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Performance efficient macromolecular
mechanics via sub-nanometer shape based
coarse graining

Alexander J. Bryer 1, Juan S. Rey1 & Juan R. Perilla 1

Dimensionality reduction via coarse grain modeling is a valuable tool in bio-
molecular research. For large assemblies, ultra coarse models are often
knowledge-based, relying on a priori information to parameterizemodels thus
hindering general predictive capability. Here, we present substantial advances
to the shape based coarse graining (SBCG) method, which we refer to as
SBCG2. SBCG2 utilizes a revitalized formulation of the topology representing
network which makes high-granularity modeling possible, preserving ato-
mistic details that maintain assembly characteristics. Further, we present a
method of granularity selection based on charge density Fourier Shell Corre-
lation and have additionally developed a refinement method to optimize,
adjust and validate high-granularity models. We demonstrate our approach
with the conical HIV-1 capsid and heteromultimeric cofilin-2 bound actin
filaments. Our approach is available in the Visual Molecular Dynamics (VMD)
software suite, and employs a CHARMM-compatible Hamiltonian that
enables high-performance simulation in the GPU-resident NAMD3 molecular
dynamics engine.

Molecular dynamics (MD) simulations evolve chemical systems over
time via integration of Newton’s equations of motion1. Since its
inception as an investigatory method, MD simulation has provided
high spatial and temporal resolution data of materials, surfaces, and
biomolecular systems that complement experimentally derived
information. A widely-recognized challenge in the domains of com-
putational biochemistry and physics, which has driven the develop-
ment of novel hardware2 and software alike, is the computational
complexity of biomolecular systems.

As early as 1975, dimensionally-reduced descriptions ofmolecular
systems have been employed to lessen the computational cost asso-
ciated with protein folding simulation3. This practice, referred to
generally as coarse-graining (CG), produces models that seek to
accurately represent chemical systems with far fewer degrees of
freedom than the 3(Natoms − 1) present at atomistic resolution (with
periodic boundary conditions)4. The scope and strategy of CG simu-
lations have been revolutionized many times over in the last ~50 years
and CG modeling has been successfully applied to gas, liquid, and

condensed phase systems5–10. While the geometric increase in com-
puting power of the late 20th century until the present has made
atomistic simulation more computationally tractable, CG modeling
has remained a staple of computational science. Considering our
growing understanding of climate change and the extreme energy
costs of supercomputing, the latter of which continues to balloonwith
ever-increasing computing power, we anticipate that dimensionality
reduction via CG modeling will remain a staple for decades to come.

In general, coarse-graining refers to mapping, by various criteria,
groups of atoms in R3 to a single position, or bead. In the present
context, the term granularity refers to the degree of reduction, i.e., the
coarseness of a given model, or how many atoms are mapped to a
single bead. Granularity depends on several factors and is, in general,
established by scientists based on the nature of their system and the
questions they seek to investigate.

On the high-granularity end of the spectrum, MARTINI11–13 is a
popular offering. Parameterized empirically, MARTINI maps four
atoms to a single bead. The MARTINI force field contains bond, angle,
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dihedral, and nonbonded interaction terms that govern model beha-
vior. On the low-granularity end of the spectrum, so-called ultra
coarse-grained (UCG) models map many atoms, sometimes entire
protein domains in biomolecular simulation, to a single bead14. Parti-
cularly adept atmodeling large assemblies15 aswell as processes of self-
assembly16–18, UCG simulations commonly employ large integration
time steps19 that increase sampling efficiency and aid the resolution of
long timescale behavior. The flexibility and efficiency of low-
granularity CG has enabled the study of flagellar motility20, as well as
large-scale DNA dynamics via alternate levels of theory such as worm-
like chain modeling21. Resulting from significant information loss due
to extreme coarseness and low-granularity, UCG models are often
knowledge-based; that is, the interactions among constituent beads
are often established explicitly to reproduce known behavior in the
absence of charge, hydrophobicity or other physical properties lost in
the reduction. Multiscale CG models22 and force fields, e.g., SIRAH23,
PACE24,25, and others, span the gap between low- and high-granularity
regimes and have proven especially useful in CG descriptions of aqu-
eous environments.

Construction and parameterization of CG models of varying
granularity have also motivated the usage of machine learning
(ML)26–30. The high dimensionality of molecular models, even coarse
models, lends utility to neural networks suited for high dimensional
optimization problems. The general paradigm of machine learning is
to evolve a set of numericalweights, given a particular input pattern, in
response to an objective function. Commonly, the optimization is
supervised. That is, the objective function is supplied with training
data, often experimental or high-resolution data, e.g., collected from
atomistic simulation, to evaluate and evolve network parameters. This
flexible approach has been successfully utilized in a variety of settings,
including generalized and systematic CG force field optimization26 and
CG modeling of water27. Derivation of CG force fields for dissipative
particle dynamics (DPD) has also been accomplished with a Bayesian
network29, another supervised scheme employing Bayesian inference
for parameter optimization in the absence of a fully-realized objective
function. A specific class of models, generative adversarial networks
(GANs), employ competing prediction networks in a zero-sum game
and learn to reproduce training data through optimization. GANs
represent a semi- or weakly-supervised paradigm and have been suc-
cessfully applied to the derivation of CG models28. Another hybrid
architecture permitting weak supervision is the graph neural network
(GNN), and this has also been productively utilized to optimize CG
forcefields30. Due to the dependenceof supervised learning on robust,
unbiased, and voluminous training data, unsupervised learning is an
attractive strategy for a variety of problems.

A separate class of analytical methods for deriving CG potentials
from atomistic data has also been developed. These frameworks, built
on numerical optimization, have found significant utility at large
scales. Approaches such as Lennard-Jones (LJ) static potential match-
ing employ numerical optimization to define the LJ interaction
potential of CG beads based on an atomistic force field31. Other tech-
niques, such as force matching and Boltzmann inversion, have been
successfully utilized to derive force field terms in numerous CG con-
texts, ranging from organic polymers32 to meso and multiscale bio-
molecular assemblies22,32–34. The relative entropy approach is an
alternative optimization method that is additionally able to quantify
the error of a CG model relative to a model built from the first
principles35. Similar to unsupervised learning methods, analytical
approaches to deriving CG potentials have low dependence on high-
resolution data compared to supervised learning via, e.g., a convolu-
tional neural network. These methods are well-suited for the efficient
parameterization of macromolecular complexes.

The criteria that a CG reduction employs to yield models with
particular granularities are often defined empirically. For example, a
scientist who aims to simulate a viral capsid, encompassing tens of

millions of atoms, may elect to employ a CG approximation, and then
establish only one or two CG beads per capsid subunit based on
information such as the presence of independently-folded protein
domains and experimentally derived structures36,37. While serviceable
to the foundational goals of the CG effort, such models suffer from
model-dependent realism, and thus their predictive capabilities are
contextually limited.

A desirable quality of CG modeling is transferability, i.e., the
readiness of the CG reduction to be applied to other structures and
systems while retaining general predictive potential31,38. To satisfy this
requirement, the CG reduction should be algorithmic and thus pre-
dictable. Further, the reduction should retain enough information
about the atomistic input to faithfully reproduce its natural properties,
such as multimeric assembly characteristics, without the need for
explicit parameterization.

In response to these needs, we present a significant revitalization
to the formulation and implementation of the legacy shape-based
coarse-graining (SBCG) approach39–43—introducedmore than a decade
ago—resulting in a state-of-the-art SBCG methodology that is highly
transferable, and faithfully reproduces the atomistic behavior of large
biomolecular assemblies. Specifically, in contrast to the legacy SBCG
implementation: (1) we introduced conditions to the neural network
that overcome hard limits intrinsic to SBCG granularity; (2) we devel-
oped a metric to establish the effective resolution of a particular
granularity selection; (3) we developed a systematic iterative refine-
ment of coarse-grained bond and angle parameters; and (4) we
established a methodology to determine the parameters of the inte-
grator to perform SBCG molecular dynamics simulations in modern
computing architectures including graphical processing units (GPUs).
Overall, we refer to the next-generation coarse-graining methodology
as SBCG2. In the following sections, we describe SBCG2 in detail,
showing amethodology that enables SBCG2 to access high-granularity
regimes, and that resulting models conform to atomistic charge den-
sity profiles within sub-nanometer resolution. As mentioned before,
we describe the derivation of a methodology for bond and angle
parameter optimization via iterative Boltzmann inversion and discuss
considerations for its deployment in high-granularity, sub-nanometer
use-cases. We demonstrate the utility of the SBCG2 method via
application to three unique protein structures, comprising two mac-
romolecular biological assemblies: human cofilin-2 bound to actin
filaments44 and the full-scale HIV-1 conical capsid. In addition, we show
the use of SBCG2 to probe the mechanoelastic properties of the HIV-1
capsid.

Results
As mentioned in the introduction, a major goal of our coarse-graining
endeavor is establishing amethodology that is transferable. Therefore,
to determine the transferability of the SBCG2methodology, we sought
two unique molecular applications with the goal of simulating both
homo- and heteromultimeric assemblies: HIV-1 CA, assembled into a
conical capsid (Fig. 1) and cofilin-2 bound to actin filaments (Fig. 2).
Direct application of the legacy SBCG implementation to these sys-
tems is hindered by hard limits in the number of beads, the lack of a
metric to assess the inaccuracy of the CG mapping, and the lack of
knowledge on how to determine accurate and optimal simulation
parameters in modern architectures. The aforementioned
SBCG2 systems were parameterized and subsequently subjected to
finite-temperature molecular dynamics simulations using the fully
GPU-resident NAMD3 molecular dynamics engine45 as descri-
bed below.

Our first test system consisted of the HIV-1 capsid, a system we
have characterized at atomistic resolution46 (EMDB 13422 and 13423).
A full-scale conical capsid bound to the assembly co-factor inositol
hexakisphosphate46,47 (Fig. 1b, c and Supplementary Fig. 5) was built
from individual SBCG2-based HIV-1 CA monomers (Fig. 1a). The
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Fig. 1 | Shape-based coarse-grained 2 (SBCG2) HIV-1 capsid. a View of the HIV-1
CA monomer, left, colored by domain. On the right, three corresponding SBCG2
models of HIV-1 CA with increasing granularity. Granularity, in this case, refers to
the number of beads employed to model the structure. b Full view of the SBCG2
HIV-1 conical capsid, shown from two perspectives. c Clipped view of the SBCG2
HIV-1 conical capsid, shown from two perspectives. For panels b and c, protein is
shown as vdW beads, with the CA amino-terminal domains colored tan and the CA
carboxy-terminal domains colored blue. IP6 beads are shown as orange vdW
spheres46,47. d, e Performance benchmarks with NAMD345, simulating the HIV-1
conical capsid shown in panels c and d. Benchmarkswere performedwith one CPU
per GPU employed. For both benchmarks, an identical configuration was

employed, and only the usage of PME for long-range electrostatics varied. The time
step employed was 48 fs per step; Langevin γ was set to 2.0 ps−1; bonded interac-
tions were evaluated every time step and nonbonded interactions were evaluated
every other time step. d NAMD3 GPU benchmarks, utilizing NVIDIA V100s, with
PME on. Peakperformanceof nearly 300 ns per day represents a threefold speedup
over peak CPU-only simulation performance, which employed as many as ten
compute nodes (Supplementary Fig. 2). e NAMD3 GPU benchmarks, utilizing NVI-
DIA V100s, with PME off. Remarkably, for three and four GPUs per simulation, we
exceed one microsecond per day simulation performance (dashed line). Bench-
marks reported are the mean value of the six benchmark metrics reported by
NAMD345 for each simulation.
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complete SBCG2 model of the conical capsid is described by 340,000
beads, representing a larger than 200-fold reduction in particles
compared to the atomistic conical capsid of the same morphology
(~77,000,000 atoms46). Molecular dynamics simulations of the SBCG2
model achieved greater than 1 µs per day sampling performance

without particle mesh Ewald (PME)-based electrostatic evaluation48,
andwith PMEenabled, the simulations sustained nearly 300 ns per day
(Fig. 1d, e) performance. The latter performance represents a nearly
threefold increase in peak performance over a CPU-only simulation
employing ten compute nodes (Supplementary Fig. 2). For atomistic
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Fig. 2 | SBCG2 heteromultimeric cofilin-2 on actin filaments. a Left, atomistic
surface representation of globular actin (white) bound to cofilin-2 (red). Right,
corresponding SBCG2 representations of actin and cofilin-2, are shown super-
imposedwith the atomisticmolecular surfaces.bA single turnof the SBCG2 cofilin-
2-bound actin filament, shown from two perspectives. One turn corresponds to a
length of 31 nm. c The SBCG2 cofilin-2-bound actin filament is superimposed with
the atomistic molecular surface, shown transparently. The shape of the atomistic

filament is perfectly represented by the coarse model. d NAMD3 GPU benchmarks,
utilizing NVIDIA V100s with PME on. e NAMD3 GPU benchmarks, utilizing NVIDIA
V100s, with PMEoff. For panelsd and e, we performedbenchmark simulationswith
3-, 9-, and 54-turn filaments to assess load-balancing and scaling with respect to
system size. A legend is provided on the right. Benchmarks reported are the mean
value of the six benchmark metrics reported by NAMD345 for each simulation.
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HIV-1 capsids, the capsid protein assembly equilibrates and reaches a
stable configuration on the order of hundreds of nanoseconds49.
Considering the latter, and with the 300 nanoseconds per day for the
SBCG2 HIV-1 capsid, the time scales required for equilibration can be
achieved in amatter of days on commodity hardware. Additionally, the
performance of the SBCG2 conical capsid system scales across multi-
pleNVIDIAV100/A100GPUs andgreatly broadens temporal resolution
compared withmolecular sampling on parallel CPU clusters (Fig. 1d, e,
Supplementary Fig. 2, and Supplementary Table 1).

The second model used in the present work consisted of cofilin-2
bound to actin filaments44 (PDB 7U8K). This system represents a sig-
nificantly different protein assembly compared to the conical capsid,
at the physical and biochemical levels but also at the computational
level. Spatial decomposition is an important aspect of parallel mole-
cular dynamics simulation, namely in the evaluation of nonbonded
electrostatics, where the spatial domain is discretized over multiple
processing entities. After employing our framework to actin and
cofilin-2 (Fig. 2a), we built heteromultimeric cofilin-2-bound actin
filaments (Fig. 2b, c) of varying length ranging from a single turn
(31 nm, 7000 beads) to a filament 54 turns in length (1.6μm, 400,000
beads). Despite the spatial challenge presented by this system, where
the ratio of length to the cross-sectional area is extremely large, we
consistently exceeded 1 µs per day simulation performance with our
three-turn filament system with PME-based electrostatic evaluation
(Fig. 2d), but with no scaling regardless of filament size. Forgoing PME,
we not only approach 4 microseconds per day performance, but we
once again observe scaling across multiple GPUs (Fig. 2e). Optimizing
the domain decomposition for PME-based evaluation is a future target
of this work.

Beyond establishing the performance of SBCG2 macromolecular
assemblies, we analyzed our filamentous protein and conical capsid
systems to establish their stability and, therefore, the efficacy of our
approach. Importantly, for both systems, we specify no intermolecular,
or otherwise empirical, interactions to maintain stability and assembly
morphology. Figure 3a, b shows the nine-turn (280nm, 69,000 beads)
cofilin-2 boundactinfilament at two timepoints. The left-handedhelical
character of filamentous actin is a defining morphological feature
conferring biochemical significance50, which serves as a marker for
SBCG2 assembly stability. The diagram shown in Fig. 3c represents a
simplified view of the helicity of the filament at both the initial and final
time points, colored accordingly, that enables visual inspection of
helical character. We show that the filamentous quality, helical twist,
and rise, are well-maintained without explicit steps to do so during
model construction andoptimization to enforce assemblymorphology.
Figure 3d shows a pairwise RMSD matrix for a 2 µs trajectory of the
three-turn filament at 298K. This analysis computes the RMSDbetween
every possible pair of structures across the whole time series, and is
well-suited for comparing large assembly constructs which undergo
global fluctuations. Our analysis shows that the filament reaches global
stability, fluctuating within 5Å RMSD, after ~200ns.

The HIV-1 conical capsid is an irregularly shaped, closed fullerenic
shell. Similar to other retroviral capsids, the stability of the mature
capsidmanifests from intermolecular interfaces that are characterized
by hydrophobicity and complementary charges. Without any empiri-
cal interactions to maintain stability, our SBCG2 capsids showmarked
structural stability. Locally, we quantify the stability of capsomers
(hexamers and pentamers) via RMSD against a single reference cap-
somer, hexamer, or pentamer, and plot the mean and standard
deviation of RMSD values versus time (Fig. 3e). Over ~20 ns of com-
pletely unrestrained sampling at 298K, we observe capsomers
achieving structural stability and converging to the reference cap-
somer (hexamer or pentamer) within 3Å agreement. We employed
several analyses of global behavior and stability. Figure 3f shows a
trace of the capsid height over 500ns of trajectory, computed by
taking the minimum and maximum coordinates along the capsid’s

principal axis of inertia. We see a small reduction in height over
approximately 300 ns, then convergence, and fluctuations thereafter
of <1Å. The latter is consistent with what has been reported for a full-
scale, atomistic capsid49. Utilizing 900 ns of sampling at 298K, we
compared every pair of frames to construct a pairwise RMSD matrix
(Fig. 3g). This analysis computes the RMSD between entire SBCG2
capsid structures, with no omissions, showing that after ~300ns, the
capsid achieves consistent structural agreement <5Å.

The adaptability and utility of SBCG2 modeling enables applica-
tions to mechanical stress and failure simulations of molecular con-
tainers via simulated atomic force microscopy (AFM). Previously,
nanoindentation of low-granularity HBV capsids, constructed using
the legacy SBCGmethod, was performed via constant velocity-steered
molecular dynamics (SMD)40,42. More recently, utilizing Go models51,
nanoindentation simulations were employed to determine the mole-
cular details regarding the stability of the Norwalk virus capsid10. As a
proof-of-concept for applications of our SBCG2 methodology that
enables high-granularity modeling, we prepared simulations of our
high-granularity HIV-1 conical capsid and subjected it to both
nanoindentation and internal rupture. Using a spherical probe com-
prised of inert beads, we pulled the latter at a constant velocity,
employing a rate of 0.00046Å/48 fs time step for internal rupture
(Fig. 4a), and a tenfold faster rate of 0.0046Å/48 fs time step for
nanoindentation (Fig. 4b). Remarkably, our internal rupture simula-
tions and themeasured force vs. displacement curve (Fig. 4c) show the
evolution of forces across several viscoelastic deformation regimes.
Snapshots in Fig. 4a show successive states, where the deformation
transits through elastic, plastic, and mechanical failure regimes. With
the latter revealing complete failure as the spherical probe punches
through the capsid surface. For the nanoindentation simulation
(Fig. 4b), we were interested in observing recoverable deformation of
the capsid surface. Using a faster velocity, we pulled the probe to
impose a shallow indent on the capsid surface, then retracted the
probe away from the surface. Interestingly, the capsid fully recovers its
original shape over a relatively short interval of 20 ns (Movie M4).
While the probe velocity in the latter simulation is especially high,
leading to forces in excess of 50 nano-Newtons (Fig. 4d), these simu-
lations act as a proof-of-concept to what is possible using our SBCG2
methodology. As our understanding of the role of virus capsids con-
tinues to grow, as well as the forces and physical stresses imposed on
capsids throughout the infection cycle, these sorts of structural per-
turbation simulations will provide valuable information on their
mechanical behavior.

The high-granularity SBCG2 approach utilizes an unsupervised
learning technique based on a topology representing network (TRN)39.
By introducing exclusivity conditions during the initialization of neu-
rons, we enable highly granular molecular modeling that was unac-
hievable with the legacy implementation; therefore, requiring further
steps to select and validate the model granularity. In addition, high-
granularity models require the removal of overlapping degrees of
freedom and parameterization of SBCG2 structures to match all-atom
behavior. Altogether, SBCG2 suitably models large-scale macro-
molecules with remarkable simulation performance and greatly
improves upon the legacy SBCG method, enabling new science. We
present thesedevelopments in the subsections below.Weelaborate on
the complete SBCG2 modeling process, from molecular construction
based on the TRN, including exclusivity conditions, to configuring
high-performance simulations, in the Methods section.

Granularity selection via chargedensity Fourier shell correlation
We aimed to utilize a quantitative metric to motivate and establish a
basis for selecting model granularity. To this end, we employ Fourier
shell correlation (FSC)52 between two charge density grids, one derived
from the atomistic reference structure and the other resulting from
SBCG2 mapping.
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Computing charge densities. Charge densities are computed
according to the charges on themolecular models, both atomistic and
SBCG2. For the present study, we employ the VolMap plugin in VMD53.
First, the structures are cast to a 3D voxel grid, with a grid spacing of
0.5Å. Each atom in the structure is modeled as a normalized Gaussian
distribution, with distribution widths equal to the van der Waals radii
of the atoms or beads. The Gaussians in the grid are then additively
distributed. The resultant grids store charge density in 3D space,which

are amenable to FSC analysis.We employ the latter to gauge the fitness
of our SBCG2 models to the atomistic reference from which it was
derived.

Fourier shell correlation. Fourier shell correlation (FSC) is a
commonly-employed method of measuring model-to-map fitness,
map-to-map fitness, and other correlation quantities in electron
microscopy modeling52,54,55. The charge density grid represents a
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discretized real-space array f(n) where the domain n = (n1, n2, n3) cor-
responds to the Cartesian axes, andwhere each voxel in the grid stores
a charge value.

In order to measure the correlation between two charge density
grids, their structure factors F(r) are first computed from the three-
dimensional discrete Fourier transform (DFT)56,57. For the spatial
domain n = (n1, n2, n3) of extentN = (N1, N2, N3), the DFT convolves f(n)
into the reciprocal spatial frequency domain r (Å−1) as

FðrÞ=
XN�1

n =0

f ðnÞe�2πir n
Nð Þ, ð1Þ

where n
N = n1

N1
, n2
N2

, n3
N3

� �
and where

PN�1
n =0 is the nested summa-

tion
PN1�1

n1 = 0

PN2�1
n2 =0

PN3�1
n3 =0

.
Following convolution, the two charge density grids, denoted as

F1(r) and F2(r), are subjected to FSC analysis. FSC measures a normal-
ized cross-correlation histogram, denoted here as ζ, across bins of
increasing spatial frequency (visualized in Supplementary Fig. 9) as

ζ ðrÞ=
P

ri2rF1ðriÞ � F *
2ðriÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ri2r ∣F1ðriÞ∣2 �
P

ri2r ∣F2ðriÞ∣2
q , ð2Þ

Fig. 3 | Stability of full-scale SBCG2multimeric assemblies. a–dCofilin-2 on actin
filaments. a Initial state of the nine-turn cofilin-2-bound actin filament model,
~250 nm in length. b The nine-turn filament from panel a after unrestrained energy
minimization, thermalization, equilibration, and ~200ns of sampling at 298K.
c Visualization of the nine-turn filament’s helicity computed at two time points
(panels a and b). For each cofilin-2 and actin subunit comprising the assembly, the
center ofmass is computed and a line is drawn to its sequential neighbor along the
filament’s length. The inner and outer double helices represent actin and cofilin-2,
respectively. Colors correspond to the states in panels a and b. The helical char-
acter of the filament is well-maintained throughout molecular sampling. d Pairwise
RMSD heatmap of the entire three-turn filament (colored according to the legend
provided). The analysis compares every pair of structures from a 2 µs SBCG2 tra-
jectory, yielding amatrix where every element is the RMSDbetween two three-turn
filaments. The filament achieves stability (<5Å RMSD) after roughly 200 ns.

e–g HIV-1 conical capsid. e Pentamer and hexamer RMSD analysis from the full-
scale SBCG2 conical capsid. For an 80ns equilibrium sampling trajectory, each
capsomer was aligned to a single reference. The RMSD of each capsomer from the
reference hexamer or pentamer was computed and the mean (orange) and stan-
darddeviation (green)was plotted across the trajectory. After approximately 20 ns,
both hexamers and pentamers conform to the reference capsomer within 3Å
agreement. fHeight time series of the conical capsid over 500 ns. The inset diagram
illustrates the determination of height via the capsid’s principal axis of inertia. The
capsid’s height converges after approximately 300ns, and fluctuations <1Å are
seen thereafter. g Pairwise RMSD heatmap of the entire conical capsid (colored
according to the legend provided). The analysis compares every pair of structures
froma 900ns SBCG2 trajectory, yielding amatrix where every element is the RMSD
between two complete capsids. The analysis indicates that the capsid achieves
stability (<5Å RMSD) after roughly 300ns.
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Fig. 4 | Application of shape-based coarse-graining 2 (SBCG2) to mechanical
stress simulations of the HIV-1 conical capsid via constant velocity-steered
molecular dynamics. a Snapshots of the capsid during internal rupture. First
snapshot, where an internally-bound sphere of inert particles makes contact with
the capsid surface and begins to deform the molecular surface. This deformation
resides within the elastic deformation regime. The next snapshot in the sequence
shows the beginnings of mechanical failure, once the capsid has deformed to an
extent where fractures begin to manifest. The final snapshot shows the mechanical
failure fully manifest, as the internally-bound probe punches through the capsid
surface. b Snapshots of the capsid during nanoindentation. The initial state of the
capsid, immediately prior to probe contact. The next snapshot shows the point of

maximum deformation. Successively, retraction of the probe begins. In the final
snapshot, the fully-recovered capsid is shown and the probe is out of view. c Force
vs. Z (displacement) profile collected during internal rupture. This curve shows the
evolution of forces through several viscoelastic regimes. d Force vs. Z (displace-
ment) profile collected during nanoindentation, which utilized a tenfold increase in
probe velocity. This curve is much smoother and displays a higher magnitude of
forces acting on the probe, demonstrating the effect of velocity when performing
suchsimulations. It shouldbenoted that for bothproof-of-concept simulations, the
employed velocities, and therefore the measured forces, are significantly higher
than what would be resolved with experimental AFM.
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where F *
2ðriÞ is the complex conjugate of F2(ri). Following the calcula-

tion of ζ, we evaluate the histogram at specific correlation values as ζn,
where n is a real number∈ [0, 1], to derive a model resolution. A value
of n = 0 indicates that the structure factors are entirely uncorrelated,
whereas n = 1 indicates a perfect correlationbetween structure factors.
Typically, the latter values of n are the so-called gold (0.143) and half
(0.500) metrics. The assertion of resolution based on FSC will be
elaborated in the following section.

Calculation of FSC in our SBCG2 methodology required the
implementation of a GPU-accelerated FSC code within VMD, written in
C++ and NVIDIA’s cuFFT library57. The new FSC implementation is
native to VMD and is separate from the CGBuilder plugin. This routine
is invoked from VMD’s Tcl interpreter with the commandmeasure fsc.
Our approach begins with an optional resampling step, then two out-
of-place forward transforms of the input charge density grids, which
are performed on available GPU hardware (eq. (1)). Next, correlation
within each spatial frequency bin ri is computed (eq. (2)). Returned is a
two-columnarray, containing spatial frequency vs. FSC. The number of
radial bins Nbins is determined as

Nbins =
N1

2w
, ð3Þ

where N1 is the largest and slowest-changing spatial extent, strided in
memory, and wherew is the Fourier shell width. The latter is set to the
physical width of a single voxel in the input map, in units Å.

FSC calculation requires the spatial extent, voxel counts along
each dimension, of the all-atom reference density and the coarse-
grained charge densitymaps tobeequal. Therefore, if the extent of the
coarse-grained charge density map is different than the extent of the
all-atom density map, the coarse-grain density map is resampled to fit
the dimensions of the reference density.

For a given volumetricmapof voxel countsN1,N2,N3, eachvoxel is
identified by its three-dimensional indices, v!= ðv1, v2, v3Þ with
0 ≤ v ≤Ni∀ i∈ 1, 2, 3. The voxel coordinate v! is related to the real-
space Cartesian x!= ðx, y, zÞ coordinate representations by the 4 × 4
transformation matrix M as

x!= ðx, y, z, 1Þ=M � v!=

Lx
N1�1 0 0 Cx

0
Ly

N2�1 0 Cy

0 0 Lz
N3�1 Cz

0 0 0 1

0
BBBBB@

1
CCCCCA �

v1
v2
v3
1

0
BBB@

1
CCCA, ð4Þ

where Lx, Ly, Lz are the physical extents of the map, in units Å, and Cx,
Cy, Cz is the origin, also in units Å. Consequently, the inverse transform
can be applied to yield a voxel coordinate as v!=M�1 � x!. Note that
the voxel width, w, of the map is encoded in the L terms,
since Ld =w ⋅Nd.

For our resampling procedure, each voxel coordinate
v!aa = ðvaa,1, vaa,2, vaa,3Þ in the all-atom charge density map is trans-
formed into its real-space (Å) Cartesian representation x!= ðx, y, zÞ via
the transformation matrix Maa of the all-atom map: x!=Maa � v!aa.
Then, the voxel element in the coarse-grained map that contains this
Cartesian coordinate is calculated using the inverse transformation
matrix M�1

cg for the coarse-grained map: v!cg =M
�1
cg � x!. This voxel

element in the coarse-grained map v!cg is then used as the center for
trilinear interpolation. In cases where the computed Cartesian coor-
dinate does not map to a voxel index in the coarse-grained map, a
charge value of zero is assigned. The resulting interpolated charges are
then stored in the resampled map with the same spatial extent as the
all-atom map, as required for FSC calculation. Note that Maa and Mcg

are defined equivalently (eq. (4)) but have different spatial extents and
centers prior to resampling; the subscripts reflect this point.

To validate our FSC implementation, we performed a set of FSC
analyses using our implementation measure fsc and the widely-used
EMAN2 software56 (Supplementary Fig. 10). All tests utilized the same
input densities, as well as a pre-processing resampling step as dis-
cussed above. For the EMAN2 test cases, we utilized UCSF Chimera58

for resampling, whereas themeasure fsc test cases utilized our built-in,
VMD-native resampling procedure described above (eq. (4)). The
results show that our GPU-accelerated measure fsc method yields
identical results to EMAN2, with root-mean-square error on the order
of 10−7 and 10−8 (Supplementary Fig. 10), well withinfloating point error
tolerance. Our C++ implementation is high-performance and con-
veniently invoked directly within a VMD session, requiring no addi-
tional software or libraries.

Model selection based on charge density correlation. To assess the
benefits of increased granularity with respect to accurately repre-
senting an atomistic charge density, we utilized our HIV-1 CA (Fig. 5a,
b), actin (Fig. 5c, d), and cofilin-2 (Fig. 5e, f) structures and computed
sets of SBCG2 models ranging from low to high granularity. The ato-
mistic reference and each of the SBCG2 models were subjected to
charge density calculation as outlined above, with special care taken to
ensure that the vanderWaals radii of the SBCG2modelswere properly
asserted before casting charges to the 3D voxel grid (Fig. 2c), since
charge density depends on vdW radius (see Computing charge
densities).

To interpret the analysis, we employ the ζ0.143 and ζ0.500 metrics
(Fig. 5b, d, f), commonly used to estimate the resolution of particle
reconstructions from electron microscopy. Metrics to determine
reconstruction resolution are a subject of significant study and
debate59,60. In general, the FSC analysis considers amplitudes in
structure factors at increasing radii of spatial frequency or inverse
resolution (Å−1)55,61. The point along the spatial frequency axis at which
the correlation of two structure factors diminishes steeply is used for
resolution determination62. The two metrics, ζ0.143 and ζ0.500, have
each been argued as effective methods of determining resolution, and
additional analyses, such as the ResLog plot, have been put forth to
ensure accurate particle alignment, free of aberrant correlation60. In
our case, we are assessing the correlation among two charge density
grids, where charges are interpolated from structures with differing
granularity.

Our motivation for utilizing FSC is to assert an optimal granu-
larity for representing the reference charge density with <10 Å cor-
relation, while adding as few degrees of freedom as possible and
thus limiting the computational expense of subsequent simulations.
Trivially, a CG model with one representative bead per atom, and
thus a one-to-one mapping of charge to each bead, would be per-
fectly correlated. Our results indicate that SBCG2 models for HIV-1
CA fall below 10 Å resolution in excess of 210 beads, employing the
more stringent ζ0.500 metric. For actin, the first sub-nanometer
model in the series was found to consist of 450 beads, and for cofilin-
2, 195 beads. Supplementary Figs. 11, 12, 13 show additional details of
this analysis for CA, actin, and cofilin-2, respectively, with examples
of SBCG charge densities and additional FSC vs. spatial frequency
traces.

Based on our analysis and subsequent determination of a corre-
lation of <10Å, we created a model of HIV-1 CA containing 221 beads,
representing one bead per protein residue for the CA sequence uti-
lized. For actin and cofilin, we chose 500 and 270-bead models,
respectively, representing an approximately equal ratio of atoms to
beads for each structure. While we construct and optimize SBCG2
models separately, the latter choice was made in anticipation of
adjoining themodels to constitute the heteromultimeric assembly.We
then proceeded to the critical step of parameterizing the bond and
angle terms governing the model, which are essential for accurately
reproducing dynamics.

Article https://doi.org/10.1038/s41467-023-37801-5

Nature Communications |         (2023) 14:2014 8



Parameterizing sub-nanometer SBCG2 models
Parameterization of the SBCG2 bond and angle terms is accomplished
with Boltzmann inversion, which is a technique commonly
utilized40–43,63–65. Boltzmann inversion is employed to derive force
constants based onmean square displacement (MSD, eq. (6)) of bonds
and angles during all-atom simulation. For parameterizing HIV-1 CA,
we employed an all-atom simulation of an HIV-1 CA trimer of dimers
(Supplementary Fig. 6a), the latter constructed from six CA mono-
mers. While we parameterize only a single SBCG2 CA monomer, the
benefit of utilizing an assembly construct for inversion is threefold.
First, the aggregate sampling of the atomistic trajectory totals nearly
half a microsecond, 480ns; second, the corresponding SBCG2 trimer
of dimers (Supplementary Fig. 6b), simulated throughout iterative
refinement, provides ample opportunity for cross-validation
throughout the process; and third, to preserve the dynamical beha-
vior of the CA monomers (Supplementary Fig. 6c) in their assembly
environment given the state-dependence of Boltzmann inversion. For
actin and colifin-2, we utilized a similar approach, performing an all-
atom simulation of a single globular actin bound to one human cofilin-
2 protein44.

In the following subsections, the formulation of Boltzmann
inversion, the iterative refinement protocol (Fig. 6a, b), and the
necessary considerations for optimization of sub-nanometer struc-
tures, particularly the removal of overlapping degrees of freedom
(Fig. 6c), are discussed.

Boltzmann inversion fromatomistic simulation. Boltzmann inversion
derives force constants for bonds and angles, Kb and Ka, respectively,
according to

Kb,a =
kBT
2Db,a

ð5Þ

where

Db,a = r2b,a
� �� hrb,ai2, ð6Þ

andwhere rb and ra are themeasured bond and angle values. Units of Kb

and Ka are kcalmol ⋅Å−2 and kcalmol ⋅ rad. −2, respectively. kB is the
Boltzmannconstant andT is theabsolute temperature, in units ofKelvin.

After the initial derivation of bond and angle force constants from
the all-atom simulation, we performed an SBCG2 simulation with the
resulting parameters, and utilized Boltzmann inversion targeting the
SBCG2 trajectory as validation; we observed a terrible fit (Fig. 7 and
Supplementary Fig. 14a). This behavior of the Boltzmann inversion
method has been reported elsewhere42,64 and is a known short-coming
of this approach. The problem is in the assumption that each bond and
angle are independent. In reality, bonds and angles are highly coupled
throughout the structure and this is especially true in the sub-
nanometer SBCG2 regime. To remedy this, we employ an iterative
refinement protocol, based on the previous work64.

a b

1 nm

ζ0.500

ζ0.143

c d

1 nm

e f

1 nm

ζ0.500

ζ0.143

ζ0.500

ζ0.143

CA

actin

Fig. 5 | FSC analysis of SBCG2 granularity vs. effective charge density resolu-
tion. a Charge density of the all-atom reference structure of HIV-1 CA. Regions of
positive and negative charge density are colored blue and red, respectively.
b Effective charge density resolutions via FSC for models NumCG∈ [10, 250],
plotted with two metrics: ζ0.143 and ζ0.500, green and blue, respectively. The dotted
gray line represents a resolution of 1 nm, and the gray arrow indicates the first sub-
nanometer model in the series. The inset plot shows the FSC vs. spatial frequency

trace for HIV-1 CA with NumCG= 250. c Charge density of the all-atom reference
structure of actin and d corresponding effective charge density analysis for actin
models with NumCG∈ [10, 540]. The inset plot corresponds to the FSC vs. spatial
frequency trace for actin with NumCG = 540. e Charge density of the all-atom
reference structure of cofilin-2 and f corresponding effective charge density ana-
lysis for cofilin-2models with NumCG∈ [10, 300]. The inset plot corresponds to the
FSC vs. spatial frequency trace for cofilin-2 with NumCG = 540.
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a b

c

Fig. 6 | Graphical overview of our SBCG2 model refinement protocol. a SBCG2
HIV-1 CA trimer of dimers, utilized for successive 20ns simulations during iterative
refinement. The N-terminal domain is colored tan, and the C-terminal domain is
colored blue. b The iterative parameter refinement procedure via Boltzmann
inversion. For one iteration, 20 ns of equilibrium sampling is collected at 298 K.
Next, bond and angle force constants are derived via Boltzmann inversion (eq. (5)).
Parametersderived from the SBCG2model simulation are then compared to the all-
atom reference parameters and are scaled by their error (eq. (7)). Finally, new bond

and angle parameters are written and employed for the succeeding refinement
iteration. c Graphical example of the pruning procedure employed in refining our
model. This example shows an SBCG2 structure of four beads enumerated 1
through 4 and four bonds a through d. Initially, angles are determined exhaustively
based on the bonded connectivity. For each bead, we rank its associated angle
parameters by their constants, Ka, and keep only the strongest parameter. This
example demonstrates that our algorithm permits two beads to share the same
force constant, if it is deemed the strongest for each bead.
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Iterative refinement. From refinement iteration i, the parameters for
the next iteration i + 1 are computed according to

Kb,i+ 1 =Kb,i �m Kb,aa � Kb,i

� �
, andKa,i+ 1 =Ka,i � n Ka,aa � Ka,i

� �
:

ð7Þ

Kb,aa andKa,aa are the bond and angle force constants derived from the
all-atom reference trajectory. The constants Kb,i and Ka,i are derived
fromBoltzmann inversionof 20ns SBCG2 simulations. Variablesm and
n are scaling constants and are treated as hyperparameters64.

Prior to deploying the above protocol, we performed a parameter
sweep to identify optimal m and n scaling parameters. The sweep
covered m and n∈ [0.1, 0.9] with a stride of 0.1 for each constant,
resulting in 81 separate SBCG2 simulations 20 ns in length. Inversion
was then applied to these trajectories to yield parameters, and the
improvement from the previous parameter set wasmeasured via root-
mean-square error (RMSE) (Supplementary Fig. 7).

With optimalm and n scaling constants identified, we performed
many iterations of refinement. After, it became clear that the para-
meters had improved, but converged to an unphysical state with the
poor fit (Movie M2). For all three of our structures, angle parameters
were particularly problematic. We determined that the problem is
caused by high connectivity, and, therefore redundant degrees of
freedom (Fig. 7b, e, g and Supplementary Fig. 14b, c).

Pruning redundant degrees of freedom. Supplementary Fig. 14
shows the analysis utilized to identify the cause of unphysical con-
vergence. For each angle parameter, comprised of three CG beads, we
analyzed the connectivity associatedwith the beads. Angle parameters
with thepoorestfitwere found to involve beadswith high connectivity.
Conversely, we found that angle parameters involving CG beads with
relatively few bonded terms were well-fit. Regions exemplary of the
latter are shaded with red and green, respectively, in Supplementary
Fig. 14c.

Further,we analyzed violations, i.e., deviations of the SBCG2 angle
vs. its all-atom reference value, and found that the behavior of a given
CG bead, and therefore its bond and angle parameters, is dominated
by its strongest connections; weak parameters are overpowered by
stronger, coupled parameters, and thus a violation is manifest. The
latter, coupled with regions of the topology containing many over-
lapping, redundant degrees of freedom, led to an untenable optimi-
zation problem. To remedy this, we collected for each CG bead
the angle parameters with which it is associated. For each bead, only
the strongest angle parameter, i.e., the parameter with the highest
force constant based on all-atom reference simulations, was retained.
We refer to this process as pruning (Fig. 6c).

Converged fit. Following the pruning of redundant angle parameters,
our optimization immediately converged to a better fit for all three of
our structures (Fig. 7c, f, h). While not scale-invariant, we employ root-
mean-square error (RMSE) as a progress indicator of the fitting. The
plots in Fig. 7 are annotated with the bond and angle RMSE for each of
our three structures, before and after pruning, quantifying how crucial
removing redundant degrees of freedom is. Prior to any sub-
nanometer SBCG2 parameter optimization endeavor, pruning should
be performed because the optimization, based on the present for-
mulation where bonds and angles are treated independently, is
otherwise untenable in high-granularity cases, as we have demon-
strated with three unique structures. Our pruning algorithm (Fig. 6) is
available for easy use within the CGBuilder plugin, distributed
with VMD53.

Overall, our SBCG2 methodology constitutes a next-generation
shaped-based coarse-graining procedure, for efficient simulation of
large biomolecular assemblies and have outlined the protocol for its
effective deployment. SBCG2 overcomes many of the limitations of its
predecessor legacy SBCG39–43, and includes a FSC method for granu-
larity selection and coarse-grained model force field parameter deri-
vation, as illustrated in Supplementary Fig. 1. In particular, SBCG2

Fig. 7 | SBCG2 bond and angle parameter optimization results for HIV-1 CA,
actin, and cofilin-2. a Monomeric HIV-1 CA all-atom structure, shown in cartoon
representation. b, c Corresponding bond and angle parameter fits following from
iterative Boltzmann inversion. The black traces show the atomistic bond and angle
parameter trace as computed via Boltzmann inversion from the all-atom reference
trajectory, and orange the SBCG2 bond and angle parameter trace via Boltzmann
inversion from the simulation corresponding to the final refinement iteration

bbeforepruning and c after pruning.dAtomistic surface representation of cofilin-2
bound to one turn of actin. e, f Actin bond and angle parameter fits following from
iterative Boltzmann inversion e before pruning and f after pruning. g, h Cofilin-2
bond and angle parameter fits following from iterative Boltzmann inversion
g before pruning and h after pruning. The root-mean-square error between the
SBCG2 bond and angle parameters and their respective all-atom reference para-
meters are annotated within each plot.
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enables high granularity coarse-grained modeling. To facilitate the
latter, we developed a VMD-native GPU-accelerated FSC method.
Optimization of parameters, as well as the removal of redundant
degrees of freedom, are outlined and illustrated in detail to reproduce
atomistic behavior. We describe numerous considerations for config-
uring and performing simulations of biomolecular assemblies using
sub-nanometer SBCG2, such as temperature control, computation of
the integration time step, and long-range electrostatics. Our code is
freely-available as part of the CGBuilder plugin in VMD 1.9.453, which is
distributed with a corresponding tutorial and example files.

Methods
Shape-based coarse-graining (SBCG) is a modality of CG modeling
which maps the coordinates of CG beads according to the shape or
topology of an atomistic input. Legacy SBCG has been successfully
employed to study the stability and deformation of viral capsids40–42 as
well as themechanisms of lipidmembrane remodeling by proteins43,64.
For completion, we will elaborate on the theoretical underpinnings of
the topology representing the neural network, developed elsewhere39

and employed in the legacy SBCG implementation for molecular
topology learning. Then, wewill elaborate on advances to the TRN that
enable high-granularity SBCG2 modeling.

The conceptual back end of this method is a topology repre-
senting a neural network39. The topology representing the network
employs a Hebbian adaptation rule with winner-take-all competition
(eq. (11)) to determine algorithmically the positions of CG beads rela-
tive to an atomistic input. Formally, this procedure constructs a Vor-
onoi tessellation in R339, where each polyhedron in the tessellation
represents a CG bead. The emerging Voronoi polyhedra partition
atomsof the input structure, and their properties are applied to theCG
bead positioned at the partition’s center of mass. The latter is detailed
in the forthcoming sections.

Machine-learning-based molecular topologies with competitive
Hebbian adaptation
A detailed mathematical description of the topology representing
network (TRN) is presented elsewhere39. Here, we will first introduce
basic nomenclature, then themost relevant concepts in the context of
molecular topology learning, including Hebbian adaptation, Delaunay
Triangulations, and finally, the algorithmic formulation of the TRN
itself.

For a set of neural units i = 1, …, N, lateral connections can form
between any i to another, referred to as j. These lateral connections
represent synaptic links, and are described by a matrix C containing
connections Cij 2 R+

0 . The larger an element Cij is, the stronger the
synaptic link between i and j. A connection is manifest only when
Cij >0; if Cij ≤0 then i and j are disconnected.

Hebb’s postulate states that a pre-synaptic unit i shares a synaptic
link with post-synaptic unit j if the two neural units are concurrently
active. Originally formulated as a governing description of the neuro-
logical architecture of the hippocampus66, Hebb’s rule can be repre-
sented as

ΔCij / yi � yj: ð8Þ

That is, the change in the strengthof the link betweenneural units i and
j,ΔCij, is proportional to thepre- andpost-synaptic activity of the i and j
pair. The relation in equation (8) is augmented with weight vectors
fwgNi= 1 such that every neural unit i has a corresponding weight vector
wi 2 RD which describes the center of the receptive field for neuron i.
In this setting, the receptive field is the same as in other learning
applications: it describes a region of the input space that is sensory, or
responsive to stimuli, and maps to a corresponding feature or
activation in the output space67. For constant input patterns v 2 RD,
the activation of neural unit i, yi, is larger the closer its wi is to v39.

Introducing a positive, continuous, andmonotonically decreasing
function R(⋅) such that yi = R(∣∣v −wi∣∣), which describes the receptive
field, we rewrite equation (8) as39

ΔCij / Rð∣∣v�wi∣∣Þ � Rð∣∣v�wj ∣∣Þ: ð9Þ

Connection strengths Cij are then solved by integrating equation (9)
over the given pattern distribution P(v) as

ΔCijðt ! 1Þ /
Z

RD
Rð∣∣v�wi∣∣Þ � Rð∣∣v�wj ∣∣Þdv: ð10Þ

Evidently, equation (10) establishes a connection strength based sim-
ply on the area of overlap between the receptive fields of neural units i
and j. Because the formulation of the receptive field R(⋅) is continuous
and monotonically decreasing as ∣∣v −wi∣∣ increases, elements Cij of C
connect all neurons to one another. In ref. 39, the authors introduce
the notion of winner-take-all selection to Hebb’s rule (eq. (8)).

The competitive Hebb’s rule with winner-take-all selection
becomes

ΔCij =
yi � yj if yi � yj ≥ yk � yl 8k, l = 1, . . . ,N
0 otherwise:

	
ð11Þ

Enforcing adaptation via equation (11) rather than equation (8) results
in connectivityC that corresponds to theDelaunay triangulation of the
weight vectors w. Importantly, the original authors proved that, for a
sequentially presented distribution of input patterns P(v) with support
everywhere on RD, elements Cij of C obey θ[Cij(t→∞)] =Aij in the
asymptotic limit. θ(⋅) is the Heavyside step function and Aij are ele-
ments of the adjacency matrix A of the Delaunay triangulation39. Here,
the Delaunay triangulation is defined as the graph connecting weights
wi and wj with adjacent Voronoi polyhedra Vi and Vj.

Algorithm 1.
(i) Initialize all connections Cij to zero;
(ii) Present input pattern v 2 RD with distribution P(v);
(iii) Find unit i for which

∣∣v�wi∣∣≤ ∣∣v�wk ∣∣8k = 1, . . . ,N

and unit j for which

∣∣v�wj ∣∣≤ ∣∣v�wk ∣∣ 8k ≠ i, k = 1, . . . ,N;
(iv) If Cij =0, set Cij >0 (connect i and j); else, leave Cij unchanged.

Repeat at (ii).

Theorem1 in ref. 39 contains the associatedproof thatAij = θ(Cij) is
equivalent to the adjacency matrix of the Delaunay triangulation DS

constructed from the set of weights S= fwgNi= 1.
Finally, we will introduce the topology-preserving map, and par-

ticularly we will explain how competitive Hebbian adaptation, as out-
lined above, is employed for molecular topology modeling. So far, we
have operated under the assumption that P(v) has support on the
entire embedding spaceRD. For many real-world input patterns, such
as molecular coordinates, the input P(v) does not have support
everywhere, but rather only on a submanifold M � RD. Competitive
Hebb’s rule (eq. (11)) forms a subgraph of the complete Delaunay tri-
angulation in these instances, which remains topology preserving39.

The topology-preserving map is described by a mapping Φ that
projects features from a manifold M onto the neural units i = 1, …, N
comprising a graph G. The mapping is directed by the set of weights
fwgNi= 1 such that features of the input pattern v∈M aremapped to the
most proximal neural unit, graph vertex, i. Recall that each unit i has an
associated weight wi, describing its receptive field. The notation i*(v)
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clarifies that the resulting Voronoi polyhedron Vi associated with unit i
of graphG completely bounds the feature v. Themapping is expressed
as

ΦS : M ! G, v 2 M ! i*ðvÞ 2 G, ð12Þ

where the inequality

∣∣wi*ðvÞ � v∣∣≤ ∣∣wi � v∣∣ 8i 2 G ð13Þ

establishes the mapped vertex. The mapping ΦS is topology preser-
ving if adjacent features v∈M correspond to adjacent vertices of G,
and therefore coincide with adjacent associated weights and result-
ing Voronoi polyhedra (Fig. 8c). To satisfy this requirement, algo-
rithm 1 is amended to include an additional step to adjust weights
fwgNi= 1 according to the neural gas algorithm68. The latter introduces
an age tij for each connection, and is used to remove elements Cij

corresponding to weights and receptive fields that are no longer
adjacent following evolution. The final formulation of the TRN
algorithm is:

Algorithm 2.
(i) Initialize eachweightwi for i = 1,…,N, and set all connectionsCij

to zero;
(ii) Present a pattern v∈M, where each v is drawn with equal

probability;

(iii) For each i determine the number ni of units j where

∣∣v�wj ∣∣≤ ∣∣v�wi∣∣;

(iv) Evolve wi by the neural gas algorithm68

wnew
i =wold

i + ϵ � e�ni=λ v�wold
i

� �
i= 1, . . . ,N;

(v) If Cij =0, set Cij >0 (connect i and j) and set tij =0; else, leave Cij

unchanged and set tij =0;
(vi) Increment the age of all other connectionsmade to unit i;
(vii) Remove connections made to unit i that exceed a predefined

age threshold; repeat at (ii).

Hyperparameters ϵ and λ in step (iv) above are explained, as well
as guidance for setting their values, in ref. 39.

In summary, the TRN computes a Delaunay triangulation from a
set of weights that represent the locality of graph vertices and neural
units relative to features in the input space. For SBCGmodel building,
each desired CG bead is treated as a neural unit, and its initial weight is
a Cartesian coordinate within the embedding domain. Input patterns,
i.e., atomic coordinates, are drawn sequentially from the reference
molecule in a step-wise fashion. At each step, the weight associated
with each neural unit is adapted until it is closer to its respective input
pattern (atomicdomainwithin the referencemolecule) than any other.
Movie M1 demonstrates the complete adaptation process using
HIV-1 CA.

Mapping of atomic properties to an SBCG model. Following opti-
mization of the topology representing the network, the properties of

b

c

input pattern

mapping

topology preserving map

i

ii

iii

iv

i

ii

iii

iv

u

v

u

v

a

Fig. 8 | Topology-preserving maps via 3D Voronoi tessellation. a A 30-point
cloud in 3D, generated randomly in a cubic domain. b Resulting 3D Voronoi tes-
sellation of the point cloud in panel a. Each Voronoi cell partitions the spatial
domain into regions that are closer to a given point than any other. Voronoi tes-
sellation was performed with the voro++ command-line tool77 and rendering was
performed with the Persistence of Vision raytracer78. c Visual depiction and defi-
nition of a topology-preserving map. The input pattern (green) consists of four

points, enumerated i–iv. The coarse mapping groups two input points into a single
coarse point (red), named u and v. The resulting mapping is topology preserving if
adjacent features in the input pattern are adjacent in the output map. In this case,
coarse point umaps to input points i and ii; coarse point vmaps to points iii and iv;
u and v bound adjacent groups of the input pattern and are adjacent in the
output map.
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Ncell atomswithin each Voronoi cell aremapped to CG beads. For a CG
bead j, its mass MCG,j is computed according to

MCG,j =
XNcell

i= 1

maa,i, ð14Þ

wheremaa,i is the mass of atom i in the given Voronoi cell j.
Assignment of charge QCG,j to CG bead j is analogous:

QCG,j =
XNcell

i = 1

qaa,i, ð15Þ

where qaa,i is the charge of atom i in the Voronoi cell j.
Nonbonded interaction terms, particularly the Lennard-Jones ϵ,

well depth, a parameter for each bead j are computed based on the
solvent accessible surface area (SASA), σ, of the atoms within the
Voronoi cell41. That is

ϵj = ϵmax

σhydrophob:
j

σtot
j

 !2

, ð16Þ

where σhydrophob
j and σtot

j are the hydrophobic SASA and total SASA of
the atomic domain in the Voronoi cell, respectively, and where ϵmax is
the maximum well-depth specified by the user. This formulation
improves a previous formulation of the method where all beads are
defined with a fixed ϵ value40.

Finally, the last property assigned to CG beads following tessel-
lation is the bead’s radius, which is important in properly representing
the shape of the atomistic input. This is accomplished by computing
the radius of gyration, rgyr, of the atomic domain with a given
Voronoi cell.

Based on the above formulation, particularly equations (14) and
(15), it is clear that such a CG reduction technique suffers a loss of
information in low-granularity use-cases. Information on the atomistic
charge or hydrophobicity profiles, for instance, are critical for multi-
meric biological assemblies. In previous SBCG studies, assembly sta-
bility is maintained through specific, parameterized intermonomer
interactions42, ostensibly in the absence of detailed electrostatics and
hydrophobicity information which are lost in the ~150 atoms/bead
mapping.

Utilizing the topology representing the aforementioned network
requires the user to specify the granularity of the model, Nbeads, as a
free parameter. On first inspection, itmight seem trivial to increase the
model granularity by simply increasing the Nbeads parameter, and
therefore prevent loss of information as outlined above. In practice,
however, the legacy implementation fails to converge for any level of
granularity finer than ~40–50 atoms/bead (Supplementary Figs. 3, 4).
We addressed the lack of convergence issue with modifications to the
method and implemented the changes in CGBuilder in VMD, as
explained below.

Convergence of the topology representing network. Failed con-
vergence of the topology representing network is caused by unin-
tended reflexive connections, latent from how neuronal states are
initialized prior to optimization. In learning theory, two neurons a and
b are mediated by a reflexive connection if a ≡ b. That is, if a and b are
indistinguishable from the optimization procedure, meaning their
stimuli and associated scoring are identical, then their relationship is
reflexive.

For the topology representing network implementation herein,
we found that incident reflexive connections led toundefinedbehavior
resulting in failed convergence. Specifically, in determining a graph
representing a Delaunay triangulation via a winner-take all selection
rule, network behavior in the presence of a tie is undefined. If wi =wj,

the inequality

∣∣v�wi∣∣≤ ∣∣v�wj ∣∣ ð17Þ

in step (iii) of algorithm 2 will evaluate identically for both i and j,
leading to identical adaptation ofwi andwj in the following step. Most
critically, steps (v)–(vii) of algorithm 2 will determine Cij to be the
strongest synapse, refresh its associated age tij to zero, age every other
connection made to i, then remove all other connections to i from C
that exceed the age threshold.

Initialization of the network involves the instancing of one neuron
per each Nbeads. The input patterns are drawn from the atomistic
structure39, and Cartesian coordinates are pseudo-randomly assigned
from the input to initialize the weights fwgNbeads

i= 1 of neurons. During
optimization, the weights are iteratively updated toward unique
domains of input atoms (Movie M1) to which they are more proximal
than any other (algorithm 2). For two neurons initialized with identical
states, optimization forces them to identicalfinal states.Only one bead
will be assigned the properties of the atomic domain solved by the
optimization and the remaining bead, resulting from reflexivity,
remains unmapped to the input pattern with no assigned properties.

Our approach to enable higher granularity modeling enforces
exclusivity among the initial states of neurons. During initialization, we
maintain a record of which atoms among the input have already been
utilized as an initial state. During the pseudo-random selection of
initial states, the record is conferred to assert that a given state has not
yet been utilized, and if it has, we pseudo-randomly select another
state. By enforcing an exclusivity condition while initializing the net-
work, the optimization can be successfully applied to high-granularity
use-cases.

Macromolecular assembly simulations
With the resulting SBCG2 parameters for each model, we proceed to
construct our macromolecular assemblies. Generally, applying a
monomeric model to a multimer involves transferring the SBCG2
mapping of a single monomer to each subunit in the assembly. A cri-
tically important detail at this stage is that the subunit subjected to the
initial CG reduction is identical in sequence and structure to those
comprising the assembly.

In the following sections, the multimeric assembly mapping pro-
cedure will be discussed. Further, with the goal of including inositol
hexakisphosphate in the SBCG2 conical capsid model, we will elabo-
rate guidelines for including CG ions and small molecules, and high-
light the importance of performing counter ionization via the model’s
Coulombic potential, the latter step, which is critical in the sub-
nanometer model regime due to increased charge fidelity (Fig. 5).
Finally, we will discuss simulation configuration; and importantly,
determination of the integration time step via calculation of model
bond frequencies.

Extension of SBCG2 to heteromultimeric assemblies. In SBCG2
modeling, CG mapping refers to the atomic domain assigned to each
bead following spatial tessellation according to the topology repre-
senting the neural networks. Recall that each Voronoi cell emergent
from network optimization bounds a domain of atoms, and the CG
bead located at the center of mass of this domain is assigned the
properties of constituent atoms. The multimeric mapping or map
transfer utilizes the information of the CG mapping to locate each
domain, Voronoi cell, in equivalent atomistic subunits comprising the
assembly. Topology and parameters, e.g., bonds, angles, mass, and
charge, derived in previous steps are copied to the new CG subunits.

For the map transfer operation to be successful, each target ato-
mistic subunit must be identical in sequence and structure to the
original structure employed for CG reduction. The necessity for
equivalence manifests from the identification of atomic domains
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mapped to each bead. If these domains are in different spatial loca-
tions, then bonds, and angles joining them will be violated when
topology and parameters are copied to the new subunit. Additionally,
if differences in sequence are present, then the map transfer as
implemented may fail completely, or place beads in positions not
intended by the user.

We recommend performing separate CG mappings and para-
meterizations for unique structures, if the assembly is heterogeneous.
For homomultimeric assemblies, taking care to construct a target
atomistic assembly from identical subunits will bypass this problem
entirely. Proprietary or in-house alignment protocols may further be
employed as a solution to mapping to similar, but not equivalent,
structures.

Coarse-grained ions and smallmolecules. CGflavors and force fields
have different ways of treating ionic or otherwise charged species. In
the present study, anionic and cationic species, chloride and sodium,
were treated as groups of ions which carry either a −1 or +1 charge,
respectively43. Given the granularity of our models, groups of five
positive and negatively charged ions were clumped together. The lat-
ter choice was made according to the largest bead, by mass, in our
SBCG2 protein topology. In our testing, the inclusion of ionic species
with vastly different mass than that of protein beads caused numerical
instability when attempting to utilize large integration time steps.

Our SBCG2 conical capsid model includes an additional, small
molecule species: inositol hexakisphosphate, or IP6 (Supplementary
Fig. 5a). IP6 is a highly charged molecule, at −12 e, and a known
assembly co-factor for HIV-1 capsids46,47. In our model system, IP6 is
treated as a single bead of radius 5Å (Supplementary Fig. 5b). SBCG2
IP6was assigned a charge of −12 e, and 253were placed corresponding
to the 253 capsomers comprising the conical capsid (Supplementary
Fig. 5c). In atomistic HIV-1 CA hexamers and pentamers, IP6 resides
approximately perpendicular to the Arg 18 ring situated at the central
pore69. We utilized this information to place SBCG2 IP6 beads in our
model (Supplementary Fig. 5c).

Counter ionization via 3D Coulombic potential. As we have pointed
out, sub-nanometer SBCG2 models have high charge fidelity, and it is,
therefore, necessary to balance the charges of the initial model with
counter ions, similar to the preparation of an atomistic model. To this
end, we employ a Coulombic grid potential calculation available in
VMD53 named CIonize. In a discretized 3D grid, CIonize computes a
Coulombic potential iteratively after successive placements of ions.
Interestingly, and perhaps serving as an additional validation of the
detailed charge of our HIV-1 CA model, Coulombic potential calcula-
tions placed sodium and chloride in equivalent positions to where
these ions are known to reside in atomistic resolution structures49

(Supplementary Fig. 8).
With charges balanced, and other considerations addressed, such

as the inclusion of small molecules or cofactors, we now turn our
attention to configuring SBCG2 molecular dynamics simulations.

Simulation parameters: temperature control, time step selec-
tion, long-range electrostatics
In the present study, we employ the NAMD3 molecular dynamics
engine45 for all simulations, for both optimization of parameters
(Figs. 6, 7) and production simulations of our multimeric assemblies,
i.e., theHIV-1 capsid andcofilin-2-boundactinfilaments (Figs. 1, 2, 3). As
with configuring an atomistic simulation, the selection of configura-
tion parameters is a critical step in ensuring the physical realism of the
resulting MD ensemble. Here, we place particular emphasis on tem-
perature control, integration time step, electrostatic evaluation, and
the cut-off scheme,which, in a sub-nanometer context, have additional
importance compared to low-granularity SBCG models.

Integration time step. Among the most fundamental choices when
configuring a molecular simulation is the value of the integration time
step. In most circumstances, choosing an integration time step—and
thus establishing the temporal resolution—is motivated by the scale of
the system, atomic or otherwise. For instance, an atomistic simulation
of a protein might employ a 1–2 femtosecond (fs) time step, small
enough to capture vibrationalmodes of a bond to hydrogen (~10 fs). In
practice, bonds to hydrogen may be constrained and access to larger
or multi-timescale integration steps becomes possible. This confers
better computational performance, increasing sampling and broad-
ening the temporal resolution of the ensemble to capture collective,
large-scale molecular motions.

In SBCG modeling, and particularly sub-nanometer SBCG2 mod-
eling, the selection of the time step is determined based on two fac-
tors: the masses of the CG beads comprising the model, and the force
constants, Kb, employed in the bonded potential energy terms.
Because SBCG2 does not follow amapping scheme a priori, but rather
computes a mapping through neural network optimization, time step
selection depends on granularity, more specifically the resulting
SBCG2 bead masses, and is motivated by evaluating vibrational fre-
quencies in the model.

For a bond i, vibrational frequency νi in units of Hertz is computed
according to

νi =
1
2π

ffiffiffiffiffiffiffiffi
Kb,i

μi

s
, ð18Þ

where Kb,i is the bonded force constant and μi is the reduced mass of
the two beads involved in the bond

μi =
m1 ×m2

m1 +m2
: ð19Þ

Following the evaluation of vibrational frequency for all bonds
comprising the SBCG2 topology, the time step τ is then taken from the
set of all frequencies ν = fνigNbonds

i = 1 as

τ =
1

max ν
: ð20Þ

That is, we compute vibrational frequencies for the complete topology
and choose a time step based on the fastest vibration, i.e., the smallest
oscillation period, present. Because the bonded force constants are
optimized during iterative refinement, we recommend first evaluating
equation (20) using the initial parameter set yielded by Boltzmann
inversion (eq. (5)) of the atomistic trajectory, then re-evaluating
following iterative optimization. Far-exceeding the fastest vibrational
frequencies with the selected integration time step leads to numerical
instability.

Temperature control. For all SBCG2 simulations, we sample constant
temperature (NVT) ensembles with temperature control via Langevin
dynamics. The latter controls temperature by coupling the particles in
the system to a dissipative background force and a randomly fluctu-
ating force. Specifically, for a particle with mass m and position x,
subjected to dissipative force f(x) = −∇U(x), its motion is governed by
equation70

dx
dt

=
1
mγ

f ðxÞ+RðtÞ, ð21Þ

where R is a zero-mean, Gaussian random process71 such that

hRðtÞi =0 and hRðtÞRðt0Þi = 2
kBT
mγ


 �
δðt � t0Þ: ð22Þ
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Importantly, the coefficient γ, in units of inverse time, is a user-
specified parameter that controls the strength of thermal coupling;
this is also referred to as a friction term. In NAMD’s stochastic for-
mulation of Langevin dynamics45,71, the dissipative and fluctuating
force terms in equation (21) are added to the Newtonian equations of
motion to achieve thermal coupling and, thus, temperature control.
Importantly, the choice of the Langevin γ term has special significance
to the dynamical evolution of the molecular system72.

Temperature control in the Langevin framework relies on several
considerations, the most principal of which is the intended dynamical
regime. In molecular dynamics, momentum is conserved and the
inertial effects of particles are significant. In Langevin dynamics,
dampening of velocities, and thusmomentum, through coupling to an
external thermal reservoir—introducing a stochastic differential
equation to Newton’s equations of motions73—allows temperature
control. Increasing the γ coupling parameter, the system tends toward
the overdamped limit72, where inertial effects are diminished and
Brownian dynamics begin to dominate. In the Brownian dynamics
regime, momentum is not conserved72; particles comprising the sys-
tem feel a random force and a drag force, or friction, relative to a
constant background (eq. (21)), and thus their motions become
Brownian72,74.

In several CG modeling contexts, we note the reported use of γ
coefficients in excess of 10−100 ps−1, whereas, in atomistic molecular
dynamics contexts, γ is typically held between 0.5−2.0 ps−1. It is worth
noting that overdampening is one method of achieving numerical
stability during simulation, granting access to larger integration time
steps. We caution the reader against indiscriminately increasing their
friction coefficient to dampen velocities, unless they are aware of the
dynamic consequences. For instance, performing self-assembly simu-
lations is one exemplary justification for overdampening and accessing
a larger integration time step.

In our systems of the HIV-1 SBCG2 conical capsid as well the
cofilin-2-bound actin filaments, we employ a γ of 2.0ps−1, primarily to
model, implicitly, the viscosity of water. Throughout testing, we
observed that we could make our time step arbitrarily large by
increasing γ indiscriminately. Achieving a large time step is desirable
only from the vantage of computational performance. If increased
sampling efficiency comes at the expense of the intended dynamical
regime, or predictive capability, then we argue that this is not a
worthwhile exchange. For SBCG2 molecular dynamics, a γ between
0.5−2.0ps−1, in concertwith an appropriate dielectric,will productively
introduce someof themacroscopic effects of solvent, namely viscosity
and charge screening.

Long-range electrostatics via particle mesh Ewald (PME). An addi-
tional, important consideration for the simulation of sub-nanometer
SBCG2 models is the treatment of long-range electrostatics. One oft-
utilized technique in molecular simulation is the particle mesh Ewald
(PME) approach48,75. In PME electrostatic evaluation, charges are
interpolated on a discrete grid, or mesh, to compute the electrostatic
potential. This method is parallelizable and has been described in
detail, and the specific implementation employed in the NAMD
molecular dynamics engine has similarly been described45,71. We
employ PME to treat long-range electrostatics in sub-nanometer
SBCG2 simulations.

Utilizing PME in MD simulations confers detailed electrostatic
treatment at the expense of performance. In our testing of the HIV-1
conical capsid, PME reduces the performance of our simulations by
an approximate factor of four compared to truncated dynamics
without any long-range electrostatic component (Fig. 1d, e). The
resolution, in Å, of the grid to which charges are cast, is a free
parameter. We have found that a grid resolution of 2 Å with a cor-
responding interpolation order of eight allows us to recover some
of the lost performance, without sacrificing accuracy or numerical

stability. The selection of grid resolution and interpolation order,
are use-case-specific considerations. Further, the choice of elec-
trostatic cut-off distances is an associated dependency in treating
long-range electrostatics, which is discussed in the following
section.

For the cofilin-2-bound actin filaments, we find that PME electro-
static evaluation leads to a more significant reduction in performance
(Fig. 2d, e) compared with truncated dynamics. The reason for this is
related to the spatial decomposition of the filamentous systems, which
have significantly large ratios of length to cross-sectional area. This
point is notable, since SBCG2 modeling pushes molecular simulation
to considerable size scales. We are motivated to address the latter in
future work.

Nonbonded interaction cutoffs. Related to establishing parameters
for the PME grid is the assertion of cut-off distances. In the NAMD
molecular dynamics engine, the cut-off scheme is described with
three parameters: a cut-off distance, beyond which the long-range
potential is truncated; a switching distance (if switching is enabled in
the configuration), which specifies the distance beyond which a
splitting function is employed; and the pair list distance, which
determines the maximum considerable pair distance between any
two particles.

Fundamentally, cut-off distances should be larger than the
longest bond term in the CG topology; however, increasing elec-
trostatic cut-off distance leads to larger computational expense,
since more bead pairs in the pair list necessitate more evaluations.
Utilizing the longest bonded distance in the topology as a lower
bound, we employ an upper bound based on the interfacial dis-
tances in our biomolecular assembly. This approach is equivalent to
an approach used to select cut-off distances in a previous SBCG
study of capsids42.

GPU-accelerated SBCG2 simulations. The sampling efficiency of
SBCG2 simulations benefits significantly from GPU acceleration.
Typical GPU accelerators have their own dedicated memory of 8 to
24 GB as of the time of this publication. In the GPU-accelerated
computing paradigm, problems that fit neatly within the memory of
the graphics processor are amenable to multiple-factor speedups76.
In contrast, problems that exceed dedicated accelerator memory
lead to costly host-to-device copy operations and excessive com-
munication overhead, which place a hard limit on attainable sam-
pling efficiency. The design strategy of MD engines such as NAMD271

is to offload only a subset of computations to the GPU, namely the
evaluation of nonbonded electrostatics. While selective offloading is
a flexible strategy that accommodates diverse systems on hetero-
geneous architectures, the biggest performance gains remain
unrealized.

Recently, a fully GPU-resident MD engine NAMD345 was devel-
oped, which offloads all computations to the GPU. Multimeric
SBCG2 assemblies, such as the HIV-1 conical capsid presented here,
represent ideal memory footprints for saturating and taking full
advantage of GPU acceleration. Remarkably, with certain simulation
configurations such as those employing truncated dynamics (see
section Long-range electrostatics via particle mesh Ewald), we are
able to achieve sampling efficiency in excess of 1 microsecond
per day using NAMD3 (Fig. 1e) for the HIV-1 capsid, and greater than
3 µs per day for our three-turn filament system (Fig. 2e). Employing
full electrostatic evaluation with PME for simulations of the HIV-1
capsid, we can still reach high sampling rates in excess of 300 ns
per day (Fig. 1d). The latter two performance metrics represent
significant speedups over CPU (Supplementary Fig. 2), or hetero-
geneous CPU and GPU, computation. Furthermore, our benchmark
analysis shows that the performance of multimeric SBCG2 assem-
blies scales across multiple GPUs. Supplementary Table 1 shows
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benchmarks of the three-turn cofilin-2 bound actin filament system
utilizing NVIDIA’s DGX A100, employing varying numbers of cores
per GPU utilized. Remarkably, utilizing eight A100 GPUs with eight
CPUs per GPU, yielding 64 in total, we exceed four microseconds
per day simulation performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed data generated in this study as well as example
scripts demonstrating new aspects of the code, have been deposited
into a Zenodo repository and are freely accessible to the public at
https://doi.org/10.5281/zenodo.7685834. Source data for all main text
figures are providedwith this paper as a SourceData file. The following
previously published structures were used in this study: PDB 7U8K
(Kraus et al., cofilin-2 bound to actin44), EMDB 13423 (Ni et al., IP6-
boundHIV-1 CA hexamer46), EMDB 13422 (Ni et al., IP6-boundHIV-1 CA
pentamer46) Source data are provided with this paper.

Code availability
SBCG2 will be available as part of the CGBuilder plugin, distributed
with Visual Molecular Dynamics (VMD) versions 1.9.4 and later. For
users wishing to try the new method now in their existing VMD
installation, a repository containing the code, with a script to handle
independent loading of the new plugin, and a README describing
usage, is available to the public at https://doi.org/10.5281/zenodo.
7685834. The FSC calculation implementation in VMD will be made
available as part of the 1.9.4 release of the software and can be
obtained by contacting the authors.
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