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A distributed and efficient population code
of mixed selectivity neurons for flexible
navigation decisions

Shinichiro Kira 1, Houman Safaai 1,2, Ari S. Morcos 1, Stefano Panzeri 2,3 &
Christopher D. Harvey 1

Decision-making requires flexibility to rapidly switch one’s actions in response
to sensory stimuli depending on information stored in memory. We identified
cortical areas and neural activity patterns underlying this flexibility during
virtual navigation, where mice switched navigation toward or away from a
visual cue depending on its match to a remembered cue. Optogenetics
screening identified V1, posterior parietal cortex (PPC), and retrosplenial
cortex (RSC) as necessary for accurate decisions. Calcium imaging revealed
neurons that canmediate rapid navigation switches by encoding amixture of a
current and remembered visual cue. Thesemixed selectivity neurons emerged
through task learning and predicted the mouse’s choices by forming efficient
population codes before correct, but not incorrect, choices. They were dis-
tributed across posterior cortex, even V1, and were densest in RSC and spar-
sest in PPC. We propose flexibility in navigation decisions arises from neurons
that mix visual and memory information within a visual-parietal-retrosplenial
network.

As animals navigate for survival, they combine signals from their sen-
sory environmentwith internal information stored inmemory to select
a desirable route. Such navigation arises from a rich repertoire of
sensorimotor associations that has expanded through evolution1. In
reflexive behaviors, a given sensory input always leads to a stereotyped
action. Animals have acquired the ability to rapidly switch the actions
they take in response to a sensory stimulus depending on internally
stored information in the form of memory. We refer to this ability as
the flexibility of decision-making. In many laboratory decision-making
paradigms, however, animals are trained to make one action in
response to a given sensory cue and to make the opposite action in
response to an alternate cue, which involves fixed sensorimotor
associations but not the flexibility. In contrast, in flexible decision-
making, animals switch their action in response to a given sensory cue
frommoment tomoment, such as responding to the same sensory cue
with one action at one moment and with the opposite action at the

nextmoment as the context changes.A critical featureof thisflexibility
is its rapidity to switch actions when information stored inmemory or
sensory cues changes from one moment to the next. This rapidity sets
flexible decision-making apart from the learning or re-learning of dif-
ferent sensorimotor associations over longer timescales. Together,
these characteristics imply that specific neural mechanisms exist for
rapid flexibility over times as short as seconds. Here, we aimed to
reveal the cortical areas and neural activity patterns that are central to
flexible decisions during spatial navigation by understanding how
information stored in short-term memory influences navigational
action selection in response to sensory cues.

The flexibility of decision-making has often been investigated in
experimental paradigms that do not involve spatial navigation. Across
studies using different tasks, diverse areas have been found to mix
memory and sensory information for flexible decisions, including
higher sensory cortices, association cortices, and premotor
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cortices2–12. Other studies have assessed slow changes in sensorimotor
associations over many behavioral trials or sessions, which might rely
on mechanisms distinct from those underlying rapid, moment-to-
moment flexibility13,14. Recently, several studies have identified cortical
and subcortical areas thathave a causal role inflexibledecisions3,4,10,11,15.
However, in some studies, a limitation has been that many areas have
not been systematically screened to compare their causal involvement
and neural coding properties (but see Condylis et al.4, Wu et al.3)).
Thus, it remains unclear whether flexible decisions involve different
areas depending on the specific features of the task and/or are medi-
ated by a widely distributed network. Furthermore, it is unknown
whether these areas are involved in flexible decisions during
navigation.

In contrast, many studies of navigation have focused on the
encoding of current spatial variables, such as location and heading in
place cells, grid cells, and head direction cells16. Beyond well-
established spatial coding in hippocampus and entorhinal cortex,
retrosplenial cortex (RSC) and posterior parietal cortex (PPC) repre-
sent heading direction, running velocity, and navigational routes with
world-centered (allocentric) and self-centered (egocentric) reference
frames17–30. In addition, spatial signals have been found even inprimary
and secondary visual cortices31,32. Often, however, these studies of
navigation have not investigated the mechanisms of decision-making
in which animals must choose a navigational path among alternatives.

Approaches have been developed to bridge navigation and
decision-making. Earlier work has studied the interplay of navigation
coding and working memory during decision-making in T-mazes33–36.
More recently, studies have revealed that sequences of neural activity
in PPC correlate with upcoming choices37 and short-termmemories of
previous cues, including during evidence accumulation38–41. Similar
choice-related sequential activity is also observed in RSC41,42. These
approaches have used behavioral tasks with a fixed sensorimotor
association needed for reward. For example, they employed a task in
which cue A instructs turn left and cue B instructs turn right37–39,42–44.
Thus, these studies have not investigated the flexibility of decision-
making during navigation in which animals switch their action in
response to a sensory stimulus depending on information stored in
short-term memory.

Therefore, it remains unclear which areasmay bemost critical for
the flexibility of decision-making during navigation. A leading candi-
date is PPC because of its established role in navigation decision
tasks37–39,45. Another candidate is RSC due to its function in spatial
memory and coding of navigation and decision-related
variables17,24,25,42,46–48. Alternatively, flexible navigation decisions may
arise from frontal regions of cortex that have been shown to be
necessary for flexibility in tasks not involving navigation3,15. More
generally, it is unclear if the flexibility of navigation decisions arises
mostly from activity in one of these areas or if it occurs through dis-
tributed processing across cortex.

In addition, at the level of neural computation, it is an open
question how memory signals are incorporated into the circuits
important for navigation to mediate flexible decisions. One possibility
is that the signals for memory and sensory cues are encoded in largely
separate sets of neurons and converge onto neurons that relate to the
behavioral choices of the mouse. In this case, there may exist separate
groups of sensory, memory, and choice neurons. Alternatively, mem-
ory and sensory signals may be extensively combined in individual
neurons in the form of mixed selectivity neurons. Such a code based
on mixed selectivity could allow for an easy readout of arbitrary task
variable combinations49–51. There could also be a hybrid coding scheme
between these alternatives52.

Here, we studied the flexibility of decision-making during navi-
gation by designing a delayed match-to-sample task in virtual reality.
We systematically screened the contributions of a wide range of cor-
tical areas using optogenetics and cellular-resolution calcium imaging.

Wedemonstrate that neural activity inposterior cortex is necessary for
flexible navigation decisions. We discovered neurons that mix short-
termmemory and visual information, and these neurons were present
in most parts of posterior cortex, even in V1. Surprisingly, RSC had the
highest density of these neurons, whereas these cells were sparsest in
PPC, with a near absence in anterior PPC. These neurons formed an
efficient population code, which appeared to support accurate deci-
sions because their activity was more informative when the mouse
made correct decisions compared to errors. This code emerged
through the course of task learning. Our results suggest a mechanism
contributing toflexible navigationdecisions basedonmixed visual and
memory representations in individual neurons within a distributed
visual-parietal-retrosplenial network.

Results
A task that requires combining short-termmemory and sensory
information to make flexible navigation decisions
We developed a delayed match-to-sample task for mice, based on
navigation in a virtual reality T-maze (Fig. 1a). A black (B) or white (W)
sample cue was presented on the walls at the start of the T-stem,
followed by a delay segment in which the identity of the sample cue
had to be stored in memory for a short period (1.21 ± 0.65 s, mean ±
s.d., n = 17 mice). The delay segment duration was similar to or longer
than delays used in other delayedmatch-to-sample tasks, including for
human and non-human primates5,7,53–55. Next, when themouse reached
a defined spatial position, a test cue appeared instantaneously in one
of two configurations: black walls on the left and white walls on the
right (BW) or vice versa (WB). To receive a reward, the mouse turned
toward the T-arm with the wall color that matched the sample cue
(Fig. 1b). The two sample cues and two test cues defined four trial types
(Fig. 1a, b, the example maze shows a B/WB trial). Importantly, in the
test segment, themouse combined its memory of the sample cue with
the sensory information of the test cue to choose an appropriate
action (left or right turn). This process involves flexible navigation
decisions in the sense that the mouse made different choices (left or
right turns) for the identical test cue depending on the short-term
memory of the sample cue. This task is thus different from ones with
fixed sensorimotor associations in which mice select the same beha-
vioral action for a given sensory cue. Furthermore, the flexibility in this
taskwas rapid and requiredmice to combine their short-termmemory
of the sample cue with the visual signals from the test cue differently
from trial to trial. Themiceperformed the taskwith high accuracy after
2–4 months of training (90.5 ± 5.5% correct, mean ± s.d., n = 17 mice,
Supplementary Fig. 1).

This task required themouse to navigate through a virtualmaze
by using its movements to translocate in virtual space toward
reward locations. The timing and progress of a trial were therefore
controlled solely by the mouse, not the experimenter, as in real-
world navigation. Previous work has shown that virtualmazes of this
type trigger activity in navigation circuits, including place cells and
grid cells, supporting the idea that this task involves spatial
navigation56–63. To control the visual scene observed by the mouse,
we fixed the heading angle and lateral position of the mouse in the
virtual T-stem. Specifically, whereas the mouse could run in any
direction on the spherical treadmill (Fig. 1c), our virtual reality
software did not translate the mouse’s lateral running velocity on
the treadmill into movement in the virtual maze throughout the
T-stem of themaze, and only did so at the T-intersection and T-arms
(Fig. 1d). Consequently, along the T-stem during trials with the same
cues, the mouse observed the identical visual scene on every
trial (Fig. 1d).

The running velocities of mice on the treadmill for right and left
choices diverged soon after the onset of the test cue (Supplementary
Fig. 1i). Based on decoding of choice direction from these running
patterns, we estimated that the relevant decision-making process that
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combined visual and memory signals to inform choices happened
within the first one second of the test segment (Supplementary Fig. 1i,
j). Also, it appeared that the mouse used short-term memory to
remember the sample cue, instead of using only a behavioral mne-
monic, for several reasons. First, the mouse was unable to use heading
angle and lateral position to remember the sample cue because these
parameters were fixed and identical across all trials during the delay
segment, as mentioned above (Fig. 1d). Second, although in some
sessions mice had distinct running patterns on the treadmill for

different sample cues during the delay segment (arrow in Fig. 1c,
bottom), these running patterns were variable across trials, and the
mouse’s choice ona trialwasbetter explainedby the presented sample
cue than the running patterns during the delay (Fig. 1e). Third, the
running patterns in the delay segment did not strongly correlate with
task performance in individual mice, and sample-cue-related running
in the delay segment was absent in some sessions with high perfor-
mance (Supplementary Fig. 1k). Together, the running patterns sug-
gest that themicemade decisions at the beginning of the test segment

f

inhibition inhibitionno inhibition
(control)

k th trial k+1 th trial n th trial

m

n

Expanded 
RSC inhibition

Inhibition area

h

g

j k lSample seg. Delay seg. Test seg.

Inhibition in all segments

Ta
sk

 p
er

fo
rm

an
ce

(%
 c

or
re

ct
)

Control

50

60

70

80

90

100

i V1 RSC
PPC

M1/2 S1

V1
RSC
PPC
M1/2
S1

1 mm

∆ 
pe

rfo
rm

an
ce

(%
 c

or
re

ct
)

∆ 
pe

rfo
rm

an
ce

(%
 c

or
re

ct
)

∆ 
pe

rfo
rm

an
ce

(%
 c

or
re

ct
)

V1 RSC
PPC

M1/2 S1 V1 RSC
PPC

M1/2 S1 V1 RSC
PPC

M1/2 S1

Inhibition in each segment

-40

-30

-20

-10

0  

-40

-30

-20

-10

0  

-40

-30

-20

-10

0  All s
eg

.

Sam
ple

Dela
y
Te

st

other

a

1 
m

R
un

ni
ng

Test 

Delay

Sample

Reward

Or

Or

Black (B) White (W)

Black-White
(BW)

White-Black 
(WB)

R

b

La
te

ra
l r

un
ni

ng
 v

el
oc

ity
 

 o
n 

tre
ad

m
ill 

(c
m

/s
)

Maze position (cm)

-40

0

40

0 200 400
-40

0
40Te

st
 c

ue

Sample cue

B W

BW

B W

R

R

L

L

c

β running for choice

β 
sa

m
pl

e 
cu

e 
fo

r c
ho

ic
e

e

0 1 2 3

0

1

2

3

Constrained by VR design

On treadmill d

La
te

ra
l

po
si

tio
n

in
 V

R
 (c

m
)

Maze position (cm)

H
ea

di
ng

an
gl

e
in

 V
R

 (d
eg

)

-90

0

90

0 200 400
-20

0
20

In virtual reality (VR)

Fig. 1 | Optogenetics screen for cortical areas involved in a flexible navigation
task. a Schematic of experimental setup and delayed match-to-sample task.
b Reward direction on each of the four trial types defined by a combination of the
sample cue and test cue. c Lateral running velocity of a mouse on the treadmill in
two example sessions for four trial types colored as in panel (b). Shading indicates
mean ± s.d. for correct trials. Prior to the test cue onset, trials with the black or
white sample cue are colored by dark red and light blue, respectively. Arrow in the
bottom panel indicates a position in the delay segment where the velocity differed
between trials with the black and white-sample cue. d Heading angle (top) and
lateral position (bottom) of amouse in VR for four trial types shown as dashed lines
and colored as in panel (b). e Logistic regression to explain the mouse’s choice
based on the sample cue identity vs. running patterns in the delay segment. Beta
coefficients from a single session are shown as an open symbol, with different
shapes indicating sessions from different mice. Filled symbols with error bars
indicate mean ± s.e.m. for each mouse. n = 35 sessions from 4 mice. The data only
include sessions inwhich calcium imaging data were acquired from posterior brain
areas (V1, RSC,MM,A). f Schematic of optogenetic inhibition experiments. Bilateral
light was delivered randomly to one of 28 pairs of target sites and interleaved with
control trials (no laser). g Colored symbols indicate grouping of inhibition sites
based on cortical areas defined in the Allen Mouse Brain Common Coordinate
Framework71. h Task performance with inhibition throughout the trial for each
cortical location (bilateral inhibition). The location of inhibition sites is overlaid on
the cortical areal map based on the Allen Mouse Brain Common Coordinate
Framework71. The average performance in control trials (93.5 ± 2.8%, mean ± s.d.) is
indicated by an arrowhead on the color bar. n = 212 ± 10 trials/site (mean ± s.d.),
265 sessions, and 7 mice. i Change in task performance with inhibition in all seg-
ments (throughout the trial) relative to control trials. The change was computed
from the data in panel (h) and averaged across sites in each brain area, asmarked in
panel (g). Error bars indicate mean ± s.e.m. The performance significantly

decreased with the inhibition in all areas (p < 10−4; bootstrap, compared to zero).
The effect of inhibition in V1, RSC, and PPC was larger than those for M1/M2 or S1
(p < 10−4, bootstrap). The significance threshold was adjusted by Bonferroni cor-
rection with α = 0.05 to account for 5 area-wise comparisons for panels (i–l) and 10
between-area comparisons. V1: n = 636 trials, RSC: n = 618 trials, PPC: 216 trials, M1/
2: n = 1689 trials, S1: 632 trials, from 7 mice. j Similar to panels (h, i), except with
inhibition during the sample segment. n = 141 ± 8 trials/site (mean ± s.d.), 253 ses-
sions, and 4 mice in panels (j–l). The performance significantly decreased with the
inhibition in V1 (p < 10−4, n = 434 trials), RSC (p < 10−4, n = 425 trials), PPC (p =0.002,
n = 138 trials), M1/M2 (p < 10−4, n = 1130 trials), but not in S1 (p =0.16, n = 397 trials)
(bootstrap, compared to zero). k Similar to panels (h, i), except with inhibition
during the delay segment. The performance significantly decreased with the inhi-
bition in V1 (p < 10−4, n = 409 trials), RSC (p =0.0009, n = 438 trials), PPC (p < 10−4,
n = 151 trials), but not in M1/M2 (p =0.25, n = 1141 trials), and S1 (p =0.026, n = 424
trials) (bootstrap, compared to zero). l Similar to panels (h, i), except with inhibi-
tion during the test segment. The performance significantly decreased with the
inhibition in V1 (p < 10−4, n = 427 trials), RSC (p < 10−4, n = 404 trials), PPC (p < 10−4,
n = 141 trials), and M1/M2 (p < 10−4, n = 1110 trials), but not in S1 (p =0.083, n = 420
trials) (bootstrap, compared to zero).m Simultaneously inhibited six cortical sites
for expanded RSC inhibition. n Similar to panels (i–l), except with expanded inhi-
bition of RSC with six sites shown in panel (m) in all or specific segments. The
performance significantly decreased with the inhibition in all segments (p < 10−4,
n = 154 trials, 38 sessions, 4 mice), sample segment (p < 10−4, n = 148 trials, 37 ses-
sions, 3 mice), delay segment (p < 10−4, n = 153 trials, 37 sessions, 3 mice), and test
segment: (p < 10−4,n = 139 trials, 35 sessions, 3mice) (bootstrap, compared to zero).
Cortical areal map in panels (g, h, j–m) was adapted from Cell 181, Wang, Q., et al.,
TheAllenMouseBrainCommonCoordinateFramework: A 3DReferenceAtlas. 936-
953, Copyright Elsevier (2020). Source data are provided as a Source Data file.
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using both short-term memory of the sample cue and visual informa-
tion of the test cue.

This task involves multiple neural processes, including flexible
decision-making, short-term memory, and sensory perception, and
each part of the task is critical for accurate behavioral performance.
We thus analyzed all parts of the task, but because our goal is to study
flexible decision-making during navigation, we focused mostly on the
test segment in which decision-making occurred as mice combined a
memory of the sample cue with the sensory information of the
test cue.

An optogenetics screen for cortical areas involved in a flexible
navigation decision task
We screened for cortical locations with activity necessary for suc-
cessful performance of the task. In VGAT-ChR2 mice, blue laser light
was delivered transcranially to activate inhibitory interneurons and
silence neighboring excitatory neurons (up to ~1mm radius with
2–5mWper site, Supplementary Fig. 2a–i)64,65. On a given trial, bilateral
inhibition sites were chosen randomly from a grid of locations with
1mm spacing (Fig. 1f, g). Inhibition trials were interleaved with control
trials (Fig. 1f). With inhibition in all segments throughout a trial, the
strongest impairment of task performance occurred when the inhibi-
tion site was chosen in primary and secondary visual areas, PPC, and
RSC (Fig. 1h, i). In contrast, the effects on task performance were
markedly smaller when the inhibition site was in the dorsal-anterior
cortex, includingmotor and premotor areas, and somatosensory areas
(Fig. 1h, i). Statistics and p-values for these and subsequent results are
reported in the figure legends, based on two-tailed bootstrap tests
adjusted for multiple comparisons unless noted otherwise (see
Methods). Our inhibition results indicate that performing the task
prominently involved the posterior parts of cortex, although it may
also involve uninhibited parts of the brain, including subcortical areas,
ventral cortex, or cortical neurons more than 1mm from the surface
(Supplementary Fig. 2g–i).

The inhibition of cortical sites did not induce apparent motor
deficits inmice. Compared to control trials, the average running speed
of mice varied only modestly across inhibition conditions (3.1 ± 11.0%
increase; mean ± s.d.; Supplementary Fig. 2j–o). Therefore, the
decrease in performancewas unlikely the result of difficulty running or
decreased running speed that would result in a prolonged delay and
potential memory decay.

To test if these posterior cortical areaswere necessary only during
specific trial epochs, we restricted inhibition to either the sample
segment, delay segment, or test segment on each trial. Inhibition of V1,
RSC, and PPChad significant effects onbehavioral performanceduring
each of the three trial segments. Thus, these areas appeared to have a
role in each phase of the trial. However, the inhibition effects were
largest in the test segment (Fig. 1j–l, p < 0.01, bootstrap test). Inter-
estingly, only modest effects on performance occurred with inhibition
of these areas during the delay segment, suggesting that the short-
termmemorymight bemaintained in a distributed cortical network, in
uninhibited parts of the brain, or in a format other than neural
spiking66–68. Also, although it is expected that V1, and perhaps other
parts of posterior cortex, have a critical role in visual processing, the
modest effects in the sample segment suggest that uninhibitedparts of
V1 can compensate for the inhibited locations.

Together, the optogenetics experiments identified cortical loca-
tions that contribute to the task. Furthermore, they revealed that each
of the areas involved appeared to contribute in each task segment,
which could indicate that these areas participate in multiple ways. In
the context of our goal to identify areas that mix sensory andmemory
signals during decision-making, the strong inhibition effects during
the test segment reveal V1, PPC, and RSC as candidates for this func-
tion. However, these inhibition effects could relate to other functions,
such as visual processing. Because the optogenetics experiments were

not designed to pinpoint the computations performed in eacharea, we
proceeded to calcium imaging experiments to evaluate neural activity
in V1, PPC, and RSC during the task.

Neural activity represents essential task variables in a visual-
parietal-retrosplenial network
We used two-photon calcium imaging to monitor layer 2/3 neurons in
V1 (monocular region), RSC (dysgranular region), and PPC (Fig. 2a).We
divided PPC into a medial region (area MM: mediomedial) and an
anterior region (area A: anterior) because our previous work and
anatomical studies suggest divisions exist in this part of posterior
cortex69–73. Each imaged area had activity throughout the full trial with
transient peaks associated with the onset of the sample cue and test
cue, except for area A, which had a peak as the mouse turned into a
T-arm (Fig. 2c). Individual neurons in each area had transient activity,
and different cells were active at different time points, forming a
sequence of activity that spanned the full trial (Fig. 2d). Many cells
therefore contained activity selective for particular maze positions,
and thus at any time point, only a small fraction of the population was
active.

To gain initial insights into how cells could contribute to flexible
decision-making, we looked for neural activity that combines the
memory of the sample cue and the visual information of the test cue.
This combination indicates the reward direction on a given trial, which
can be interpreted as the logical exclusive OR (XOR) operation on the
sample cue and test cue identities (Fig. 2b, top). The XOR takes on two
values: one for the trial types B/BW and W/WB for which the reward is
on the left, and a second value for the trial types B/WB and W/BW for
which the reward is on the right. The reward direction and mouse’s
choice were identical on correct trials and opposite on error
trials (Fig. 2b).

We performed an initial inspection of the activity in individual
cells and found cells that appeared to encode key task variables. We
deconvolved the calcium fluorescence time series to estimate the time
points at which neural activity triggered calcium transients. Some cells
were active on the two trial types with the same sample cue (Fig. 2e),
and others were active on the two trial types with the same test cue
(Fig. 2f), suggesting selectivity for the sample cue and test cue,
respectively. However, these cells did not directly represent the XOR
of the two cues to inform the reward direction. Other cells appeared to
be choice selective with activity only when the mouse turned to a
specific direction (left or right) regardless of the trial type (Fig. 2g).
Notably, the choice selective cells tended to appear in the later part of
the test segment (see the next section for analyses), whereas the
mouse’s choice-dependent running appeared at the initial part of the
test segment (Fig. 1c, SupplementaryFig. 1i), suggesting that these cells
were not the initial trigger for the mouse’s choice.

Surprisingly, we also found cells that were active mostly on only
one of the four trial types defined by a specific combination of a
sample cue and a test cue. This type of activity is illustrated by an
example neuron in Fig. 2h that was active mostly on B/WB trials.
Neurons of this type have selectivity for the sample cue (B vs.W trials),
test cue (BW vs. WB trials), and reward direction (XOR; B/BW and W/
WB trials vs. B/WB and W/BW trials) (Supplementary Fig. 3). Such
activity is an effective way to encode many task variables in single
neurons and leads to separate representations of all four trial types
across the population of cells. Importantly, these cells became active
for a single trial type in the initial part of the test segment, which was
early enough to influence upcoming choices. Interestingly, some
single-trial-type selective cells responded differently on correct and
error trials. Some cells were less active on error trials (Fig. 2i), and
others were active for a different trial type on error trials (Fig. 2j),
suggesting that the activity of these cells may be crucial for making
accurate choices. Cells with each type of selectivity were found in
multiple cortical areas, as will be shown in the next section.
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We evaluated the selectivity of individual cells in a more sys-
tematic manner using a generalized linear model (GLM)39,74. The
GLM included each task variable (sample cue, test cue, choice) and
their interactions (including interactions between sample cue and
test cue to allow for XOR selectivity) as predictors of a neuron’s
activity (Fig. 2k, Methods). Because cells tended to be transiently
active, we modeled each predictor as having selectivity

conjunctive with maze position. Such position-specific selectivity
is consistent with cortical activity useful for navigation19,22,24,37. In
addition, because movements can substantially correlate with
neural activity in posterior cortex18,69,73,75,76, the GLM also included
predictors for the mouse’s running velocity, measured as rotations
of the treadmill around three axes. We quantified the model’s
explanatory power as the fraction of deviance explained (FDE),
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computed on test data left out from fitting (Fig. 2l, m, Supple-
mentary Fig. 4).

Cells in V1 were best explained by the GLM across the imaged
areas, followed by cells in RSC and MM (Fig. 2l). The large majority of
cells in these areaswere better explained by the full GLM that included
task variables and running variables than by a reduced GLM that only
included running variables (Fig. 2m). The task variables thus con-
tributed significantly to neural activity in V1, RSC, andMM. In contrast,
most cells in area A were well explained by the GLM with running
variables alone, indicating that A had activity predominantly related to
themovements of themouse.We also imaged cells inM1 andM2, even
though optogenetic manipulation of these areas did not strongly
affect task performance (Fig. 1h–l). The GLM poorly predicted neural
activity in M1 and M2 (Fig. 2l) although the mice showed similar per-
formance during imaging sessions for each area (Supplementary
Fig. 5a, b), suggesting these areas may be less informative for solving
the task compared to posterior cortical areas.

We evaluated the information in each neuron about each task
variable by using the GLM framework to compute the likelihoods of
neural activity conditioned on task and movement variables39 (Meth-
ods). At each time point in each trial, we estimated how likely one
identity of a given variable was relative to the other (e.g., black vs.
white sample cue) by computing a log-likelihood ratio (logLR), a well-
established measure of single-trial neural information77–80. Although
logLR is a signed value that indicates the estimated identity of the
variable, we adjusted the sign so that logLR was positive (or negative)
for neural activity representing the correct (or incorrect) identity of
the task variable in a trial. Themagnitude of logLR was larger for more
informative neural representations of the task variable. We used logLR
to quantify information about task variables in the subsequent ana-
lyses. Potential confounds concerning locomotion-related neural
activity were mitigated by using the GLM that included all task and
movement variables in a single model and by conditioning on the
movement variables when computing information metrics, which
together helped isolate the neural coding for a task variable of interest.

Widespread but distinct encoding distributions across cor-
tical areas
We first tried to identify an area critical for mixing sample cue and test
cue information by looking at major encoding patterns in individual
cells. We therefore focused on the early part of the test segment and
analyzed the encoding of the sample cue, test cue, and the mixture of
the two that indicates the reward direction (XOR) for solving the task.

We will initially show the magnitude of information per cell by aver-
aging single-cell information across cells in each area (Fig. 3, Fig. 4,
Fig. 5) and then evaluate population information in a later section
(Fig. 6). In this section, we used only correct trials to avoid analyzing
complex modulations between correct and error trials (e.g., Fig. 2i, j).
We note that XOR information and choice information are identical
when considering only correct trials because the reward direction and
the mouse’s choice perfectly match on correct trials.

In V1, the dominant information at any time point was related to
the cue that was currently visible. V1 cells had high sample cue infor-
mation on average in the sample segment that decayed during the
delay segment and high test cue information in the test segment
(Fig. 3a, d, e). Despite the predominance of information about the
current visual cue, V1 also contained substantial XOR information
about the reward direction (Fig. 3b, c, f). To understand the mixing of
sample cue information and test cue information in single cells in the
decision-making period (i.e., the beginning of the test segment; gray
shading in Fig. 3a–c), for each cell, we plotted its sample cue infor-
mation in the test segment versus its test cue information in the test
segment (Fig. 3g).We used the polar angle as ameasure for howmuch
a cell encoded one cue relative to the other. Cells residing close to 0°
(horizontal-axis) or 90° (vertical-axis) corresponded to thoseencoding
mostly sample cue or test cue information, respectively. In contrast,
cells located around the diagonal (45°) had mixed representations of
both cues. In the test segment, many V1 neurons had high information
about the test cue and much less information about the sample cue
(Fig. 3g–i). V1 thus prominently represented the current visual stimulus
and had a skewed distribution of information that strongly favored the
test cue in the test segment.

Thedistributionof information inRSCwas strikingly different. RSC
had approximately equal levels of sample cue and test cue information
per cell in the test segment, and thus its activity was less dominated by
the current visual cue (Fig. 3a, d, e). Importantly, RSC had on average
significantly larger XOR information per cell than V1 (Fig. 3b, c, f). This
XOR information rose from the onset of the test segment and was
present even before mice began to report their choice in the form of a
turn direction (Fig. 3b, c, Supplementary Fig. 1i, j, Supplementary
Fig. 5c). XOR information thus appeared early enough to influence the
decision-making process. The most striking feature of RSC activity was
the extent to which sample cue information and test cue information
were mixed at the level of single cells (Fig. 3g, h). Many cells had
approximately equal sample cue information and test cue information
in the test segment (Fig. 3g, h). The distribution of information in RSC

Fig. 2 | Calcium imaging and related analysis of neural activity. a Top: Individual
imaging fields-of-view shown on the cortical areal map based on the Allen Mouse
Brain Common Coordinate Framework71. Bottom: same except superimposed on
the field sign map for retinotopy. The circular outline shows the typical location of
the cranial window. b Reward direction on the four trial types determined by XOR
combination of the sample cue and test cue (top). Choices follow XOR on correct
trials (middle) or its opposite on error trials (bottom). c Average activity across
neurons, aligned to the start and end of the sample segment, start and end of the
delay segment, start of the test segment, and T-intersection (vertical dashed line).
V1: n = 2084 cells, RSC: n = 4103 cells, MM: n = 2439 cells, A: n = 1120 cells. Shading
indicates mean ± s.e.m. d Average activity normalized to its peak for each neuron
(rows) sorted by time of peak average activity. The sequence of activity was cross-
validated by plotting activity on even-numbered trials sorted by peak time on odd-
numbered trials. e Example cell with sample cue selectivity inMM. Top row, correct
trials; bottom row, error trials. Rasters of deconvolved and binarized calcium
activity are shown for individual trials along with average activity (smoothed by
runningmean of 350ms). Shading indicatesmean ± s.e.m. Colors are the same as in
panel (b). For error trials, the average activity is not shown for some trial types if
they had less than three error trials per trial type. f Similar to panel (e), an example
cell in V1 with test cue selectivity. g Similar to panel (e), an example cell inMMwith
choice selectivity. h Similar to panel (e), an example cell in V1 with single-trial-type

selectivity. i Similar to panel (e), an example cell in RSC with single-trial-type
selectivity. j Similar to panel (e), an example cell in V1 with single-trial-type selec-
tivity. k Schematic of the GLM fitted to the deconvolved and binarized calcium
activity of each neuron. Predictors were divided into groups for task variables and
movement. Task variables were basis expanded with position along the maze to
reflect the sequential activity observed in panel (d). See Methods for full details.
lGLM fit quality, measured as the fraction of deviance explained (FDE) on test data.
Cells with converging fits for the full GLM were included. FDE per cell (mean ±
s.e.m.); V1: 0.212 ± 0.005 (n = 1744 cells; 84% of detected cells), RSC: 0.155 ± 0.002
(n = 3865 cells; 94%), MM: 0.139 ± 0.003 (n = 2310 cells; 95%), A: 0.081 ± 0.004
(n = 1106 cells; 99%), M1: 0.045 ± 0.003 (n = 883 cells; 100%), M2: 0.027 ± 0.001
(n = 3243 cells; 100%). The mean FDE was significantly different across areas
(p < 10−4). m Comparison of model fits for the full model (task and movement
variables) and the movement-only model (no task variables). Dots indicate indivi-
dual cells that had converging fits for both models. Black traces show the running
mean across cells (window size, 50 cells). Shading indicates mean ± s.e.m. V1:
n = 1744 cells (84% of detected cells), RSC: n = 3865 cells (94%), MM: n = 2310 cells
(95%), A: n = 1081 cells (97%). Cortical areal map in panel (a) was adapted from Cell
181, Wang et al., The Allen Mouse Brain Common Coordinate Framework: A 3D
Reference Atlas. 936-953, Copyright Elsevier (2020). Source data are provided as a
Source Data file.
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cells in the test segment was approximately uniform between sample
cue selective, mixed selective, and test cue selective cells, which was
markedly different from the distribution in V1 (Fig. 3i). As a result, RSC
contained a larger fraction of cells that equally mixed the memory
information of the sample cue and visual information of the test cue
than V1. Interestingly, RSC’s sample cue informationwasmaintained by
the sequential activation of cells during the delay segment until it was

mixed with the test cue information (Fig. 3a, Supplementary Fig. 5d–f).
These results show that RSC has approximately equal mixing of infor-
mation, the largest fraction of cells with mixed information, and the
highest XOR information per cell.

The profile of information per cell in MM was intermediate
between V1 andRSC.MMalso contained information about the sample
cue, test cue, and XOR (Fig. 3a–f), with a profile of information in the
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test segment biased toward the test cue (Fig. 3i). This intermediate
profile is consistent with MM residing at the interface of two spatial
encoding gradients centered at V1 and RSC69,73. In contrast to the other
areas, single cells in area A lacked information about the sample cue
and test cue throughout the trial and had XOR information only when
the mouse started turning at the T-intersection (Fig. 3a–f). The lack of
prominent encoding of task variables in area A was consistent with its
activity being mostly explained by the locomotion of the mouse
(Fig. 2m). When considering MM and A together, PPC surprisingly had
the smallest fraction of cells with mixed information, and thus, at least
in its anterior portion, PPC may not be a key area for mixing memory
and visual information.M1 andM2had little information about the task
variables in the initial partof the test segment, but they showedchoice-
related XOR information as mice made a turn at the T-intersection
(Supplementary Fig. 6). Similar trendswereobserved using population
decoding methods with and without deconvolution of the calcium
fluorescence time series (Supplementary Fig. 7), and when we
restricted analysis to only the earlier part of the test segment (first
0.5 s; Supplementary Fig. 8).

Notably, the cells withmixed sample cue information and test cue
information tended to be the cells active preferentially on single trial
types (single-trial-type selective cells; Fig. 2h–j). We quantified this
observation by comparing the mean activity on each of the four trial
types, normalizedby the sumof themean activities across the four trial
types (Fig. 3j, Supplementary Fig. 5g–i). Therefore, if a cell is active on
only one trial type, this trial type would have a normalized activity
value of one. Instead, if a cell is active equally on all four trial types,
then each trial type would have a normalized activity value of 0.25. On
average, mixed selectivity cells had activity for one trial type that was
about 6 times greater than for the other trial types (Fig. 3j, center).
Therefore, these cells tended to respond to a specific combination of a
sample cue and a test cue, showing striking differences from cells with

pure selectivity to either the sample cue or test cue (Fig. 3j). From a
computational perspective, these cells mixed the information of the
sample cue and test cue in a nonlinear manner. That is, the activity
change associatedwithdifferent test cues dependedon thememoryof
the sample cue in the same trial (Δ1 ≠ Δ2 in Fig. 3j). This contrasts with
linear mixing, where changes associated with one variable are inde-
pendent of the other variable (Δ1 =Δ2 in Fig. 3k). Further, a non-
linearity index (NI ≡ |Δ1–Δ2|) ranging from 0 (linear mixing) to 1 (most
nonlinear mixing) confirmed the nonlinear mixing in the mixed
selectivity cells (NI = 0.59 ±0.02, mean ± s.e.m., Fig. 3m, Supplemen-
tary Fig. 5j). This nonlinear mixing allows single neurons to encode
XOR information about the reward direction (Fig. 3n, Supplementary
Fig. 5k) and can be advantageous for linear decoding in downstream
areas49,50.

Surprisingly, we observed very few cells that encoded only the
reward direction (or choice direction). On correct trials, these cells
would be active on two of the four trial types and have XOR informa-
tion but not sample cue or test cue information. When considering all
the cells with appreciable XOR information in the early part of the test
segment (logLR > 0.01, noise estimated by the test cue information in
the sample segment; Methods), approximately 85% of these cells also
had samplecue and/or test cue information (Supplementary Fig. 5l,m).
Furthermore, of all the cells with XOR information, roughly two-thirds
contained sample cue information prior to the test cue onset (Sup-
plementary Fig. 5n, o). Therefore, the dominant carriers of XOR
information for the reward direction were the cells that encoded
multiple task variables in the form of single-trial-type selectivity.

While our goal was to identify neural activity related to themixing
of information about the sample cue and the test cue, which led us to
focus on the early part of the test segment, we noticed prominent
signals related to the sample cue in V1, RSC, andMM in the sample and
delay segments. In addition, in the test segment, there were signals

Fig. 3 | Task‑related information and its mixing in posterior cortical areas.
a Sample cue and test cue information per cell quantified as logLR. The information
in individual cells was averaged across correct trials and then across cells with a
converging fit for the full GLM. Shading indicates mean ± s.e.m. The time series of
information is aligned to and shown for the beginning and end of each segment
(sample segment: first 1.2 s and last 1.2 s, delay segment: first 0.3 s and last 0.3 s, test
segment: first 2 s and last 1.5 s prior to T-intersection, T-arm: 1.5 s after T-intersec-
tion). Gray regions indicate the period (first one second) analyzed for the test
segment in panels (d–n). V1: n = 1962 cells (94% of detected cells), RSC: n = 4052
cells (99%), MM: n = 2409 cells (99%), A: n = 1096 cells (98%) for panels (a–i).
b Similar to panel (a), except for XOR information. c Zoomed view of XOR infor-
mation from panel (b) for the first one second of the test segment. d Average
sample cue information per cell in the sample, delay, and test segments. The
informationwas averagedover the last 1 s for the sample segment, last 0.35 s for the
delay segment, and first 1 s for the test segment. Error bars indicate mean ± s.e.m.
The information was significantly different between areas (p < 10−4), except for
between RSC and MM in the sample segment (p =0.11) and between V1 and RSC in
the delay (p =0.31) and test segments (p =0.03). All p values were calculated by
bootstrap. The significance threshold was adjusted by Bonferroni correction with
α = 0.05 to account for 6 between-area comparisons for panels (d–f). e Similar to
panel (d) except for test cue information in the test segment. The information was
significantly different between areas (p ≤0.0080). f Similar to panel (d) except for
XOR information in the test segment. The information was significantly different
between areas (p ≤0.0074). g For each cell (circle), the sample cue information in
the test segment and the test cue information in the test segment on correct trials.
hData frompanel (g) replotted in polar coordinates as themagnitude (r) and angle
(θ). Cells closer to 0 degrees havemore sample cue information, and cells closer to
90 degrees have more test cue information. Skewness of the distribution (mean ±
s.e.m.); V1: −1.20 ±0.10, RSC: −0.06 ±0.05, MM: −0.67 ±0.11. Skewness was com-
puted without cells with extreme angles (the highest and lowest 1% of cells) or
noise-level information (magnitude r <0.01). The distribution was significantly
skewed for V1 and MM (p < 10−4), but not for RSC (p =0.88). The skewness was
significantly different between V1, RSC, and MM (p <0.01). All p values were cal-
culated by bootstrap. i Distribution of cells from panel (h) in discrete angle bins.

Bins for θ = 0˚ and θ = 90˚ included cells on the axes and those with chance-level
deviation from the axes (Methods). Error bars indicate s.e.m. The fraction of cells
with equal mixing (30˚≤ θ < 60˚) was significantly greater in RSC than in V1 or MM
(p < 10−4). Cells with noise-level information (magnitude r <0.01) were not assigned
angles but included in the total number of cells to calculate the fractions (see
Methods). j Normalized mean activity for the four trial types. The sum of mean
activity across the four trial types in each cell was normalized to one. For each cell,
the trial typewith the highestmean activity was defined to have a preferred sample
cue and preferred test cue.With respect to this trial type, the other three trial types
had preferred or unpreferred cues, as shown in panel (l). The cue preference of
each cell was cross-validated (Methods). Cells from V1, RSC, and MM were com-
bined because of their similarities (Supplementary Fig. 5g–i). Error bars inside the
colored circles indicate mean ± s.e.m. Pure sample cue selectivity: n = 350 cells,
mixed selectivity: n = 640 cells, pure test cue selectivity: n = 568 cells.
k Schematized activity distributions across the four trial types. The schematic
illustrates mixed selectivity where changes associated with different test cue
identities (Δ1 and Δ2) do not depend on the sample cue identity (Δ1 =Δ2). This
dependency was quantified as nonlinearity Index (NI) ≡ |Δ1-Δ2|. NI = 0 indicates
linear mixing (the lowest level of nonlinear mixing) as in this schematic, and NI = 1
indicates the highest level of nonlinear mixing. l Color scheme used for preferred
and unpreferred cues in panels (j, k).m Nonlinearity index for cells across angles
(running average, window of 50 cells). Cells from V1, RSC, and MMwere combined
because of their similarities (Supplementary Fig. 5j). Cells with noise-level infor-
mation (magnitude r <0.01) were excluded. Shading indicates mean ± s.e.m. Blue
trace shows chancenonlinearity indexvalue computedwith shuffled trial identities.
Nonlinearity Index (mean ± s.e.m.); mixed selectivity cells (15˚ ≤ θ < 75˚):
0.56 ± 0.01, pure sample cue selectivity cells (θ = 0˚): 0.25 ± 0.01, pure test cue
selectivity cells (θ = 90˚): 0.32 ± 0.01. Note that the chance level NI is 0.198 ± 0.004
after shuffling trial identities. n = 2046 cells. n XOR information for cells across
angles (running average, window of 50 cells). Cells from V1, RSC, and MM were
combined because of their similarities (Supplementary Fig. 5k). Cells with noise-
level information (magnitude r <0.01) were excluded. Shading indicates mean ±
s.e.m. n = 2046 cells. Source data are provided as a Source Data file.
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that mostly encoded information about the test cue. Together, these
signals suggest that each area likely performs additional functions,
such as visual processing, besides the mixing of memory and visual
signals.

Together, these results reveal widespread representations in
posterior cortex. Visual information was robustly represented in V1,
RSC, and MM as demonstrated by the large amount of sample cue

information per cell in the sample segment and test cue information
per cell in the test segment. The task required mixing of the current
visual information and memory information, which can generate XOR
information to signal the reward direction. This mixing manifested as
single-trial-type selectivity, which appears to be an effective way for
single neurons to encode many relevant task variables, including the
reward direction. These single-trial-type selective neurons and XOR
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information were most prominent in RSC, less prominent in V1, and
surprisingly weak in some parts of PPC.

Mixed representations predict choices in RSC, MM, and V1
If the mixed representations of sample cue information and test cue
information are important for task performance, then we expect the
XOR information to influence the mouse’s choice. We therefore com-
pared trials of the same trial type, except with the opposite choice
(e.g., turning left vs. right on B/BW trials). That is, we compared correct
and error trials. For trials with identical sensory cues, if cells have
higher information about the reward direction (XOR) on correct trials
than on error trials, then such an observation would support the
notion that the information in those cells may guide accurate
choices81,82.

Strikingly, XOR information in RSC was markedly different
between correct and error trials (Fig. 4b, c, f, g). The amount of XOR
information per cell in RSC was 86% lower on error trials than on
correct trials and was thus nearly absent when mice made errors
(Fig. 4f). Importantly, mice appeared engaged in error trials because
error trials were interspersed with correct trials and were completed
bymicewith similar timing compared to correct trials (Supplementary
Fig. 1a–f). A similar difference was also present in MM and V1 neurons,
suggesting that their XOR information could also be behaviorally
relevant, but at a lesser magnitude than in RSC (Fig. 4g). These results
therefore suggest XOR information in RSC,MM, and V1may be used to
guide the mouse’s choice.

Remarkably, a substantially lower fraction of cells had mixed
selectivity on error trials in RSC (Fig. 4h, i). Whereas correct trials had
approximately equal numbersof cellswith sample cue,mixed, and test
cue selectivity, error trials had notably fewer cells with mixed

selectivity. These differences in the fraction of neurons with mixed
selectivity weremost prominent in RSC and also present inMM and V1
(Fig. 4i). Whereas mixed selectivity cells tended to be active on single
trial types, they lost the single-trial-type selectivity on error trials
especially in RSC and MM (Fig. 4j). Consequently, XOR information in
mixed selectivity cells was greatly reduced on error trials (Fig. 4k).
These trends can be seen in the example cells shown earlier. Some
single-trial-type selective cells were less active on error trials (Fig. 2i)
and thus had less XOR information whenmicemade incorrect choices
(Fig. 4h, magenta points near the origin). Other cells were active on
different trial types on correct versus error trials (Fig. 2j) and encoded
the incorrect identity of the sample cue or test cue on error trials
(Fig. 4h, magenta points in gray shading) and thus incorrect (negative)
XOR information (Fig. 4i, gray shading ranges). Together, these
observations support the idea that aberrant activity of mixed selec-
tivity cells across a distributed set of areas, and most remarkably in
RSC, may contribute to incorrect choices.

The lower XOR information on error trials appeared to arise in
multiple ways. One possibility is a failure to receive sufficient sam-
ple cue information, such as due to fading memory during the delay
segment. Indeed, the average sample cue information per cell was
lower in RSC andMM in the delay segment on error trials (Fig. 4a, d).
Moreover, in the test segment, sample cue information was more
reduced on error trials compared to test cue information (Fig. 4d,
e). Another possibility is a failure to mix sample cue and test cue
information in the test segment to generate XOR information
despite the presence of sufficient sample cue information. To test
this possibility, on each trial, we computed the information per cell
for the sample cue immediately prior to informationmixing (i.e., the
end of the delay) and for XOR in the test segment on the same

Fig. 4 | Comparing correct and error trials to identify activity patterns
important for accurate decision‑making. a Sample cue and test cue information
per cell quantified as logLR for correct (solid) and error (dashed) trials. The infor-
mation in individual cells was averaged across trials and then across cells with
converging fits for the full GLM. Shading indicates mean ± s.e.m. Gray regions
indicate the period (first one second) analyzed for the test segment in panels (d–l).
V1: n = 1744 cells (84% of detected cells), RSC: n = 3865 cells (90%), MM: n = 2310
cells (95%), A: n = 1105 cells (99%) for panels (a–i). b Similar to panel (a), except for
XOR information. c Zoomed view of XOR information from panel (b) for the first
one second of the test segment. d Average sample cue information per cell in the
sample, delay, and test segments for correct and error trials. The information was
averaged over the last 1 s for the sample segment, last 0.35 s for the delay segment,
and first 1 s for the test segment. Error bars indicate mean ± s.e.m. The difference
between correct and error trials in the sample segment was significant in RSC
(p =0.004), but not for V1 (p =0.55),MM (p =0.03), andA (p =0.03). The difference
in the delay segment was significant for RSC and MM (p < 10−4), but not for V1
(p =0.47) and A (p =0.03). The difference in the test segment was significant for V1,
RSC, and MM (p < 10−4), but not for A (p =0.04). All p values were calculated by
bootstrap for panels (d–g). The significance threshold was adjusted by Bonferroni
correction with α = 0.05 to account for 4 area-wise comparisons for panels (d–g),
and 6 between-area comparisons for panel (g). e Similar to panel (d) except for test
cue information in the test segment. The differencewas significant inRSC (p < 10−4),
but not for V1 (p =0.50), MM (p =0.10), and A (p =0.08). f Similar to panel (d)
except for XOR information in the test segment. The difference was significant in
V1, RSC, andMM (p < 10−4), but not for A (p =0.08).gDifference inXOR information
between correct and error trials in the test segment, calculated per cell and aver-
aged across cells. Error bars indicate mean ± s.e.m. The decrease was significantly
different from zero for V1, RSC, and MM (p < 10−4), but not for A (p =0.08). The
amount of decrease was significantly different between areas (p < 10−4), except for
between V1 and MM (p =0.98). h For each cell (circle), the sample cue information
in the test segment and the test cue information in the test segment on correct
trials (top/black) and error trials (bottom/magenta). Cells plotted in the top right
quadrant correctly encoded the identity of the cues, and those plotted in other
quadrants incorrectly encoded the identity of the sample cue, test cue, or both
(gray shading). i Distribution of cells from panel (h) in discrete polar angle bins for

correct (black) and error (magenta) trials. Bins for θ < 0˚ and 90˚ < θ show the
fraction of cells that incorrectly encoded the cue identity (gray shading). Cells with
noise-level information (magnitude r <0.01) were not assigned angles but included
in the total number of cells to calculate the fractions. The fraction of cells was
significantly different between correct and error trials (p <0.002) in the following
bins; V1: θ < 0˚, 60˚ ≤ θ < 90˚, 90˚ < θ; RSC: all bins except for θ = 90˚; MM: θ < 0˚,
30˚ ≤ θ < 60˚, 60˚ ≤ θ < 90˚, 90˚ < θ. The significance threshold was adjusted by
Bonferroni correction with α = 0.05 to account for 7 bin-wise comparisons. Error
bars indicate s.e.m and are smaller than the data marker for some bins. j Top:
Normalized mean activity of mixed selectivity cells for the four trial types on cor-
rect trials. Bottom: mean activity on error trials scaled by the normalization factors
computed on correct trials. Nonlinearity Index of mixed selectivity cells (15˚ ≤ θ <
75˚ in panel (h)) on correct trials was 0.64 ± 0.03 (mean ± s.e.m.) for V1 (n = 115
cells), 0.52 ± 0.02 for RSC (n = 350 cells), 0.53 ± 0.03 for MM (n = 106 cells). The
mean activity for the preferred trial type was significantly lower on error trials than
on correct trials in V1 (p =0.0006), RSC (p < 10−4), and MM (p < 10−4). k XOR
information for cells across angles (running average,windowof 50cells) for correct
(black) and error (magenta) trials. The angle was defined on correct trials in panel
(h). Shading indicates mean ± s.e.m. Cells with noise-level information (magnitude
r <0.01) were excluded. V1: n = 487/475 cells, RSC: n = 1055/1035 cells, MM: n = 418/
409 cells were included for the analysis of correct/error trials. lComparison of XOR
information on correct (black) and error (magenta) trials, controlling for the
sample cue information immediately before making decisions (last 0.35 s in the
delay segment). Data points indicate individual trials, showing the sample cue
information and XOR information averaged across simultaneously imaged cells in
each trial. The running mean (window of 100 trials) is shown with shading indi-
cating mean ± s.e.m. Gray bar at the bottom indicates bins of sample cue infor-
mation in which XOR information was higher on correct trials than on error trials
(p <0.05, bootstrap). The correct-error trial difference was significantly larger in
RSC compared to V1 for 0.01–0.05 logLR (4 bins) of the sample cue information,
and compared to MM for 0–0.02 logLR (2 bins) of the sample cue information
(p <0.05, bootstrap). V1:n = 1476 correct/307 error trials, RSC:n = 1420 correct/265
error trials, MM: n = 1009 correct/221 error trials. Source data are provided as a
Source Data file.
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individual trials (Fig. 4l). For a given level of sample cue information,
XOR information in RSC cells in the test segment wasmuch reduced
on error trials (compare black and magenta along a vertical slice of
Fig. 4l). This result implies that mixing to produce XOR information
was less effective on error trials. This difference was more promi-
nent in RSC than in V1 and MM (Fig. 4l). These results suggest that
incorrect choices in this task may arise from the fading of memory

signals as well as a failure to mix memory signals with current sen-
sory signals, particularly in RSC.

It was surprising that the highest density of mixed selectivity cells
was in RSC and that the largest difference between correct and error
trials in mixed selectivity cells was in RSC, given that our optogenetics
experiments showed smaller effects on behavioral performance when
inhibiting RSC relative to V1 and PPC. However, our optogenetics

0 1 -1 0 0 0 0 1 2 -1 0 

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0 1 2 -1 0 
0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.5

1

1.5

2 10-2

0

5

10

15

20

25 10-2

0

1

2

3

4 10-2

0

1

2

3
10-2

0

5

10

15

20

10-2
25

Fr
ac

tio
n 

of
 a

ll 
ce

lls

0

0.1

0.2

00

0 <
< 30

30
< 60

60
< 90 90

90
<<00

0 <
< 30

30
< 60

60
< 90 90

90
<< 00

0 <
< 30

30
< 60

60
< 90 90

90
<<

Angle (   )

Sample cue
Naïve Trained

Test cue
XOR

Time (sec) Time (sec)
0 1

0   

0.01

0.02

0.03

0   

0.01

0.02

0.03

0   

0.01

0.02

0.03

Sample cue info in test segment (logLR)

V1

RSC

MM

V1

RSC

MM

Zoomed
Sa

m
pl

e 
cu

e 
in

fo
(lo

gL
R

 / 
ce

ll)

Test segmentDelay segmentSample segment

Te
st

 c
ue

 in
fo

(lo
gL

R
 / 

ce
ll)

XO
R

 in
fo

(lo
gL

R
 / 

ce
ll)

Test segment Test segment

In
fo

rm
at

io
n 

(lo
gL

R
 / 

ce
ll)

V1 MMRSC V1 MMRSC V1 MMRSC V1 MMRSC

N
aï

ve
Tr

ai
ne

d
N

aï
ve

Tr
ai

ne
d

N
aï

ve
Tr

ai
ne

d

N
aï

ve
Tr

ai
ne

d
N

aï
ve

Tr
ai

ne
d

N
aï

ve
Tr

ai
ne

d

N
aï

ve
Tr

ai
ne

d
N

aï
ve

Tr
ai

ne
d

N
aï

ve
Tr

ai
ne

d

N
aï

ve
Tr

ai
ne

d
N

aï
ve

Tr
ai

ne
d

N
aï

ve
Tr

ai
ne

d

V1 MMRSC

N
aï

ve
Tr

ai
ne

d
N

aï
ve

Tr
ai

ne
d

N
aï

ve
Tr

ai
ne

d

b c d

f ge

h

i
0 0.4 0.8

0

0.4

0.8

0 0.4 0.8 0 0.4 0.8

V1 RSC MM

Te
st

 c
ue

 in
fo

 in
 te

st
 s

eg
m

en
t (

lo
gL

R
)

0

0.4

0.8

Selectivity  
Test cueSample cue Mixed

Naïve

Trained

Naïve
Trained

Angle (   )Angle (   )
0 30 60 90

0

0.1

0.2

XO
R

 in
fo

 (l
og

LR
 / 

ce
ll)

m
Naïve
Trained

Linear mixing Nonlinear mixing

N
or

m
al

iz
ed

 a
ct

iv
ity

(a
rb

. u
ni

ts
)

j k

Te
st

 c
ue

Sample cue

B

B

Pref

Pref

Unpref

Unpref

Naïve Trained

0

0.5

R
un

ni
ng

Naïve mice 
without training on the task

a

Trials ended at T-intersection

0 30 60 900 30 60
0

0.5

1

N
on

lin
ea

rit
y 

in
de

x

Angle (   )Angle (   )

l Naïve
Trained

Trial shuffled

Article https://doi.org/10.1038/s41467-023-37804-2

Nature Communications |         (2023) 14:2121 11



approachonly inhibited relatively small cortical volumes.We therefore
expanded our inhibition in RSC to three bilateral pairs of inhibition
sites (orange circles in Fig. 1m). This expanded inhibition decreased
the mouse’s performance to near chance levels when RSC was inhib-
ited throughout the trial (55.8 ± 4.0% correct; mean ± s.e.m.) and
resulted in a more substantial decrease in performance compared to
the smaller inhibition sites (Fig. 1m, n). While the expanded RSC inhi-
bition had the largest effect in the test segment, performance was also
substantially decreased by inhibition in the sample segment, implying
a possible roleofRSC in encoding the sample cue identity on each trial.
These pronounced inhibition effects with the expanded RSC inhibition
suggest that RSC is essential for accurate performance in the flexible
navigation decision task.

Mixed selectivity cells emerged through learning of the flexible
navigation decision task
If the mixed selectivity represents the combination of memory and
visual information, we might expect that mixed selectivity emerges
through learningof theflexible decision-making task as themousegets
trained to maintain the memory and combine it with visual informa-
tion. An alternative possibility is that the mixed selectivity reflects
visual responses alone. For example, due to visual adaptation following
the sample cue, the responses to the test cue could differ depending
on the preceding sample cue. In this case, the mixed selectivity might
exist even without learning and performing the task.

We imaged the same areasof posterior cortex in a separate cohort
of “naïve”mice that were not trained on the delayed match-to-sample
task but ran through the identical maze used in the task (Fig. 5a).
Specifically, these mice ran through the sample segment, delay seg-
ment, and test segment and experienced the four combinations of
sample cue and test cue. They received a reward at the end of the
T-stem and were not trained to make left-right turns based on the cue
identities. Thus, these mice experienced the identical cues but did not
perform a decision-making task. Behaviorally, these mice ran through
themaze similarly to themice trained on the delayedmatch-to-sample
task. They traversed the delay segment with comparable timing
(1.57 ± 0.19 s, mean ± s.d., n = 4 mice).

In these naïve mice, neural activity in all imaged areas con-
tained markedly less XOR information per cell in the test segment

compared to the mice trained on the delayed match-to-sample task
(Fig. 5c, d, g), despite high information about the visual cues (the
sample cue in the sample segment and the test cue in the test seg-
ment; Fig. 5b, e, f). In the test segment, the distribution of infor-
mation across individual cells in the naïve mice was biased towards
test cue information and away from sample cue information in all
the imaged areas, including RSC (Fig. 5h, i). Consistently, the frac-
tion ofmixed selectivity cells wasmuch smaller in naïvemice than in
the trained mice (Fig. 5i). For the rare mixed selectivity cells in the
naïve mice, the type of mixing was different from those in the
trained mice. Mixed selectivity cells in the naïve mice had activity
less specific to single trial types and tended to have linear mixing of
the sample cue and test cue (Fig. 5j–l; NI = 0.27 ± 0.02, mean ±
s.e.m.). Consequently, these rare mixed selectivity cells in the naïve
mice contained less XOR information per cell than the mixed
selectivity cells in the trained mice (Fig. 5m).

These results rule out the idea that the mixed selectivity results
predominantly from visual responses alone due to, for example, visual
adaptation following the sample cue. Instead, the results suggest that
mixed selectivity cells emerge through learning of the delayed match-
to-sample task and acquire a nonlinear mixing of memory and visual
signals.

Efficient reward direction encoding in populations of mixed
selectivity cells
Given the importanceofmixed selectivity at the level of single cells, we
further investigated if the mixed selectivity cells play a privileged role
at the level of populations of neurons. Inmany cases, it is assumed that
the downstream readout operates as a linear decoder. Given that the
reward direction is determined by the nonlinear XOR combination of
the sample cue and test cue, a linear decoder cannot read out the
reward direction from a population of pure selectivity cells50, which in
our study consists of cells with only sample cue information and cells
with only test cue information. In contrast, a linear decoder can read
out the reward direction from cells that contain XOR information,
which in our case are the nonlinear mixed selectivity cells. Thus, the
mixed selectivity cells appear particularly important under common
assumptions about the linearity of downstreamdecodingmechanisms
in the brain.

Fig. 5 | Information profile in mice traversing the maze without task learning.
a Schematic of the experiment with naïve mice without training on the delayed
match-to-sample task. Naïve mice navigated through the virtual reality T-maze
identical to the one used in the delayed match-to-sample task. When the mice
reached the T-intersection, the trial ended with the delivery of a reward. b Sample
cue and test cue information for naïve mice (solid curves), plotted similarly to
Fig. 3a. Data from the trainedmice in Fig. 3a are replotted for comparison (dashed
curves). Gray regions indicate the period (first one second) analyzed for the test
segment in panels (e–m). For naïvemice, V1: n = 7015 cells (99.9% of detected cells),
RSC: n = 5107 cells (99.9%), MM: n = 1582 cells (99.9%) for panels (b–i). c Similar to
panel (b), except for XOR information. d Zoomed view of XOR information from
panel (c) for the first one second in the test segment. e Average sample cue
information per cell for naïve mice in the sample, delay, and test segments (darker
colors), plotted similarly to Fig. 3d. Data from the trained mice in Fig. 3d are
replotted for comparison (lighter colors). Thedifferencebetweennaïve and trained
mice was significant in the sample segment for V1, RSC, and MM (p < 10−4), in the
delay segment for V1 (p =0.0042) andMM (p < 10−4) but not for RSC (p =0.0226), in
the test segment for V1 and RSC (p < 10−4) but not for MM (p =0.289). The sig-
nificance thresholdwas adjusted by Bonferroni correctionwith α = 0.05 to account
for 3 area-wise comparisons for panels (e–g). f Similar to panel (e) except for test
cue information in the test segment. Thedifferencebetweennaïve and trainedmice
was significant for V1, RSC, andMM (p < 10−4). g Similar to panel (e) except for XOR
information in the test segment. The difference between naïve and trained mice
was significant for V1, RSC, and MM (p < 10−4). h For each cell in naïve mice (green
circles), the sample cue information in the test segment and the test cue infor-
mation in the test segment, plotted similarly to Fig. 3g. Data from the trained mice

in Fig. 3g are replotted for comparison (black circles). i Distribution of cells from
panel (h) in discrete angle bins (green circles), plotted similarly to Fig. 3i. Data from
the trained mice in Fig. 3i are replotted for comparison (black circles). Cells with
noise-level information (magnitude r <0.01) were not assigned angles but included
in the total number of cells to calculate the fractions. The fraction of cells was
significantly different between naïve and trained mice in the following bins
(p <0.0002); V1: θ <0˚, 60˚≤θ <90˚, θ=90˚, 90˚ <θ; RSC: θ=0˚, 0˚ ≤θ< 30˚, 30˚
≤ θ < 60˚, θ = 90˚; MM: θ = 90˚. The significance threshold was adjusted by
Bonferroni correction with α = 0.05 to account for 7 bin-wise comparisons. Error
bars indicate s.e.m. and are smaller than the data marker for some bins.
j Normalized mean activity of mixed selectivity cells (15° < θ < 75° in panel (h)) in
naïve mice for the four trial types, plotted similarly to Fig. 3j. The sum of mean
activity across the four trial types in each cell was normalized to one. Nonlinearity
Index for the naïve mice (NI = 0.27 ± 0.01, n = 346 cells; mean ± s.e.m.) was sig-
nificantly smaller than that for the trained mice (NI = 0.54 ± 0.01, n = 640 cells;
p < 10−4). k Similar to panel (j), except for data from mixed selectivity cells in the
trainedmice (Fig. 3j) replotted for comparison. lNonlinearity index for cells across
angles (running average, windowof 50 cells) in naïvemice (green trace) and trained
mice (black trace). Cells with noise-level information (magnitude r <0.01) were
excluded. Blue trace shows chance nonlinearity index value computed with shuf-
fled trial identities. Shading indicates mean ± s.e.m. n = 4203 cells. m XOR infor-
mation for cells across angles for the naïve mice (green trace; running average,
window of 50 cells), plotted similarly to Fig. 3n. Cells with noise-level information
(magnitude r <0.01) were excluded. Data from the trained mice in Fig. 3n are
replotted for comparison (black trace). Shading indicates mean ± s.e.m. n = 4203
cells. Source data are provided as a Source Data file.
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However, the brain possesses mechanisms that could enable
nonlinear decoding83–85. With a nonlinear decoder, a downstream
network could read out the XOR identity by combining cells with pure
selectivity, that is by nonlinearly combining cells with pure sample cue
selectivity and cells with pure test cue selectivity (Fig. 6a). With the
assumption of a nonlinear readout mechanism, we assessed whether
populations ofmixed selectivity cellswere stillmore informative about
the reward direction (XOR identity) than populations of pure selec-
tivity cells, by comparing simultaneously imaged populations from a
given imaging field-of-view (~0.5 mm2 area). To evaluate the accuracy
of the population code, we nonlinearly decodedXOR identity from the
population and quantified the mutual information between the true
and decoded XOR identity in units of bits86. Notably, this analysis
evaluated information in a population as a whole, instead of averaging
information across cells as was done in the previous analyses.

In RSC, MM, and V1, the mixed selectivity population represented
XOR identity more accurately (higher mutual information) than the
population of neighboring pure selectivity cells. The decoding from
the mixed selectivity population was almost as accurate as the com-
bined population of mixed and pure selectivity cells (Fig. 6b). Area A
contained only little XOR information due to the lack of mixed selec-
tivity and pure selectivity cells (Fig. 6b, c).

We wanted to understand what contributes to the difference in
the accuracy of the population code between themixed selectivity and
pure selectivity populations. Onepossibility is that there is a significant
difference in the number of cells that fall into these groups. However,

there were fewer, or at most equal, mixed selectivity cells relative to
pure selectivity cells (Fig. 6c). Thus, the mixed selectivity populations
efficiently encoded XOR because they contained more XOR informa-
tion in a given number of cells. Second, it is possible that correlations
in the activity between neurons in the population differed, such as
noise correlations that create redundancy between neurons. However,
in both the mixed selectivity and pure selectivity populations, the
magnitudeof noise correlationswas similar (Supplementary Fig. 9a–c).
Also, the difference in XOR information between these populations
largely remained even after analytically disrupting noise correlations
by shuffling trial labels independently for each neuron within a given
trial type (Supplementary Fig. 9d). Together, these results indicate that
the higher accuracy in the mixed selectivity population was not due to
major differences in the population size or activity correlations.
Instead, the mixed selectivity itself may be the key feature for an effi-
cient code, which allows for a more accurate representation of the
reward direction with a smaller number of neurons.

We tested if this efficiency was a general property of mixed
selectivity populations. Many properties of a neural population can
potentially contribute to a population code, including the number of
cells, noise correlations, and signal-to-noise ratio of activity. Because it
is difficult to control for and vary these properties in real data, we
simulated neural activity and compared the decoding accuracy from
either a mixed or pure selectivity population, while equalizing the
properties between the two except for their selectivity (Fig. 7a).
Interestingly, across all conditions, a mixed selectivity population
showed an efficient XOR representation, in the sense that a mixed
selectivity population encoded XOR more accurately than the same
size of a pure selectivity population, although it was less informative
about either the sample cue or the test cue (Fig. 7b–e). Furthermore, a

Fig. 6 | Population code for XOR in populations of mixed selectivity or pure
selectivity cells. a Left: Partitions for mixed selectivity cells and pure selectivity
cells based on their information. Right: Mixed selectivity cells encode the identity
of the sample cue, test cue, and reward direction (XOR) (purple rectangle). Neither
pure sample cue selectivity cells nor pure test cue selectivity cells encode XOR by
themselves, but XOR can be nonlinearly decoded by combining the two types of
pure selectivity cells (white rectangle). bMutual information between the true and
decoded XOR in populations of mixed selectivity cells (purple; 15˚ ≤ θ < 75˚ in
Fig. 4h, correct trials), pure selectivity cells (white; θ = 0˚ and θ = 90˚ from Fig. 4i,
correct trials), and both types of cells combined (gray). Error bars indicate mean ±
s.e.m. V1: n = 11 sessions (1783 trials), RSC: n = 12 sessions (1685 trials), MM:
n = 7 sessions (1230 trials), A: n = 5 sessions (822 trials). Mutual information in
mixed selectivity cells was significantly greater than that in pure selectivity cells in
V1 (p =0.0002), RSC (p < 10−4), MM (p < 10−4), but not in A (p =0.049). All p values
were calculated by bootstrap of cells in each session for panels (b–d) and the
significance threshold was adjusted by Bonferroni correction with α = 0.05 to
account for 4 area-wise comparisons for panels (b–d), and 6 between-area com-
parisons for panel (d). c Number of cells classified as mixed selective or pure
selective (T = test cue selective; S = sample cue selective) per session. Error bars
indicatemean± s.e.m. V1:n = 11 sessions, RSC: n = 12 sessions,MM: n = 7 sessions, A:
n = 5 sessions. The number of cells was significantly larger for pure selectivity cells
than for mixed selectivity cells in V1 (p < 10−4) and MM (p =0.004), but not in RSC
(p =0.22) and A (p =0.051). d Mutual information between the true and decoded
XOR, computed separately on correct and error trials. Error bars indicate mean ±
s.e.m. V1: n = 11 sessions (1476 correct/307 error trials), RSC: n = 12 sessions (1420
correct/265 error trials), MM: n = 7 sessions (1009 correct/221 error trials), A:
n = 5 sessions (753 correct/69 error trials). Formixed selectivity cells, the difference
between correct and error was significantly different from zero in V1 (p < 10−4), RSC
(p < 10−4), MM (p < 10−4), but not in A (p =0.027). For pure selectivity cells, the
difference between correct and error was not significantly different from zero in V1
(p =0.95), RSC (p =0.13), MM (p =0.63), and A (p =0.015). The difference between
correct and error inmixed selectivity cells was significantly larger than that for pure
selectivity cells in V1, RSC, andMM (p < 10−4), but not in A (p =0.90). The difference
between correct and error in mixed selectivity cells was significantly larger in RSC
than inV1 (p =0.0001),MM (p =0.0058), orA (p < 10−4). Sourcedata are provided as
a Source Data file.
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simulated mixed selectivity population was also energetically efficient
for encoding XOR in our task because it conveyed more XOR infor-
mation per spike compared to a pure selectivity population (Fig. 7f, g).
Together, mixed selectivity appears to account for the higher effi-
ciency of the population code.

This efficiency can be intuitively explained by the number of
decisions required to decode XOR (Supplementary Fig. 10a). In a pure
selectivity population, both the sample cue and test cue need to be
encoded correctly for XOR to be decoded correctly from the popula-
tion (Supplementary Fig. 10c). In contrast, XOR can be directly deco-
ded from a mixed selectivity population, requiring only a single
variable to be encoded correctly (Supplementary Fig. 10b). Thus, a
mixed selectivity population enables more accurate decoding of XOR
for a given condition even with a nonlinear decoding mechanism.

Finally, in imaged populations, XOR information was higher on
correct trials than on error trials in mixed selectivity populations,
supporting the notion that whenmixing is reduced, themouse did not

make accurate choices (Fig. 6d). In contrast, the XOR information
decoded from the populations of pure selectivity cells showed smaller
differences between correct and error trials. Thus, the mixed selec-
tivity populations may be used to guide the choice toward the reward
direction, whereas the pure selectivity populationsmay be less critical.
Notably, all the properties of mixed selectivity populations were pre-
sent in RSC, V1, andMM (Fig. 6d), indicating that a distributed network
of mixed selectivity cells could be important for flexible decisions.
However, whereas V1 and MM had a lower proportion of mixed
selectivity cells than pure selectivity cells, RSC had similar proportions
of each type (Fig. 3i, Fig. 6c), resulting in the largest number of mixed
selectivity cells in RSC (Fig. 6c). This difference in proportions of cells,
together with the loss of XOR information in mixed selectivity cells on
error trials (Fig. 4j, k), explains why RSC has the largest change in XOR
information between correct and error trials when averaged across
individual cells (Fig. 4f, g) or when quantified in its mixed selectivity
population (Fig. 6d). For these analyses, similar results were present
for a fixed neural population size (Supplementary Fig. 11). Together,
these results suggest that a distributed network of mixed selectivity
cells could be critical for flexible navigation decisions. These cells were
surprisingly sparse in anterior PPC (area A) and densest in RSC,
endowing RSCwith the highest capacity to represent XOR information
that could be read out to guide choices.

Discussion
Our work demonstrates a visual-parietal-retrosplenial network plays a
central role in the flexibility of decision-making during navigation. We
first performed an optogenetics screen to find cortical areas necessary
for the delayed match-to-sample task and then used calcium imaging
in these areas to screen for the activity patterns related to accurate
decision-making. This relatively unbiased approach allowed us to dis-
cover three key findings while providing evidence against several
alternative outcomes. First, activity in the visual-parietal-retrosplenial
network was necessary for accurate performance on the task, in
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a Fig. 7 | Decoding accuracy from simulated mixed and pure selectivity popu-
lations. a Schematic of simulated population. The number of spikes generated by
each cell follows a Poisson distribution with the mean λ. Each cell responds to a
preferred cue (or a preferred combination of cues) with themean of λpref and to an
unpreferred cuewith themean of λunpref. Theminimumunit population size is a set
of four cells (rounded rectangle). Each cell preferentially responds to a specific trial
type in the mixed selectivity population, or to a specific sample cue or test cue
identity in the pure selectivity population. The population size increases by
including N sets of the unit population with the same selectivity pattern.
b Decoding accuracy for the sample cue (or test cue) in simulated population
activity under a various combinationof themeanactivity (λpref and λunpref). The SNR
in the population increases with higher λpref and lower λunpref under Poisson noise.
The population activity was simulated on 10,000 trials and repeated 10,000 times,
separately in mixed selectivity population (solid lines) and pure selectivity popu-
lation (dashed lines). Shading indicates mean ± s.e.m. and is equal or smaller than
the line widths. The population activity was simulated with 8 cells and noise cor-
relation (ρnoise = 0.1) in panels (b, d, f). c Similar to panel (b), but under various
combinations of the population size and noise correlation level. The SNR in the
population increases with a larger population size and lower noise correlation. The
population activity was simulated with λpref = 2.0 and λunpref = 1.0 in panels (c, e, g).
d Similar to panel (b), but with the decoding accuracy for the reward direction
(XOR). For a pure selectivity population, the decoding accuracy of XOR (pXOR,
dashed line in panels d, e) can be predicted by decoding accuracy for the sample
cue (or test cue) (p, dashed line in panelsb, c). Open circles show p̂XOR predicted by
p2 + (1–p)2: the sum of probabilities that both sample and test cues decoded cor-
rectly (p2) or incorrectly (1–p)2. See Supplementary Fig. 10 for reasoning. e Similar
to panel (c), but with the decoding accuracy for the reward direction (XOR).
f Similar to panel (d), butwith XORmutual information dividedby the total number
of expected spikes in a population. g Similar to panel (e), but with XOR mutual
information dividedby the total number of expected spikes in a population. Source
data are provided as a Source Data file.
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particularduring the test segmentwhen thememory informationmust
be combined with the visual information to make a left-right decision.
Neurons representing the XOR information that indicated the reward
location were distributed across posterior cortex in a graded manner.
These results argue against alternate possible representations,
including the mixed selectivity representation being confined to one
specific area or distributed uniformly across the entire cortex. Second,
within this network, we identified neurons that nonlinearly mixed
short-termmemory with visual information in the form of single-trial-
type selectivity. This nonlinear mixed selectivity appeared useful for
guiding navigation choices because it formed an efficient code that
accurately represented the reward direction (XOR) in a relatively small
number of cells and could be read out easily with a linear decoder.
Surprisingly, neuronswith purechoice (or XOR) selectivitywere rare in
the cortical areas we imaged. The choice signal therefore did not
appear to be constructed directly from cells with pure memory and
visual signals but rather from the mixed selectivity cells. The accurate
XOR encoding of mixed selectivity cells compared to pure selectivity
cells makes it unlikely that only pure selectivity cells were used to
guide the choice direction. Furthermore, the mixed selectivity
emerged with learning of the flexible navigation decision task, ruling
out that it merely reflected intrinsic visual responses or adaptation to
the sequential cues. Third, these mixed selectivity cells lost their
selectivity and had lower XOR information when the mouse made
incorrect choices. We therefore speculate that they may be important
for guiding themouse’s choices and play a critical role in the flexibility
of navigation decisions. We note, however, that the correlation
between mixed selectivity and the accuracy of a mouse’s choices is
only suggestive of this relationship and that direct manipulation of
mixed selectivity cells will be necessary to establish their causal rela-
tionship to flexible decision-making.

To evaluate the general utility of mixed selectivity neurons for
flexible decision-making, we need to consider broader conditions
outside of our task. The cells with mixed selectivity for memory and
visual signals had activity mostly on a single trial type. These cells
therefore represented a specific combination of a sample cue and a
test cue. An alternative possibility would have been cells that represent
the XOR combination of the two cues and become active mostly on
two of the four trial types. This alternative type of cells would signify
the abstract notion of “match” and provide a generic solution to a
match-to-sample-type task because they can be re-used for all new
combinations of cues, potentially allowing for generalization across
different cues. Instead, the single-trial-type selectivity we found func-
tions as a basis set or look-up table for the specific learned combina-
tions of cues. While it is not clear if this type of neural solution to the
task affords the ability to generalize over a large set of cues, or novel
cues, it may be advantageous for conditions that are utilized fre-
quently as in the trials of our task. Furthermore, this type of solution
may be especially advantageous for spatial navigation, where the
sequential combination of cues defines a different spatial environ-
ment. In this case, an abstract ‘match’-type signal may be less sensible
behaviorally than a representation that specifies each environment
separately, given that individual environments are units of ethological
importance. Also, this type of mixed selectivity, in addition to the
general advantages of nonlinear mixing49,50, could be robust against
noise87 and energetically efficient88. Indeed, we showed how this type
of code is efficient for the learned combinations of cues, compared to
utilizingpopulations of pure selectivity cells, butwenote that itmaybe
energetically costly for forming separate representations for many
possible combinations.

While the mixed selectivity cells were distributed across many
areas of posterior cortex, RSC showed anenrichment of these cells, the
most equalmixing ofmemory and visual information, the highest XOR
information, and the largest differences in encoding of reward direc-
tion between correct and error trials. The discovery of RSC’s

involvement in flexible navigation decisions was surprising to us
because studies of decision-making have often highlighted the
importance of other cortical areas, such as frontal and parietal
cortices3,37–39,64,78,89–94. In contrast, RSC is widely viewed as important
for encoding current navigational variables23–25,27,29,30,95–97. RSC has also
been shown to represent a wide range of internal signals, including
spatial memory46–48, time98,99, and value100,101, and is thought to play a
role in fixed sensorimotor associations in decision-making tasks41,42,44.
However, our work extends further by showing how memory and
sensory signals in RSC can be combined tomediate flexible navigation
decisions. We propose that a general function of RSC is to combine
internal signals with current sensory signals by forming a mixed
representation that can flexibly guide navigation actions. Thus, the
mixed selectivity observed in our study could be a specific case of a
more general function of RSC, and our results highlight RSC as a
candidate area to investigate flexibility of decision-making during
navigation.

Despite the enrichment of mixed representations in RSC, further
investigationwill be required tounderstandmechanisms that generate
these representations. It is possible that RSC receives inputs that
separately contain visual and memory information, as is consistent
with the dense axonal projections it receives from visual cortices and
the hippocampal formation102–105. In this case, RSC neurons might play
an active role inmixing these streams of information. Alternatively, the
mixed representations might arise through computations in a dis-
tributed network spanning multiple areas, including V1, which is con-
sistent with the presence of mixed selectivity neurons throughout
posterior cortex in our experiments. Future studies aimed at char-
acterizing and manipulating the inputs to RSC will help to clarify
whether RSC plays a causal role in mixing memory and visual
information.

Mixed selectivity cells existed throughout posterior cortex in a
graded manner, consistent with a representational principle that
each area encodes all or most of the essential task variables but with
key distinctions in the magnitude of encoding of those variables in
each area69,73. An appreciable fraction of V1 neurons also showed
similar mixed selectivity even though in the population of V1 neu-
rons, the current visual cue was more strongly encoded than the
memory. The mixed selectivity cells in V1 had similar properties to
those in RSC. This finding adds to a growing list of functions for V1
during navigation, including representing running velocity106, head
angular velocity107, spatial position31, and reward-related activity108.
Surprisingly, PPC had the lowest density of mixed selectivity cells in
the population. Area MM had an activity profile intermediate
between RSC and V1. The activity in area A was mostly related to the
locomotion of the mouse. Together, the neural representation
gradually shifted from mixed selectivity in RSC to locomotor
selectivity in the anterior part of PPC (area A). This spatial gradient
appears to overlap with the spatial gradient going from allocentric
representations in RSC to egocentric representations in PPC20. This
overlap might reflect a relationship between decision-making and
navigation. Allocentric representations often rely on memory (e.g.,
past landmarks) when the current sensory cues do not fully identify
the animal’s location. If we regard each trial type as a different maze
environment, the single-trial-type selectivity can be interpreted as
an allocentric representation to identify themouse’s location (maze
environment) by using the current sensory cue (test cue) and the
memory of the past landmark (sample cue). By contrast, the
locomotor-related activity can be interpreted as an egocentric
representation that encodes running with respect to the mouse’s
heading direction. Therefore, along the spatial gradient fromRSC to
PPC, the conversion of the reference frames in navigation might
share the same mechanism that converts the mixture of memory
and visual information into locomotor selectivity during flexible
navigation decisions.
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Our optogenetics experiments did not find evidence in support of
the involvement of frontal areas in our task. However, these experi-
ments do not rule out the involvement of frontal areas in our task and
related tasks, andwedidnot focus on identifying a role for these areas.
Future work will be needed to understand how frontal cortices con-
tribute to flexible navigation decisions. In contrast to our findings,
flexible decision-making with different sensory-motor modalities
identified the premotor area ALM as critical for an olfactory task with
tongue-licking as choice reports3 and prelimbic cortex and superior
colliculus as important for a visual task with head-orienting to report
choices15. It is sensible that posterior cortical areas would be important
for a visual andnavigation task, whereas frontal or tectal regionswould
be involved in tasks requiring licking or head-orienting. In linewith this
idea, when mice oriented their heading direction as they accumulated
evidence in a decision-making task during virtual navigation, frontal
cortex was more involved in addition to posterior cortex43. Here, we
prevented the mouse from changing its heading direction in real and
virtual space, which might contribute to why we observed less invol-
vement of frontal areas. Taking all these studies together, for flexible
decision-making, we speculate that similar computations can be per-
formed in distinct cortical areas that are critical for the specific sensory
processing and motor execution involved in the task, but this idea
needs to be tested in future studies.

We demonstrated the importance of nonlinear mixing for accu-
rate behavior in a real, large-scale, simultaneously recorded popula-
tion, instead of inferring their importance from artificially created
populations of non-simultaneously recorded neurons. The major dif-
ferences between correct and error trials in populations of mixed
selectively cells, especially relative to pure selectivity cells, provide the
suggestion thatmixed selectivity has a causal role in flexible decisions.
Now that we have identified these putative decision-related signals, as
experimental approaches become readily available to manipulate the
activity of specific cells based on their encoding properties109–114, it will
be of great interest to test directly the causal role of mixed selectivity
cells for flexible navigation decisions.

Methods
Animals
All experimental procedures were approved by the Harvard Medical
School Institutional Animal Care and Use Committee and were per-
formed in compliance with the Guide for the Care and Use of
Laboratory Animals. Eight male C57BL/6J mice (Jackson Laboratory,
Strain No. 000664) and two male C57BL/6J-Tg(Thy1-GCaMP6s)
GP4.3Dkim/J mice (Jackson Laboratory, Strain No. 024275) were used
for the calcium imaging experiments, and twelve male VGAT-ChR2-
EYFP mice (eleven mice from Jackson Laboratory, Strain No. 014548;
one mouse with VGAT-IRES-Cre/+; Ai32/+) were used for the optoge-
netics experiments.Most of themicewere 8-16weeksold at the startof
behavioral training. The mice used for the expanded inhibition of RSC
(Fig. 1m, n) tended to be on the upper side of the age range, potentially
contributing to their faster running speeds (Supplementary Fig. 2j–o).
Mice were housed on a reverse 12 h dark/light cycle and in pairs of
littermates. Mouse health was evaluated daily.

Surgical procedures
Calcium imaging surgery. For calcium imaging experiments, prior to
behavioral training, mice were implanted with a titanium implant that
was designed for imaging procedures. The headplate had an opening
in the middle that allowed subsequent placement of a cranial imaging
window. The location of the headplate opening was centered at
2.0mm lateral and 2.5mm posterior relative to bregma to allow ima-
ging inV1, RSC, and PPC andwas centered at 1.2mm lateral and 1.2mm
anterior relative to bregma for imaging in M1 and M2. The headplate
was affixed to the skull by dental cement (Radiopaque Metabond,
Parkell) mixed with India ink (5% vol/vol) to increase light shielding for

imaging. To allow for an imagingplane parallel to the surfaceof cortex,
the headplate was tilted by 15° in roll relative to themouse’s body axis.
In the initial surgery prior to behavioral training, the planned center
coordinates for the cranial window were marked by a drill and ink on
the skull and covered by transparent dental acrylic (Ortho-Jet, Lang
Dental), so that the coordinates could be recovered in a subsequent
cranial window surgery.

A cranial window surgery was performed when the mouse had
achieved high performance on the delayed match-to-sample task
(greater than 80% correct). The cranial window was made centered at
the coordinates marked during the initial implantation of the head-
plate (2.0mm lateral and 2.5mm posterior to bregma for posterior
imaging; 1.2mm lateral and 1.2mm anterior to bregma for anterior
imaging). Awindow for posterior imagingwas constructed by bonding
two 3.5 or 4.0 mm diameter coverslips to each other and to an outer
4.0 or 5.0-mm diameter coverslip (#1 thickness, Warner Instruments).
A window for anterior imaging was constructed by bonding two laser-
cut 2.0 × 2.5mm oval coverslips to each other and to an outer 3.0mm
diameter coverslip (#1 thickness, Warner Instruments). Coverslips
were bonded to each other by UV-curable optical adhesive (Norland
Optics NOA 65 or 68).

AAV2/1-synapsin-GCaMP6s-WPRE-SV40 virus (University of
Pennsylvania Vector Core Facility, Catalog No. AV-1-PV2824 or
Addgene, Catalog No. 100843-AAV1) was diluted to ~0.5–1.0 × 1013

gc/mL in phosphate-buffered saline. Injections were made using a
glass pipette and custom air-pressure injection system. At each site,
~50–70 nL was injected 250–300 μm and 450–500 μmbelow the dura
over 1–2min. After each injection, the pipette was left in place for an
additional 1–2min. For the posterior cranial window, a glass pipette
was inserted at a 30° angle relative to the brain surface, and virus was
injected at three sites in V1 (2.2mm lateral, 3.5mm posterior; 2.8mm
lateral, 3.5mmposterior; 2.8mm lateral, 3.0mmposterior to bregma),
two sites in RSC (0.5mm lateral, 2.15mm posterior; 0.5mm lateral,
2.85mm posterior to bregma), and three sites for PPC (1.2mm lateral,
1.75mm posterior; 1.8mm lateral, 2.0mm posterior; 1.2 or 2.4mm
lateral, 2.25mmposterior to bregma). For the anterior cranial window,
a glass pipette was inserted perpendicular to the brain surface, and
virus was injected at ten sites across M1/M2 areas (nine sites in a 3 × 3
grid pattern centered at 1.2mm lateral, 1.2mmanterior to bregmawith
0.5mm spacing, and one site near ALM at 1.2mm lateral, 2.2mm
anterior to bregma). When the planned coordinates overlapped with
blood vessels, injections were shifted by 50-100 μm to avoid rupturing
the vessels.

The window was sealed using dental cement (Radiopaque Meta-
bond, Parkell) mixed with India ink (5% vol/vol). To prevent light
contamination and create a water bath for imaging, an aluminum ring
was affixed to the top of the headplate with dental cement mixed with
India ink. Experiments started after ~2 weeks from viral injection and
typically continued for 6–8weeks. Experiments were terminatedwhen
GCaMP6s expression appeared high, with some neurons exhibiting
GCaMP6s in the nucleus.

Optogenetics surgery. For optogenetics experiments, mice were
implanted with a clear skull cap, following procedures described
previously64,69. The cranial surfacewas exposed, and the headplate was
affixed to the interparietal bone (behind the lambda suture) by trans-
parent dental cement (ClearMetabond, Parkell). The remaining cranial
surface was covered by a thin layer of cyanoacrylate (Insta-Cure, Bob
Smith Industries) and reinforced by ~1mm layer of transparent dental
acrylic (Ortho-Jet, Lang Dental) on top. After a mouse was trained, the
acrylic surface was polished by a polishing drill (Model 6100, Vogue
Professional) with denture polishing bits (HP0412, AZDENT) and
coated by a thin layer of clear nail polish (Electron Microscopy Sci-
ences, 72180, or OPI). For light shielding, dental cement mixed with
India ink or carbon (Sigma-Aldrich) was used to affix an aluminum ring
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to the top of the headplate and to fill the gaps between the aluminum
ring and the circumference of the acrylic implant. Fiducial marks were
made on the aluminum ring to aid laser alignment.

Behavior
Virtual reality system. The virtual reality system was built based on
previous designs37,38. Virtual reality environments were constructed
and operated using MATLAB-based ViRMEn software (Virtual Reality
Mouse Engine)56. A projector (PicoPro or PicoBit, Celluon Inc., Laser
Beam Pro, KDC) was used to display the virtual environment onto the
back side of a 24-inch diameter half-cylindrical screen. The virtual
environment was updated in response to the mouse’s locomotion on
an open cell Styrofoam spherical treadmill (8-inch diameter, ~135 g).
Two optical sensors (ADNS-9800, Avago Technologies) positioned 45°
below the equator of the ball and separated by 90° in azimuth were
connected to a Teensy-3.2microcontroller (PJRC.COM) tomeasure the
three-dimensional rotation velocity of the ball (roll, pitch, and yaw).

Delayed match-to-sample task. Mice performed the navigation-
based delayedmatch-to-sample task in a virtual reality T-maze (Fig. 1a,
Supplementary Fig. 12d). The mouse traversed three segments: sam-
ple, delay, and test in the T-maze. In each segment, the mouse spent a
variable duration from trial to trial depending on the maze traversal
speed. In the sample segment, either black (B) orwhite (W) patterns on
the wall provided the sample cue. In the delay segment, the walls had a
gray pattern in all trials. The test segment provided the test cue, either
white patterns on the left side andblackpatterns on the right side (WB)
or vice versa (BW). The test cue was not revealed (and not visible) until
the mouse reached a defined spatial position (240 cm away from the
maze start). At the T-intersection, the mouse was required to make a
right or left choice by turning to the T-arm whose color matched the
sample cue.When themouse ran 20 cm into the T-arm, the trial ended.
The correct choice was rewarded by 4-5 µL of 10x diluted sweetened
condensed milk (Eagle Brand) or 30mM acesulfame solution (Pre-
scribed For Life). Incorrect choices were not rewarded, and con-
secutive error trials were penalized by prolonged inter-trial intervals.
After the intertrial interval (at least 4 s), the next trial started with the
mouse location reset to the beginning of the maze. The sample and
test cues were randomly selected on each trial and were thus inde-
pendent of one another.

The length of theT-stemwas400 cm,ofwhich the last 160 cmwas
allocated to the test segment. The delay segment ranged from 20 to
100 cm in length and varied based on the behavioral performance (see
below). The remaining maze length was allocated to the sample seg-
ment (140–220 cm).

In order to control the visual scene, movement in the virtual
environment was constrained. The mouse’s heading angle was fixed
straight throughout a trial (Fig. 1d, top). In the T-stem, only forward/
backward movements were allowed in the T-stem, and lateral move-
ments were not allowed; the pitch velocity of the spherical treadmill
was translated into forward/backwardmovement, and the roll and yaw
velocities did not affect movement in the virtual environment (Fig. 1c,
d). Backward movement was not observed in any mice. In the T-arms,
only lateral movements were allowed; the roll velocity was translated
into lateralmovements, and the pitch and yaw velocities did not affect
the movement (Fig. 1c, d).

The black and white walls for the sample cue and test cue had dot
patterns (white dots ona blackwall andblackdots on awhitewall). The
gray wall for the delay segment had a striated pattern to create optic
flow (Fig. 1a).

Behavioral training. Starting five days before the first training session,
mice were put on a water restriction schedule that limited their total
consumption to 1mL per day. The weight of each mouse was mon-
itored daily, and additional water was given if the mouse’s weight fell

below 80% of the pre-training weight. Mice were trained daily for
45–60min at approximately the same time each day. Mice learned the
task through four phases of training, as described below (Supple-
mentary Fig. 12). Approximately 25-50%ofmice learned to perform the
delayed match-to-sample task with high accuracy (greater than 80%
correct). To increase the statistical power for the analyses of error
trials, we included more sessions with moderate accuracy (~80%) to
analyze the imaging experiments, compared to the optogenetic
experiments.

Phase 1: Linear track. In the first phase, mice were trained to run
straight on the spherical treadmill in a linear track. Mice received a
reward when they reached a gray tower presented at the end of the
linear track. Pitch and roll velocity were translated to the forward
speed and rotation of heading angle, respectively. The heading angle
was not fixed at this stage, so that mice were required to correct their
running trajectory to a straight path; this appeared to help produce
good control of the spherical treadmill. For initial trials, the track
length was short to increase the frequency of reinforcement. The track
length was gradually extended if mice reached a tower within 30 s.
Typically, mice learned to run along a ~300 cm trackwithin 3–5 days of
training.

Phase 2: Single tower T-maze. In the second phase,micewere trained
tomake visually guided turns to the right or left in aT-maze. The length
of the T-stemwas set to 200 cm, and a single gray tower waspresented
either behind the right or left T-arm throughout the trial.Mice received
a reward when they reached the gray tower by turning towards the
tower at the T-intersection. To facilitate training for the following
phases, the T-stem had either a black or white wall pattern (later used
as the sample cue), whereas T-arms had the black pattern on one arm
and white pattern on the other (later used as the test cue). The gray
tower was located behind the arm thatmatched the color to the initial
cue. While mice could make turns based only on the location of the
gray tower, the wall patterns acclimated mice for the next phase of
training.

Phase 3: Two tower T-maze. In the third phase, mice learned asso-
ciations between a combination ofwall patterns and turning directions
(choices). The maze structure was the same as in the second phase,
except nowwe interleaved trials with a single tower (identical to Phase
2 trials) with trials with two towers, in which a tower was located
behind both T-arms. For two tower trials, mice were no longer able to
rely on the tower location to decide the turning direction and instead
were required to use the wall patterns to make choices following the
match-to-sample rule. The fraction of two-tower trials was dynamically
adjusted based on the performance criteria described below; the
fraction was increased or decreased with a step of 10%. When the
fraction of two-tower trials reached 100% and the behavioral perfor-
mance was consistently above 90% accuracy, the mice were advanced
to Phase 4, the final phase of training.

Phase 4: Delayed match-to-sample task with variable delay. In this
final phase, mice learned to make a choice in a longer maze (400 cm)
based on the combination of the sample and test cues, except now
with a delay segment added. With a delay segment, the sample cue
disappeared at the onset of the delay, and the test cue appeared
instantaneously at the offset of the delay. The test cue was not visible
by looking down the T-stem; rather,wemade the test cue appearwhen
the mouse reached an exact spatial location (240 cm away from the
maze start). As the mouse’s performance improved, we gradually
lengthened the delay segment (Supplementary Fig. 12d). When the
delay segment was lengthened, the sample segment was shortened to
keep the overall maze length constant. For our analyses, we included
trials with a delay length of at least 20 cm.
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Because this task was challenging for the mouse, we found it was
helpful to include “crutch trials” that were easy for the mouse. In
randomly selected 10% of trials, we omitted the delay segment (Sup-
plementary Fig. 12e). These trials had a maze structure similar to the
two tower T-maze in Phase 3. Crutch trials were not analyzed in the
imaging and optogenetics experiments.

Adjustment of task difficulty. The task difficulty was adjusted by the
lengthof thedelay segment (Phase4) or the fractionof two-tower trials
(Phase 3). We adjusted the difficulty level based on the behavioral
performance, statistically evaluated by a sequential probability ratio
test115,116. When this statistical test decided that the mouse’s perfor-
mance was greater than 80% correct or at the chance level (50%), the
task difficulty was increased or decreased, respectively. We set the
upper and lower bounds of difficulty, so the level was adjustedwithin a
limited range. Performance was evaluated using all trials from the last
statistical decision up to a current trial in a session. For well-trained
mice, the task difficulty typically remained stationary throughout a
session after initial increases at the start of the session.

Experimentswith naïvemice. For the imaging experimentswith naïve
mice (Fig. 5), mice were trained on the linear track (Phase 1) but skip-
ped the subsequent training in Phases 2–4. During imaging sessions,
these naïve mice navigated through an identical maze to the one used
for the delayed match-to-sample task but trials ended when the mice
reached the T-intersection without turning into a T-arm. If the mouse
completed a trial within 30 s, the trial was labeled as a correct trial and
the mouse received a reward at the end of trials. In a small fraction of
sessions (8 out of 55 sessions), the forward speed in the virtual reality
was decoupled from the mouse’s running velocity (i.e., open-loop
condition). In these sessions, a computer randomly chose a constant
forward velocity that is comparable to themouse’s running speed. The
results were qualitatively similar with or without these sessions.

Optogenetics experiments
The photoinhibition system was built based on a previous design69. A
470 nm laser (LRD-0470-PFR-00200, Laserglow Technologies) was
passed through galvanometric scan mirrors (6210H, Cambridge
Technology) and focused using an achromatic doublet lens (f = 300 or
400mm, AC508-300-A-ML, AC508-400-A-ML, Thorlabs). The laser
(analog power modulation, off to 95% power rise time, 50ms) and
mirrors (<5ms step time for steps up to 20mm) allowed simultaneous
inhibition of bilateral sites by rapidly alternating the inhibition sites by
moving the mirrors while the laser was turned off. The focused laser
had a top-hat profile with a diameter of approximately 200 µm.

Optogenetics experiments were performed on VGAT-ChR2 mice,
which express ChR2 in all GABAergic neuron types65,117. In each hemi-
sphere, 28 inhibition target sites were arranged in a grid with 1mm
spacing, covering from 0.5 to 3.5mm in the medial-lateral direction
and from +3.0mm to −4.0mm in the anterior-posterior direction with
respect to bregma (Fig. 1g). For three mice, inhibition was always
applied throughout a whole trial, and for four mice, inhibition was
applied throughout a whole trial or during a specific trial segment
(sample, delay, or test segment). In a separate fourmice, including one
VGAT-IRES-Cre/+; Ai32/+ mouse, inhibition was expanded to three
bilateral pairs of sites in RSC (centered at 0.5mm lateral, 1.0, 2.0,
3.0mm posterior to bregma) in all segments or in a specific trial seg-
ment (sample, delay, or test segment).

The inhibition was applied in randomly selected and interleaved
10–40% of trials. The fraction of inhibition trials was adjusted to
maintain behavioral performance above ~80% correct across all trials.
In each inhibition trial, the combination of bilateral inhibition sites and
the inhibition segment were selected randomly without replacement.
When all combinationswere selected, the processwas reinitialized and
repeated.

The laser power at each inhibition site had a near-sinusoidal
temporal profile at 40Hz and time-averaged power of 2–5mW. For the
expanded inhibition in RSC, the total laser power across the three
sites on each hemisphere was ~5–10mW for three mice and ~5mW for
one VGAT-IRES-Cre/+; Ai32/+ mouse. To ensure inhibition prior to
themouse seeing the sample cue, the laserwas turnedon 1 s before the
trial onset for the inhibition throughout the whole trial and for inhi-
bition during the sample segment. For a similar reason for the test cue,
the laser was turned on 20 cm before the test segment for inhibition
during the test segment. The laser was turned off at the trial end (i.e.,
onset of the inter-trial interval).

Electrophysiology. To measure the spatial extent of optogenetic
inhibition across cortical areas, extracellular recordings were con-
ducted in one VGAT-ChR2-YFP mouse (Supplementary Fig. 2). A small
craniotomy (diameter of ~1mm) was created above the region of
interest in the left hemisphereonedaybefore the recording sessions. A
32-channel silicon probe (A1x32-Poly2-5mm-50s-177, NeuroNexus) was
angled at 55-60° from the cortical surface at the entry point to avoid
blocking the laser oriented perpendicularly to the cranial surface. The
tip of the probe was advanced down to 1mm below the dura for PPC
and RSC recordings, and to 1.7mm below the dura for M2/ACC
recordings, based onmanipulator readings. The signals were recorded
at 20 kHz by the Intan RHD2000 Evaluation System and highpass-
filtered at 250Hz offline. Multi-unit activity was measured offline by
counting the number of spikes that crossed a threshold, which was
adjusted to include most of the local spikes in the absence of opto-
genetic inhibition.

The number of spikes was counted across recording sites during
the first 5 s of a laser-on period, and then normalized to the spike
counts during 5 s of a laser-off period immediately before the laser
onset. Trials with less than 5 spike counts in the laser-off period were
excluded. Recordings between 600 and 700 µm below the cortical
surface were used for the evaluation of effects as a function of the
horizontal distance from the laser center (Supplementary Fig. 2d–f).
Recordings within 500 µm horizontal distance from the laser center
were used for the evaluation across the cortical depth (Supplementary
Fig. 2g–i).

Widefield retinotopic mapping
To locate the imaged areas with respect to visual areas, a retinotopic
map was obtained from the mice that were used for imaging of pos-
terior cortical areas (V1, RSC, MM, and A): two of four mice trained on
thedelayedmatch-to-sample task and four naïvemicewithout learning
the task. The procedures were similar to those described previously45.

Widefield images were collected by a custom-built epi-
fluorescence macroscope118. Excitation light was provided by a blue
LED (455nm LED, Thorlabs; bandpass filtered at 469 nm with 35 nm
bandwidth, Thorlabs), focused on and reflected by a small mirror
(8mm Diameter 45° Rod Mirror, Edmund Optics). The reflected
diverging light passed through a camera lens (NIKKORAI-S FX 50mmf/
1.2, Nikon) and illuminated the cortical surface. Emission light was
collimated through the same camera lens, bandpass filtered (525 nm
with 39 nm bandwidth, Thorlabs), and imaged by a second lens
(SY85MAE-N 85mm F1.4, Samyang) onto a CMOS camera (ace
acA1920-155um, Basler).

Mice with expression of GCaMP6s were lightly anesthetized by
isoflurane on a platformwith their head angled at 30˚with respect to a
computer display (MG279Q, Asus), so that their right eye was posi-
tioned in front of the display. The visual stimulus was designed based
on a previous study119. A spherically corrected black and white check-
eredmoving bar (5 or 7 deg in width) swept vertically and horizontally
in four directions across the display with the speed of 7 deg/s. Each
sweep direction was repeated six times during a block, and four or six
blocks were presented in a session. Images were collected at 60Hz,
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synchronized with the presentation of the visual stimulus on the dis-
play. The retinotopy was inferred from the spatial phase (location) of
the stimulus that excited cells at the sweeping frequency120. Images
were averaged across repeats for a given stimulus location (discretized
in 2 deg bins) and smoothed by aGaussianfilter (s.d. = 25 µm). For each
pixel., the spatial phase of the fluorescence signal was computed by
Fourier transform, separately for the vertical and horizontal sweeps.
The gradient of the spatial phase was used to compute the field sign
map121. The retinotopic maps were overlaid on the maps of area
boundaries based on the Allen Mouse Brain Common Coordinate
Framework71, by aligning the border between V1, PM, and AM (Fig. 2a,
bottom)122. The cranial window contained the anterior medial part of
V1 in the left hemisphere, where a large fraction of neurons had
receptive fields in the lower right monocular visual field. This part of
visual field largely overlapped with the right half of the test cue in the
maze used for the delayed match-to-sample task.

Two-photon calcium imaging
Imaging data were collected by a custom-built two-photon micro-
scope. The microscope consisted of a resonant scanning mirror and a
galvanometric mirror, separated by a scan lens relay telescope. Exci-
tation light was delivered from Ti:sapphire laser (Coherent). The
average laser power at the sample was ~50mW. The emission light was
separated into green and red channels by a dichroic mirror (580 nm
long-pass, Semrock) and bandpass filters (525/50 and 641/75 nm,
Semrock), and collected by GaAsP photomultiplier tubes (Hama-
matsu). Signals were recorded only from the green channel for the
analyses. Fluorescence light collection optics were housed in an alu-
minum enclosure to avoid the interference of visible light.

The behavioral setup (the mouse, spherical treadmill, head fixa-
tion system, and reward delivery system) was mounted on a 12” x 12”
breadboard (Thorlabs) on a XYZ translation stage (Dover Motion).

ANikon×16, 0.8NAobjective lenswasused to collect images from
a ~700 µm× ~700 µmplane. Scanimage (Vidrio Technologies) was used
to acquire 512 × 512 pixel images at 30Hz. The imaging location and
depth were varied daily to sample data from a wide range of areas and
depths. The image plane was chosen between 100 µm and 400 µm
below the dura, with the majority of planes between 100 µm and
200 µm(50/56planes). 100,000 frameswere recorded in each imaging
session over ~1 h. To align timestamps between the image acquisition
and the virtual reality software, clock pulses were output from Scan-
Image at each frame and from ViRMEn at each refresh of the virtual
environment, and saved together in a separate computer.

Image and signal processing
Acquired images were motion corrected in hierarchical steps45. First,
“line-shift correction” was applied to align line-by-line alternating off-
sets in images caused by bidirectional scanning. Then, “sample
movement correction” was applied to eliminate between-frame
movement artifacts (rigid transformation) by FFT-based 2d cross-
correlation123, and to mitigate within-frame movement artifacts (non-
rigid transformation) by Lucas-Kanade method124. Finally, “sample
deformation correction” was applied to compensate the image
deformation (non-rigid transformation) induced by expansion or
contractionof thebrain tissueover long timescales (overminutes to an
hour). This was achieved by adjusting themean image of each imaging
block (1000 frames) to the global reference image (mean image of the
middle block of a session), by sequential rigid, affine, and non-rigid
transformations, in this order. All of these transformations were
combined into one nonlinear displacement field using cubic inter-
polation and applied to the imaging data in a single step to minimize
interpolation artifacts.

After the motion correction, potential fluorescence from sources
and neuropils was extracted by Suite2P125. These sources were manu-
ally curated to remove sources not corresponding to cells and those

with artifacts (e.g., drifting fluorescence baseline) or low signal-to-
noise ratio. For the calculation of dF/F0, F0 was estimated as the run-
ning median of the raw fluorescence signal from each source. dF was
estimated by subtracting neuropil fluorescence from the source
fluorescence to extract the fluorescence from a cell, Fcell, and then
subtracting the baseline of Fcell (estimated by its running median).

dF/F was deconvolved by OASIS AR1126, which models each
fluorescence transient as a spike of an instantaneous increase followed
by an exponential decay, whose decay constant was fitted to each cell.
The deconvolved signal was sparse in time and varied in magnitude in
units of dF/F. For each imaging frame (35ms bin), the deconvolved
signal was binarized into a spike if the signal magnitude was greater
than zero, or no spike otherwise.

Researcher degrees of freedom
Before data collection, we pre-specified locations of optogenetics
inhibition and the groupings of locations into areas for pooled
analysis based on the Allen Mouse Brain Common Coordinate
Framework71. Because our study was exploratory, we did not pre-
specify hypotheses to be tested, location of imaging, data analysis
methods, statistical tests, indexes, or metrics. We did not pre-
specify the number ofmice or cells to be collected, but the collected
data size was comparable to or larger than previous studies from
our lab. For the optogenetics experiments, data collection typically
continued as long as the mice maintained accurate performance on
control trials (greater than ~90%). For the two-photon calcium
imaging experiments, data collection typically continued while
GCaMP6s was expressed at an optimal level (~2–10 weeks after viral
injection) and terminated with its overexpression, which was
detected by GCaMP6s expression in the nucleus of several cells in
fields-of-view. We excluded mice from the experiments if they did
not progress to the final stage of the training to perform the delayed
match-to-sample task with reasonable accuracy (greater than ~80%
correct). We excluded imaging sessions from the analyses if the
imaged area was outside of the areas of interest or if the mouse
performed with low accuracy (less than ~70% correct). We excluded
cells from the GLM-based analyses if the model fit did not converge
(typically due to temporally sparse activity). 1–16% of cells were
excluded in V1, RSC, MM, and A. The number and fraction of cells
included for each analysis are reported in the figure legends.

Statistical analysis
Bootstrap methods were used to compute standard errors and to
perform statistical tests unless noted otherwise. The bootstrap meth-
ods were performed by resampling the pooled data with replacement
104 times. For statistical tests on behavioral performance in the opto-
genetics experiments (Fig. 1h–n),na,i trials werepooled across sessions
for each photostimulated area (Pa) (or control) and for each mouse (i)
and bootstrapped to compute the weighted average performance Pa.
For statistical tests on the activity of individual cells (Fig. 3, Fig. 4), cells
were pooled across sessions and mice for the same imaged area and
bootstrapped, unless noted otherwise. For statistical tests on the
activity of simultaneously imaged populations (Fig. 6, Supplementary
Fig. 11), cells were pooled on each session and bootstrapped.

We computed p-values for the difference across conditions as
in two-tailed tests because the variable of interest could be larger or
smaller across conditions (e.g., areas). Specifically, we computed
the fraction of resampling that generated the statistic above (p+) or
below (1–p+) the null hypothesis (zero difference). Then the smaller
of the two fractions was multiplied by two to yield the p-value. The
threshold for statistical significance was set at θ = 0.05. The sig-
nificance threshold was adjusted for multiple comparisons by
Bonferroni correction, unless noted otherwise. The sample size (n),
p-values, and statistical significance were reported in the Figure
legends.
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Choice biases
Choice biases were measured for color (i.e., turns toward a black or
white T-arm) and direction (i.e., turns toward a right or left T-arm)
(Supplementary Fig. 1h). For each session, let PX/Y denote the task
performance (% correct) on a trial type with X sample cue and Y test
cue. Then, biases were measured by the following indices:

Color bias index:

ðPB=BW + PB=WBÞ � ðPW=BW +PW=WBÞ
ðPB=BW + PB=WBÞ+ ðPW=BW +PW=WBÞ

�����
����� ð1Þ

Direction bias index:

ðPB=WB + PW=BW Þ � ðPB=BW +PW=WBÞ
ðPB=WB + PW=BW Þ+ ðPB=BW +PW=WBÞ

�����
����� ð2Þ

Each index can range from 0 to 1, where 0 indicates no bias and 1
indicates that all choices weremade for a particular color or direction.
Because the mice in some sessions showed running direction biases
based on the identity of the sample cue (Fig. 1e, Supplementary Fig. 1k)
prior to the test cue onset, the mice could show different direction
biases for different sample cues (e.g., turning more to the right on
black sample cue trials andmore to the left onwhite-sample cue trials).
To measure such a bias, we calculated the direction bias index condi-
tioned on the sample cue (Supplementary Fig. 1h), which can also
range from 0 to 1, as follows:

Direction bias index conditioned on the same sample cue:

1
2

PB=WB � PB=BW

PB=WB +PB=BW

�����
�����+ PW=BW � PW=WB

PW=BW +PW=WB

�����
�����

 !
ð3Þ

Behavioral effects of optogenetics inhibition
Task performance (% correct) in Fig. 1h–n was computed by pooling
behavioral results from all mice. For given inhibition areas a (either a
bilateral pair or area), we computed the task performance for each
mouse, Pa,i, where i is an index for mice. Because the number of inhi-
bition trials for a given area, na,i, was different acrossmice, the average
performance across m mice was weighted based on the number of
trials as follows: Pa =

Pm
i wa,i � Pa,i, where theweight for the i-thmouse

was given by wa,i =na,i=
Pm

j na,j . Similarly, the change in the task per-

formance associated with the inhibition was computed by
ΔPa =

Pm
i wa,i � ðPa,i � Pcontrol,iÞ, where Pa,i and Pcontrol,i are the task

performance during inhibition and control trials for the i-th mouse,
respectively.

Decoding task variables from running patterns
Task variables were decoded from running patterns of mice to assess
whether andwhen they variedwith task variables. The running velocity
was measured around the three rotation axes and z-scored. For
decoding of the sample cue in the delay segment, the sample cue
identity (black or white) was decoded from themean z-scored velocity
during the last 0.35 s in the delay segment (Fig. 1e, Supplementary
Fig. 1k). For decoding of choice in the test segment (Supplementary
Figs. 1i, j, 5c), because the running patterns could depend on the
sample cue identity prior to the test segment (Fig. 1e, Supplementary
Fig. 1k), the choice (right or left) was decoded separately from trials
with each identity of the sample cue. The choice for a given time point
in the test segment was decoded from the mean z-scored velocity in
the previous 0.35 s (Supplementary Figs. 1i, j, 5c).

Decoding was performed by first fitting a model using trials in a
training set (80% of trials), and then predicting the task variable from
the running patterns in trials in a test set (20% of trials), cycling
through 5 splits of training/test sets. Because both the sample cue and

choice were binary variables (A or B), the logit, log[P(A)/P(B)], was
fitted by a weighted sum of the mean z-scored velocity by a logistic
regression. Regularization and cross validation were used for fitting,
following a similar procedure forfitting neural activity (see below). The
identity of task variables was predicted for trials in the test set such
that A (or B) was predicted if log[P(A)/P(B)] > 0 (or <0). If log[P(A)/
P(B)] = 0, the decoded identity was randomly assigned. The decoding
accuracy was the fraction of trials in which the predicted identity
matched the observed identity in the experiment.

Predicting choice from task variables and running patterns
Theexplanatory power of the task variable and runningpatternson the
mouse’ choices was evaluated by a logistic regression. For Fig. 1e, the
probability of turning to choose the white side of the test cue, Pwhite,
was fitted by the presented sample cue’s identity, S, and decoded
sample cue’s identity, Ŝ, based on themouse’s running patterns during
the last 0.35 s in the delay segment as follows:

log
Pwhite

1� Pwhite
=β0 +β1S+β2Ŝ ð4Þ

where S and Ŝ took the value of +1 for the white and −1 for the black
sample cue.

We sampled an equal number of white-chosen and black-chosen
trials and used L2-regularization with 10-fold cross validation. If the
mouse showed similar running patterns between trials with the black-
and white-sample cues, β1 would be larger than β2. In contrast, if the
mouse showed variable but distinct running patterns that predicted
the choices, as in the case of relying on the running mnemonic, β2
would be larger than β1.

Calculation of the mean and normalized activity across cells
Deconvolvedneural activitywasfirst smoothedby amoving averageof
10 frames (350ms) and then aligned to the start and end of the sample
segment, start and end of the delay segment, start of the test segment,
and T-intersection. In each segment, neural activity was plotted for the
first and last parts of the segment (sample segment: first 1.2 s and last
1.2 s, delay segment: first 0.3 s and last 0.3 s, test segment: first 2 s and
last 1.5 s prior to T-intersection, T-arm: 1.5 s after T-intersection). For
each cell, neural activity was averaged across all trials, and then the
mean activities for individual cells imaged in a specific area (across
sessions andmice)were averaged to compute themean activity for the
area (Fig. 2c). For a plot of sequential activity across cells (Fig. 2d), on
each cell, activity was averaged across trials and the average activity at
each time point was divided by the peak average activity across ana-
lysis time windows. Cells were then sorted in the order of peak time.
The sequence of activity was cross-validated by plotting activity on
even-numbered trials sorted by peak time on odd-numbered trials. For
the average activity of example cells (Fig. 2e–j, Supplementary Fig. 3),
the activity was smoothed by running window of 350ms (10 imaging
frames), aligned to the start and endof each segment, and averaged for
each trial type separately for correct and error trials.

Generalized linear model
We used a generalized linear model (GLM) to model the time-
dependent effects of experimentally measured variables, including
those related to the task and the mouse’s behavior, on the single trial
activity of each neuron39,74,127,128. Figure 2k illustrates our GLM in a
schematic diagram. We used a Poisson GLM because a Poisson error
distribution is restricted to non-negative values, as for neural activity,
and reasonably approximates a distribution of spike counts.

The objective of our GLM is to fit the model output about the
distribution of spike counts to the observeddistribution of a single-cell
activity. The mean spike count of the Poisson GLM, µ, was related
to theweighted sumof predictors (Xβ) by an exponential link function

Article https://doi.org/10.1038/s41467-023-37804-2

Nature Communications |         (2023) 14:2121 20



|µ| = exp(Xβ).Wewill describe below (i) the designmatrix of predictors
(X), (ii) regularized fitting procedure to determine the weights (β
coefficients), and (iii) evaluation of model performance based on the
explanatory power.

Predictors. The predictors were divided into the task variable set (124
or 248 predictors) and the movement variable set (39 predictors).

The task variable set consisted of 8 subsets: offset (O), sample cue
(S), test cue (T), choice (c), and the interactions between S, T, and C
(S*T, T*C, S*C, S*T*C). S, T, and C were binary variables such that +1 (or
−1) was assigned towhite (or black) for the sample cue, BW (orWB) for
the test cue, and right turn (or left turn) for the choice (Fig. 2k). Note
that the interaction S*T represents XORon the sample cue identity and
test cue identity and is equivalent to choice identity (C) on correct
trials. Only thefirst 4 subsets (O, S, T, C)were used tofit correct trials in
4 trial types (4 conditions) (Fig. 3, Fig. 5). All 8 subsets were used to fit
both correct and error trials in 4 trial types (2 × 4 = 8 conditions)
(Fig. 4). Because each cell tended to have activity in a specific part of
themaze (Fig. 2d), each subset comprised 31 spatially tuned predictors
that collectively covered the entiremaze length, yielding 31 × 4 = 124or
31 ×8 = 248 predictors for the task variable set. Similarly to a previous
study39, the spatial tuning of each cell was expanded using raised
cosine basis functions with a width of 40 cm,

f ðxÞ= V � 12 1 + cos 2π � ðx�xcÞ
40

� �h i
, if xc � 20< x < xc +20

0, otherwise

(
ð5Þ

and its center peak was either positive (+1) or negative (−1) based on
the identity of a binary task variable (V), which denotes either the
sample cue, test cue, choice, or their interactions. The center peaks xc
were spaced with a 20 cm interval to tile the maze with a half-width
overlap.

The movement variable set consisted of 3 subsets corresponding
to the roll, pitch, and yawvelocity. For each component of velocity, the
velocity was z-scored and bounded from −3 to 3. We assumed that the
movement selectivity was invariant across maze position, so that
movement predictors are functions of the z-scored velocity (z), but not
on the maze position. The shape of velocity tuning followed one cycle
of a raised cosine function with a width of 1 in z-scored velocity,

gðzÞ=
1
2 1 + cos 2π � z � zc

� �� �� �
, if zc � 0:5 < z < zc +0:5

0, otherwise

(
ð6Þ

We included 13 predictors for each velocity component whose
centers zc spanned from −3 to 3 with a spacing of 0.5 along z-scored
velocity, yielding 13 × 3 = 39 predictors for the movement variable set.

Regularizedfittingprocedure. For each imaging session, theGLMwas
fitted to the neural activity with 80%of the trials (training set), whereas
the data in the rest of the 20% of the trials were used to evaluate the fit
quality and encoded information in individual cells (see below). Trials
with the same condition (defined by the combination of the sample
cue, test cue, and choice; 2 ×2 × 2 = 8 conditions) were divided evenly
into five subsets. Four subsets were used as the training set and the
remaining one subset was used as the test set. We cycled through
5 splits of training/test set to evaluate all appropriate trials in the
session.

Given the model output of the expected spike counts,
µ = exp(Xβ), the likelihood of observing spike counts, r, follows a
Poisson distribution: P(r|µ) = µr exp(–µ)/r!. The weights β = [β0 .. βM]

T

were fitted to the data by minimizing the following objective function

with glmnet package in R (v2.0-16) with elastic-net regularization129:

� 1
N

XN
i= 1

½riðβ0 +xi � βÞ � expðβ0 +xi � βÞ�+ λ α
XM
j = 1

∣βj ∣+ ð1� αÞ
XM
j = 1

β2
j

2

" #

ð7Þ

Here i is an index for the imaging frame,N is the total number of frames
in the training data, j is an index for beta coefficients, andM is the total
number of beta coefficients without β0 (M = 124 or 248 for full model).
ri is the neural activity in the i-th frame calculated by the sum of esti-
mated spike counts in neighboring 10 frames ([i−5 .. i + 4] th frames
spanning ~350ms).xi is a set of values (i.e., a vector) ofMpredictors for
the ith frame, β is a vector ofM beta coefficients for the cell. We used
L1-like regularization with α = 0.95, which tends to explain responses
with a smaller number of large beta coefficients (as opposed to a large
number of small beta coefficients for L2 regularization with α≈0).

The regularization parameter, λ, sets the tradeoff between the
fitting error (the first term in Eq. (7)) and the model complexity (the
second term in Eq. (7)). The value of λwas chosen froma set of λ values
by 10-fold cross validation, where each fold had an equal number of
trials per condition (as in the training/test splits described above). For
each value of λ, we computed 10 instances of the fitting error
(deviance) from the cross validation and computed theirmean, μλ, and
standard deviation, σλ (i.e., standard error of the deviance). We found
the λmin that produced the minimum deviance μλmin, and λ1se that
produced the most regularized model whose mean deviance was
within one standard error from the minimum deviance,
argmaxλ2½λ min ,1�½μλ < ðμλmin + σλminÞ�. We used λ1se to fit the model to
all trials in the training set, and obtained fitted beta coefficients, β1se,
which were used to predict responses for trials in the test set and to
evaluate information for task variables (Fig. 3, Fig. 4, Fig. 5, see below).

Because the number of correct trials was greater than error trials,
the imbalance in the number of trials could bias the fitting procedure
to depend more on correct trials than on error trials. To compensate
for this imbalance, we adjusted the weight of each trial during the fit.
Specifically, on each trial with a specific trial type and trial outcome
(correct or error), the fitting error of that trial was multiplied by the
inverse of the total number of trials with the same trial type and out-
comeduring the session. Resultswere qualitatively consistentwith and
without this balancing for differences in trial numbers. Thus, we
showed results without the weight adjustment (i.e., equal weights for
all trials).

Evaluation of model performance. The model performance was
evaluated by the fraction of the deviance explained (FDE) on the test
data set (Fig. 2l, m). FDE quantifies the performance of the fitted GLM
on the test data with respect to the null and saturatedmodels. For each
time point in the test data, the null model predicts the same expected
activity, which is given by the activity of a cell averaged across all time
points in the training data. In contrast, the saturated model predicts
the expected activity that exactly matches the observed activity at
each time point in the test data. Let LGLM, Lnull, and Lsat be the
log likelihood of observing the test data given the GLM, null, and
saturated model, respectively. Then, the deviance (D) and the FDE are
defined as follows.

Dnull =2ðLsat � LnullÞ
DGLM =2ðLsat � LGLM Þ

	
ð8Þ

FDE =
Dnull � DGLM

Dnull

=
LGLM � Lnull
Lsat � Lnull

ð9Þ
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Thus, FDE = 1 indicates that the model prediction was as good as
the saturated model, whereas FDE =0 indicates that the model pre-
dictionwas aspoor as thenullmodel. Note that FDE is a goodness-of-fit
statistic and related to the fraction of variance explained (FVE). FVE
would be appropriate under the assumption that each data point has
the same Gaussian error distribution around the mean. However,
because we used Poisson GLM with the assumption of Poisson error
distributions, we chose FDE to take into account non-Gaussian error
distributions that varied across time points.

Single-cell information measured as log-likelihood ratio
We used the GLM fitted to the training data to compute the single-trial
information for each cell about each task variable in each trial in the
test data. We first describe the derivation of sample cue information
below, and this derivation extends easily to test cue information and
XOR information. Given that the activity of a cell at time t in a given trial
had a value of r(t), we used the PoissonGLM to compute the likelihood
that the observed activity was generated either in the presence of a

white-sample cue (S = +1) or a black sample cue (S = −1). Then, the
single-trial information was computed as the log-likelihood ratio
(logLR)77,78,130:

log
PðrðtÞ∣S= +1Þ
PðrðtÞ∣S= �1Þ ð10Þ

The logLR monotonically varies with the likelihood ratio, its sign
indicates whether white (positive) or black (negative) was more likely,
and its magnitude (absolute value) quantifies its informativeness.
Because the running patterns of the mice can covary with the task
variable identities (Fig. 1e, Supplementary Fig. 1k) and influence the
neural activity18,75,131, we controlled for running variability to derive
“genuine” sample cue information by computing the log-likelihood
also conditioned on the running velocity as follows.

log
PðrðtÞ∣S= +1,V ðtÞÞ
PðrðtÞ∣S= �1,V ðtÞÞ ð11Þ

To compute the likelihood of the given sample cue, we margin-
alized over all possible combinations of the remaining task variables
(i.e., test cue and choice in this case).

PðrðtÞ∣S= + 1,V ðtÞÞ=
X

T2�1, + 1C2�1, + 1

PðrðtÞ∣S= + 1,T ,C,V ðtÞÞ � PðT ,C∣S= + 1,V ðtÞÞ

≈
X

T2�1, + 1C2�1, + 1

PðrðtÞ∣S= + 1,T ,C,V ðtÞÞ � PðT ,C∣S= + 1Þ

=Pðr∣S= + 1,T = � 1,C = � 1Þ � Pc=2 +Pðr∣S= + 1,T = � 1,C = + 1Þ
� Pe=2+Pðr∣S= + 1,T = + 1,C = � 1Þ
� Pe=2+Pðr∣S= + 1,T = + 1,C = + 1Þ � Pc=2

ð12Þ

Note that P(T,C|S = +1) was approximated by Pc/2 or Pe/2, where
the Pc and Pe denote the proportion of correct trials and that of error
trials, respectively.

In a similar fashion, test cue information was computed as:

log
PðrðtÞ∣T = + 1,V ðtÞÞ
PðrðtÞ∣T = �1,V ðtÞÞ

= log

P
S

P
C
PðrðtÞ∣S,T = + 1,C,V ðtÞÞ � PðS,C∣T = + 1,V ðtÞÞP

S

P
C
PðrðtÞ∣S,T = �1,C,V ðtÞÞ � PðS,C∣T = �1,V ðtÞÞ

ð13Þ

For logLR of XOR, the likelihood was marginalized over the
combinations of the sample cue and test cue that were associatedwith
the same direction of reward assignment (e.g., XOR= + 1 consists of
[S = + 1, T = + 1] and [S = −1, T = −1]). Thus, its logLR was calculated as
follows.

The logLR is a signed value, where its sign indicates whether the
activity supports one identity of the task variables or the other. For
example, cells with the sample cue selectivity tend to show positive
logLR for trials with S = + 1 (white sample cue) and negative logLR for
trials with S = −1 (black sample cue). As a result, if we simply average
the logLR across all trials, they would cancel out and fail to detect the
sample cue information. Therefore, we adjusted the sign of logLR, so
that a positive logLR indicated that the neural activity correctly
encoded the task variable identity observed in the trial. In contrast, a
negative logLR indicated incorrect encoding of the task variable
identity. Specifically, when the observed task variable identitywas −1 in
Eqs. (11–14), we multiplied the logLR by −1. In the results, we used the
sign-adjusted logLR (Figs. 3–5, Supplementary Fig. 5, Supplementary
Fig. 6, Supplementary Fig. 8).

Population decoding and population mutual information
For the analyses of population information, instead of the single-cell
activity r(t), we used a vector of population activity, r(t), which was
imaged simultaneously on each session within a given field-of-view
(~0.5 mm2 area). Under the assumption of conditionally independent
noise across cells, the likelihood of observing a population activity r(t)
was calculated from the GLM as follows:

PðrðtÞ∣S,T ,C,V ðtÞÞ=
Yn
i= 1

PðriðtÞ∣S,T ,C,V ðtÞÞ ð15Þ

where i is an index for a cell in a population of n cells. Combi-
ning Eqs. (14) and (15) yields population XOR information as
follows:

log
PðrðtÞ∣XOR = + 1,V ðtÞÞ
PðrðtÞ∣XOR= �1,V ðtÞÞ = log

P
½S,T �2f½+ 1, + 1�½�1,�1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,T ,V ðtÞÞP

½S,T �2f½+ 1,�1�½�1, + 1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,T ,V ðtÞÞ

≈ log

P
½S,T �2f½ + 1, + 1�½�1,�1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,TÞP

½S,T �2f½ + 1,�1�½�1, + 1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,TÞ

= log
PðrðtÞ∣S= + 1,T = + 1,C = + 1,V ðtÞÞ � Pc=2 + PðrðtÞ∣S= + 1,T = + 1,C = �1,V ðtÞÞ � Pe=2 + PðrðtÞ∣S= �1,T = �1,C = + 1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= �1,T = �1,C = �1,V ðtÞÞ � Pe=2
PðrðtÞ∣S= + 1,T = � 1,C = �1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= + 1,T = �1,C = + 1,V ðtÞÞ � Pe=2 + PðrðtÞ∣S= �1,T = + 1,C = �1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= �1,T = + 1,C = + 1,V ðtÞÞ � Pe=2

ð14Þ
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The population information was derived using all cells in each
imaging sessions (Fig. 6), or a subpopulation with the same number of
cells (n = 100 cells, randomly sampled from the population, Supple-
mentary Fig. 11).

The identity of the task variable was decoded from population
activity based on the sign of population information (logLR). When
logLR was zero, the decoded identity was randomly assigned. On each
session, the accuracy of the population coding was evaluated as the
mutual information in the decoding confusion matrix, that is the
mutual information between the true and decoded identity of the task
variable86. The weighted average of mutual information was reported
by averaging across sessions with weights proportional to the number
of trials on the sessions (Fig. 6b, d, Supplementary Figs. 9d, 11a, c–e).

Other population decoding methods
Our population decoding method described above modeled the like-
lihood of activities in individual neurons with the GLM and assumed
conditional independence of neurons. Whereas the GLM is useful to
discount the effect of the mouse’s movement on the neural activity,
the assumption of conditional independencemay fail to capture some
aspects of the information in population activity, including the infor-
mation carried by the modulation of noise correlations for different
cues or choices, termed stimulus-dependent correlations132. To
understand if our conclusions were robust to changes of assumptions
in decoders, we also decoded neural population activity with another
linear decoding method (logistic regression) and with a nonlinear
decoding method (support vector machine with the redial basis
function kernel) (Supplementary Fig. 7). As a population activity, we
used mean dF/F during the first 1 s (30 imaging frames) in the test
segment with deconvolution (Supplementary Fig. 7a–d) or without
deconvolution (Supplementary Fig. 7e–h). To equalize the population
size across sessions, 100 cells were randomly subsampled from a
simultaneously imaged population. Subsampling was repeated 100
times to estimate the mean and s.e.m. of the population decoding
accuracy.

The logistic regression was used as an alternative linear decoding
method. Because each task variable had binary identity (A or B), the
logit, log[P(A)/P(B)], was fitted by a weighted sum of the simulta-
neously imaged neural activity (dF/F) with deconvolution (Supple-
mentary Fig. 7a–c) or without deconvolution (Supplementary
Fig. 7e–g). Decoding was performed by first fitting amodel using trials
in a training set (80% of trials), and then predicting the task variable
from the neural activity in trials in a test set (20% of trials), cycling
through 5 splits of training/test sets. Regularization and cross-
validation were used for fitting, following a similar procedure for fit-
ting neural activity (see regularized fitting procedure), except with L2
regularization. The identity of task variables was predicted for trials in
the test set based on the sign of the logit. The decoding accuracy was
the fraction of trials in which the predicted identity matched the
observed identity in the experiment.

The support vector machine with the redial basis
function kernel was used as a nonlinear decoding method133,134

(Supplementary Fig. 7d, h). This method captures nonlinear rela-
tionships between the activity of different neurons and can thus
capture the information potentially carried by the cue or choice
modulation of noise correlations. We used 5 splits of training/test
sets, and 10-fold cross validation to optimize two hyper parameters:
C (>0) used as a cost parameter for classification errors and γ (>0)
used to determine the width of the radial basis function
Kðxi,xjÞ= expð�γ∣xi � xj ∣

2Þ. For each combination of C and γ, the
model was fitted by a MATLAB package of libsvm (https://github.
com/cjlin1/libsvm)135.

Signal and noise correlation
For each pair of cells recorded simultaneously, the signal correlation
was quantified by Pearson’s correlation on their mean neural activity
across four trial types. To compute the noise correlation for each pair,
the residual neural activity was derived for each cell on each trial type,
by subtracting the mean activity on each trial type from the observed
activity on that trial type. The noise correlation was quantified by
Pearson’s correlation on the residual activity of the pair of neurons
combined across all trials in all trial types. Toevaluate the effect of noise
correlation on the accuracy of the population code, the noise correla-
tion was disrupted by shuffling the trial identity within each condition
(defined by the combination of the sample cue, test cue, and choice; 2
×2 x 2 = 8conditions) for each cell. Trial shufflingwas repeated 104 times
to estimate the standard error of decoding accuracy.

Simulation of population activity
To compare the efficiency and accuracy of encoded information
between a population of mixed selectivity cells and a population of
pure selectivity cells, we generated population activity by Monte
Carlo simulation and analyzed the simulated data similarly to the
real imaging data. In the simulation, the number of spikes gener-
ated by each cell followed a Poisson distribution with the mean λ.
Each cell responded to a preferred cue (or a preferred combination
of cues) with the mean of λpref and to an unpreferred cue with the
mean of λunpref, where λpref was greater than λunpref by design. The
minimum unit population size was a set of four cells, each of which
preferentially responded to a specific trial type in the mixed
selectivity population, or to a specific sample cue or test cue
identity in the pure selectivity population (Fig. 7a). In the simula-
tion, we varied λpref, λunpref, the population size (by including N sets
of the unit population), and the level of noise correlations across
cells. Because the noise correlations weremostly observed for cells
with a higher signal correlation (Supplementary Fig. 9a–c), the
simulation included positive noise correlation only between cells
that shared the same selectivity. To introduce noise correlations
across n cells, our simulation first generated a set of n Gaussian-
distributed random variables with an n-by-n correlation matrix
using copularnd.m in MATLAB (MathWorks), and then correlated
Poisson-distributed random variables were generated by the
inverse CDF sampling technique136 using poissinv.m in MATLAB
(MathWorks). Populationdecodingwasperformedby following the

log
PðrðtÞ∣XOR = + 1,V ðtÞÞ
PðrðtÞ∣XOR = � 1,V ðtÞÞ

= log

P
½S,T �2f½+ 1, + 1�½�1,�1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,T ,V ðtÞÞP

½S,T �2f½+ 1,�1�½�1, + 1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,T ,V ðtÞÞ

≈ log

P
½S,T �2f½+ 1, + 1�½�1,�1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,TÞP

½S,T �2f½+ 1,�1�½�1, + 1�g

P
C
PðrðtÞ∣S,T ,C,V ðtÞÞ � PðC∣S,TÞ

= log
PðrðtÞ∣S= + 1,T = + 1,C = + 1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= + 1,T = + 1,C = � 1,V ðtÞÞ � Pe=2 +PðrðtÞ∣S= � 1,T = � 1,C = + 1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= � 1,T = � 1,C = � 1,V ðtÞÞ � Pe=2
PðrðtÞ∣S= + 1,T = � 1,C = � 1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= + 1,T = � 1,C = + 1,V ðtÞÞ � Pe=2 +PðrðtÞ∣S= � 1,T = + 1,C = � 1,V ðtÞÞ � Pc=2 +PðrðtÞ∣S= � 1,T = + 1,C = + 1,V ðtÞÞ � Pe=2

= log

Qn
i = 1

PðriðtÞ∣S= + 1,T = + 1,C = + 1,V ðtÞÞ � Pc=2 +
Qn
i = 1

PðriðtÞ∣S= + 1,T = + 1,C = � 1,V ðtÞÞ � Pe=2 +
Qn
i= 1

PðriðtÞ∣S= � 1,T = � 1,C = + 1,V ðtÞÞ � Pc=2 +
Qn
i = 1

PðriðtÞ∣S= � 1,T = � 1,C = � 1,V ðtÞÞ � Pe=2
Qn
i = 1

PðriðtÞ∣S= + 1,T = � 1,C = � 1,V ðtÞÞ � Pc=2 +
Qn
i = 1

PðriðtÞ∣S= + 1,T = � 1,C = + 1,V ðtÞÞ � Pe=2 +
Qn
i = 1

PðriðtÞ∣S= � 1,T = + 1,C = � 1,V ðtÞÞ � Pc=2 +
Qn
i = 1

PðriðtÞ∣S= � 1,T = + 1,C = + 1,V ðtÞÞ � Pe=2

ð16Þ

Article https://doi.org/10.1038/s41467-023-37804-2

Nature Communications |         (2023) 14:2121 23

https://github.com/cjlin1/libsvm
https://github.com/cjlin1/libsvm


decoding method for the real imaging data as described above. A
total of 104 trials were simulated 104 times for each set of free
parameters to estimate the mean and s.e.m. of the decoding
accuracy.

Analyses conditioned on the cue information
To evaluate the ratio of information for the sample cue vs. test
cue across individual cells, the two types of information repre-
sented in the cartesian coordinates (Figs. 3g, 4h, 5h) were con-
verted to polar coordinates (Figs. 3h-n, 4i–k, 5i–m). For the
analyses that are conditioned on the polar angle (Figs. 3h-n, 4i–k,
5i–m, 6b–d, Supplementary Figs. 5e–k, 5o, 6d, 8f–h, 9, 11), cells
with zero or noise-level information (|logLR| < ϵ) were not
assigned an angle because their angle could not be reliably esti-
mated. The noise level ϵ was set to 0.01, which approximates the
chance-level information (logLR = 0.012 for V1, 0.004 for RSC,
and 0.003 for MM) inferred for each cortical area by one standard
deviation of the test cue information averaged across the last 1 s
(30 frames) in the sample segment (i.e., prior to the appearance
of the test cue). Because the test cue has not been presented in
the sample cue segment, any test cue information is expected to
be noise and thus is a sensible estimate of our noise level. We
verified that the results did not qualitatively change even when
we varied ϵ in the range of logLR = 0.005–0.02 or used the area-
specific chance value as ϵ for each area. The skewness of the angle
distribution of cells was calculated without cells with extreme
angles (the highest and lowest 1% of cells) because the skewness
is sensitive to outliers (Fig. 3h). To show the angle distribution of
cells, histograms were created by discretizing the angles into 7
bins (Figs. 3i, 4i, 5i, Supplementary Figs. 5f, 5o, 6d, 8f). Cells with
noise-level information were not categorized into these bins, but
counted towards the total number of cells to calculate the frac-
tions across the bins. Bins for cells with only sample cue infor-
mation or test cue information (θ = 0° and θ = 90°) included cells
within a chance-level deviation from the two axes. For the ana-
lyses of normalized activity (Fig. 3j, Supplementary Fig. 5g, i) and
population information (Fig. 6, Supplementary Figs. 9d, 11), cells
in the bins for θ = 0˚ and θ = 90˚ with less than the chance-level
magnitude of XOR information (Figs. 3i, 4i correct trials, 5i) were
defined to have pure selectivity to the sample cue and test cue,
respectively, whereas cells with 15° ≤ θ < 75˚ (Figs. 3g, 4h correct
trials, 5h) were defined to have mixed selectivity. Similarly, pure
XOR selective cells were defined to have XOR information greater
than logLR of 0.01 and less than the chance-level magnitude of
the sample and test cue information (Supplementary Fig. 5l, m).

Comparison of XOR information for correct vs. error trials
conditioned on the sample cue information
We tested whether XOR information between correct and error trials
was different conditioned on the same amount of preexisting sample
cue information (Fig. 4l, Supplementary Fig. 8i). Trials were binned
according to their sample cue information during the last 0.35 s in the
delay segment (bin size = 0.01 logLR). The mean XOR information for
correct and error trials was calculated by averaging over trials within a
bin, IfXOR,corg =

1
Nc

PNc
i Ii,fXOR,corg and IfXOR,errg =

1
Ne

PNe
j Ij,fXOR,errg, where

Nc and Ne are the number of correct and error trials within the bin
(combined across sessions), respectively; Ii,fXOR,corg and Ij,fXOR,errg are
the mean XOR information across all cells in a session for the i-th
correct and j-th error trials within the bin, respectively. IfXOR,corg and
IfXOR,errg were computed 104 times by bootstrapping on trials, and the
statistical significance of their difference was tested against a null
hypothesis IfXOR,corg = IfXOR,errg. For comparison of two areas (A and B),
we tested whether area A showed a larger difference in XOR infor-
mation between correct vs. error trials than area B. ΔIfXORg = IfXOR,errg �
IfXOR,corg was computed for the two areas A and B, denoted as ΔIA,fXORg

and ΔIB,fXORg. The statistical significance of their difference was tested
against a null hypothesisΔIA,fXORg =ΔIB,fXORg bybootstrapping on trials.

Normalization of activity across trial types
We evaluated the distribution of activity across the four trial types
in individual cells (Figs. 3j, 4j, 5j, k, Supplementary Figs. 5g–i, 8g).
For each cell, the mean activity on correct trials was calculated for
each of the four trial types: r = [rB/BW, rB/WB, rW/BW, rW/WB], where rX/Y
denotes the mean deconvolved dF/F for the trial type with X sample
cue and Y test cue. We normalized the sum of the activity across
the trial types to one by multiplying r by the normalization factor
k = 1/(rB/BW + rB/WB + rW/BW + rW/WB). The trial type associated with
the highest activity was defined to have a preferred sample cue and
preferred test cue (Fig. 3l). With respect to this trial type, the other
three trial types had preferred or unpreferred cues (Fig. 3l). The
normalized activity for the four trial types were sorted according to
these cue preferences and averaged across cells with each type of
selectivity. To cross-validate the cue preferences, for each trial type,
the activity in a half of trials was used to determine the cue pre-
ference of the cell and the activity in the other half of trials were
sorted by the cue preference and averaged across cells. To compare
the activity between correct and error trials, the mean activity on
error trials was sorted by the preferred sample and test cues
determined on correct trials and scaled by the normalization factor
k calculated on correct trials (Fig. 4j, Supplementary Fig. 8g).

Nonlinearity index
For evaluation of nonlinear mixing of information (or nonlinear mixed
selectivity), the nonlinearity index was calculated for individual cells
(Figs. 3j–m, 4j, 5j–l, Supplementary Fig. 5j). If a cell has linear mixed
selectivity to sample cue and test cue, the activity differences asso-
ciatedwith thedifferent test cues are the same regardless of the sample
cue (rB/BW – rB/WB = rW/BW – rW/WB). In contrast, if a cell has nonlinear
mixed selectivity, these differences are not equal. To quantify the
degree of nonlinearity, the nonlinearity index (NI) was defined as:

NI = ∣ðkrB=BW�krB=WBÞ � ðkrW=BW�krW=WBÞ∣ ð17Þ

where k = 1/(rB/BW+ rB/WB + rW/BW + rW/WB) was set for each cell to nor-
malize the sum of activity across the four trial types to one. Theore-
tically, cells that showed no trial type selectivity, pure selectivity, or
linear mixed selectivity should have an index value of 0. However, the
chance level index was ~0.2, as determined by shuffling trial identities
(Fig. 3m). The reason for thenon-zero chance level is because the index
takes the absolute value, and thus any noise will show up as a positive-
valued index. The maximum index of 1 was assigned to cells that
showed no activity for left-choice trials (rB/BW=0 and rW/WB =0) or no
activity for right-choice trials (rB/WB = 0 and rW/BW = 0), including cells
that showed activity only on a single trial type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data are available upon request to the corresponding author. Source
data are provided with this paper.

Code availability
Customized code is available upon request to the corresponding
author.
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