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Multi-omic underpinnings of epigenetic
aging and human longevity

Lucas A. Mavromatis 1,3, Daniel B. Rosoff1,2,3, Andrew S. Bell1, Jeesun Jung 1,
Josephin Wagner1 & Falk W. Lohoff 1

Biological aging is accompanied by increasing morbidity, mortality, and
healthcare costs; however, its molecular mechanisms are poorly understood.
Here, we use multi-omic methods to integrate genomic, transcriptomic, and
metabolomic data and identify biological associations with four measures of
epigenetic age acceleration and a human longevity phenotype comprising
healthspan, lifespan, and exceptional longevity (multivariate longevity). Using
transcriptomic imputation, fine-mapping, and conditional analysis, we identify
22 high confidence associations with epigenetic age acceleration and seven
with multivariate longevity. FLOT1, KPNA4, and TMX2 are novel, high con-
fidence genes associated with epigenetic age acceleration. In parallel, cis-
instrument Mendelian randomization of the druggable genome associates
TPMT and NHLRC1 with epigenetic aging, supporting transcriptomic imputa-
tion findings. Metabolomics Mendelian randomization identifies a negative
effect of non-high-density lipoprotein cholesterol and associated lipoproteins
onmultivariate longevity, but not epigenetic age acceleration. Finally, cell-type
enrichment analysis implicates immune cells and precursors in epigenetic age
acceleration and,moremodestly, multivariate longevity. Follow-upMendelian
randomization of immune cell traits suggests lymphocyte subpopulations and
lymphocytic surface molecules affect multivariate longevity and epigenetic
age acceleration. Our results highlight druggable targets and biological path-
ways involved in aging and facilitate multi-omic comparisons of epigenetic
clocks and human longevity.

Aging is often accompanied by a loss of independence, disability, and
the onset of diseases like cancer, cardiovascular disease, and neuro-
degenerative diseases which cumulatively represent the leading cause
of death in developed nations1. Traditionally, medical interventions
seek to delay the onset of, cure, or treat the symptoms of individual
age-related diseases. However, recently, describing and pharmacolo-
gically targeting the biological processes linking age to functional and
health decline has received attention as an alternative strategy for
increasing healthy years lived2,3. This strategy could offer health and

economic gains that substantially outweigh those achieved by target-
ing specific diseases3. However, the feasibility of slowing biological
aging is currently limited. Long, expensive clinical trials would be
required to identify anti-aging interventions that increase life expec-
tancy in healthy individuals4. Moreover, while promising drug candi-
dates for specific diseases can be prioritized and even approved by
regulators if they alter well-validated disease biomarkers (e.g., low-
density lipoprotein cholesterol for cardiovascular disease), biomarkers
for biological aging are poorly understood and validated.
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Epigenetic clocks, which incorporate data about the methylation
of CpG sites across the human genome into weighted linear equations
to predict chronological age and/or age-related endpoints5, are gen-
erally considered to be the most promising biomarker for biological
aging6, and there have been several recent clinical trials aiming to slow
epigenetic clocks with pharmacological and lifestyle interventions7,8.
These clocks show strong correlations with chronological age and
other aging-related phenotypes9. Additionally, epigenetic clocks are
influenced by genetic factors and have heritability estimates ranging
from0.10 (single nucleotide polymorphism (SNP)-based heritability of
GrimAge acceleration) to 0.43 (pedigree-based heritability of acceler-
atedHorvath andHannumclocks)10,11. For some individuals, epigenetic
age outpaces chronological age inwhat is referred to as epigenetic age
acceleration (EAA). EAA is associated with a number of health condi-
tions and age-related diseases, including substance use behaviors12–14,
atherosclerosis15, cancer16, and mortality17. Given the potential of EAA
as an aging biomarker and the large benefits that could be achieved
through interventions that slow biological aging processes, it is crucial
to describe the biological correlates of EAA, identify targetable bio-
molecules that modify EAA, and assess the biological similarities and
differences between EAA and clinically relevant aging phenotypes like
healthspan, lifespan, and exceptional longevity.

In this study, we use multi-omic methods to comparatively ana-
lyze EAA and a multivariate, longevity-related phenotype (referred to
hereafter as multivariate longevity) comprising parental lifespan,
heathspan, and exceptional longevity (Fig. 1 displays a studyoverview).
We leverage data from genome-wide association studies (GWASs) of
four epigenetic clocks10 and a GWASmeta-analysis of the components
of multivariate longevity18. Using these data, we perform
transcriptome-wide association studies (TWASs) and identify tran-
scriptomic associations with EAA andmultivariate longevity, including

novel (see “Methods” for definition) EAA-associated genes. We then
employ fine-mapping and conditional analyses and prioritize high
confidence (see “Methods” for definition) geneswith potentially causal
relationships with our aging-related traits. We functionally annotate
these high confidence genes with Gene Ontology (GO) categories
using Prediction of gene Insights from Stratified Mammalian gene co-
EXPression (PrismEXP). Next, we perform cis-instrument Mendelian
randomization (MR) of the druggable genome19 and identify drug
targets that could modify EAA and multivariate longevity. We also
perform phenome-wide association studies (PheWASs) to identify
potential pleiotropic effects of promising genetic drug targets. To
identify circulating metabolites that impact aging-related traits, we
conduct metabolome-wide MR analyses, prioritizing numerous meta-
bolites that affect multivariate longevity. Finally, we perform cell-type
enrichment analyses to identify cell types implicated in aging. The
results of our cell-type enrichment analyses implicate immune cells in
biological aging, and a follow-up MR analysis of 731 immune cell traits
further elucidates the immune system’s role in EAA and multivariate
longevity. These findings may inform future research aimed at
improving human aging.

Results
TWASs reveal transcriptomic architecture of aging traits
We used FUSION20, cross-tissue expression quantitative trait locus
(eQTL) weights21, and GWAS summary statistics10,18 to impute gene
expression signatures associated with EAA and multivariate longevity.
We report our full TWAS results in Supplementary Data 1–7, including
results of colocalization analyses22 and permutation testing20 (Sup-
plementary Data 1–5), conditional analyses20 (Supplementary Data 6),
and Fine-mapping Of CaUsal gene Sets (FOCUS)23 (Supplementary
Data 7). Our analyses identified 28 cross-tissue features significantly
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Fig. 1 | Study overview.An overview of this study’s data sources, analytical flow, and
methodology. Created with BioRender.com. IEAA intrinsic epigenetic age accelera-
tion, TWAS transcriptome-wide association study, SNP single nucleotide poly-
morphism, eQTL expression quantitative trait loci, GTExGenotype-Tissue Expression
Project, IVW inverse variance weighted, CELLECT CELL-type Expression-specific

integration for Complex Traits, FOCUS Fine-mapping Of CaUsal gene Sets, MAGMA
Multi-marker Analysis of GenoMic Annotation, S-LDSC stratified linkage dis-
equilibrium score regression, PrismEXP Prediction of gene Insights from Stratified
Mammalian gene co-EXPression.
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associated with intrinsic epigenetic age acceleration (IEAA), 20 sig-
nificantly associated with HannumAge, four significantly associated
with GrimAge, seven significantly associated with PhenoAge, and
34 significantly associated withmultivariate longevity after Bonferroni
correction (P < 1.32 × 10−6) (Fig. 2). Most of these features colocalized
with their respective aging phenotype, suggesting that a shared,
pleiotropic SNP influences both gene expression and said aging phe-
notype (19/28 for IEAA, 8/20 for HannumAge, 4/4 for GrimAge, 4/7 for

PhenoAge, 21/34 for multivariate longevity). Moreover, of these sig-
nificant features, the overwhelming majority passed conservative
permutation testing, suggesting that these features represent bona
fide signals rather than associations conditional on high GWAS signals.
Additionally, 15 unique IEAA features, 13 unique HannumAge features,
four unique GrimAge features, six unique PhenoAge features, and 20
unique multivariate longevity features passed conditional tests
designed to identify, within a given locus, features independently
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Fig. 2 | Results ofTWASsofEAAandmultivariate longevity. a–eManhattanplots
of gene-traits associations for aging-related traits (IEAA, GrimAge, HannumAge,
PhenoAge, multivariate longevity). X axes represent genomic position. Blue lines
represent Z = 4.837, which corresponds to a Bonferroni-corrected significance
threshold of P = 1.32 × 10−6. Red circles represent statistically significant gene-trait

associations. Statistical analyses were conducted using two-sided t-tests. f Venn
diagram quantifying the overlapping genes shared by two or more aging-related
phenotypes. Encircled numbers represent the number of significant genes shared
between two or more phenotypes. TWAS transcriptome-wide association study,
EAA epigenetic age acceleration, IEAA intrinsic epigenetic age acceleration.
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associated with the trait of interest as opposed to feature-trait asso-
ciations attributable to correlated expression between genes. Next, we
used FOCUS fine-mapping to identify potentially causal, high con-
fidence genes. We identified 10 high confidence features for IEAA, five
for HannumAge, two for GrimAge, five for PhenoAge, and seven for
multivariate longevity (Table 1). Two of these high confidence genes,
both located on chromosome 6p22.3, appeared for multiple pheno-
types: TPMT (IEAA, PhenoAge) and NHLRC1 (IEAA, PhenoAge). Addi-
tionally, two high confidence genes for HannumAge (FLOT1 and
KPNA4) and one high confidence gene for IEAA (TMX2) were novel
(>500 kilobases (kb) away from the nearest GWAS lead SNP). Thus, in
total, 19/22 of our high confidence findings for EAA and 7/7 of our high
confidence findings for multivariate longevity likely reflect signals
from their respective source GWAS.

High confidence TWAS genes are associated with diverse bio-
logical functions
We investigated the biological function of the high confidence genes
identified by the TWAS pipeline using PRismEXP and the GO
database24.We foundour high confidencegenes tobe associatedwith a
wide range of biological processes, cellular components, and

molecular functions (results presented in Supplementary Data 8–10).
For example, SESN1 (a GrimAge high confidence gene) showed asso-
ciations with several processes, including insulin response, nutrient
sensing, and steroid metabolism. FLOT1 (a HannumAge high con-
fidence gene) was associated with amyloid fibril formation and the
cellular response to oxidative stress and reactive oxygen species.
Except for IEAA and PhenoAge, which both have high confidence
associations with TPMT and NHLRC1, we observed relatively limited
overlap in the biological functions of genes associated with different
aging traits (Supplementary Data 11). The few functions common to
EAA and multivariate longevity genes included “negative regulation of
gene expression” and “positive regulation of transcription, DNA-
templated.” Yet, while few specific GO gene sets were shared by
genes associatedwith different aging traits, genes associatedwith each
individual aging trait had functions broadly related to insulin signaling,
mitochondrial function, cellular response to stress, and metabolism
(Supplementary Data 11).

MR identifies druggable genes that impact aging traits
We performed a drug-target MR analysis in parallel to our TWASs to
inform anti-aging drug development (instruments presented in

Table 1 | High confidence genes associated with aging phenotypes (TWAS significant, conditionally significant, and PIP >0.5)

Phenotype Gene Novel TWAS
Z score

FOCUS PIP Joint P value (conditional
analysis)

PP.H4 (colocalization
analysis)

Permutation test
P value

HannumAge ZNF37A NO 7.80 1.00 5.30 × 10−7 0.042 0.050

FLOT1 YES −5.83 0.67 3.30 × 10−7 1.00 0.002

KPNA4 YES −4.97 0.83 6.90 × 10−7 0.96 0.002

ZNF248 NO 6.05 1.00 2.40 × 10−18 0.00 0.30

ENSG00000245156 NO −5.33 0.97 9.70 × 10−8 0.88 0.008

GrimAge SESN1 NO −4.85 0.91 1.20 × 10−6 0.94 0.022

ENSG00000272540 NO 5.00 0.72 5.60 × 10−7 0.87 0.005

IEAA CD46 NO −5.80 1.00 6.60 × 10−9 0.51 0.020

TPMT NO −11.50 1.00 9.20 × 10−16 0.007 0.003

TNKS1BP1 NO 6.63 1.00 1.80 × 10−7 0.80 0.003

RPN1 NO 4.95 0.92 7.30 × 10−7 0.36 0.081

AKIRIN1 NO 6.47 0.98 9.90 × 10−11 1.00 1.40 × 10−4

TMEM121B NO 4.97 0.93 6.80 × 10−7 1.00 0.002

NHLRC1 NO −9.68 1.00 3.70 × 10−22 0.98 0.013

TMX2 YES 5.48 0.68 2.60 × 10−4 0.30 0.026

KRT8P12 NO −7.04 0.51 1.90 × 10−12 0.96 5.92 × 10−4

ENSG00000260329 NO 5.79 1.00 7.10 × 10−9 0.99 0.004

PhenoAge CYP2J2 NO 7.13 1.00 9.80 × 10−13 0.97 0.002

TPMT NO −6.74 1.00 6.80 × 10−7 0.007 0.002

PURB NO 6.29 1.00 3.10 × 10−10 0.96 0.014

KDM1B NO 5.86 0.99 2.40 × 10−4 0.01 0.019

NHLRC1 NO −6.03 1.00 1.60 × 10−9 0.98 0.013

Multivariate
longevity

DBNDD1 NO 5.66 1.00 1.50 × 10−8 1.00 0.009

TOMM40 NO 10.47 1.00 1.20 × 10−25 0.20 0.004

CDKN2B NO 7.28 1.00 3.40 × 10−13 0.88 0.002

FGD6 NO 5.77 1.00 8.20 × 10−9 0.99 4.37 × 10−4

FES NO −5.91 1.00 3.40 × 10−9 0.98 4.51 × 10−4

ENSG00000255710 NO 5.19 0.98 2.20 × 10−7 0.95 0.019

PHETA1 NO −5.50 1.00 3.70 × 10−8 0.078 0.009

High confidence results from TWAS analyses of five aging phenotypes. TWASs were conducted using cross-tissue expression weights generated from the GTEx v8 release using sparse canonical
correlation analysis (sCCA). Significance was defined using a Bonferroni threshold of P < 1.32 × 10−6 (0.05/37,917 cross-tissue sCCA features). Significant TWAS associations were deemed high
confidence if they passed a conditional test (joint P value < 0.05) and FOCUS fine-mapping (PIP > 0.5). Colocalization and permutation analyses were used to further assess the robustness of TWAS
findings. A gene was defined as novel if it was located greater than 500 kilobases from a lead variant in the source GWAS. Statistical analyses were conducted using two-sided t-tests.
TWAS transcriptome-wide association study, PIP posterior inclusion probability, FOCUS Fine-mapping Of CaUsal gene Sets, PP.H4 posterior probability that two traits are associated with a single
causal variant, IEAA intrinsic epigenetic age acceleration, GTEx v8 Genotype-Tissue Expression Project version 8, GWAS genome-wide association study.
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Supplementary Data 12, full results presented in Supplementary
Data 13–17). For all druggable genes19 with eQTLswithin 10 kb, we used
these eQTLs as instrumental variables to represent lifelong exposure
to this gene’s product and evaluated the effect of these exposures on
our aging-related outcomes. We identified gene products significantly
associated (false discovery rate (FDR) of 0.05) with four of our aging
phenotypes (IEAA, HannumAge, PhenoAge, multivariate longevity).
We identified four unique genetic drug targets for IEAA, six for Han-
numAge, two for PhenoAge, and 27 for multivariate longevity. Two
genes were significantly associatedwith two phenotypes: TPMT, a high
confidence TWAS gene for PhenoAge and IEAA, accelerated PhenoAge
and IEAA; C4B accelerated HannumAge and decreased multivariate
longevity. Also of note, NHLRC1, another high confidence TWAS gene
for IEAA and PhenoAge that neighbors TPMT, significantly decelerated
IEAA and decelerated PhenoAge at a FDR-adjusted P value of 0.084.
TPMT encodes thiopurine S-methyltransferase, an enzyme that breaks
down immunosuppressant thiopurine drugs;NHLRC1 encodesmalin, a
ubiquitin ligase involved in the degradation of misfolded proteins and
the regulationof glycogen;C4Bencodes thebasic formof complement
factor 4, a part of the classical complement pathway (https://
medlineplus.gov/genetics/gene/).

While our drug-targetMR identifiedmany significant associations,
many of these associations, including the associations involving C4B,
failed to show strong evidenceof colocalizationusing the coloc Sumof
Single Effects (SuSiE) regression framework (1/4 IEAA genes coloca-
lized, 2/6 HannumAge genes, 2/2 PhenoAge genes, 7/27 multivariate
longevity genes) (Supplementary Data 13–17). Non-colocalized gene-
trait associations cannot be interpreted as causal relationships.
Moreover, our gene most significantly associated with HannumAge,
CD248, may be associated due to reverse causality, according to the
MR Steiger test of directionality (Supplementary Data 14). Despite an
overall lack of colocalization among our MR findings, TPMT and Phe-
noAge, as well as NHLRC1 and IEAA, did show strong evidence of
colocalization and thus may reflect causal relationships. Table 2 dis-
plays all colocalized drug-target MR findings.

PheWASs elucidate pleiotropic effects of MR-identified genes
To model potential effects of pharmacologically targeting our MR-
identified genes, we useddata fromFinnGen25 to carryout PheWASs. In
Supplementary Data 18–22, we report associations significant under a
Bonferroni-corrected threshold of P < 1.78 × 10−5. Notably, SNPs within
100 kb of our topmultivariate longevity-associated gene, PSMA4, were

associatedwith decreased incidence of chronic obstructive pulmonary
disease and lung cancer and increased the risk for coronary artery
disease. SNPs located near the neighboring genes TPMT and NHLRC1
were associated with decreased risk of atrial fibrillation, autoimmune
and inflammatory diseases, and increased risk of sleep disorders.
Broadly, many SNPs located near our MR-identified genes modulated
endocrine, metabolic, and immune functions, incidence of respiratory
disease, and incidence of musculoskeletal disease. Ultimately, follow-
up studies should investigate the effects of modulating transcript
levels of TPMT, NHLRC1, and other genes identified in this MR on
biological aging, with particular attention to adverse and beneficial
effects on the phenotypes identified in these PheWASs.

MR identifies metabolomic effects on multivariate longevity
To identify the effects of circulating metabolites on multivariate
longevity and epigenetic aging, we performed ametabolome-wideMR
analysis of 249 circulating metabolites26 on our aging-related pheno-
types (exposures described in Supplementary Data 23, and genetic
instruments described in Supplementary Data 24). Inverse variance
weighted (IVW) MR identified 160 metabolites with significant effects
on multivariate longevity at a Bonferroni-corrected threshold of
P <0.00122 (Supplementary Data 25–29). The five most significant
effects came from (1) ratio of apolipoprotein B (ApoB) to apolipo-
protein A1 (ApoA1) (β = −0.070); (2) clinical low-density lipoprotein
(LDL) cholesterol (β = −0.071); (3) phospholipids in small LDL
(β = −0.067); (4) cholesteryl esters in medium very-low-density lipo-
protein (VLDL) (β = −0.068); and (5) cholesterol in medium VLDL
(β = −0.066) (Fig. 3). Many of these relationships were conserved
across complementary MR methods (Supplementary Data 25–29).
These findings seem to reflect the well-validated role of non-high-
density lipoprotein (non-HDL) particles and associated apolipopro-
teins in the pathogenesis of cardiovascular diseases27. By contrast, we
failed to identify any significant effects of circulating metabolites on
EAA. The nominally significant associations we identified showed no
indication that non-HDL lipoproteins and related metabolic pheno-
types increase EAA.

Cell-type enrichment analysis links cell types to aging traits
We used CELL-type Expression-specific integration for Complex Traits
(CELLECT)28, with both Multi-marker Analysis of GenoMic Annotation
(MAGMA)29 and stratified linkage disequilibrium score regression
(LDSC)30 enrichment analysis tools, to identify etiological cell types for

Table 2 | MR of the druggable genome identifies genes associated with aging phenotypes

Phenotype MR method Gene Beta SE FDR-adjusted P value PP.H4 (coloc SuSiE)

IEAA Wald ratio NHLRC1 −1.84 0.40 4.76 × 10−3 0.92

HannumAge Wald ratio NFKB1 −0.49 0.11 0.018 0.76

IVW HDGF −0.73 0.18 0.022 0.87

PhenoAge Weighted median TPMT 0.53 0.094 4.58 × 10−5 1.00

IVW LTBR 0.46 0.11 0.031 0.85

Multivariate longevity Wald ratio PSMA4 −0.065 0.007 1.23 × 10−19 0.93

Weighted median CASP8 0.028 0.006 6.40 × 10−4 1.00

IVW VDR 0.032 0.007 0.002 0.95

Weighted median VDR 0.032 0.008 0.012 0.95

Wald ratio WNT3 0.038 0.010 0.020 0.90

Wald ratio PTPN22 −0.022 0.006 0.027 0.94

Wald ratio CDC25A 0.048 0.013 0.036 0.82

Wald ratio CTSK 0.013 0.004 0.036 1.00

Results from our drug-target MR analysis of the druggable genome19 on five aging phenotypes. Genes significantly associated with an aging phenotype at a FDR of 0.05 and colocalized at
PP.H4>0.75 are displayed. Standard errors are with respect to beta values. Statistical analyses were conducted using two-sided t-tests.
MR Mendelian randomization, FDR false discovery rate, IVW inverse variance weighted, IEAA intrinsic epigenetic age acceleration.
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multivariate longevity and EAA. Figure 4 displays the significant
MAGMA findings, Supplementary Figs. 1–10 displays the results from
all MAGMA and LDSC analyses, and Supplementary Data 30–34 con-
tain full tabulated CELLECT results. The CELLECT results suggest that
genes specifically expressed in immune cells are enriched in SNPs
associated with EAA (Supplementary Figs. 1–4 and 6–9); most of the
cell types significantly associatedwith EAA at a FDRof 0.05 are derived
frommarrowor the thymus, and even those derived fromother tissues
almost all play roles in innate or adaptive immunity.While no cell types
were associatedwithmultivariate longevity at a FDR of 0.05, CELLECT-
MAGMA identified cell types associated with multivariate longevity at
P <0.05. These cells were also primarily immune cells (Supplementary
Fig. 5). For the CELLECT-MAGMA analysis, the most significant cell-
type enrichments overall were: (1) marrow common lymphoid pro-
genitor cell (PHannumAge = 1.42 × 10−8), (2) marrow late pro-B cell
(PHannumAge = 1.20 × 10−6), and (3) marrow late pro-B cell (PGrimAge =
2.26 × 10−6). Interestingly, for both EAA and multivariate longevity,
MAGMAproduced a greater number of significant findings than LDSC.
Additionally, across both methods, multivariate longevity had mark-
edly fewer significant cell types than our EAA phenotypes, which may
be partially due to the lower heritability of our multivariate longevity
phenotype.

MR identifies possible causal effects of immune traits on aging
To further elucidate the immune system’s impact on multivariate
longevity and epigenetic aging, we followed up our cell-type enrich-
ments analyses with MR analyses of 731 immune cell traits31 on multi-
variate longevity and EAA (traits contained in Supplementary Data 35,
genetic instruments contained in Supplementary Data 36, and results
contained in Supplementary Data 37–41). We identified 12 immune
phenotypes with significant effects on multivariate longevity (FDR of
0.05): (1) Lymphocyte absolute count, (2) CD64 on CD14+CD16+

monocytes, (3) CD4+ T cell absolute count, (4) Central Memory CD4+
T cell count, (5) T cell absolute count, (6) HLA DR on CD33+ HLA DR+

CD14− myeloid cells, and (7) CD45 on B cells all negatively impact
multivariate longevity. Conversely, (1) CD39 on CD39+ secreting CD4
regulatory T cells, (2) CD39onCD39+ activated CD4 regulatory T cells,
(3) CD14 on CD14 CD16- monocytes, (4) percentage of lymphocytes
that are memory B cells, and (5) CD28 on CD39+ secreting CD4 reg-
ulatory T cells all positively impact multivariate longevity (Table 3,
Supplementary Data 37). To identify immune traits that affect EAA, we
used a relaxed FDR threshold of 0.2 because of the relatively lower
sample sizes of our EAA samples. At this relaxed threshold, CD8 on
terminally differentiated CD8+ T cells, CD80 on CD62L+ myeloid
dendritic cells, andCD28onCD28+CD45RA+CD8+Tcells were shown
to increase IEAA (Table 3, Supplementary Data 38). None of these
relationships were significant in the reverse direction at a FDR of 0.2
(i.e., MR of aging exposures on immune trait outcomes) (instruments
contained in Supplementary Data 42, results contained in Supple-
mentary Data 43–47). Overall, our MR results suggest that lymphocyte
counts, cell surface molecule composition, and inflammatory pro-
cesses impact multivariate longevity and may affect epigenetic aging.

Discussion
Our study used large genomic data sources and amulti-omic approach
to investigate biomolecular associations with EAA and multivariate
longevity (Fig. 1). We identified novel gene associations with EAA and
elucidated the transcriptomic effects of previously identified gene
associations with EAA and multivariate longevity. Several highlighted
genes (TOMM40, SESN1, FLOT1, KPNA4, and TMX2) were previously
implicated in age-related endpoints including cancer32–35, age-related
clonal hematopoiesis36, and cataract formation36. Furthermore, our
study builds on past genetic studies that show overlap between aging-
associated SNPs and SNPs involved in immune pathways10,37. We
highlight the shared genetic control of aging and the immune system
using CELLECT and MR, building a case for further research into the
role of immunity and inflammation in the development of age-related
diseases. Our study also identifies possible genetic drug targets,
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Fig. 3 | Results ofmetabolome-wideMR analysis onmultivariate longevity.MR
effects of metabolic phenotypes on multivariate longevity. Metabolic phenotypes
with significant, positive Z scores (beta/standard error) are predicted to increase
multivariate longevity and vice versa. The eight most significant positive and
negative associations are labeled with abbreviated codes, and the full name cor-
responding to each code is contained in Supplementary Data 23. Green circles
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circles represent metabolic phenotypes that decrease multivariate longevity. The
dotted line corresponds to a Bonferroni-adjusted significance threshold of
P =0.00122 (0.05/41 principal components). The full results of the metabolome-
wide MR analysis, including estimates on EAA (all null), are contained in Supple-
mentary Data 25–29. Statistical analyses were conducted using two-sided t-tests.
MR Mendelian randomization, EAA epigenetic age acceleration.
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including genes located at chromosome 6p22.3 (TPMT and NHLRC1),
that warrant further study for their involvement in human longevity.
Finally, we highlight several circulating metabolites that impact aging.
Many of the aging-associated traits identified by this study, fromgenes
to circulating metabolites, represent potential pharmacological tar-
gets. Because genomic evidence in drug discovery substantially
improves the likelihood of successful drug development38, these
findings may facilitate basic and translational investigations into
therapeutic strategies to increase healthy years lived.

Our TWASs identified many genes that have previously been
linked with aging and age-related disease, supporting the validity of
our approach. For instance, SESN1, a high confidence GrimAge gene,
positively regulates lifespan in Caenorhabditis elegans39 and inhibits
the mammalian target of rapamycin protein (mTOR), a molecular
process that has been widely investigated for its possible longevity
benefits40. TOMM40, a high confidence multivariate longevity gene,
was the most significant gene in a recent Alzheimer’s disease TWAS41

and influences age-related memory performance42. APOE, one of
theour top multivariate longevity genes, has been associated with
coronary artery disease, Alzheimer’s disease, and longevity43. Our
TWASs also revealed novel, high confidence associations between
gene products and aging-related phenotypes. FLOT1, a novel, high
confidence gene associated with HannumAge which encodes amarker
of lipid rafts, is overexpressed in multiple cancers and negatively

associates with cancer prognosis32,33. Downregulation of FLOT1 has
been shown to increase expression of FOXO344, a gene consistently
implicated in human longevity45. KPNA4, a novel, high confidence
HannumAge gene, has been implicated in cancer34, age-related clonal
haematopoiesis36, and cataract formation36. TMX2, our final novel, high
confidence gene, was associated with IEAA and is overexpressed in
breast cancer35.

Our cis-instrument MR analysis of druggable genes19 identified
two gene products that significantly modulate multiple age-related
phenotypes. One of these genes, C4B, accelerated HannumAge and
decreased multivariate longevity, but did not show strong evidence
of colocalization with either phenotype. The other of these genes,
TPMT, accelerated IEAA, albeit without evidence of colocalization,
and accelerated PhenoAge with evidence of colocalization. Notably,
TWAS also identified TPMT as a high confidence gene associatedwith
IEAA and PhenoAge. TPMT’s product, thiopurine S-methyltransferase
(TPMT),metabolizes thiopurine immunosuppressants46. Little data is
available on the endogenous function of TPMT; its role in metabo-
lizing immunosuppressants and our PheWAS findings linking SNPs
near TPMT to immune-related disorders like post-dysenteric arthro-
pathy and Guillain-Barre syndrome suggest it may enhance immune
activity, while our GO analysis suggested that it may be involved
in metabolism, mitochondrial function, and cellular response to
oxidative stress.
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Fig. 4 | CELLECT-MAGMA cellular associations with EAA. a–d Results from
CELLECT-MAGMA cell-type enrichment analysis of four EAA traits significant at a
FDR of 0.05. Bars represent negative, log-transformed, unadjusted P values. The
scRNA-seq data used in this analysis comes from the Tabula Muris database and
encompasses 115 cell types from20Musmusculus tissues. The full results of the cell-
type enrichment analyses, including CELLECT-LDSC results and cellular

associations with multivariate longevity (all null), are contained in Supplementary
Data 30–34. Statistical analyses were conducted using one-sided t-test tests. CEL-
LECT CELL-type Expression-specific integration for Complex Traits; MAGMAMulti-
marker Analysis of GenoMic Annotation, FDR false discovery rate, scRNA-seq sin-
gle-cell RNA sequencing, LDSC linkage disequilibrium score regression.

Article https://doi.org/10.1038/s41467-023-37729-w

Nature Communications |         (2023) 14:2236 7



Although TPMT was prioritized by our transcriptomic analyses, it
is important to note that colocalization results for these analyses
yielded mixed evidence for a causal relationship between TPMT and
EAA.TPMT resides in the 6p22.3 locus next toNHLRC1, a genewith high
confidence TWAS associations with IEAA and PhenoAge and which
significantly decelerated IEAA and nominally decelerated PhenoAge in
our MR analyses. NHLRC1 encodes malin, a ubiquitin ligase involved
the regulation of glycogen47. NHLRC1 showed strong evidence of
colocalization with IEAA and PhenoAge in TWAS follow-up analyses
that relied on the conservative single causal variant assumption22, and
it also showed evidence of colocalization with IEAA in our MR follow-
up analysis. Because of the mixed evidence linking TPMT and NHLRC1
to EAA outcomes, functional, fine-mapping, and interventional studies
should investigate these genes and their role in aging.

Our metabolome-wide MR analysis identified 160metabolic traits
that significantly impact multivariate longevity, demonstrating an
important role for the plasma metabolome in human longevity. Our
most significant finding was a negative effect of the ratio of ApoB to
ApoA1 on multivariate longevity, which extends MR data suggesting
that elevated ApoB levels are associated with reduced lifespan48. The
ApoB to ApoA1 ratio proxies the ratio of circulating non-HDL to HDL
particles, and our findings thus support the notion that non-HDL
particles are primary drivers of atherosclerosis49. Our results also
highlight the important link between longevity and cardiovascular
diseases, which remains the leading global cause of death50. However,
while non-HDL particles may reduce longevity by promoting athero-
sclerosis, they did not accelerate epigenetic clocks in our analysis,
suggesting recent observational data linking EAA with metabolomic
dysregulation may be due to confounding51.

Our CELLECT-MAGMA analyses revealed connections between
immune cells and age-related traits, particularly EAA, demonstrating
that aging-related genes arehighly expressed in immune cells and their
precursors, and thus, common genetic variants may impact EAA and
multivariate longevity by influencing immunity and immune cell dif-
ferentiation. Our CELLECT-LDSC results also weakly linked EAA to
immune cells; however, this analysis did not suggest a relationship
between immune cells and multivariate longevity. The discrepancies
betweenMAGMA and LDSCmay be due to the different ways by which
the methods account for gene size and LD or other methodological

differences29,30. By highlighting general trends (e.g., immune enrich-
ment) rather than specific findings in our cell-type enrichment ana-
lyses, we hope to mitigate the impact of methodological limitations.

Lastly, our downstream MR analysis of 731 immune-related
exposures on multivariate longevity and EAA found that lymphocyte
count, T cell count, and central memory CD4+ T cell count decrease
multivariate longevity, while the proportion of lymphocytes that are
memory B cells increase multivariate longevity. These findings align
with emerging literature implicating CD4+ T lymphocytes as key
players in an age-associated chronic inflammatory state linked to the
pathogenesis of age-related diseases (inflammaging)52,53. We also
identified immunological phenotypes related to lymphocyte cell sur-
face molecule composition that impact EAA, particularly IEAA. Future
studies should attempt to determine if and how the immune traits
identified in this study influence inflammaging.

Our multi-omic analyses also facilitated biological comparisons
between the five analyzed aging phenotypes. Firstly, this study
revealed similarities and differences between the biological correlates
of four prominent epigenetic clocks. Secondly, it juxtaposed EAA—a
promising, yet recently developed and poorly understood biomarker
for biological aging—and a multivariate longevity trait comprising
phenotypes with clear relevance to human health and wellbeing.

At the transcriptomic level, there was one TWAS finding, FLOT1,
shared between EAA (HannumAge) and multivariate longevity, which
was only high confidence for HannumAge. Four TWAS associations
were associated with multiple measures of EAA, including the high
confidence associations of TPMT and NHLRC1 with both IEAA and
PhenoAge (Fig. 2). Functional analyses of our high confidence genes
using GO revealed that, generally, genes implicated in each of our five
aging phenotypes had different biological functions. The unique
transcriptomic signatures of our four EAA phenotypes is particularly
notable, yet not entirely unexpected, in the context of past research
showing that different epigenetic clocks contain generally distinctCpG
sites in distinct genomic regions54. We postulate that our four EAA
measures may reflect unique epigenetic aging phenomena due to
differences in training outcomes, tissues, and populations9. These
epigenetic aging phenomena may capture various hallmarks of aging
to different degrees. For example, PrismEXP implicated GrimAge
(SESN1) and IEAA (AKIRIN1) genes in functions related to nutrient

Table 3 | MR identifies immune cell traits associated with aging phenotypes

Phenotype MR method Exposure Beta SE FDR-adjusted P value

Multivariate longevity Wald ratio Lymphocyte absolute count −0.075 0.011 3.59 × 10−9

Wald ratio CD64 on CD14+CD16+ monocytes −0.077 0.011 3.59 × 10−9

Wald ratio CD4+ T cell absolute count −0.062 0.009 3.59 × 10−9

Wald ratio Central Memory CD4+ T cell count −0.071 0.010 3.59 × 10−9

Wald ratio T cell absolute count −0.078 0.011 3.59 × 10−9

IVW HLA DR on CD33+ HLA DR+ CD14− myeloid cells −0.012 0.003 5.06 × 10−4

IVW CD45 on B cells −0.033 0.009 0.038

IVW CD39 on CD39+ secreting CD4 regulatory T cells 0.005 0.001 0.038

IVW CD39 on CD39+ activated CD4 regulatory T cells 0.004 0.001 0.038

Wald ratio CD14 on CD14 CD16- monocytes 0.026 0.008 0.038

IVW Percentage of lymphocytes that are memory
B cells

0.034 0.010 0.038

Wald ratio CD28 on CD39+ secreting CD4 regulatory T cells 0.013 0.004 0.048

IEAA IVW CD8 on terminally differentiated CD8+ T cells 0.33 0.085 0.053

IVW CD80 on CD62L+ myeloid dendritic cells 0.37 0.098 0.053

IVW CD28 on CD28+ CD45RA+ CD8+ T cells 0.34 0.094 0.053

Results from ourMR analysis of the 731 immune trait exposures on five aging phenotypes. Genes significantly associatedwithmultivariate longevity at a FDR of 0.05 orwith EAA at a FDR of 0.20 are
displayed. Standard errors are with respect to beta values. Statistical analyses were conducted using two-sided t-tests.
MR Mendelian randomization, FDR false discovery rate, IVW inverse variance weighted, IEAA intrinsic epigenetic age acceleration, EAA epigenetic age acceleration.
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sensing, while a HannumAge gene (KPNA4) was implicated in the reg-
ulation of gene expression. Dysregulation of each of these processes is
considered to play a key role in age-related physiological decline55,56.
However, we note that high confidence genes linked to each of our five
aging outcomeswere implicated in functions broadly related to insulin
signaling, mitochondrial function, cellular response to stress, and
metabolism. These biological domains may play fundamental roles in
diverse aging-related phenotypes. Future in vivo and in vitro studies
should attempt to better characterize the relationships of different
epigenetic clocks and different biological process related to aging.
Additionally, meta-clocks like the one described in Liu et al. (2020)54,
which may capture fundamental aging processes and predict aging-
related health decline more effectively than individual component
clocks, should be assessed as a potential aging biomarker.

Our metabolomic MR suggested that circulating lipids and lipo-
proteins strongly influence multivariate longevity but do not impact
epigenetic aging (Fig. 3, Supplementary Data 25–29). These results
indicate that any impact the circulating metabolome has on human
longevity may not be mediated by facets of biological aging captured
by epigenetic clocks.

By contrast, our cell-type enrichment analyses implicated immune
cells and precursors in EAA to a greater extent than in multivariate
longevity (Fig. 4, Supplementary Figs. 1–10). The relatively greater
immune cell enrichment of EAA compared to multivariate longevity is
particularly notable because our multivariate longevity dataset was
larger than our EAA datasets. This result may be partially attributable
to the greater heritability of our EAA phenotypes. In contrast to our
cell-type enrichment analyses, our MR analyses of immune traits
indicated that phenotypes related to lymphocytic makeup and central
memory CD4+ T cell count may causally influence multivariate long-
evity with minimal effects on EAA. These findings could mean that a
genetic predisposition for EAAexerts its effects on human longevity by
altering immune function. However, describing relationships between
EAA and immune-related traits is complicated by the fact that
DNA methylation affects cellular differentiation and cell-type
composition57, making analyses of these traits potentially susceptible
to reverse causality.

Our study has notable strengths. First, we enriched large GWAS
datasets with functional significance through transcriptomic imputa-
tion. Our use of cross-tissue gene expression weights created using
sparse canonical correlation analysis (sCCA) increased the statistical
power of our TWASs21, allowing us to detect more aging-related genes
and capture the cross-tissue nature of aging. FUSION’s post-processing
tests helped us distinguish causal gene-trait associations from those
resulting from a large GWAS signal or linkage disequilibrium (LD), and
FOCUS fine-mapping allowed us to identify putative causal genes from
among our TWAS findings. Our cis-instrument MR of the druggable
genome served as a parallel transcriptomic technique, allowing us to
identify potential longevity-promoting drug targets and prioritize
consistent findings across transcriptomic methods. Finally, PheWASs
allowed us to characterize potential side effects of drugs targetingMR-
identified genes. Beyond transcriptomics, our study integrated GWAS
data on EAA and multivariate longevity and single-cell transcriptomic
data on diverse cell types to identify candidate etiological cell types for
these aging phenotypes. Additionally, we took advantage of recent,
comprehensive datasets to analyze the effects of 731 immune system
traits and 249 circulating metabolites on multivariate longevity and
EAA. Broadly, our study’s hypothesis-free, comprehensive, multi-omic
approach served to generate hypotheses for investigators seeking to
understand and pharmacologically target the biology of aging. Our
results provide insights into the biology of epigenetic clocks and
present the biological signatures of these clocks in reference to a
multivariate longevity phenotype encompassing healthspan, lifespan-
by-proxy, and exceptional longevity, traits that any drug targeting
biological aging processes would ultimately aim to modulate.

Our study also has important methodological limitations. First,
our TWASs and MR analyses only used cis-eQTLs to predict gene
expression, while trans-eQTLs and other elements also regulate gene
expression. Our use of sCCA, while increasing our statistical power,
likely obscured tissue-specific gene expression patterns that influence
age-related phenotypes. For our cis-instrument MR of the druggable
genome, we used eQTL data because of its more complete genome-
wide and cross-tissue coverage compared to available protein QTL
(pQTL) studies58,59. However, while transcriptomic data is more func-
tional than genomic data, it is still one biological step removed from
proteomicdata, limiting our study’s utility for drugdevelopment given
that most approved pharmacotherapies target proteins60. Addition-
ally, although we identified numerous high confidence genes, the
techniques we used to account for LD, pleiotropy, and high GWAS
signals are imperfect, and someof these genesmaybe false positives61.
The importance of a cautious interpretation of even our high con-
fidence findings is exemplified by the incongruous TWAS effect
directions for genes like FLOT1, which is associated with decelerated
HannumAge and greater multivariate longevity, but which nominally
associates with accelerated IEAA and GrimAge. In summary, our find-
ings should be used to generate hypotheses, and future in vitro,
in vivo, and in silico studies should be used to validate and
replicate them.

We also emphasize the limitations inherent to our data sources.
For example, the GWAS of UK Biobank participants’ parental lifespans
may reflect the common causes of health and disease in the United
Kingdom from several decades ago, which have shifted over time62.
Also, due to a paucity of diverse -omic datasets, the human datasets we
used throughout this study almost exclusively comprise participants
of European ancestry. Due to differences in allele frequency, LD
structure, and the genetic architecture of complex traits between
ancestral populations, multi-omic analyses have limited trans-
ancestral generalizability63. More comprehensive genomic data on
health-related traits, gene expression, circulating metabolites, and
immune phenotypes would allow studies like this one to be performed
in non-European ancestry populations, avoiding the perpetuation of
health disparities produced by ungeneralizable science64. Moreover,
theGWASs of circulatingmetabolites and twoof the threemultivariate
longevity phenotypes–healthspan and lifespan–included participants
from the UK Biobank. MR analyses using these data therefore had
sample overlap, which may have biased effect estimates toward their
observational associations and away from the null65, although recent
literature suggests that two-sampleMRmethods can be safely used for
one-sample MR in large biobanks66. Additionally, our Genotype-Tissue
Expression Project version 8 (GTEx v8) cross-tissue gene expression
weight dataset did not include expression weights for all genes that
may be relevant to epigenetic aging or longevity. For instance, TERT,
which was identified in GWASs of EAA10,67 and the overexpression of
which increases IEAA in primary human fibroblasts67, was not con-
tained within this reference data. Finally, due to the limited availability
of broad human single-cell RNA-sequencing (scRNA-seq) datasets, we
used Mus musculus scRNA-seq in our cell-type enrichment analysis,
motivating our focus on cellular categories rather than specific
cell types.

In conclusion, our study identified transcriptomic, metabolomic,
and cellular correlates of EAA and a clinically relevant multivariate
longevity phenotype; prioritizedbiologicalpathways relevant to aging;
and identified drug targets that may reduce EAA and promote long-
evity. We also uncovered similarities and differences between epige-
netic aging and multivariate longevity and between different
epigenetic clocks. Ultimately, these findings may provide valuable
insights into the transcriptomic, metabolic, cellular, immune-related
architecture of age-related phenotypes and guide future research
aimed at characterizing and pharmacologically combatting
pathological aging.
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Methods
A study overview is presented in Fig. 1, including data sources, study
objectives, methods, and follow-up analyses.

Effect directions and sizes
Throughout this study, positive effects on multivariate longevity and
negative effects on EAA should be interpreted as beneficial to human
health. We use beta values to represent effect sizes across our MR
analyses, which represent change in outcome phenotype per unit
change in exposure phenotype. However, given the complexity of our
aging phenotypes, we emphasize statistical significance and effect
directions rather than effect sizes.

Fundamental data sources
As the basis for all analyses in this study, weobtained publicly available
summary statistics from GWASs of EAA and multivariate longevity
conducted in European ancestry populations. These GWASs have
existing ethical permissions from their respective institutional review
boards, include participant informed consent and rigorous quality
control, and are described fully in the following sections of “Methods”.
Because sex-stratified versions of these GWASs were unavailable, nei-
ther sex nor gender-based analyses were performed in this study.
Additionally, to model LD in our MR, TWAS, and TWAS follow-up
analyses, we used the 1000 Genomes Project Phase 3 European
genomic reference data68.

EAA
To select SNPs associated with EAA for our multi-omic analyses, we
used summary statistics from four GWASs of EAA performed by
McCartney et al. in 28 European ancestry cohorts (N = 34,710)10. These
epigenetic clocks use penalized linear regression models with DNA
methylation data as an independent variable to predict chronological
age (in the case of first-generation clocks including IEAA and Hannu-
mAge) or chronological age in addition tomorbidity andmortality risk
(in the case of second-generation clocks including GrimAge and
PhenoAge)10. Specifically, HannumAge takes 71 CpGs as inputs and is
trained on chronological age. IEAA takes 353 CPGs as inputs, is
regressed on age and cell-type composition data imputed from
this methylation data, and is trained on chronological age. PhenoAge
takes 513 CpG sites as inputs and is trained on Phenotypic Age, which
combines 9 biomarkers and chronological age to predict aging-related
mortality. Finally, GrimAge incorporates 1030 CpG sites, age, sex, and
methylation proxies for smoking, leptin, adrenomedullin, beta-2-
microglobulin, cystatin C, growth differentiation factor 15, plasmino-
gen activator inhibitor 1, and tissue inhibitor metalloproteinase 1.

Multivariate longevity
To investigate amore clinically relevant aging phenotype and compare
this phenotype to our EAA traits, we used data from a multivariate
GWAS of traits related to human longevity (Ntotal = 1,349,432,
Neffective = 709,709) for our multi-omic analyses. This recent
GWAS18 encapsulates healthspan (N = 300,477)69, parental lifespan
(N = 1,012,240)70, and extreme longevity (N = 36,745)71. Briefly, the
healthspan GWAS included 300,477 UK Biobank participants of Eur-
opean ancestry and used Cox-Gompertz survival models with clinical
events in seven disease categories, including cancer, cardiovascular
disease, diabetes, stroke, and dementia. Participants having one or
more of these events were considered to have complete healthspans69.
Of the 300,477 participants, 84,949 experienced an event which
completed their healthspan69. Data from parental lifespan used infor-
mation on 512,047 maternal and 500,196 paternal lifespans69. Across
each cohort, Cox survival models for mothers and fathers were fitted,
and the Martingale residuals of these survival models were regressed
against participant gene dosages (imputed from the Haplotype
Reference Consortium72). Finally, the extreme longevity GWAS used

lifespan data from 11,262 unrelated participants of European ancestry
who lived to anage greater than the 90th survival percentile compared
to 25,483 participants whose age at death (or the last follow-up visit)
was less than or equal to the 60th survival percentile71.

Gene expression weights for transcriptomic imputation
In our TWAS analyses, we sought to translate SNP associationswith our
aging outcomes into gene transcript associations with these outcomes
in a tissue nonspecific manner to capture the cross-tissue nature of
aging. Therefore, we used cross-tissue gene expression weights gen-
erated with sCCA21. These sCCA gene expression weights were derived
from GTEx v8 atlas of eQTLs73.

Transcriptomic imputation
As the first step of our TWAS analyses,we used themunge_sumstats.py
script from LDSC to appropriately format the GWAS summary statis-
tics of our aging-related outcomes74. Next, we used the FUSION pipe-
line under default settings to impute transcriptomes associated with
each of our outcomes20. This imputation was restricted to autosomal
chromosomes. In brief, FUSION allowed us to (1) identify cis-heritable,
cross-tissue gene expression features; (2) use our gene expression
weights to develop SNP-based linear predictors of the expression level
of each cis-heritable feature; and (3) calculate TWAS test-statistics
based on these linear predictors and summary-level GWAS Z scores.
FUSION selected the best gene expression model by comparing the
out-of-sample R2 value produced by several penalized linear regres-
sions and Bayesian sparse linear mixed models (e.g., BLSMM, Elastic
Net, LASSO, GBLUP)20. The statistical tests used in our TWASs and all
other analyses in this study, with the exception of the cell-type
enrichment analyses, were two-sided. To correct for multiple com-
parisons and allow for follow-up analysis on a manageable number of
findings, we defined significance at a Bonferroni-corrected threshold
of P < 1.32 × 10−6 (0.05/37,917 cross-tissue sCCA features). Finally, we
considered our sCCA features to be novel if they were ≥500 kb away
from the closest GWAS lead SNP.

Conditional analyses, permutation testing, and colocalization
We performed follow-up analyses to assess the robustness of the
gene transcript-trait associations we identified using TWAS. First, we
used the FUSION suite’s conditional tests to determine whether
multiple TWAS-significant sCCA features within a given locus
(±500 kb) were independently associated with our aging outcomes,
or whether they were artifacts of a single feature-trait association
produced by correlated expression between features20. To distin-
guish between these possibilities, the conditional analyses used the
GWAS associations that remained after accounting for the predicted
expression of other sCCA features in a given chromosomal locus to
estimate the conditionally independent effect of each feature of
interest. We defined conditional significance at a P value of 0.05.
Additionally, to assess the possibility that the significance of our gene
expression features was conditional on high GWAS effects, we car-
riedout permutation testing for each locus20.Wedesigned our test to
stop after 100,000permutations and defined significance at a P value
of 0.05. Notably, the permutation testing statistic is highly con-
servative, and it is possible that truly causal genes can fail20. Finally, in
line with previous TWAS studies75,76, we performed colocalization of
our TWAS-significant genes using the coloc R package (version
5.1.0.1)22, implemented in FUSION. This allowed us to assess the
probability that our TWAS associations reflected linkage between
distinct causal SNPs (PP.H3) or a single causal SNP (PP.H4). Because
traditional colocalization assumes that a single causal variant exists
for a given trait in a specified genomic region22, an assumption that is
conservative and likely to be violated77, we used it as a supplementary
sensitivity analysis. We defined PP.H4 > 0.75 as strong evidence of
colocalization.
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Fine-mapping of TWAS associations and high confidence
findings
We employed FOCUS to identify genes that probably were responsible
for the TWAS gene-trait association signal in a given locus, and thus
likely had causal effects on the aging trait of interest23. FOCUS is a
Bayesian model that accounts for correlation structures that result
from LD, TWAS prediction weights, and pleiotropic SNP effects to
identify gene sets containing a causal gene with 90% confidence (i.e.,
the credible set)23. Additionally, FOCUS determines posterior inclusion
probabilities (PIPs) for individual features. A PIP > 0.5 indicates that the
feature is the most likely causal feature within a risk region23. Impor-
tantly, unlike traditional colocalization, FOCUS performs well in sce-
narios in which, within a locus,multiple causal variants exist for a given
gene, or multiple causal genes exist for a given trait23. In our study, we
defined genes with a PIP > 0.5, a significant TWAS P value, and a sig-
nificant conditional analysis P value as high confidence genes. High
confidence genes are likely to have causal effects on EAA and/or
multivariate longevity.

Functional annotation of high confidence genes
Wesought to characterize thebiological functionof the 27uniquehigh
confidence genes that were associated with EAA or multivariate long-
evity by the transcriptomic imputation pipeline. Therefore, we per-
formed a gene function prediction analysis78 for each of the high
confidence genes using the recently developed statistical method
PrismEXP (Prediction of gene Insights from StratifiedMammalian gene
co-EXPression), implemented in its Python package79–81. PrismEXP uses
the ARCHS4 gene expression resource81 to calculate predicted gene
functions from gene set data79–81. We downloaded and analyzed the
2021 release of the GO24 biological processes, molecular functions,
and cellular components gene sets. Nine high confidence genes
were not available in the GO gene sets (ZNF37A, ZNF248, KRT8P12,
CYP2J2, ENSG00000245156, ENSG00000272540, ENSG00000260329,
ENSG00000255710) and were therefore not included in the gene
function prediction analyses. We defined significance for this analysis
using Bonferroni-corrected P values based on the number of testedGO
categories.

eQTL data for drug-target MR
To generate genetic instruments for our drug-target MR analysis of
aging phenotypes, we used a large eQTL dataset from whole blood
(N = 31,684, European ancestry) from the eQTLGen Consortium59. This
data included cis-eQTLs for 16,987 genes, defined by significance at a
FDR of 0.05 across all 16,987 genes. We subset eQTLGen data based
upon 4,479 genes comprising the druggable genome defined by Finan
et al.19. The druggable genome comprises all genes encoding proteins
targetable by currently available compounds, including compounds in
clinical trials, approved medications, and small compounds validated
in preclinical experiments19. We also investigated NHLRC1, a gene
identified as high confidence by TWAS. We only included eQTLs
locatedwithin 10 kbof the start or endbasepair positionof the geneof
interest in our genetic instruments. This left 2714 genes to use as
exposures in our drug-target MR analyses.

Drug-target MR
All MR analyses in this study are reported according to the MR
Strengthening theReporting ofObservational Studies in Epidemiology
(STROBE) guidelines (Supplementary Note 1)82. We performed drug-
target MR analyses to complement our TWAS findings and identify
genes that could be targeted pharmacologically to increase multi-
variate longevity or decrease EAA. All MR analyses were performed
using the R package TwoSampleMR v0.5.683. First, we harmonized the
eQTL instruments with each EAA andmultivariate longevity GWAS and
used the 1000 Genomes Project European reference sample to clump
our instruments at LD R2 < 0.001, ensuring independence between

SNPs included in genetic instruments83. We filtered out SNPs with
F-statistics <10, the conventional threshold used to avoid weak
instrument bias in MR studies, thus ensuring the use of strong
instruments84. We also performed Steiger filtering to identify instru-
ment SNPs that explain greater variation in an outcome than an
exposure and performed MR with these potentially reverse causal
SNPs both included and excluded. Such a SNP only appeared for two
exposure-outcome pairs: CD248 on HannumAge (discussed in
“Results”) and KCNJ14 on GrimAge (insignificant regardless of this
SNP’s inclusion).

For eQTL instruments with 1 SNP, MR effect estimates were cal-
culated using Wald ratios, while for instruments with 2 SNPs, we used
the IVWMR estimator. For eQTL instruments with >2 SNPs, we the IVW
MR estimator along with MR-Egger, weighted median, and weighted
modemethods,which rely onweaker assumptions than IVWat the cost
of lost statistical power85. Thesemethods evaluate the sensitivity ofMR
findings to different patterns of violations of IVW assumptions, and
concordant results using multiple methods strengthens causal
inference83. We corrected for multiple comparisons by defining sig-
nificance at a FDR of 0.05, defined by the number of unique gene-
outcome combinations tested for each outcome. Findings remaining
significant after this FDR correction were subject to colocalization
analysis, performed with coloc using the SuSiE regression
framework86. SuSiE relaxes traditional coloc’s assumption of a single
causal variant. We defined strong evidence for colocalization as a
PP.H4 >0.75 and reported posterior probabilities corresponding to
the highest PP.H4 for each gene-trait association. We used traditional
coloc as a supplementary sensitivity analysis22. We also performed the
MR Steiger test of directionality for all exposure-outcome pairs to test
for reverse causality87. Steiger P values below 10−250 are rounded to
zero. Additionally, for each exposure-outcome pair, we performed the
Egger intercept test to detect directional pleiotropic effects of each
genetic instrument88. Finally, we performed the Cochran Q hetero-
geneity test to measure heterogeneity between variant-specific causal
estimates for each instrument-outcome pair, as heterogeneity can
indicate a violation of the MR assumption that instrument SNPs only
operate through the exposure of interest89.

PheWASs
We evaluated genes that were significantly associated with an aging
phenotype at a FDR of 0.05 in our MR analyses with PheWASs to
identify possible health effects of pharmacologically targeting these
genes. We leveraged publicly available electronic health record data
from FinnGen Release 525, which features 218,792 patient records and
2803 health-related endpoints, to run our PheWASs. This patient
database provided the advantage of being independent from other
samples in our study. Using this data, we analyzed phenotypic asso-
ciations of SNPswithin 100 kb of each gene of interest. We reported all
gene-trait associations significant under a Bonferroni-corrected
threshold of P < 1.78 × 10−5 (0.05/2803).

Metabolome-wide MR on aging traits
To identify metabolomic influences on healthy aging, we performed
two-sample MR analyses of 249 circulating metabolic phenotypes on
our four EAA measures and our multivariate longevity phenotype. We
derived our metabolomic instrument data from the Nightingale
Health-UK Biobank metabolomic GWAS partnership’s first release
(N = 115,078)26. Unless otherwise mentioned, our procedures for har-
monization, clumping, instrument selection, and ourMRmethods and
estimators were the same as those used for our drug-target MR. In this
analysis, we selected SNP instruments at a conventional threshold of
P < 5 × 10−8. Because the instruments for our metabolic phenotypes
were well powered and the MR Steiger test of directionality showed
strong evidence that our results reflected the correct causal direction
(Supplementary Data 25–29), we did not employ Steiger filtering.
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Because the Cochran Q heterogeneity test identified substantial het-
erogeneity in the effects of variants in our some of our metabolite
instruments on multivariate longevity, we used MR-Lasso, imple-
mented through the R package MendelianRandomization v0.6.090, to
remove outlier variants and generate effect estimates less likely to be
violating MR assumptions91. For cases in which we used MR-Lasso, we
report the post-Lasso IVW effect estimate as the primary effect esti-
mate. To define significance, we divided the conventional significance
threshold of P < 0.05 by 41 principal components that explain 99%
of variation in the levels of circulating metabolites, yielding a
Bonferroni-corrected threshold of P <0.00122 (https://github.com/
nightingalehealth/ggforestplot/blob/master/vignettes/nmr-data-
analysis-tutorial.Rmd).

Cell-type enrichment analyses
To identify etiological cell types associated with our aging-related
phenotypes, we integrated scRNA-seq data with the aforementioned
GWAS summary statistics using CELLECT28. We derived our scRNA-seq
data from Tabula Muris92, a database containing transcriptomic data
from 100,000 cells and 20 organs and tissues of Mus musculus. We
downloaded and prepared this scRNA-seq data using CELLEX28. CEL-
LEX calculates an expression specificity likelihood (ESμ) for each gene
following normalization and pre-processing. We ran CELLECT on
default settings using both MAGMA29 and LDSC30 enrichment analysis
tools to identify cell types enriched in trait-associated genes. Specifi-
cally, MAGMAmeasures the extent to which genetic associations with
a phenotype increase as a function of gene expression specificity for a
given cell type. LDSC quantifies the extent to which SNP heritability for
a given phenotype is enriched in themost specifically expressed genes
for a given cell type.Wemanually categorizedour cell types as immune
cells/immune cell precursors or non-immune cells to evaluate rela-
tionships between the immune system and aging. To define sig-
nificance, we used a FDR threshold of 0.05, calculated separately for
each aging outcome.

MR of immune cell phenotypes on aging traits
To further assess interactions between the immune system and aging-
related phenotypes, we performed two-sample MR of 731 immune cell
traits on fourmeasures of epigenetic age acceleration andmultivariate
longevity. We used GWAS data from Orru et al. (N = 3757, European
ancestry)31 to generate our immune trait eQTL instruments. We used
the same procedures for instrument selection, harmonization,
clumping, and analysis that we used in our drug-target MR analyses.
We used Wald ratios to calculate MR effect estimates when using
genetic instruments with 1 SNP and the IVW method when using
genetic instruments with 2+ SNPs. Because DNA methylation affects
cell-type composition57, we used these same MR methods to test the
effects of our five aging phenotypes on the 731 immune cell pheno-
types and assess the possibility of reverse causality. For both sets of
MR analyses of the immune system, we defined significance using FDR
thresholds based on 539 independent immune cell traits31, calculated
separately for each aging outcome.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All analyses in this study were conducted using publicly available data.
URLs for the sourcedatasets are as follows: epigenetic age acceleration
GWAS summary statistics: https://datashare.ed.ac.uk/handle/10283/
3645; multivariate longevity GWAS summary statistics: https://
datashare.ed.ac.uk/handle/10283/3599; sCCA weights (used for tran-
scriptomic imputation) and 1000 Genomes Project Phase 3 European
genomic reference data (used for transcriptomic imputation andMR):

http://gusevlab.org/projects/fusion/; eQTLgen whole blood eQTL data
used for MR of the druggable genome: https://www.eqtlgen.org/;
Nightingale metabolomics GWAS summary statistics used for MR:
https://gwas.mrcieu.ac.uk/, batch: met-d; Immune cell trait GWAS
summary statistics used for MR: https://gwas.mrcieu.ac.uk/, ebi-a-
90001391 through ebi-a-90002121; scRNA-seq data used for cell-type
enrichment analysis: https://tabula-muris.ds.czbiohub.org/; FinnGen
R5 data used for PheWAS analyses: https://r5.finngen.fi/; 2021 GO
biological processes, molecular functions, and cellular components
gene sets used for PrismEXP analyses: https://maayanlab.cloud/
Enrichr/#libraries. All data generated in this study upon which con-
clusions are based are available in the Supplementary Data. Source
data are provided with this paper.

Code availability
The software used in this study are available at the following online
repositories. R package TwoSampleMR version 0.5.693: https://
mrcieu.github.io/TwoSampleMR/; R package MendelianRandomi-
zation version 0.6.094: https://cran.r-project.org/web/packages/
MendelianRandomization/index.html/; R package ggforestplot
version 0.1.0 nmr-data-analysis-tutorial.Rmd: https://github.com/
nightingalehealth/ggforestplot/blob/master/vignettes/nmr-data-
analysis-tutorial.Rmd; Python package LDSC version 1.0.1 (https://
github.com/bulik/ldsc); R FUSION pipeline, March 16th, 2020 ver-
sion: http://gusevlab.org/projects/fusion/; Python package FOCUS
version 0.6.10 (https://github.com/bogdanlab/focus); R package
coloc version 5.1.0.1: https://cran.r-project.org/web/packages/
coloc/index.html; Python package PrismEXP version 1.8695:
https://github.com/MaayanLab/prismexp; Python package CEL-
LECT version 1.3.0: https://github.com/perslab/CELLECT; Python
package CELLEX version 1.2.1: https://github.com/perslab/CELLEX.
Figure 1 was made using BioRender.com. Figure 2 wasmade using R
package TWAS Plotter version 1.0: (https://github.com/opain/
TWAS-plotter) and R package ggven version 0.1.896: (https://
github.com/yanlinlin82/ggvenn). Figure 3 and Supplementary
Figs. 1–10 were made using R package EnhancedVolcano version
1.16.0: https://github.com/kevinblighe/EnhancedVolcano. Figure 4
was made using R package ggplot2 version 3.3.5: https://cloud.r-
project.org/web/packages/ggplot2/index.html. R version 4.2.1 was
used to format data for analyses.
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