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DNA methylation markers for kidney func-
tion and progression of diabetic kidney
disease

Kelly Yichen Li 1,2, Claudia Ha Ting Tam 3,4,5, Hongbo Liu 6,7,
SamanthaDay 8,9, CadmonKingPoo Lim3,5,WingYee So3,4, ChuiguoHuang 3,
Guozhi Jiang3,10, Mai Shi 3, Heung Man Lee 3, TRANSCEND Consortium*,
Hui-yao Lan 3,11, Cheuk-Chun Szeto 3,11, Robert L. Hanson 8,
Robert G. Nelson8, Katalin Susztak 6,7, Juliana C. N. Chan 3,4,11,
Kevin Y. Yip 1,2,4,12 & Ronald C. W. Ma 3,4,5

Epigenetic markers are potential biomarkers for diabetes and related com-
plications. Using a prospective cohort from the Hong Kong Diabetes Register,
we perform two independent epigenome-wide association studies to identify
methylation markers associated with baseline estimated glomerular filtration
rate (eGFR) and subsequent decline in kidney function (eGFR slope), respec-
tively, in 1,271 type 2 diabetes subjects. Here we show 40 (30 previously uni-
dentified) and eight (all previously unidentified) CpG sites individually reach
epigenome-wide significance for baseline eGFR and eGFR slope, respectively.
We also develop amultisite analysismethod, which selects 64 and 37 CpG sites
for baseline eGFR and eGFR slope, respectively. These models are validated in
an independent cohort of Native Americans with type 2 diabetes. Our identi-
fied CpG sites are near genes enriched for functional roles in kidney diseases,
and some show association with renal damage. This study highlights the
potential of methylationmarkers in risk stratification of kidney disease among
type 2 diabetes individuals.

There is a global epidemic of type 2 diabetes. The increasing pre-
valence of young-onset diabetes has contributed to the increasing
burden of end-stage kidney disease (ESKD) due to the associated long
disease duration1,2. Given the preventable nature of diabetic kidney

disease (DKD), there is a need to identify individuals at risk of pro-
gression of DKD and ESKD for early intensive interventions. Several
treatments have recently been proven to retard the progression of
DKD, including sodium glucose transporter 2 (SGLT2) inhibitors3 and
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selective mineralocorticoid receptor antagonist such as Finerenone4.
These expanding treatment options for DKD have increased the
urgency to develop new models that can stratify those at high risk of
kidney dysfunction.

There have been numerous efforts to identify biomarkers that can
guide the stratification of DKD, including the use of genetic and other
types of biomarkers. Whilst genome-wide association studies (GWAS)
havehad considerable success in identifyinggeneticmarkers for type2
diabetes and other complex diseases, the progress in identifying loci
associated with DKD had been less impressive5,6. Epigenetic markers,
includingmethylation changes andmiRNA,may be able to capture the
interaction between environmental factors and the genome, and may
provide new biomarkers for diabetes-related complications7. Methy-
lation markers, in particular, have been postulated to mediate the
effects of metabolic memory8, and are promising biomarkers for dia-
betic complications. Some previous studies have investigated DNA
methylation changes associated with DKD based on human blood9,10,
human kidney tubules11,12, or mouse samples13. These studies involved
control samples from healthy individuals or individuals with diabetes.

In this study, we examine whether methylation at CpG sites,
measured in peripheral blood, may be associated with renal function,
and whether this information can be used to predict deterioration in
kidney function in type 2 diabetes for prognostication purpose.

Results
Genome-wide DNA methylation trends are associated with
baseline kidney function
We studied a cohort of 1271 patients with type 2 diabetes from the
Hong Kong Diabetes Register (HKDR). Among the patients, 19.7% had
DKD at baseline, defined as eGFR<60ml/min/1.73m2 (Supplementary
Table 1 and Supplementary Fig. 1). During amedian follow-up periodof
14.6 (Q1–Q3: 8.3–19.4) years, 33% developed ESKD. During the follow-
up period, the included subjects had a median number of eGFR mea-
surements of 29 (Q1–Q3: 15-46), and the median eGFR slope during
follow-up was −2.27% (Q1–Q3: −9.11 to −0.65) change of eGFR per year.

We profiled the DNA methylome of whole-blood samples of the
patients using the Illumina Infinium HumanMethylation450K Bead-
Chip (“Methods”). For the DNA methylation data produced, after fil-
tering and normalization, 434,908 CpG sites and 1268 samples were
retained. Data reproducibility was confirmed by replicate samples
(Supplementary Results and Supplementary Fig. 2). The top principal
components (PCs) of our DNA methylation data were strongly indi-
cative of sex, age, and smoking status (Supplementary Methods,
Supplementary Results, and Supplementary Fig. 3), which are con-
sistent with previous studies14–19 and further confirm the quality of
our data.

DNA methylation was associated with renal function, with the
models for baseline eGFR achieving a high mean area under the
receiver–operator characteristic (AUROC) of 0.76 (Supplementary
Fig. 4a). This associationwas not due to confounding factors causedby
sex, age, or smoking status (Supplementary Results and Supplemen-
tary Fig. 4b, c). In contrast,most of the other clinical variables were not
strongly associated with DNA methylation (Supplementary Fig. 5).

Methylation levels of individual CpG sites are associated with
baseline renal function and renal function decline
To discover individual CpG sites associated with kidney function, we
performed an epigenome-wide association study (EWAS) of baseline
eGFR. Since recent studies have reported that CpG methylation levels
are predictive of the decline of eGFR over time11,20, we also set eGFR
slope as an additional target trait. We included sex, age, smoking sta-
tus, duration of diabetes, hemoglobin A1c, blood pressure, batch of
experiment, and cell-type composition estimations21 as covariates.

For baseline eGFR, 40 CpG sites reached epigenome-wide
significance (Bonferroni-corrected P value below 0.05) and 386

CpG sites were statistically significant at FDR = 0.05 (Fig. 1a–c,
Table 1, and Supplementary Data 1). The most significant CpG site
was cg17944885 (Bonferroni-corrected P = 6.11 × 10−15), located
between ZNF788 and ZNF20 on chromosome 19. The DNA
methylation level of this CpG site had also been associated with
kidney function in various populations22–25 (Supplementary Fig. 6
and Supplementary Data 1 and 2). Interestingly, two of the sites
with a Bonferroni-correctedP value below 0.05 (cg04983687,
cg01676795) and one other significant site at FDR = 0.05
(cg22460173) in our cohort had also been reported as significant
in a recent multiethnic meta-analysis22, but they had not been
reported to have a significant association with kidney function in
earlier studies of cohorts that involved a single ethnic group10,22.

For eGFR slope, eight CpG sites had a Bonferroni-correctedP
value below 0.05 and 74 CpG sites were significant at FDR = 0.05
(Fig. 1d–f, Table 1, and Supplementary Data 1). The most sig-
nificant CpG site was cg10272901 (Bonferroni-corrected
P = 3.41 × 10−5), located in a CpG island on chromosome 21. None
of these 74 sites was reported to be associated with eGFR slope in
previous studies, conducted mainly in the general population
rather than population with diabetes (Supplementary Data 1 and
2). When we performed reciprocal lookup of the previously
reported top sites, we found several sites reported by Gluck et al.,
based on data from multiple populations11, to have marginally
significant P values in our data (Supplementary Fig. 6). These
included cg15826891 (P = 5.29 × 10−5 in our data), which is located
within the MIR100HGnon-coding gene locus on chromosome 11,
and cg02950701 (P = 1.26 × 10−4 in our data), which is located
within the protein-coding gene CCNY locus on chromosome 10.

A multisite approach to identifying sets of CpG sites indicative
of renal function
The single-site approach described above, though commonly used in
the literature, has two important limitations. First, someCpG sites that
are not strongly associated with kidney function by themselves could
complement other sites to explain residual kidney function differ-
ences. These “auxiliary” sites cannot be identified by the single-site
approach. Second, some significant CpG sites identified by the single-
site approach could be strongly correlated with each other (Supple-
mentary Fig. 7), due to genomic spatial dependency or other reasons,
leading to redundancy and diversion of attention to non-
functional sites.

To tackle these limitations, we developed a multisite approach
that considered all CpG sites at the same time and selected a subset of
them to create the best model to infer baseline eGFR or eGFR slope
(“Methods”). Considering both the model performance and complex-
ity of themodels, our procedure automatically determined the feature
selection thresholds (“Methods” and Supplementary Results).
According to left-out testing data not involved in this procedure, at
these selected thresholds, the Pearson correlation between the mea-
sured baseline eGFR values and the values inferred by the models was
0.704, and that of eGFR slope was 0.386 (Supplementary Fig. 8a, d).

The multisite models capture relationships between DNA
methylation and renal function in multiple populations
After confirming the validity of our procedure, we then implemented it
to rebuild the models using the whole set of samples. In these “final”
models, 64 and 37 CpG sites were included for predicting baseline
eGFR and eGFR slope, respectively (Tables 2 and 3 and Supplemen-
tary Data 3).

For baseline eGFR and eGFR slope, the actual values and the
values inferred by our final models had Pearson correlations of 0.806
and0.635, respectively (Table 4 and Fig. 2a, b). The performance of the
models was better with the covariates than without (Table 4 and
Fig. 2c, d), and they were substantially better thanmodels constructed

Article https://doi.org/10.1038/s41467-023-37837-7

Nature Communications |         (2023) 14:2543 2



from the same number of random CpG sites (Supplementary Fig. 9)
and several alternative models (Supplementary Results).

In our final models, some of the CpG sites included were also
significantly associated with kidney function in the single-site analysis,
such as the most significant sites cg17944885 for baseline eGFR and
cg10272901 for eGFR slope. Other sites demonstrated significant
associations only in the multisite models, showing that they carried
additional information for inferring the target traits. Intriguingly, the
most significant site cg17944885 for baseline eGFRwas also included in
the multisite model for eGFR slope, although it was not significant for
eGFR slope in the single-site analysis. One of the selected sites for the
baseline eGFR model, cg13408344, was previously associated with
baseline eGFR22.

To evaluate whether the selected sites could successfully classify
people with or without kidney disease, we constructed regularized
logistic regression models using the above choices of CpG sites for
baseline eGFR and eGFR slope. All the models performed well in these
classification tasks, achieving ameanAUROCof 0.89 for baseline eGFR
and 0.81 for eGFR slope (Supplementary Table 2), demonstrating the
ability of these sites to recognize people with potential renal
dysfunction.

In the final models, since all samples were used in training the
model, there were no left-out samples for evaluating the model per-
formance in an unbiased fashion. Therefore, we further tested our
models using genome-wide methylation measurements of blood
samples from an independent cohort of 326 Native American subjects
with type 2 diabetes. The results (Table 4, Supplementary Table 3,
Fig. 2e–h, and Supplementary Fig. 10) show that our models also
achieved good performance for predicting baseline eGFR and eGFR
decline in type 2 diabetes in this independent cohort despite differ-
ences in ethnicity.

Proximal genes of the selected sites in the single-site and mul-
tisite analyses have potential kidney functions
We next evaluated the functional significance of the genes proximal to
(within 1 kb) the sites identified in our single-site andmultisite analyses
by checking whether they have been reported as potentially related to
kidney function. We collected these potential kidney function-related
genes from a number of previous studies that identified the genes
using various types of data, including DNA methylation data of blood
samples from people with or without kidney disease9,26–28, bulk RNA
expression data of human kidneys29–31, single-cell RNA sequencing data
of mouse kidneys32,33, and GWAS prioritized genes34,35.

Of the 348CpGsites (whichcorresponded to 358genes) identified
by our single-site and multisite analyses as associated with baseline
eGFR and proximal to (within 1 kb) annotated genes, 228 (which cor-
responded to 215 genes) of them (65.5%) were reported in at least one
of these previous studies (Fig. 3 and Supplementary Data 4), which
corresponded to a 1.25-fold enrichment as compared to the set of all
human genes (P = 3.78 × 10−6, hypergeometric test).

Noticeably, the CpG site cg24707889, located in the upstream
region of the ITGB2 gene, was identified in the multisite model but not
recognized as significant at FDR =0.05 in the single-site analysis. The
association between ITGB2 and kidney function was supported by
various data such as blood DNA methylation27, RNA expression and
expression quantitative trait loci (eQTLs) in human kidney samples30,31,
and single-cell RNA expression in mouse kidneys32,33. The ITGB2 gene
encodes integrin subunit beta 2 (also known as archetypal innate
immune receptor CD11b/CD18), which plays an important role in
immune response, and defects in this gene may cause leukocyte
adhesion deficiency. A recent study reported that inhibition of CD11b/
CD18 prevented long-term fibrotic ESKD from acute kidney injury
(AKI) in cynomolgus monkeys36.

Fig. 1 | Association between CpG methylation and renal function. The methy-
lation level of each CpG site was tested for its association with baseline eGFR (a–c)
and eGFR slope (d–f). The results of all the 434,908CpG sites analyzed in this study
are shown using Manhattan plots (a, d), quantile–quantile (QQ) plots (b, e), and
volcano plots (c, f). P values were computed using two-sided Student’s t test. In the

Manhattan plots, CpG sites with a Bonferroni-corrected P value <0.05 are shown in
red. The horizontal red lines show the cutoff above which all sites are significant at
FDR =0.05. In the QQ plots, the diagonal straight line is the expectation under the
null hypothesis. λ is the inflation factor. In the volcano plots, CpG sites with a
Bonferroni-corrected P value <0.05 are shown in red.
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Table 1 | CpG sites with their methylation levels significantly associated with baseline eGFR or eGFR slope in the single-site
analysis

CpG site Genomic location Model coefficient P value Corrected P value Annotated gene(s) Gene region(s)

Baseline eGFR

cg17944885 Chr19:12,225,735 −5.156 1.41E-20 6.11E-15 – –

cg25364972 Chr2:217,075,573 −6.303 4.36E-11 1.90E-05 – –

cg06449934 Chr7:1,130,697 3.679 9.70E-11 4.22E-05 GPER 5’ UTR

C7orf50 Gene body

cg02304370 Chr11:587,926 3.662 1.37E-10 5.97E-05 PHRF1 Gene body

cg21919729 Chr8:11,719,367 3.368 4.28E-10 1.86E-04 CTSB 5’ UTR

cg04610187 Chr17:76,360,794 3.766 5.83E-10 2.53E-04 – –

cg04983687 Chr16:88,558,223 3.372 1.29E-09 5.61E-04 ZFPM1 Gene body

cg27254661 Chr2:73,118,624 3.697 2.47E-09 0.001 SPR Gene body

cg18593194 Chr19:36,205,201 3.697 2.75E-09 0.001 ZBTB32 5’ UTR

cg12065228 Chr1:19,652,788 3.721 2.76E-09 0.001 PQLC2 Gene body

cg08940169 Chr16:88,540,241 3.260 4.16E-09 0.002 ZFPM1 Gene body

cg19434937 Chr12:7,104,184 3.206 4.16E-09 0.002 LPCAT3 Gene body

cg11699125 Chr1:6,341,327 3.144 6.55E-09 0.003 ACOT7 Gene body

cg17988187 Chr2:74,612,222 3.131 6.84E-09 0.003 LOC100189589 TSS1500

cg09823543 Chr6:43,146,056 3.557 7.10E-09 0.003 SRF Gene body

cg02475695 Chr16:616,220 3.378 7.63E-09 0.003 NHLRC4 TSS1500

cg06972908 Chr16:30,488,321 4.344 8.35E-09 0.004 ITGAL Gene body

cg11544657 Chr1:9,968,130 −4.430 8.61E-09 0.004 CTNNBIP1 5’ UTR

cg23845009 Chr11:34,323,678 4.360 1.09E-08 0.005 ABTB2 Gene body

cg09610644 Chr3:197,249,274 −3.469 1.26E-08 0.005 BDH1 Gene body

cg12981272 Chr3:37,281,848 5.063 1.36E-08 0.006 – –

cg12077754 Chr2:75,089,669 3.114 1.38E-08 0.006 HK2 Gene body

cg10142874 Chr2:11,917,623 3.074 1.86E-08 0.008 LPIN1 Gene body

cg00934987 Chr17:56,605,468 3.540 2.68E-08 0.012 SEPT4 Gene body

cg22753611 Chr6:17,472,892 −3.284 2.68E-08 0.012 CAP2 Gene body

cg04816311 Chr7:1,066,650 4.226 2.88E-08 0.013 C7orf50 Gene body

cg04497992 Chr16:616,212 3.053 3.11E-08 0.014 NHLRC4 TSS1500

cg09249800 Chr1:6,341,287 3.042 3.15E-08 0.014 ACOT7 Gene body

cg01676795 Chr7:75,586,348 4.178 3.43E-08 0.015 POR Gene body

cg25854298 Chr10:73,936,754 2.952 3.79E-08 0.016 ASCC1 Gene body

cg10489463 Chr2:33,546,572 3.190 4.07E-08 0.018 LTBP1 Gene body

cg23516680 Chr10:103,923,333 3.105 4.89E-08 0.021 NOLC1 3’ UTR

cg02170785 Chr14:69,650,830 3.012 5.44E-08 0.024 – –

cg19448292 Chr20:35,504,064 3.177 5.59E-08 0.024 C20orf118 TSS1500

cg01499988 Chr9:35,755,346 2.980 6.16E-08 0.027 MSMP TSS1500

cg25087851 Chr11:60,623,918 2.993 6.95E-08 0.030 GPR44 TSS1500

cg22406869 Chr11:66,276,941 4.239 7.63E-08 0.033 DPP3 3’ UTR

BBS1 TSS1500

cg18650626 Chr7:1,914,073 2.886 8.89E-08 0.039 MAD1L1 Gene body

cg00506299 Chr3:16,469,127 3.373 9.14E-08 0.040 RFTN1 Gene body

cg16809457 Chr6:90,399,677 3.694 1.14E-07 0.050 MDN1 Gene body

eGFR slope

cg10272901 Chr21:46,677,879 1.316 7.84E-11 3.41E-05 – –

cg12354056 Chr3:186,136,503 1.126 7.50E-10 3.26E-04 – –

cg18461548 Chr8:37,701,921 1.179 2.72E-09 0.001 BRF2 3’ UTR

cg00695821 Chr3:156,124,891 1.354 3.81E-09 0.002 KCNAB1 Gene body

cg22822893 Chr6:15,1662,789 1.056 7.39E-09 0.003 AKAP12 Gene body

cg02566611 Chr16:83,948,975 0.986 5.61E-08 0.024 MLYCD Gene body

cg20741134 Chr1:181,382,639 0.976 5.67E-08 0.025 – –

cg04027328 Chr1:11,372,138 1.290 6.81E-08 0.030 – –

P values were computed using two-sided Student’s t test. Each listed site has a Bonferroni-corrected P value <0.05. TSS1500: the region between 200bp and 1500bp upstream of the transcription
start site (TSS). In the model coefficients, a positive sign means that a higher methylation level is associated with higher baseline eGFR or slower eGFR decline, while a negative sign means the
opposite.
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Table 2 | CpG sites in the final multisite model for baseline eGFR

CpG site Genomic location Model coefficient Single-site corrected
P value

Annotated gene(s) Gene region(s)

With covariates Without covariates

cg17944885 Chr19:12225735 −3.291 −4.211 6.11E-15 – –

cg06449934 Chr7:1130697 0.442 0.088 4.22E-05 GPER 5’ UTR

C7orf50 Gene body

cg02304370 Chr11:587926 0.491 0.313 5.97E-05 PHRF1 Gene body

cg21919729 Chr8:11719367 0.778 0.715 1.86E-04 CTSB 5’ UTR

cg04610187 Chr17:76360794 0.656 0.721 2.54E-04 – –

cg18593194 Chr19:36205201 1.661 1.188 0.001 ZBTB32 5’ UTR

cg12065228 Chr1:19652788 0 0 0.001 PQLC2 Gene body

cg09823543 Chr6:43146056 1.127 1.047 0.003 SRF Gene body

cg23845009 Chr11:34323678 2.249 1.145 0.005 ABTB2 Gene body

cg09610644 Chr3:197249274 −1.780 −2.809 0.005 BDH1 Gene body

cg00934987 Chr17:56605468 0 0.661 0.012 SEPT4 Gene body

cg04497992 Chr16:616212 0.116 0 0.014 NHLRC4 TSS1500

cg01676795 Chr7:75586348 1.939 1.225 0.015 POR Gene body

cg00506299 Chr3:16469127 1.464 0.713 0.040 RFTN1 Gene body

cg01885635 Chr3:40566085 1.877 3.159 0.169 ZNF621 TSS1500

cg15232319 Chr19:4376459 0 −0.557 0.414 SH3GL1 Gene body

cg20062057 Chr2:50201479 1.508 1.428 0.466 NRXN1 Gene body

cg07397612 Chr22:47423986 1.452 1.613 0.497 TBC1D22A Gene body

cg20970369 Chr1:111744108 −1.123 −1.395 0.658 DENND2D TSS1500

cg13091627 Chr1:153518476 −1.825 −1.504 0.851 S100A4 TSS200

cg23511909 Chr3:128340787 0.555 0.722 0.887 RPN1 Gene body

cg02835823 Chr16:85979060 −0.451 0 0.902 – –

cg20133890 Chr6:31680144 0 0 1 LY6G6E Gene body

cg12465678 Chr1:27953336 0.045 −1.188 1 FGR TSS1500

cg20299697 Chr3:138069423 0.764 1.401 1 MRAS 5’ UTR

cg14141741 Chr7:947428 1.157 0.893 1 ADAP1 Gene body

cg19458497 Chr11:63403371 0.848 0.972 1 ATL3 Gene body

cg10578938 Chr5:156695410 −0.565 −0.667 1 CYFIP2 5’ UTR

cg22049753 Chr2:240895815 1.292 1.216 1 – –

cg26344619 Chr14:76046018 1.082 0.987 1 FLVCR2 Gene body

cg11845111 Chr2:191398756 −1.155 −1.506 1 TMEM194B Gene body

cg23509869 Chr6:31553441 −1.424 −0.488 1 LST1 TSS1500

cg14583999 Chr3:10019040 0.691 1.162 1 TMEM111 Gene body

cg06943835 Chr11:64662577 0.734 1.908 1 ATG2A Gene body

cg19597449 Chr19:8117924 0.909 0 1 CCL25 TSS200

cg26336935 Chr17:39769213 1.045 1.218 1 KRT16 TSS200

cg23261820 Chr5:102382738 1.311 1.636 1 – –

cg07781445 Chr17:2886250 0 0.727 1 RAP1GAP2 Gene body

cg18036734 Chr5:177036766 0.495 0 1 B4GALT7 3’ UTR

cg01924561 Chr1:43416103 −1.267 −1.538 1 SLC2A1 Gene body

cg07477034 Chr17:53341969 1.128 1.754 1 HLF TSS1500

cg24707889 Chr21:46341304 −0.252 0.217 1 ITGB2 5’UTR

cg00501876 Chr3:39193251 −2.161 −1.533 1 CSRNP1 5’UTR

cg25013303 Chr1:10961257 0.042 0.387 1 – –

cg18070458 Chr11:121319927 −0.802 −0.611 1 – –

cg11961845 Chr7:129008179 −0.606 −0.081 1 AHCYL2 Gene body

cg17124293 Chr10:45403981 −1.490 −1.360 1 – –

cg13408344 Chr15:31631240 −0.665 −0.627 1 KLF13 Gene body

cg19893929 Chr2:16105823 −0.103 0 1 – –

cg00791074 Chr6:151186169 0 0.079 1 MTHFD1L TSS1500

cg26608718 Chr19:15530737 0.238 1.443 1 AKAP8L TSS1500

cg01955153 Chr16:50769852 −0.380 0 1 – –

cg06015525 Chr12:57872123 −1.678 −1.772 1 ARHGAP9 Gene body
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Interestingly, our analysis identified several previously uni-
dentified CpG sites associated with baseline eGFR with nearby genes
having differential expression between samples from people with and
without kidney disease, such as RFTN1 and CTSB (“Discussion”).

For eGFR slope, 51 of the 76 CpG sites (67.1%) (which corre-
sponded to 52 of 89 genes) were reported as potentially related to
kidney function in previous studies (Fig. 3 and Supplementary Data 4),
which corresponded to a 1.21-fold enrichment as compared to the set
of all human genes (P =0.03, hypergeometric test).

One CpG site, cg19693031, which was selected by our multisite
model but not recognized as significant at FDR = 0.05 in the single-
site analysis, is located in the 3’-UTR (untranslated region) of the
TXNIP gene. TXNIP encodes a thioredoxin-interacting protein, which
was implicated in the pathogenesis of DKD. CpG sites within this
gene were differentially methylated between patients with type 1
diabetes with and without complications26. TXNIP expression is
related to DKD31, structural abnormalities such as cortical inter-
stitial fractional volume (VvInt)29, an index of tubule-interstitial
damage, as well as folic acid nephropathy (FAN)32. Previous studies
suggested that hyperglycemia might contribute to DKD by
increasing the level of inflammatory factors via upregulating the
expression of TXNIP through histone modifications, such as
increase in H3K9ac, H3K4me3, and H3K4me1, and decrease in
H3K27me3 at TXNIP promoter region, whereas the contributory
roles of DNA methylation required further elucidation37,38. Another
CpG site, cg13591783, identified in both our single-site andmultisite
analyses for eGFR slope, is located within the ANXA1 gene. ANXA1
encodes annexin A1, which is a membrane-localized protein that
binds phospholipids, inhibits phospholipase A2, and has anti-
inflammatory activity. ANXA1 was differentially expressed in kid-
ney tubules between human samples of DKD and control samples31

and correlated with VvInt29 in patients with DKD. In addition,
annexin A1 was a potential therapeutic target in diabetes and the
treatment of microvascular disease such as DKD39,40.

To further confirm that the CpG sites identified in our single-site
and multisite analyses are statistically near genes related to kidney
function, we sampled many sets of random genes proximal to (within
1 kb) CpG sites profiled by the Infinium HumanMethylation450 Bead-
Chip with the same sizes as the actual numbers of genes proximal to
the CpG sites we identified in our analyses. For these random sets of
genes, the numbers of them related to kidney function were sig-
nificantly smaller than our actual sets of genes identified (Supple-
mentary Fig. 11).

Taken together, among the genes near the CpG sites associated
with baseline eGFR or eGFR slope in our single-site and multisite ana-
lyses, many of them had been reported to be related to normal kidney
function or kidney diseases. These results were based on various types
of data, including data curated from human kidney samples, which
provides strong support for the functional relevance of our reported
CpG sites obtained from blood samples.

To further validate the relevance of our selected CpG sites in the
kidney, we selected seven CpG sites that were associated with baseline
eGFR in our single-site and multisite analyses, namely cg21573651,
cg17944885, cg06449934, cg02304370, cg21919729, cg04610187, and
cg18593194 (“Methods”). For twoof these seven CpG sites (cg21573651
and cg04610187) their methylation levels in kidney samples were sig-
nificantly different between kidney disease patients and control
groups (Supplementary Fig. 12a, d). Their methylation levels in kidney
samples also had significant correlations with eGFR and fibrosis
(Supplementary Fig. 12b, c, e, f). These results further supported that
the CpG sites we identified from blood samples had functional sig-
nificance in the kidney. In a different cohort of 84 individualswith type
2 diabetes from the Native American population, two out of the seven
CpG sites identified (cg02304370 and cg18593194) showed a sugges-
tive association between methylation measured in peripheral blood
with global glomerular sclerosis on morphometric variables of kidney
biopsy samples in the same individuals (Supplementary Table 4), again
highlighting the potential link between methylation level in blood and
kidney pathology.

eGFR slope inferred by the multisite model can predict future
renal failure
There are existing risk equations using clinical variables to predict
kidney-related outcomes such as ESKD41–45. To see if our multisite
model for eGFR slope can also predict future ESKD cases, we used it to
predict the 5-year eGFR value of each patient and then determined the
corresponding 5-year ESKD status based on it (defined as calculated
eGFR<15ml/min/1.73m2). To avoid over-fitting, we inferred the eGFR
slope and predicted the ESKD risk using a cross-validation procedure,
in which the multisite model was built on the training samples and the
inference was made on the left-out validation samples. The perfor-
mance of predictions was then evaluated by considering all these left-
out predictions together. For the benchmarking purpose, we also
predicted 5-year ESKD status of all patients using three clinical risk
equations. These included the Joint Asia Diabetes Evaluation (JADE)
model developed in Chinese patients with type 2 diabetes41,46, an

Table 2 (continued) | CpG sites in the final multisite model for baseline eGFR

CpG site Genomic location Model coefficient Single-site corrected
P value

Annotated gene(s) Gene region(s)

With covariates Without covariates

cg16324121 Chr3:9954273 0 −1.235 1 IL17RE Gene body

cg05062653 Chr5:562341 −1.604 −1.597 1 – –

cg03881294 Chr2:11884333 0 0 1 – –

cg12171761 Chr8:61910949 −0.200 −0.349 1 – –

cg00912580 Chr2:135169533 −0.107 −0.145 1 MGAT5 Gene body

cg26687842 Chr13:41055491 −1.335 −1.991 1 LOC646982 TSS1500

cg27376617 Chr7:30518048 1.132 1.501 1 NOD1 5’ UTR

cg03032497 Chr14:61108227 0 −1.895 1 – –

cg09511896 Chr1:228246937 −1.370 −1.690 1 WNT3A Gene body

cg03607117 Chr3:53080440 −1.360 −3.570 1 SFMBT1 TSS1500

cg18473521 Chr12:54448265 −0.651 −1.655 1 HOXC4 Gene body

Sites with a zero coefficient in amodel are those that were originally selected by our procedure as input for the LASSOmethod to consider but were finally not given a nonzero weight. TSS200: the
region between the transcription start site (TSS) and 200bp upstream of it. TSS1500: the region between 200bp and 1500bp upstream of the TSS. In themodel coefficients, a positive signmeans
that a highermethylation level is associatedwithhigher baseline eGFR or slower eGFRdecline, while a negative signmeans theopposite. Single-site correctedP value: Bonferroni-correctedP values
in the EWAS results.
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equation based on data from the United Kingdom Prospective Dia-
betes Study (UKPDS)44, and a simple equation that ranks patients by
thenegative values of baseline eGFRwhere a lower baseline eGFRvalue
predicted a higher risk of developing ESKD in 5 years.

When considering all patients, ourmultisitemodelwith covariates
achieved an AUROC of 0.94 and an AUPR (area under the precision-
recall curve) of 0.73 (Fig. 4). When excluding patients with baseline
eGFR<30ml/min/1.73m2, whohad veryhigh risk of developing ESKD in
5 years, our model with covariates achieved an AUROC of 0.88 and an
AUPR of 0.36 (Fig. 4). In both cases, the performance of our model,
even without clinical covariates, was comparable to the performance

of the clinical equations, and the inclusionof clinical covariates further
enhanced the performance of the models.

In an independent nested case–control cohort of 181 Native
Americans with type 2 diabetes, of which 80 developed ESKD
during follow-up, baseline methylation scores for baseline eGFR or
eGFR slope were both associated with incident ESKD (Supple-
mentary Table 5). The association was rendered non-significant
after inclusion of baseline eGFR into the model, highlighting that
the ability of the methylation changes to predict incident
ESKD was mediated by methylation changes associated with
baseline eGFR.

Table 3 | CpG sites in the final multisite model for eGFR slope

CpG site Genomic location Model coefficient Single-site corrected
P value

Annotated gene(s) Gene region(s)

With covariates Without covariates

cg10272901 Chr21:46677879 0.684 0.679 3.41E-05 – –

cg12354056 Chr3:186136503 0.255 0.345 3.26E-04 – –

cg22822893 Chr6:151662789 0.075 0.035 0.003 AKAP12 Gene body

cg04027328 Chr1:11372138 0.243 0.005 0.030 – –

cg16425726 Chr4:83680145 0.403 0.385 0.050 SCD5 Gene body

cg21368479 Chr6:149415018 0.702 0.683 0.055 – –

cg22930808 Chr3:122281881 0.386 0.352 0.063 PARP9 5’ UTR

DTX3L TSS1500

cg01647632 Chr15:89438905 0.477 0.476 0.350 HAPLN3 TSS200

cg13591783 Chr9:75768868 0.598 0.625 0.429 ANXA1 5’ UTR

cg10761425 Chr3:12988976 −0.575 −0.517 0.991 IQSEC1 Gene body

cg15989436 Chr5:150465875 0.110 0 1 – –

cg23047271 Chr3:64210991 0.476 0.615 1 PRICKLE2 First exon

cg02647990 Chr3:196230837 0.612 0.553 1 RNF168 TSS1500

cg05580141 Chr12:49071788 0 −0.153 1 C12orf41 Gene body

cg17944885 Chr19:12225735 −0.758 −1.061 1 – –

cg04383715 Chr16:34209247 0.662 0.653 1 – –

cg14943908 Chr6:31589196 0 −0.049 1 BAT2 5’ UTR

cg07723558 Chr17:7184224 0.383 0.456 1 SLC2A4 TSS1500

cg06575692 Chr16:68112968 −0.494 −0.615 1 DUS2L 3’ UTR

cg11494773 Chr7:48128242 0 0.197 1 UPP1 TSS200

cg16933224 Chr11:63604740 0.141 0.336 1 – –

cg25686812 Chr3:42597657 −0.286 −0.298 1 SEC22C Gene body

cg04697209 Chr16:20087376 −0.538 −0.627 1 – –

cg12526474 Chr7:140097579 0.147 0.314 1 SLC37A3 5’ UTR

cg06681597 Chr17:13972703 −0.611 −0.725 1 COX10 TSS200

cg20010135 Chr16:30996822 0 0.084 1 HSD3B7 5’ UTR

cg20101066 Chr7:148581385 −0.607 −0.690 1 EZH2 5’ UTR

cg08626625 Chr6:33129765 0.107 −0.034 1 – –

cg21926091 Chr8:141108607 −0.031 −0.300 1 TRAPPC9 Gene body

cg15581429 Chr19:39369353 −0.648 −0.458 1 SIRT2 3’ UTR

RINL TSS1500

cg19693031 Chr1:145441552 0.931 1.428 1 TXNIP 3’ UTR

cg21693780 Chr2:15731793 0 0.109 1 DDX1 First exon

cg10639435 Chr8:146104221 −0.143 −0.383 1 ZNF250 3’ UTR

cg12245040 Chr16:2009320 0.019 0.145 1 NDUFB10 TSS200

cg05166473 Chr16:88103629 −0.371 −0.293 1 BANP Gene body

cg20728490 Chr10:98064175 −0.145 −0.090 1 DNTT 5’ UTR

cg22293458 Chr3:184483865 −0.550 −0.493 1 – –

Sites with a zero coefficient in amodel are those that were originally selected by our procedure as input for the LASSOmethod to consider but were finally not given a nonzero weight. TSS200: the
region between the transcription start site (TSS) and 200bp upstream of it. TSS1500: the region between 200bp and 1500bp upstream of the TSS. In themodel coefficients, a positive signmeans
that a highermethylation level is associatedwithhigher baseline eGFR or slower eGFRdecline, while a negative signmeans theopposite. Single-site correctedP value: Bonferroni-correctedP values
in the EWAS results.
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Discussion
In this study ofmethylation profiles froma cohort of patientswith type
2 diabetes, ourmajor findings are as follows: (1) DNAmethylation level
was associated with renal function in type 2 diabetes; (2) methylation
levels of previously unidentified CpG sites were associated with base-
line eGFR; (3) a set of eight previously unidentified CpG sites was
associated with the rate of eGFR decline; (4) it is possible to construct
prediction models using methylation data for baseline eGFR and
decline in eGFR with replication in independent cohorts with type 2
diabetes; (5) proximal genes of the previously unidentified CpG sites
and those included in the prediction models were implicated in
pathways related to the pathogenesis of kidney diseases; and (6) the
prediction models constructed can achieve comparable prediction to

models incorporating clinical risk factors. Our study provides insights
on the potential of incorporating methylation biomarkers to facilitate
risk stratification in type 2 diabetes.

Our results extend earlier work by ourselves and others in high-
lighting the potential link between kidney function and methylation
profile. In particular, the top sites identified in our study, cg17944885,
near ZNF20, corresponded to a CpG site which had been reported in
several EWAS for kidney function22–25. Furthermore, CpG sites identi-
fied in other studies with methylation levels associated with kidney
function in the general population also demonstrated nominal asso-
ciation in our analysis ofmethylation changes. These results suggested
that methylation changes associated with kidney function in the gen-
eral population may also be applicable to a population with type 2

Table 4 | Performance of themultisitemodels constructed fromdata of the primary cohort and applied to either the primary or
Native American cohort (trained using CpG sites available to both cohorts)

Testing cohort Target phenotype CpG sites Covariates PCC SCC MAE

Primary Baseline eGFR 64 Yes 0.806 0.762 11.707

No 0.765 0.717 12.815

eGFR slope 37 Yes 0.635 0.584 4.119

No 0.589 0.532 4.327

Primary (only CpG sites common to both cohorts) Baseline eGFR 59 Yes 0.801 0.759 11.838

No 0.759 0.712 12.957

eGFR slope 29 Yes 0.612 0.564 4.202

No 0.562 0.507 4.430

Native Americans Baseline eGFR 59 Yes 0.591 0.614 26.947

No 0.497 0.534 27.528

eGFR slope 29 Yes 0.356 0.389 4.260

No 0.273 0.279 4.274

PCC Pearson correlation coefficient, SCC Spearman correlation coefficient,MAE mean absolute error.
The “CpG sites” column shows the number of sites selected by our procedure as input for the LASSO method to consider, some of which finally got assigned a zero weight by LASSO.

Fig. 2 | Performance of the multisite models. Scatter plots of inferred baseline
eGFR and eGFR slope against their corresponding actual measurements using
selected CpG sites based on the models constructed from the primary cohort and

applied to the primary cohort (a–d) or the Native American cohort (trained using
CpG sites available to both cohorts) (e–h). In each panel, the black lines mark the
best fit lines of linear regression. Source data are provided as a Source Data file.
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Fig. 3 | Support for the functional significance of genes near the CpG sites
identified in our single-site and multisite analyses. Each row corresponds to a
CpG site and all genes within 1 kb from it. The “Single-site” and “Multi-site” columns
show whether a site is significant at FDR=0·05 in our single-site analysis and
whether it is included in the final multisite model, respectively. The “DNAm” and
“DEGs” columns show whether at least one of the nearby genes is differentially
methylatedor differentially expressed in samples with andwithout kidney function
decline in one or more previous methylation9,25–28 or gene expression studies29,31,32,

respectively. The “eQTL” column shows whether at least one of the nearby genes is
associated with an expression quantitative trait locus identified in human kidney
samples in a previous study30. The “MarkerGenes” column shows whether at least
one of the nearby genes is a cell-type-specific marker of a major kidney cell type as
identified previously33. The “GWAS” column shows whether at least one of the
nearby genes isprioritizedbyGWAS results in two recent studies34,35. OnlyCpGsites
where the nearby genes have at least 3 and 1 functional supports, respectively, for
baseline eGFR and eGFR slope, are shown.
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diabetes. The earlier EWAS were mainly conducted in European
populations with subsequent replication in multiethnic cohorts.
Togetherwith our results, wemight conclude thatmethylation profiles
are not ethnic-specific, as in the case of genetic loci identified from
GWAS. Several of our findings were also reported in two recent meta-
analysis of EWAS10,22, althoughmany of themhadnot been identified in
the earlier individual cohort studies. While this may reflect improved
statistical power from the recent larger meta-analysis, a trans-ethnic
meta-analysis may be a more powerful strategy for discovering sites
that are relevant for different ethnic populations.

In general, there was greater consistency for findings related to
methylation changes associated with baseline eGFR compared to
decline in kidney function. This is not surprising, given that multiple
factors such as blood pressure, lipids, and glycaemia as well as medi-
cations might modulate renal and vascular pathology to influence
progression of kidney function. Despite the strong association, it is
difficult to disentangle the causal relationship between methylation
changes and kidney function at baseline. The strong association
between baseline eGFR and methylation changes might be con-
sequences of the altered metabolic milieu related to kidney dysfunc-
tion. On the other hand, methylation changes predictive of kidney
function decline, with minimal overlap with sites associated with
baseline eGFR, are more likely to be of use as prognostic biomarkers.

In general, our EWAS results of baseline eGFR were most con-
sistent with those reported by Chu et al. in the ARIC and FHS cohorts23

and Breeze et al. inmultiple studies and ethnicities22. A number of their
top sites also had significant P values in our data, even though none of
these previous studies was conducted on Chinese-specific cohorts or
cohorts consisting only of patients with type 2 diabetes (Supplemen-
tary Fig. 6, Supplementary Data 1, and Supplementary Data 2). Other
than cg17944885, 13 significant CpG sites at FDR =0.05 in our cohort,
including cg25364972, cg02304370, cg12065228, cg21745599,
cg16292343, cg05554494, cg22386583, cg09299075, cg13924998,
cg07814567, cg03919650, cg19942083, and cg26099045, were also
reported as significant signals in either ARIC or FHS cohort, and one
significant CpG site in our data, cg23597162, was identified in both the
ARIC and FHS cohorts23.

Both our single-site andmultisite analyses identified cg00506299
as being associated with baseline eGFR. This site is located within the
RFTN1 gene, the methylation level of which has not been previously

associated with kidney function. However, RFTN1 was found differen-
tially expressed between DKD and controls31 and correlated with
VvInt29 in patients with DKD. In FAN mouse kidneys, Rftn1 was differ-
entially expressed as compared to kidneys from healthy mice32. As
another example, cg21919729, located within the CTSB gene and
identified by our single-site analysis, did not have its methylation
reported to be associatedwith kidney disease. However, its expression
was correlated with VvInt29 in patients with DKD. Its mouse homo-
logous gene Ctsb was also differentially expressed in proximal tubule
(PT) cells between FAN mice and healthy controls32. CTSB encodes
cathepsin B, a member of the C1 family of peptidases, which produces
a lysosomal cysteine protease with both endopeptidase and exo-
peptidase activity thatmay play a role in protein turnover. Cathepsin B
is involved in inflammation, apoptosis and autophagy during ESKD,
chronic kidney disease, and AKI47.

Interestingly, the majority of the most significant CpG sites reside
in the gene body, highlighting the increasingly recognized role of gene
body and non-promoter methylation as important mechanisms of
gene regulation in metabolic diseases48,49. Among the 74 CpG sites
associated with rate of decline in eGFR in people with diabetes in our
study, none was reported in previous studies of the general popula-
tion, which demonstrates the utility of undertaking discovery efforts
specifically in people with diabetes to advance precision medicine in
diabetes.

From our functional evaluation using other datasets, these CpG
sites identified to be associated with diabetic kidney disease point
towards other genes implicated in kidney function and kidney dis-
eases, highlighting the potential to use methylation markers in per-
ipheral blood to obtain important biological insights in organ-specific
diseases, such as examples from previously noted inter-individual
variation in methylation across blood and brain50. The fact that
methylation level of someof theCpG sites in blood, or in kidneys, show
correlation to fibrosis and glomerulosclerosis, further highlight the
potential of identifying organ-specific pathology using methylome
from peripheral blood.

Although we identified several methylation sites strongly asso-
ciated with kidney function and decline in kidney function which
reached stringent threshold of statistical significance after considering
the number of statistical tests, the construction of a prediction model
did not necessarily include all of these individually significant CpG

Fig. 4 | Performance of risk scores by risk equations and the multisite models.
AUROC and AUPR of the risk scores from simple negative value of baseline eGFR,
JADE riskmodel, UKPDS-OM2, and ourmultisitemodels with or without covariates.
The risk scores of the JADE model and UKPDS-OM2 were calculated with the risk

equations in the original paper. The risk scores of the multisite models were cal-
culated using the inferred eGFR slope with 5-fold cross-validation. Source data are
provided as a Source Data file.
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sites. This might be because of strong correlation among individual
CpG sites, due to spatial dependency or other reasons, leading to
redundancy.

In the future, it will be useful to directly test the functional sig-
nificance of the CpG sites identified in this study in kidney tissues or
cell/organoid models. One possible way is to use CRISPR-Cas9-based
genome editing to turn a CpG site into a non-CpG sequence, to test the
effect of losing CpGmethylation at the site. Another possible way is to
use CRISPR-based epigenome editing, such as dCas9 fused with a DNA
methyltransferase to test the effect of gaining DNA methylation, or
dCas9 fused with the ten-eleven translocation (TET) methylcytosine
dioxygenase to test the effect of losing DNA methylation.

The prediction model with the best performance included a
combination of CpG sites, many of which were not individually
strongly associated with eGFR or eGFR decline. The difference in
performance between prediction models incorporating multiple sites
versus ones including only top individual CpG sites is analogous to the
recent development of genome-wide polygenic risk scores51. The latter
tend to have better performance and utility than the traditional
approach of developing polygenic risk scores based on only GWAS-
significant hits52. Given a large number of methylation datasets cur-
rently available, our approachmay be applicable for developing other
prediction models based on epigenome-wide methylation data, an
approach taken by the pioneering work of epigenetic clocks53. The
prediction model based on our multisite methylation signature also
had comparable performance with established risk equations using
clinical parameters to predict adverse renal outcome, whereas our
data provided additional insights on biological pathways. Our results
also suggest that the methylation signature could capture most of the
information provided by clinical risk factors, and that inclusion of
clinical risk factors did not substantially improve prediction. In con-
trast, most studies that add genetic variables to clinical markers only
marginally improved the prediction of diabetes-related
complications54. Thus, our results highlight the potential utility of
incorporating methylation changes to risk models to improve risk
stratification.

Our study has several strengths, including methylation profiling
of a moderately large number of subjects with type 2 diabetes with
long duration of follow-up for kidney outcomes and assessment of
kidney function decline. Most subjects were free of DKD at baseline.
We acknowledge several limitations. The discovery was undertaken in
a cohort of Chinese patients at comparatively high risk of DKD pro-
gression, though the model developed was applied to a group of
patients with diabetes in a different clinical setting. In particular, our
methylation signaturewasbasedonmethylation changes in circulating
leukocytes as opposed to methylation changes within the kidney.
Nevertheless, peripheral blood is a readily accessible tissue for risk
stratification in clinical practice, and numerous studies have demon-
strated the ability to identify biomarkers in disease-relevant pathways
using methylation changes in leukocytes55.

Our results highlight the potential utility of using methylation
levels in blood samples to predict eGFR or change in eGFR in different
populations. We have also identified previously unidentified methyla-
tion markers associated with kidney function and decline in kidney
function and kidney pathology. Our study highlights the potential of
using methylation markers in the risk stratification of renal disease
among individuals with type 2 diabetes.

Methods
Participant recruitment and clinical variable measurements
We included subjects from HKDR, which was established at the Prince
of Wales Hospital, the teaching hospital of the Chinese University of
Hong Kong. The HKDR consecutively enrolled patients who were
referred to the Diabetes Mellitus and Endocrine Centre for compre-
hensive assessment of complications andmetabolic control, including

patients referred from specialty clinics, community clinics and general
practitioners46. Subjects with diabetes were evaluated as part of a
structured assessment for diabetes complications according to a
modified European DiabCare protocol. All patients in the HKDR
underwent clinical assessments and laboratory investigations after
8-hour overnight fast, including eye, feet, urine, and blood examina-
tions. Eye examination included visual acuity and fundoscopy through
dilated pupils or retinal photography. Retinopathy was defined by
typical changes due to diabetes, laser scars, or a history of vitrectomy.
Foot examination was performed using Doppler ultrasound scan and
monofilament and graduated tuning fork. Fasting blood was sampled
for measurement of plasma glucose, HbA1c, lipid profile (total cho-
lesterol, high-density lipoprotein [HDL] cholesterol, triglycerides and
calculated low-density lipoprotein [LDL] cholesterol), and random
spot urinary sample was used to assess albumin to creatinine ratio
(ACR). The CKD-EPI equation56 was used to estimate glomerular
filtration rate.

Ethical approval was obtained from the Joint ChineseUniversity of
Hong Kong-New Territories East Cluster Clinical Research Ethics
Committee. Written informed consent was obtained from all subjects
at the time of enrollment for the collection of clinical information and
biosamples for archival and research purposes.

Between 1995 and December 31, 2007, a consecutive cohort
consisting of 10,129 patients with diabetes was assessed, with follow-
up. Clinical outcomeswere defined using hospital discharge diagnoses
based on the International Classification of Diseases, Ninth Revision
(ICD-9). The Hong Kong Hospital Authority Central Computer System
records admissions to all public hospitals,which provides about 95%of
inpatient bed-days in Hong Kong. All hospitalization records were
retrieved from this systemusing a unique identifier number. Results of
follow-up investigations, including eGFR were likewise retrieved for
each subject from the electronic health record from the Central
Computer System57. For the current analysis, we created a nested
case–control cohort based on incident ESKD or incident cardiovas-
cular disease (defined according to the censor date of June 30th, 2017,
around the time when the EWAS was initiated and when the
case–control status was defined), whereby each subject free of DKD at
follow-up wasmatched with a case of incident ESKD with a similar age
at baseline. ESKD was defined by the codes of dialysis (procedure
codes 39.95 or 54.98), kidney transplant (procedure code 55.6 or
diagnosis codes 996.81 or V42.0), or eGFR<15ml/min/1.73m2. All
subjects were selected based on being free of known cardiovascular
events at baseline. In addition to baseline kidney function data, we
retrieved follow-up laboratory data through June 30th, 2017, in order
to calculate the eGFR slope during follow-up for each individual, up to
the censor date, eGFR<15ml/min/1.73m2, or death, whichever event
occurred sooner.

DNA methylation data production and processing
Whole blood was taken at the baseline assessment visit in a fasting
state. Genomic DNA from leukocytes was extracted using traditional
phenol-chloroform methods and quantified using Picogreen. Bisulfite
conversion was performed using EZGold Methylation kit (Zymo), as
per standard protocol. After DNA extraction and bisulfite treatment,
DNA methylation in each sample was measured using the Illumina
Infinium HumanMethylation450K BeadChip, which covered around
485,000 CpG sites across the genome.

The RnBeads package (version 1.6.1)58 was used to preprocess the
raw data. First, 10,119 sites were removed due to overlapping with
single nucleotide polymorphisms (SNPs). Probes and samples with a
large fraction of unreliable measurements, defined as those with
detection P values larger than 0.05, were also removed. Furthermore,
probes in contexts other than CpG sites and probes on sex chromo-
somes were removed, as was done in some previous studies11,20.
Background correctionwas conducted using the “noob”method in the
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methylumi package (version 2.20.0)59 and the signal intensities were
normalized using the SWAN method60 in the minfi package (version
1.20.2)61. After these filtering and normalization steps, 453,128 probes
and 1268 samples remained, each quantified by a beta value. In all
downstream analyses, we excluded probes with missing methylation
values in any sample, resulting in the final number of 434,908 probes.
In the whole study, genomic coordinates were based on the reference
human genome hg19.

Modeling the clinical variables using top DNA methylation
principal components
Dimensionality reduction of the methylation data was performed
using PCA. The top PCswere taken as features of each sample tomodel
each of the clinical variables in a classification setting. Specifically, for
each clinical variable, we mapped their values to binary class labels
using the criteria listed in Supplementary Table 6. When considering
each clinical variable, samples with missing values were omitted. We
then constructed logistic regression models with L2 regularization
using the Python scikit-learn package (version 0.20.3)62 following a 10-
fold cross-validation procedure. In this procedure, the whole set of
sampleswas randomly divided into 10 subsets, and each time9 subsets
were used to construct amodelwhile the remaining subsetwasused to
evaluate themodel performance, quantified byAUROC. The ten sets of
results were then reported separately, togetherwith theirmeanvalues.
We also tried two other modeling methods, namely support vector
classifier with a radial-basis kernel and random forest, and obtained
largely comparable results as the logistic regression models (Supple-
mentary Table 7). This same procedure was also used when we mod-
eled eGFR using sex, age, and smoking status alone and with the
top PCs.

Cell-type composition estimation
To adjust for cell heterogeneity of whole-blood samples, cell-type
compositions were estimated using a reference-based approach21.
Using raw methylation data as input, we generated estimated cell
counts forCD4 + Tcells, CD8 + Tcells,NKcells, B cells,monocytes, and
granulocytes, using the estimateCellCounts function implemented in
the minfi package (version 1.28.4)61.

Single-site epigenome-wide association study (EWAS)
Baseline eGFR was calculated using the Chronic Kidney Disease Epi-
demiologyCollaboration (CKD-EPI) equation56. The eGFR slope of each
individual was determined by fitting a linear mixed model63 and
expressed as the percentage change of eGFR per year:

log eGFRij

� �
=β0 +β1tij +b0i +b1itij + ϵij , ð1Þ

where log eGFRij

� �
is the log-transformed eGFR of i-th individual at jth

measurement, tij is the time for measuring eGFRij, β0 and β1 are
coefficients for thefixedeffectswhileb0i andb1i are coefficients for the
random effects that are specific to the ith individual, and ϵij is the
random noise. After fitting the model, the individual-specific slope is
given by the following:

ðeGFR slopeÞi = ðeβ1 +b1i � 1Þ× 100, ð2Þ

which is expressed as the percentage change of eGFR per year.
For each CpG site, a linear model was constructed using either

baseline eGFR or eGFR slope as the dependent variable and the
methylation level as the independent variable. Sex, age, smoking sta-
tus, duration of diabetes, hemoglobin A1c, bloodpressure, experiment
batch and the cell-type composition estimations (Supplementary
Methods) were included as additional independent variables for
models that involved covariates. The P value of each CpG site was
calculated based on the null hypothesis that it had a zero coefficient in

its linear model using two-sided Student’s t test. The Bonferroni pro-
cedure was used to performmultiple hypothesis testing correction of
the raw P values. In addition, the Benjamin–Hochberg procedure was
used to identify significant sites at a given false discovery rate (FDR).

Using M values in EWAS
Apart from using beta values to quantify methylation levels, we also
used M values (where M = log2 beta/(1-beta)) which yielded similar
results. The Pearson correlations of association P values of CpG sites
with baseline eGFR and eGFRslopewere0.967 and0.956, respectively.
The corresponding Spearman correlations were 0.928 and 0.927 for
baseline eGFR and eGFR slope, respectively.

Multisite models
We also developed a multisite approach that considered all CpG sites
at the same time and selected a subset of them to create the best
model to infer baseline eGFR or eGFR slope. Briefly, we used LASSO
(least absolute shrinkage and selection operator) to construct regres-
sion models, which aims at fitting linear models with only a small
number of CpG sites having a nonzero coefficient. Performance of
each model was evaluated using cross-validation, while the final set of
CpG sites (and the corresponding value of the L1 regularization
hyperparameter) was selected using a nested procedure that involves
the Bayesian Information Criterion (BIC) to balance between model
complexity and performance. The constructed models were finally
evaluated using left-out testing sets not involved in either training the
models or tuning the hyper-parameters.

In detail, we used a multi-step procedure with nested cross-
validation to perform model learning, hyperparameter tuning, and
unbiased model evaluations (Supplementary Fig. 13). As a data pre-
processing step, themethylation levels of eachCpG site and the values
of each covariate were individually standardized to have zero mean
and unit variance.

In our multi-step procedure, we first randomly split the
1268 samples into training (90%) and testing (10%) sets. Using the
samples in the training set, we used the tenfold cross-validation pro-
cedure to construct linear regressionmodels with LASSO. The value of
the regularization parameter α was chosen using grid search based on
a nested fivefold cross-validation within each training fold. The value
of α chosen (denoted as α*) for each of the 10 outer training folds was
determined using the following criterion:

α* =max α 2D∣R2
α ≥max R2

� �
� SD R2

� �n o
, ð3Þ

Where R2
α is the R2 of the LASSO model using parameter α, maxðR2Þ

and SDðR2Þ are the maximum and standard deviation of R2, respec-
tively, among all the models with different values of α in the set D
considered during the grid search. This criterion aims at finding the
largest value of α that still gives a model performance close to the one
with maximal R2. The goal of choosing a large value of α is to ensure
that only a small set of the most important CpG sites is selected from
eachmodel. Using this selected value of α, a model was trainedwith all
the samples in the outer training fold. The model was then applied to
the samples in the outer testing fold to compute the performance
measures. After applying these to all the ten outer training folds, ten
sets of performance measures were produced. This whole procedure
was further repeated ten timeswithdifferent randomsplits of data into
ten folds each time, leading to a total of 100 models and corre-
spondingly 100 sets of performance measures.

To produce a single model based on these 100 sets of results, we
assigned aweight to eachCpG site basedon thenumber of times that it
was included in the models and the performance of these models,
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using the following formula:

wk =
X10
j = 1

X10
i= 1

ρ0
ij , ð4Þ

ρ0
ij =

ρij , if CpGk 2 Sij
0, otherwise

�
, ð5Þ

wherewk is theweight of the kthCpG site,ρij is the Pearson correlation
between prediction and actual values in the ith outer testing fold for
the jth repeat, and Sij is the set of CpG sites selected by the ith outer
training fold for the jth repeatwith a nonzero coefficient. Based on this
formula, a CpG site would generally get a higher weight if it has a
nonzero coefficient in moremodels and/or in models that have better
performance in terms of Pearson correlation.

All the CpG sites were then sorted in descending order according
to their weights. A second series of linear regression models with
LASSO were then constructed using different numbers of CpG sites
with the largest weights as features with all samples in the original
training set for training. The final number of CpG sites to use, n*, was
determined using the following formula that involves the Bayesian
Information Criterion (BIC):

n* =max n∣BICn ≤min BICð Þ+0:1SDðBICÞ� �
, ð6Þ

where BICn is the BIC of the model involving the nhighest-weight CpG
sites as features, and min BICð Þ and SDðBICÞ are the minimum and
standarddeviationof BIC amongall themodelswith different numbers
ofCpGsites, respectively. This formula aims atmaximizing thenumber
of CpG sites while having a model with a BIC close to the one with the
minimal BIC. This time, the number of CpG sites was maximized
because the highest-weight CpG sites should already be the most
important ones, and includingmoreof them in themodel couldensure
its robustness. The performance of the model that involved the n
highest-weight CpG sites was then evaluated objectively using the
original testing set, which was not involved in any training and
parameter tuning steps described above.

Finally, all 1268 samples were used together to train a final model
for baseline eGFR and another model for eGFR slope, both using the
same procedure described above to determine the number of CpG
sites. With the selected CpG sites, we trained another version of these
two models without including the covariates. Since these final models
involved all 1268 samples in model training and parameter tuning,
there were no left-out samples in the primary cohort that could inde-
pendently evaluate their performance.

Validation of the models in a cohort of Native Americans
Our multisite models were tested in an independent Native American
cohort, which contained 326 participants with type 2 diabetes. Base-
line eGFR, eGFRs during a mean follow-up of 9.5 years and other
clinical variables were measured for each participant. The raw eGFR
slope for each subject was calculated using linear regression across all
available eGFR measures. The mean baseline eGFR is 106.7 ± 15.1ml/
min/1.73m2. DNA methylation was measured by Illumina Infinium
HumanMethylation450K BeadChip and processed as described
before20. In brief, Minfi61 was used to preprocess the data and perform
quality control. RnBeads58 was then used for beta-mixture quantile
normalization.

To use this replication cohort to evaluate the performance of
models constructed from the primary cohort, we took the intersection
of CpG sites which passed quality control in both cohorts. All samples
in the primary cohort were used to learn the baseline eGFR and eGFR
slope models based on the subset of CpG sites found in both cohorts,
using the sameprocedure as described above. Thesemodelswere then

applied to the Native American cohort to compare the predicted
baseline eGFR or eGFR slope values and their corresponding actual
measurements (Fig. 2e–h and Table 4). To check whether our original
model is directly applicable to other cohorts, we also applied the ori-
ginal model in the Native American cohort without re-training and
performed the same evaluation. All CpG sites not available in the
Native American cohort had their methylation levels set to 0 in this
case (Supplementary Table 3 and Supplementary Fig. 10). All analyses
were performed using R.

Functional significance of our CpG sites’ methylation levels in
kidney samples
Seven CpG sites were selected to check their methylation levels in
kidney samples using a published dataset with methylation data from
506humankidneys64. In this dataset, the samples belong to five groups
based on the donors’ disease status, namely Con (normal kidneys,
113 samples), CKD (eGFR <60, 101 samples), DKD (having both CKD
and diabetes, 63 samples), DM (having diabetes but not CKD, 97 sam-
ples), and HTN (having hypertension but not CKD, 132 samples).

Among the seven CpG sites selected for lookup, one
(cg21573651) was associated with both baseline eGFR and eGFR
slope in the single-site analysis. The other six CpG sites
(cg17944885, cg06449934, cg02304370, cg21919729, cg04610187
and cg18593194) were associated with baseline eGFR and were the
top six sites among the 36 CpG sites identified in both single-site
and multisite analyses.

Morphometric analysis in kidneybiopsies of patientswith type 2
diabetes
To evaluate links between blood methylation and structural
changes in the kidney, we utilized data from analyses of the
morphometric variables from the kidney biopsies from 84 indi-
viduals who had biopsies done and methylation in peripheral
blood has been measured using the Illumina Infinium Human-
Methylation450 array in the same individuals20,65. Results are
reported as partial correlation and P value for each of the nine
key variables. The parameters evaluated included: FPW—podocyte
foot process width (nm) (higher is worse), GBM—glomerular
basement membrane width (nm) (higher is worse), GS—global
glomerular sclerosis (%) (higher is worse), VG—mean glomerular
volume (×106 µm3) (higher is worse), non-Podo—mean non-podo-
cyte number per glomerulus (N) (lower is worse), Fen—percent
fenestrated endothelium (%) (higher is worse), SV (glomerular
filtration surface density) (µ2/µ3) (lower is worse), VvInt—cortical
interstitial fractional volume (%) (higher is worse), VvMes—
mesangial fractional volume (%) (higher is worse). These mor-
phometric parameters were selected because they were pre-
viously associated with loss of kidney function in this cohort29,66.

Risk equations comparison
To calculate the eGFR of each subject five years after the baseline
measurements using the eGFR slopedetermined by Eqs. (1) and (2), the
following formula is used:

ci =β1 +b1i = log
eGFR slopeð Þi

100
+ 1

� �
, ð7Þ

eGFRð Þi5 = eGFRð Þi0 × e5ci , ð8Þ
where eGFRð Þi0 and eGFRð Þi5 are the eGFR of i-th individual at baseline
and five years after the baseline, respectively. We defined subject i to
have ESKD in five years after the baseline if eGFRð Þi5 < 15ml/
min/1.73m2.

For each patient, the actual ESKD status was determined using the
abovemethod based on his/her actual eGFR slope obtained bymaking
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use of all his/her eGFR measurements during the follow-up period.
Similarly, the ESKD status predicted by ourmodel was produced using
the above method based on the predicted eGFR slope, the multisite
model of which was constructed using DNA methylation. This was
achieved by a fivefold cross-validation procedure, in which every time
4/5 of the patients were used to train the multisite model, which was
applied to the remaining 1/5of the patients to predict their 5-year ESKD
status. The risk scores of the risk equations for renal outcomes by JADE
risk model41,46 and UKPDS-OM244 were calculated following the
descriptions in the original publications.

An independent nested case–control cohort of 181 individuals
with type 2 diabetes, of which 80 developed ESKD during follow-up20,
were included to examine association between blood methylation
level and progression to ESKD.

Inclusion and ethics statement
In this research study, local researchers were included throughout the
research process, including study design, study implementation, data
ownership, intellectual property, and authorship of the publication.
This study is locally relevant and has been determined in collaboration
with local partners. Roles and responsibilities were agreed among
collaborators aheadof the research. This studywas approvedbya local
ethics review committee. Local and regional research relevant to this
study has been taken into account in citations.

The original discovery analysis in Hong Kong Diabetes Register is
supported by ethics approval from the Joint Chinese University of
Hong Kong-New Territories East Cluster Clinical Research Ethics
Committee. Written informed consent was obtained from all
participants.

The validation of the models in a cohort of Native Americans was
conducted by the NIDDK Intramural Research Program, and these
protocols were approved by the NIDDK/NIH Institutional Review
Board. Written informed consent was obtained from all participants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data are protected and are not available because of
ethical restriction, as they were not consented for sharing on a public
platform. Summary methylation data are available for analysis by
qualified researchers who fulfill the criteria for access by providing a
copy of the research proposal and analysis plan, proof of ethics
approval for the planned methylation analysis, and institutional
endorsement of server data security. Readers and colleagues who are
interested to obtain further information about the study can contact
the Hong Kong Institute of Diabetes and Obesity, The Chinese Uni-
versity of Hong Kong, Hong Kong at hkido@cuhk.edu.hk. The sum-
mary statistics of significant CpG sites and the multisite models
generated in this study are provided in the Supplementary Informa-
tion. We have also created a web-based tool using Shiny app so that
readers can use the tool to calculate eGFR and eGFR slope based on
methylation data, or perform lookup of association between CpG
methylation and eGFR. The tool can be accessed at http://hkdbrmlab.
shinyapps.io/DKD_EWAS/. Contact person for the Hong KongDiabetes
Register: Professor Ronald Ma, rcwma@cuhk.edu.hk. Contact person
for the Native American cohorts: Dr Robert Hanson, rhanson@phx.-
niddk.nih.gov. Source data are provided with this paper.

Code availability
Source code for single-site andmultisite analyses canbe accessed from
our GitHub repository, https://github.com/kellyliyichen/eGFR_450k
and Zenodo67, under GPL-3.0 license.
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