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Entanglement asymmetry as a probe of
symmetry breaking

Filiberto Ares 1 , Sara Murciano1,2,3 & Pasquale Calabrese1,4

Symmetry and symmetry breaking are twopillars ofmodern quantumphysics.
Still, quantifying howmuch a symmetry is broken is an issue that has received
little attention. In extended quantum systems, this problem is intrinsically
bound to the subsystem of interest. Hence, in this work, we borrow methods
from the theory of entanglement inmany-body quantum systems to introduce
a subsystem measure of symmetry breaking that we dub entanglement
asymmetry. As a prototypical illustration, we study the entanglement asym-
metry in a quantum quench of a spin chain in which an initially broken global
U(1) symmetry is restored dynamically. We adapt the quasiparticle picture for
entanglement evolution to the analytic determination of the entanglement
asymmetry. We find, expectedly, that larger is the subsystem, slower is the
restoration, but also the counterintuitive result that more the symmetry is
initially broken, faster it is restored, a sort of quantum Mpemba effect, a
phenomenon that we show to occur in a large variety of systems.

Symmetries hold a special place in every branch of physics, from
relativity to quantum mechanics, passing through gauge/gravity dua-
lity and numerical algorithms. It is difficult to identify whowas the first
in understanding their relevance since the transversal development of
the subject is a huge puzzle where different scientists, from Galileo to
Noether, gave their own remarkable contributions. Sometimes it
happens that, when a parameter reaches a critical value, the lowest
energy configuration respecting the symmetry of the theory becomes
unstable and new asymmetric lowest energy solutions can be found.
This phenomenon does not require an input, whence the name
spontaneous symmetry breaking. Other times a symmetry can be
explicitly broken, in the sense that the Hamiltonian describing the
system contains terms thatmanifestly break it. The present workfits in
this framework: our main goal is to find a tool that measures quanti-
tatively how much a symmetry is broken.

To bemore specific, the setup we are interested in is an extended
quantum system in a pure state ∣Ψi, which we divide into two spatial
regions A and B. The state of A is described by the reduced density
matrix ρA =TrBð∣Ψi Ψh ∣Þ. We consider a charge operator Q that gen-
erates a global U(1) symmetry group, hence satisfying Q =QA +QB. If
∣Ψi is an eigenstate of Q, then [ρA,QA] = 0 and ρA displays a block-

diagonal structure, with each block corresponding to a charge sector
of QA. Thus the entanglement entropy SðρAÞ= � TrðρA log ρAÞ, which
measures how entangled A and B are, can be decomposed into the
contributions of each charge sector1–6 (known as symmetry-resolved
entanglement), recently accessed also experimentally7–10.

Here we consider the opposite situation: a state ∣Ψi that breaks
the global U(1) symmetry. Therefore, [ρA,QA] ≠0 and ρA is not block-
diagonal in the eigenbasis ofQA. The goal of this work is to introduce a
quantifier of the symmetry breaking at the level of the subsystem A,
which is the entanglement asymmetry defined as

ΔSA = SðρA,QÞ � SðρAÞ: ð1Þ

Here ρA,Q =
P

q2ZΠqρAΠq, whereΠq is the projector onto the eigenspace
ofQAwith charge q 2 Z. Thus ρA,Q is block-diagonal in the eigenbasis of
QA. In Fig. 1, we pictorially show how ρA,Q is obtained from ρA. A similar
quantity, but for the full system,hasbeen recently introduced in ref. 11 to
study the inseparabilityofmixedstateswith aglobally conservedcharge.

The entanglement asymmetry (1) satisfies two natural properties
to quantify symmetry breaking: (i)ΔSA ≥ 0, because by definition
it is equal to the relative entropy between ρA and ρA,Q,
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ΔSA =Tr½ρAðlog ρA � logρA,QÞ�, which is actually non-negative12; (ii)
ΔSA = 0 if and only if the state is symmetric since, in this case, ρA is
block diagonal in the eigenbasis of QA and ρA,Q = ρA.

Results
A replica construction
The entanglement asymmetry can be computed from the moments of
the density matrices ρA and ρA,Q by exploiting the replica trick13,14.
Indeed, simply defining the Rényi entanglement asymmetry as

ΔSðnÞA =
1

1� n
log Trðρn

A,QÞ � logTrðρn
AÞ

h i
, ð2Þ

one has that limn!1ΔS
ðnÞ
A =ΔSA. As usual, the advantage of this con-

struction is that, for integer n, ΔSðnÞA can be accessed from (charged)
partition functions. Using the Fourier representation of the projector
Πq, the post-measurement density matrix ρA,Q can be alternatively
written in the form

ρA,Q =
Z π

�π

dα
2π

e�iαQAρAe
iαQA , ð3Þ

and its moments as

Trðρn
A,QÞ=

Z π

�π

dα1 . . .dαn

ð2πÞn ZnðαÞ, ð4Þ

where α = {α1,…, αn} and

ZnðαÞ=Tr
Yn
j = 1

ρAe
iαj,j + 1QA

" #
, ð5Þ

with αij≡ αi −αj and αn+1 =α1. Notice that, if [ρA,QA] = 0, then
Zn(α) = Zn(0), which implies Trðρn

A,QÞ=Trðρn
AÞ andΔSðnÞA =0. Furthermore

theorder of terms in Eq. (5)matters because [ρA,QA] ≠0.Wewill refer to
Zn(α) as chargedmoments because they are amodification of the similar
quantities introduced for the symmetry resolution of entanglement2.

Tilted ferromagnet
As warm up, we start with an undergraduate exercise. We consider an
infinite spin chain prepared in the tilted ferromagnetic state, i.e. the
spins are not aligned with the quantization axis z,

∣θ;%% � � � �= e�iθ2
P

j
σy
j ∣ "" � � � �: ð6Þ

For θ ≠πm, m 2 Z, this state breaks the U(1) symmetry associated to
the conservation of the total transverse magnetization Q= 1

2

P
jσ

z
j .

When θ =πm, it corresponds to a fully polarized state in the z-direc-
tion, for which the transverse magnetization is preserved. The angle θ

controls howmuch the state breaks this symmetry and, therefore, the
state (6) is an ideal testbed for the entanglement asymmetry, although
it is a trivial product state. Let the subsystem A consist of ℓ contiguous
sites of the chain; then ΔSA = 0 for θ =πm and ΔSA >0 otherwise. Since
the state is separable, Trðρn

AÞ= 1, and Zn(α) is straightforwardly
obtained as

ZnðαÞ=
Yn
j = 1

i cosðθÞ sin αj,j + 1

2

� �
+ cos

αj,j + 1

2

� �� �‘
: ð7Þ

Plugging Eq. (7) into the Fourier transform (4), we obtain

ΔSðnÞA =
1

1� n
log cos2n‘

θ

2

� �X‘
p=0

‘

p

� �n

tan2np θ

2

� �" #
: ð8Þ

In Fig. 2, we plot this entanglement asymmetry as a function of
θ∈ [0,π]. As expected, it vanishes for θ =0,π while it takes the max-
imum value at θ =π/2, when all the spins point in the x direction and
the symmetry is maximally broken. Between these extremal points,
ΔSA is a monotonic function of θ (but this is not true for all n). For a
large interval, it behaves as

ΔSðnÞA =
1
2
log ‘+

1
2
log

πn
1

n�1sin2θ
2

+Oð‘�1Þ: ð9Þ

The limit θ→0 is not well defined in Eq. (9). Indeed, the limits ℓ→∞ and
θ→0 do not commute: to recover the symmetry, one should take first
θ→0 in Eq. (7) and then consider the large interval regime.

Quench to the XX spin chain
We now analyze the time evolution of the entanglement asymmetry
after a quantum quench.We prepare the infinite spin chain in the state

∣Ψð0Þ�= ∣θ;%% � � � �� ∣� θ;%% � � � �ffiffiffi
2

p , ð10Þ

which is the cat version of the symmetry-breaking state in Eq. (6). We
then let it evolve

∣ΨðtÞ�= e�itH ∣Ψð0Þ�, ð11Þ

with the symmetric XX Hamiltonian ([H,Q] = 0)

H = � 1
4

X1
j =�1

σx
j σ

x
j + 1 + σ

y
j σ

y
j + 1

h i
: ð12Þ

Fig. 1 | The densitymatrices ρA and ρA,Q entering in the definitions (1) and (2) of
the entanglement asymmetries. In the eigenbasis of the subsystem chargeQA, ρA
generically displays off-diagonal elements. Under a projective measurement ofQA,
we get ρA,Q, where the off-diagonal blocks are annihilated. The difference ΔSðnÞA

between the entanglement entropies of these matrices is our probe of symmetry
breaking.

Fig. 2 | Rényi entanglement asymmetry ΔSðnÞ
A for the tilted ferromagnetic state.

We plot the analytic expression of Eq. (8) for this state as a function of the tilting
angle θ for different values of the replica index n and subsystem size ℓ = 10.
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This Hamiltonian is diagonalized via the Jordan-Wigner transformation
to fermionic operators followed by a Fourier transform tomomentum
space15. The one-particle dispersion relation is ϵðkÞ= � cosðkÞ.

The entanglement asymmetry after the quench
At time t =0, the entanglement asymmetry behaves asymptotically as
Eq. (9); for t >0, ΔSðnÞA ðtÞ is analytically derived in Methods by adapting
the quasiparticle picture of entanglement dynamics16–18 to the charged
moments (5) and then taking the Fourier transform (4). The resulting
curves are plotted in Fig. 3 as a function of ζ = t/ℓ for several values of θ,
finding a remarkable agreement with the exact numerical values
(symbols). We can also write a very effective closed-form approxima-
tion of ΔSðnÞA ðtÞ,

ΔSðnÞA ðtÞ ’ π2bðζ Þ‘
24

,

bðζ Þ = sin2θ
2

�
Z 2π

0

dk
2π

minð2ζ ∣ϵ0ðkÞ∣,1Þsin2Δk ,
ð13Þ

which is independent of the replica index n (see Methods for the
definition of Δk). This approximation becomes exact in the limit of
large ζ and its effectiveness, also for not too large ζ, is proven by the
inset of Fig. 3.

We now discuss some relevant features of the entanglement
asymmetry and show that it encodes a lot of new physics. First, as
expected19,20, ΔSðnÞA ðtÞ tends to zero for large ζ (i.e. large t) and the U(1)
symmetry, broken by the initial state, is restored. This is analytically
shown by Eq. (13) that indeed at leading order in large ζ is

ΔSðnÞA ðtÞ ’ π
1152

1 + 8
cos2θ

sin4θ

� �
‘

ζ 3
, ð14Þ

i.e. it vanishes for large times as t−3 for any value of θ. This decay is
determined by the quasiparticles with the slowest velocity ∣ϵ0ðkÞ∣, which
in this case are those with momentum around k=0 and π. Another
characteristic, following from having a space-time scaling, is that larger
subsystems require more time to recover the symmetry, as it is clear
from Fig. 3 and Eq. (13): this justifies the significance of the definition of
ΔSðnÞA in terms of ρA rather than the full state ∣Ψi. Finally, a very odd and
intriguing feature is that the more the symmetry is initially broken, i.e.
the largerθ, the smaller the time to restore it. This is a quantumMpemba
effect21: more the system is out of equilibrium, the faster it relaxes. At a
qualitative level this is a consequenceof the fact that for larger symmetry
breaking there is a sharper drop of the (entanglement) asymmetry at
short time, see Fig. 3, before the truly asymptotic behavior takes place.
Furthermore, we can quantitatively understand the quantum Mpemba
effect: from Eq. (14) the prefactor of the t−3 decay is a monotonously
decreasing function of θ in [0,π/2]. Thus the quantumMpemba effect is
not as controversial as its classical version22. To the best of our
knowledge this awkward effect was not known in the literature, showing
the power of the entanglement asymmetry to identify new physics.

Quantum Mpemba effect
The quantum Mpemba effect is not a prerogative of integrable free
systems, such as the XX spin chain, but it turns out to be much more
general and robust. To show this, we analyze now a global quantum
quench having as initial state the tilted ferromagnetic configuration of
Eq. (6) and evolving with the interacting Hamiltonian

H = � 1
4

XN
j = 1

σx
j σ

x
j + 1 + σ

y
j σ

y
j + 1 +Δσ

z
j σ

z
j + 1

h i

� J2
4

XN
j = 1

σx
j σ

x
j + 2 + σ

y
j σ

y
j + 2 +Δ2σ

z
j σ

z
j + 2

h i
,

ð15Þ

whereN is the total number of spins. This Hamiltonian commutes with
the transverse magnetization Q= 1

2

P
jσ

z
j . For J2 = 0, it corresponds to

the Heisenberg XXZ spin chain with anisotropy parameter Δ, which
is the prototype of all interacting integrable models. For Δ = J2 = 0, we
recover the XX spin chain of the previous paragraphs. For J2 ≠0, the
next nearest neighbor couplings break integrability23.

The U(1) symmetry is expected to be restored after a generic
quench to the Hamiltonian (15)19. In fact, at late times, the local sta-
tionary behavior is described by a statistical ensemble, corresponding
to thermal or generalized Gibbs for chaotic or integrable systems
respectively24–28. In one dimensional quantum systems, the Mermin-
Wagner theorem forbids the spontaneous breaking of a continuous
symmetry at finite temperature. In the quench, the finite energy den-
sity of the initial state plays the role of an effective temperature,
causing in general symmetry restoration (with the exception of very
few pathological cases).

In Fig. 4, we plot the time evolution of ΔSA after a quench using
the Hamiltonian (15) with N = 10 spins for different values of the
couplings and initial tilting angle θ. In all the cases, the curves have
been obtained by applying exact diagonalization. In panels a and b of
Fig. 4, we perform a quench to a periodic XXZ chain (J2 = 0) with
interaction Δ = 0.4 (panel a) and Δ = 3.75 (panel b). In panels c and d
of Fig. 4, the post-quench Hamiltonian contains next nearest neigh-
bor terms (J2 = 1) and, therefore, is non-integrable. Panel c corre-
sponds to periodic boundary conditions (PBC) while in panel d we
consider open boundary conditions (OBC) with the subsystem
located at the middle of the chain. In all the plots, the quantum
Mpemba effect is clearly visible: the more the symmetry is initially
broken, the faster ΔSA(t) decays to zero after the quench; this is true,
although the finite size of the system causes revivals that prevent us
from observing the restoration in a neat way as happens in the
thermodynamic limit in Fig. 3.

In conclusion, Fig. 4 shows that quantum Mpemba effect occurs
under very general conditions (both for integrable and non-integrable
interactions with different boundary conditions), even for (sub)sys-
temsof few sites, whichmakespossible to observe it experimentally in,
e.g., ion trap setups.

Fig. 3 | Time evolution of the Rényi entanglement asymmetry ΔSðnÞ
A ðtÞ after the

quench (11). The symbols are the exact numerical results for various values of the
subsystem length ℓ, the replica index n, and the initial tilting angle θ (seeMethods).
The continuous lines are our prediction obtained by plugging the charged
moments reported in Methods into (4) and (2). In the inset, we check the asymp-
totic behavior (13) (full lines) and (14) (dashed) of ΔSðnÞA ðtÞ for large t/ℓ. Source data
are provided as a Source Data file.
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Discussion
In this work, we introduced the entanglement asymmetry, a probe to
study how much a symmetry is broken at the level of subsystems of
many-body systems. As an application to show its potential, we have
studied its dynamics after a quench from an initial state breaking
a U(1) symmetry and evolving with a Hamiltonian preserving it.
We showed that the entanglement asymmetry detects neatly all
the physical relevant features of the dynamics and in particular the
restoration of the symmetry at late times. It also identifies the
appearance of an unexpectedMpemba effect, a phenomenon that, as
we have seen, happens in many settings that can be studied through
the entanglement asymmetry. It is then very important to study other
quench protocols (e.g. different initial state, interacting Hamilto-
nians, etc.) and understand how to modify the quasiparticle
description, following e.g. ref. 29, to describe these more general
situations.

We can easily imagine many other applications of the entangle-
ment asymmetry. The first one is in equilibrium situations that have
been left out here. In this respect, it would be useful to recast the
charged moments (5) in terms of twist fields14,30 within the path-
integral approach: this would allow us to explore more complicated
situations, e.g. the symmetry breaking from SU(2) to U(1), which are
also relevant in high-energy physics31. Similarly, our setup can be
extended to non-Abelian symmetries32 to explore, e.g., how the
asymptotic behavior of ΔSAwith the subsystem size of Eq. (9) depends
on the symmetry group. Finally, ΔSðnÞA ðtÞ, with n integer n ≥ 2, can be
experimentally accessible by developing a protocol based on the
random measurement toolbox33–35. This would require the post-
selection of data from an experiment like the one in36, but with an
initial state breaking the U(1) symmetry.

Methods
We provide here the details about the derivation of the numerical and
analytical results reported in the Results section.

Numerical techniques
We choose as initial state the linear combination of Eq. (10), instead of
Eq. (6), because, after a Jordan-Wigner transformation, the corre-
sponding reduced density matrix is Gaussian in terms of the fermionic
operators cj = ðcyj ,cjÞ. We can then useWick theorem to express ρA(t) in
terms of the two-point correlation matrix

Γjj0 ðtÞ= 2Tr ρAðtÞcyj cj0
h i

� δjj0 , ð16Þ

with j,j0 2 A37. If A is a subsystem of length ℓ, then Γ(t) has dimension
2ℓ × 2ℓ and entries38

Γjj0 ðtÞ=
Z 2π

0

dk
2π

Gðk,tÞe�ikðj�j0 Þ, ð17Þ

with

Gðk,tÞ= cosΔk �ie�2itϵðkÞ sinΔk

ie2itϵðkÞ sinΔk � cosΔk

 !
,

cosΔk =
2 cosðθÞ � ð1 + cos2θÞ cosðkÞ
1 + cos2θ� 2 cosðθÞ cosðkÞ :

ð18Þ

Under the Jordan-Wigner transformation, the transverse magne-
tization is mapped to the fermion number operator and eiαQA

turns out to be Gaussian, too. Therefore, Zn(α) in Eq. (5) is the

Fig. 4 | Quantum Mpemba effect in interacting integrable and non-integrable
spin chains.We plot the time evolution of the entanglement asymmetry ΔSA(t)
after preparing the spin chain at t =0 in the tilted ferromagnetic state of Eq. (6) and
performing a sudden quench to theHamiltonianH given in Eq. (15) with total length
N = 10. The continuous lines have been obtained via exact diagonalization for dif-
ferent choices of the subsystem length ℓ, initial tilting angle θ, and of the couplings

and boundary conditions in the evolution Hamiltonian H. In panels a and b, J2 = 0,
and H corresponds to the XXZ spin chain with anisotropy parameter Δ; in both
cases, we take PBC for the chain. In panels c and d, J2 = 1, and the chain is non-
integrable; in panel c, we consider PBC while in panel d we choose OBC with the
subsystemAplaced in themiddleof the chain. Sourcedata areprovided as a Source
Data file.
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trace of the product of Gaussian fermionic operators, ρA and
eiαj,j + 1QA . Employing their composition properties39,40, we express
Zn(α) as a determinant involving the corresponding correlation
matrices, finding

Znðα,tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

I � ΓðtÞ
2

� �n

I +
Yn
j = 1

WjðtÞ
 !" #vuut , ð19Þ

withWjðtÞ= ðI + ΓðtÞÞðI � ΓðtÞÞ�1eiαj,j + 1nA and nA is a diagonal matrix with
ðnAÞ2j,2j = 1, ðnAÞ2j�1,2j�1 = � 1, j = 1,⋯ , ℓ. We use Eq. (19) to numerically
compute the time evolution of the Rényi entanglement asymmetry
ΔSðnÞA ðtÞ in Fig. 3 and test the analytical predictions presented in
this work.

Analytic computation
After the quench, the natural ballistic regime is the scaling limit t, ℓ→∞
with ζ = t/ℓ fixed38,41, in which we find

Znðα,tÞ=Znð0,tÞe‘ðAðαÞ+Bðα,ζ ÞÞ, ð20Þ

where the functions A(α) and B(α, ζ) read, respectively,

AðαÞ=
Z 2π

0

dk
2π

log
Yn
j = 1

f ðeiΔk ,αj,j + 1Þ,

Bðα,ζ Þ= �
Z 2π

0

dk
2π

minð2ζ ∣ϵ0ðkÞ∣,1Þ log
Yn
j = 1

f ðeiΔk ,αj,j + 1Þ,
ð21Þ

and f(λ, α) is defined as

f ðλ,αÞ= iλ sin α
2

� 	
+ cos

α
2

� 	
: ð22Þ

Notice that in Eq. (21) there is a factorization in the replica space
indexed by j. This cumbersome expression does not come out of a
magician hat, but from the quasiparticle picture16–18: the time evolution
of the entanglement is given by the pairs of entangled excitations
shared by A and B that are created after the quench and propagate
ballistically with momentum± k. Let us explain how to apply this idea
to deduce Eq. (21). According to refs. 19,20, in the quench protocol
analyzed here, theU(1) symmetry is restored in the large time limit, i.e.
ΔSðnÞA ðtÞ ! 0. Therefore, Zn(α, t) has to tend to Zn(0, t), which implies
B(α, ζ)→ −A(α) as ζ→∞. At time t =0, plugging the initial state of
Eq. (10) in the definition of the charged moments (5), we obtain that,
for large ℓ, Zn(α, 0) ~ eA(α)ℓ/2n−1 with

AðαÞ= log
Yn
j = 1

eiσj=2f ðcosðθÞ,αj,j + 1 � σjÞ, ð23Þ

where σj =0 if ∣αj,j+1∣ ≤π/2 and σj =π otherwise. Considering Eq. (23), we
notice that Zn(α, 0) factorizes into

Znðα,0Þ∼ 2
Yn
j = 1

eiσj=2

2
TrðρAð0Þeiðαj,j + 1�σj ÞQA Þ: ð24Þ

The expectation value TrðρAð0ÞeiαQA Þ is the full counting statistics (FCS)
of the transverse magnetization in the subsystem A. We can now take
advantage of the fact that ∣Ψð0Þ� is also the ground state of a XY spin
chain to exploit the knowledge of the FCS in that system42–46 (the
corresponding parameters h, γ of the XY chain are given by γ2 + h2 = 1
and cos2θ= ð1� γÞ=ð1 + γÞ). In particular, employing the results of
ref. 46, we can rewrite A(α) in Eq. (23) as an integral in momentum

space

AðαÞ= � Bðα,ζ ! 1Þ=
Z 2π

0

dk
2π

log
Yn
j = 1

f ðeiΔk ,αj,j + 1Þ: ð25Þ

Now, using the quasiparticle picture, the integrand in Eq. (25) can be
interpreted as the contribution to B(α, ζ) from each entangled exci-
tation of momentum k created after the quench. Since they propa-
gate with velocity ∣ϵ0ðkÞ∣, the number of these pairs shared between A
and its complement at time t is determined by minð2t∣ϵ0ðkÞ∣,‘Þ.
Combining these two ingredients, we get Eq. (20). This approach
makes also clear the crucial role that entanglement plays in the
restoration of the symmetry. Likely this expression can be rigorously
derived by properly adapting the calculations for the symmetry-
resolved entanglement47,48, but this is far beyond the scope of this
work. In Fig. 5, we check Eq. (20) against exact numerical
computations performed using Eq. (19) for different values of n, θ,
and α, finding a remarkable agreement: note that Eq. (20) is exact for
ℓ→∞ and the points are closer to the curves for larger ℓ. Finally, when
in Eq. (20) A(α) + B(α, ζ) is close to zero, the Fourier transform (4) can
be done analytically and we obtain the approximation for the
entanglement asymmetry in Eq. (13).

Data availability
The data that support the plots within this paper are provided in
the Source Data file. Source data are provided with this paper.

Fig. 5 | Time evolution of the charged moments Zn(α, t) after the quench (11).
We plot them as a function of t/ℓ for the replica indices n = 2 (panel a) and n = 3
(panel b) and several values of the initial tilting angle θ, the subsystem size ℓ, and
the phases αj,j+1. The symbols were obtained numerically using Eq. (19) and the
continuous lines correspond to the analytic prediction (20). Source data are pro-
vided as a Source Data file.
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Code availability
The computer codes used to generate the results that are reported in
this paper are available from the authors upon reasonable request.
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