computation of simulated float trajectory relies on the Eulerian velo-
city field output from the ocean circulation model. The simulations of
different models were added with varying diffusivity. The description
of the random diffusivity term is in the next section.

In our experiment, numerical particles were advected with the
velocity field output of global ocean models. Each Argo cycle where
parking depth lies between 950 and 1050 dbar has a corresponding
numerical simulation particle. To ensure a strict comparison with real
Argo floats, the uniform starting position, parking depth and parking
duration of the observed trajectories were set for all numerical parti-
cles. The time step of forward numerical particle trajectory prediction
was set to 1-hour and prediction results were stored at 1-day intervals.
This Lagrangian simulation allows the generation of float clusters,
improving the statistical significance of the outputs. A number of vir-
tual floats is released at the starting position of each Argo cycle. The
centroid of the displacement probability density cloud is considered
to be representative of the float cluster displacement. The size of
cluster (that is, the number of virtual floats for each release) is deter-
mined by a spatial coverage test as shown in Supplementary Fig. 8. We
selected the velocity field of OFES as it has the largest diffusivity
among the models, thereby ensuring the robustness of the value.
Given the large number of simulations performed, we selected 100 as
the size of the cluster to balance statistical accuracy and computa-
tional intensity.

Stochastic diffusivity test
As emphasized in a series of other studies, the diffusivity of Lagrangian
analysis is a significant issue67,69,70. In general, the stochastic term is
used in Lagrangian analysis tomodel stochastic fluctuations, including
subgrid scale diffusion and unresolved physics such as eddies, waves,
turbulence ormixing processes. Amap of diffusivitymay be estimated
by floats observations71–73. However, different diffusivities have been
set up for ocean general circulation models63,64. So here horizontal
isotropic diffusivities account for the dynamic processes that are not
fully resolved by the global ocean circulation models37. The stochastic
walk of the particle tracking is implemented by the Wiener noise
process.

To quantify the suitable diffusivities, a stochastic diffusivity test
was conducted by Lagrangian simulation only in the Gulf Stream zone.
As previous studies noted, validations of high-resolution model
simulations are essential to ensure the applicability of the stochastic
term67,73. We conduct the test through comparing the Lagrangian
simulation results between global models and ROMS. No diffusivity
was set for ROMS simulation.

Supplementary Fig. 6 visualizes the changes of kinetics indicting
by absolute velocity for each model when the diffusivity varies. For
simulations of ECCO2 and OFES, their kinetic distributions gradually
approach that of ROMS as the diffusivity increases, with the frequency
tending to decrease for small velocities (<10 cms−1) and increase for
large velocities (>10 cms−1). It seems that the applicable value is

around 1000 to 1500m2 s−1. Further tests, detailed below,may provide
accurate values. Instead, the kinetic distributions of CMEMS
GLORYS12 simulations moves away from that of ROMS as the diffu-
sivity leaves zero. Accordingly, the stochastic diffusivity is set to 10−5

m2 s−1, which is indeed close to zero74. It makes sense for a non-zero
diffusivity which allows floats to deviate from deterministic trajec-
tories driven by sub-grid scale diffusion.

To further test the diffusivity value for ECCO2 and OFES, corre-
lations of probability density functions of velocities are calculated as
shown in Supplementary Fig. 7. Linear correlations of each simulation
of different diffusivity with the ROMS simulation are calculated.
According to the maximum correlation, the diffusivity for ECCO2 is
1100 m2 s−1 and the value for OFES is 1400m2 s−1. The diffusivities here
demonstrated reasonable agreement with the global average value
estimated by Cole et al.75. Moreover, the Kolmogorov-Smirnov test
results show that the simulated kinetic distribution is consistent with
that of the observed kinetics.

Quantitative difference framework
To assess the modelling accuracy of global ocean circulation, a quan-
titative difference framework was used. The framework was designed
for displacement comparison between observed and simulated floats.

Three kinds of indicators quantify circulation differences using
float movement characteristics. The first indicator is DOD (Difference
of Direction), which represents the angle between two vectors derived
from observed and simulated displacement. The geometric meaning
of DOD is similar to the cosine similarity used in trajectory similarity
studies76. The DOD is calculated as follows:

DOD= atan yvobs , xvobs

� �
� atan yvsim , xvsim

� �
ð1Þ

where vobs and vsim are velocity vectors (in x, y space) exported from
observed and simulated float displacement, respectively.

Secondly, velocity related indicators includeDOV and PDOV. DOV
(Difference of Velocity) is the magnitude of velocity difference
between observed and simulated displacements:

DOV = ∣vobs ∣� ∣vsim∣ ð2Þ

PDOV (Percentage of Velocity Difference) represents the
percentage-ratio of velocity difference compared to absolute
observed velocity:

PDOV =
∣vobs ∣� ∣vsim∣

∣vobs∣

� �
× 100% ð3Þ

The third indicator included two universal displacement mea-
sures to quantify the movement consistency of the floats. SD
(Separation Distance) is the distance between the end points of the
simulated and observed float displacements, demonstrating move-
ment differences directly. SS (Skill Score) is based on the cumulative
simulated separation distance normalized by the cumulative observed
displacements length76:

SS =
1� c

n , c≤nð Þ
0, c >nð Þ

(
, ð4Þ

where n is a tolerance threshold, c is a normalized cumulative
Lagrangian separation distance. An estimate of c is obtained by
dividing the cumulative Lagrangian separation distance (SD) by the
cumulative length of the observed displacement (L):

c=
XN

i = 1

SDi

�XN

i = 1

Li, ð5Þ
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where i = 1, 2,…, N, and N is the total number of days. As for the tol-
erance threshold (n), we selected n = 1.8, considering the expectations
and requirements of the simulated model. SS has been used in several
other studies to assess numerical ocean circulation model
accuracy77–79. In general, SS varies between 0 and 1, whereby higher SS
values indicate improved prediction skills.

Calculations of difference are based on the match-up displace-
ment pair dataset. With the dataset, all indicators are rasterized and
adjusted to a resolution of 1°× 1°. The python-based library Cartopy
was used to set map projections and map evaluation results. The
multivariate K-means clustering method was adopted to explicitly
extract regions with similar biases, seeing detailed statistics in the later
section (several compound parameters statistics).

Observation data investigation
The significance of difference assessments between observation and
simulation relies on the number of Argo float observations in each
statistical unit (1°× 1°). The spatial coverage of Argo observations with
different amounts is shown in Supplementary Fig. 1.

Several compound parameters statistics
To investigate the influence of the evaluation thresholds on the ana-
lysis, we computed compound evaluation thresholds across statistics.
When DOD and DOV lie between 30–90° and 10–70%, respectively,
areas of the ocean classified as well-modelled comprised 0.27-59.85%
of the total (Supplementary Table 1).

Multivariate K-means clustering of normalized indicators (DOD
(°), DOV (cms-1), SD (km), SS (score))wereused to explore the linkages
between indicators, and their spatial distribution. Indicators were
normalized to have a mean of zero and standard deviation of one. We
chose 4 clusters as increasing it to 5 produced two clusters with similar
profiles and broad distributions to Cluster 1, shown in Supplementary
Table 2 which also summarizes the overall profile and %Area for each
Cluster.

Data availability
All observation and model data that support the findings of this study
are available as follows. The ANDRO (ArgoNewDisplacements Rannou
and Ollitrault) displacements available online (https://www.seanoe.
org/data/00360/47077/) on the marine sciences data platform SEA-
NOE (SEA scieNtific Open data Edition). The ECCO2 output is available
online (https://www.ecco-group.org/). The OFES output is available
online (http://apdrc.soest.hawaii.edu/erddap/griddap/hawaii_soest_
b0d2_0156_7195.html). The CMEMS GLORYS12 reanalysis is delivered
through the Copernicus Marine Environment Monitoring Service
(CMEMS) available at https://resources.marine.copernicus.eu/
product-detail/GLOBAL_MULTIYEAR_PHY_001_030. The DopAnV3R3-
ini2007 velocity field output is available at https://www.seanoe.org/
data/00785/89673/.

Code availability
All analyses in thismanuscript are reproducible, instructions and scripts
could be found in the repository Middepth_currents_validation80

(https://doi.org/10.5281/zenodo.7765311).
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