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Observing and braiding topological Major-
ana modes on programmable quantum
simulators

Nikhil Harle 1,2, Oles Shtanko 3 & Ramis Movassagh 2,4

Electrons are indivisible elementary particles, yet paradoxically a collection of
them can act as a fraction of a single electron, exhibiting exotic and useful
properties. One such collective excitation, known as a topological Majorana
mode, is naturally stable against perturbations, such as unwanted local noise,
and can thereby robustly store quantum information. As such, Majorana
modes serve as the basic primitive of topological quantum computing, pro-
viding resilience to errors. However, their demonstration on quantum hard-
ware has remained elusive. Here, we demonstrate a verifiable identification
and braiding of topological Majorana modes using a superconducting quan-
tum processor as a quantum simulator. By simulating fermions on a one-
dimensional lattice subject to a periodic drive, we confirm the existence of
Majoranamodes localized at the edges, anddistinguish them fromother trivial
modes. To simulate a basic logical operation of topological quantum com-
puting known as braiding, we propose a non-adiabatic technique, whose
implementation reveals correct braiding statistics in our experiments. This
work could further be used to study topological models of matter using
circuit-based simulations, and shows that long-sought quantum phenomena
can be realized by anyone in cloud-run quantum simulations, whereby accel-
erating fundamental discoveries in quantum science and technology.

It is a unique time in the history of science and engineering when we
are witnessing significant advances in the development of fully con-
trollable, coherent many-body quantum systems that contain dozens
to hundreds of qubits1. Quantum simulators hold the promise of
exponentially outperforming classical computers, which would bring
about a host of applications beyond the reach of classical computers.
Perhaps the most promising application of these systems is the
simulation of quantum many-body systems2, which includes topolo-
gical phases of matter3,4. In addition to their exotic nature, topological
quantum states are a promising route to fault-tolerant quantum
computation that is based on non-Abelian excitations such as Major-
ana fermions5. Majorana fermions are exotic particles: each is its own
antiparticle, unlike an electron being distinct from its antiparticle

(positron). Despite the remarkable progress, the original proposal for
the realization of Majorana-based quantum memories on solid-state
devices6–8 ultimately encountered difficulties due to disorder and lack
of control, as well as the inability to separate Majorana modes from
other trivial zero-energy states9–14. At the same time, quantum simu-
lators may help in this search with their unprecedented levels of
parameter control for a range of topological models15–17.

Realization of topological phases hosting Majorana modes in
bosonic multi-qubit devices was first envisioned few decades ago18,
with subsequent theoretical developments19,20. Since then signatures
of topological modes were detected in photonic experiments21–23 and
programmable digital quantum information processors24–30. While
these devices are limited to non-equilibrium settings they still are able
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to exhibit long-lived signatures of topological modes31,32. Some of
these signatures were analyzed in programmable processors with
methods usually tailored to free-fermionic models33–35. However, the
qualitative study of the properties of these topological excitations
remained a challenge. Braiding of theMajorana fermions is yet another
motivation as it provides the exchange statistics of the topological
excitations and is a necessary step for topological quantum compu-
tation. While there has been progress in manipulation of toy Majorana
modes in photonics36–38 and superconducting architectures39–42, they
were limited to a few qubit systems, not a real topological phase. Thus,
direct probing of the topological modes and their manipulation
remained an open problem.

Using existing noisy quantum hardware, we aim to perform
quantitative simulations of topological quantum matter. We recreate
the state of one-dimensional topological superconductor widely
known for hosting a pair of exotic “half-electron” Majorana modes at
its boundaries. We show how to use Fourier transformation of multi-
qubit observables to reliably determine the structure of Majorana
modes. We also demonstrate how the detection of two-point correla-
tion functions make it possible to distinguish between trivial and
topological modes. Finally, we introduce and implement the fast
approximate swap (FAS): a general non-adiabatic method to approxi-
mately braid Majorana fermions in one dimension. Unlike conven-
tional adiabatic methods, it allows implementation on the current
generation of noisy quantum hardware.

Results
Floquet engineering
Time-periodic (Floquet) systems had proven to be particularly suitable
for simulations on digital quantum processors. In particular, when
system Hamiltonian alternates between two or more local Hamilto-
nians being sums of mutually commuting terms, this choice of quan-
tum dynamics provides a remarkable resource utilization. In this way,

unlike trotterized continuous dynamics, a constant-time Floquet
dynamics canbe simulated using constant-depth circuit.While Floquet
systems may be compared in their form to rough trotterization of
continuous dynamics, they exhibit a wide variety of topological
phases43. The Floquet topological phase may be quite robust despite
the presence of disorder44.

Our focus is on the time-periodic Hamiltonian

HðtÞ=
XN�1

j = 1

JðtÞXjX j + 1 + λðtÞZjZ j + 1

� �
+hðtÞ

XN

j = 1

Zj , ð1Þ

where Xj and Zj are single-qubit Pauli operators, {J, λ, h}(t + T) = {J, λ, h}
(t) is a set of time-periodic parameters, T is the time period, N is the
number of qubits.

We propose a protocol that divides a single driving period into
three parts. For simplicity, we consider the driving period acting from
t =0 to t = T. During thefirstpart, from the startof the period to time τ1,
we set h(t) = h and the other coefficients to zero, J(t) = λ(t) = 0. Next, for
times in between τ1 and τ2, we set J(t) = J and the rest of the coefficients
to zero. Lastly, between τ2 and the end of the period T, we set the
last term to be on, λ(t) = λ, and all other terms to zero. Therefore, only
one term in the Hamiltonian in Eq. (1) is active at any given moment.

A quantum circuit can reproduce such a quantum dynamics
protocol at discrete times tn = nT. At such times, the system’s state is
described by the wavefunction ∣ψn

�
=Un

F ∣ψ0

�
, here ∣ψ0

�
is the initial

state and UF = expð�i
R t
0 Hðt0Þdt0Þ is the Floquet unitary,

UF =
YN�1

j = 1

e�iφZjZ j + 1
YN�1

j = 1

e�iθXjX j + 1
YN

j = 1

e�iϕZj , ð2Þ

where the gate angles are ϕ = hτ1, θ = J(τ2 − τ1), and φ = λ(T − τ2). The
corresponding experimental protocol that involves local single- and
two-qubit gates is depicted in Fig. 1a, where each cycle corresponds to
a single Floquet unitary.

The model has received considerable attention in the study of
condensed matter systems due to its alternative description in terms
of spinless fermions. By Jordan-Wigner transformation, the qubit Pauli
operators can be transformed into non-local Majorana fermion
operators γμ satisfying {γμ, γν} = 2δμν, where μ, ν = 1,…, 2N45. It is not a
unique mapping; here we use two equivalent Jordan-Wigner repre-
sentations, denoted as γL,Rμ and associated with the right and left
boundaries. In these representations a Majorana operator becomes a
string of Pauli operators connected to one of the boundaries. As we
show in Methods, the expectation values of these operators can be
obtained from single-qubitmeasurements preceded by a series of two-
qubit gates. We will not include the superscripts for the Majorana
operators when the choice of representation is not important.

In the case that λ =0, the Hamiltonian in Eq. (1) is non-interacting
and takes the simple quadratic form HðtÞ= P2N

μ,ν = 1 hμνðtÞγμγν , where
hμν is an antisymmetric Hermitian matrix. Due to its free fermionic
nature, dynamics generated by such a Hamiltonian are classically
efficient to simulate (see Supplementary Note 1). In this regime,
depending on the ratio between J and h, the system exhibits various
phases including the symmetry-protected topological phases15,17, as
summarized by the phase diagram shown in Fig. 1b. Among these four
phases, there is one (shown in white) that is trivial and topologically
equivalent to aproduct state. There are threemore topological phases.
The first phase is topologically equivalent to the static Kitaev chain
(blue). Under open boundary conditions, this phase exhibits two
symmetry-protected modes at zero quasi-energy called Majorana
zero modes (MZM). The remaining topological phases only occur in
time-driven systems. For example, the second phase (red) exhibits a
pair of Majorana π modes (MPM) occurring at quasi-energy π16. The
third phase (green) is distinct from the rest and hosts both MZM
and MPM. Majorana modes in non-interacting systems manifest

MZM
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MPM

MZM &
MPM

cycle 1(a)

1 2 23 34 4
(b) (c)

...
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...
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...

cycle n

frequency
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MZM 

Fig. 1 | Circuit and phase diagram. a Schematics of an 8-qubit circuit including the
initialization, evolution, and measurement parts. The initialization process is lim-
ited to the application of single-qubit Hadamard gates (yellow, #1). Evolution is
composed of cycles consisting of Z gates (green, #2), XX gates (blue, #3), and ZZ
gates (red, #4). Themeasurements provide the expectation of the operators γL,Rμ or
γμγν (see “Methods” section). b Phase diagram for λ =0, showing four possible
phases, see text. c Experimentally measured Fourier component ∣FL

1 ðωÞ∣ as a func-
tion of ϕ for fixed θ =π/8 using a 21-qubit system implemented on ibm_hanoi. The
system exhibits transitions from MZM to trivial phase and from trivial to MPM
phase. Detected peaks indicate the presence of Majorana modes at frequencies
ω =0 and ω =π.
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themselves by the presence of a pair of conserved boundary-localized
operators Γωs that satisfy Uy

FΓ
ω
s UF = e

�iωΓωs
46,47 where index s∈ {L,R}

defines right and left eigenmodes respectively, and ω∈ {0,π}. We will
skip the frequency index ω when the context is clear.

In the interacting case φ ≠0, Majorana mode operators are not
conserved across the spectrum, i.e. Uy

FΓ
ω
s UF � e�iωΓωs =Oðτ�1Þ. As a

result, the observables associated with topological modes must decay
with characteristic lifetime τ. As was shown in ref. 32, if the bulk has
vanishing dispersion, for small interaction angles φ the lifetime
diverges as τ / Oðexpðc=φÞÞ, where the constant c depends on the
details of interaction. In practice, the lifetime may exceed dozens of
Floquet cycles even if thebulk hasfinite dispersion and interactions are
not too strong. This approximate conservation of Majorana modes
leads to the persistent signal for some local observables when the rest
reach infinite-temperature values. The primary goal of this work is to
use this long-lived signal to restore the structureof themodes fromthe
experiment. In this case we look for Majorana modes of the form
Γs =

P2N
μ= 1 ψ

s
μγμ, where ψs

μ are real-valued wavefunctions. We also
develop a method to distinguish trivial and topological modes.

Finally, we illustrate the exchange of Majorana modes and verify
that the exchange results in the desired change of phase of the
wavefunction. Conventionally, such an exchange is modeled by a slow
adiabatic implementation of the unitary map Eexð�Þ=Uy

exð�ÞUex, where
Uex = expð� π

4 ΓLΓRÞ. Such a map provides EexðΓRÞ= ΓL and
EexðΓLÞ= � ΓR. While it is possible to carry out this procedure for one-
dimensional Floquet systems48,49, it might require quantum circuits
with depths beyond what is available on noisy devices. Below we show
an alternative way to perform such an exchange on a noisy quantum
hardware.

Majorana wavefunctions
Our first objective is to detect the presence of Majorana modes and
measure the details of their structure using Fourier transformation30,31.
We assume that there are no other eigenmodes with zero or π fre-
quencies. In this case, we can use the asymptotic formula (see Sup-
plementary Note 2)

ψL
μðωÞ= FL

μðωÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
FL
1 ðωÞ

q
, ψR

μðωÞ= FR
μðωÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FR
2NðωÞ

q
, ð3Þ

where ω∈ {0,π} is the mode frequency, the positivity of FL
1 ðωÞ and

FR
2NðωÞ is proven in Supplementary Note 2, and

Fs
μðωÞ= lim

N,D!1
1
D

XD�1

n=0

eiωn ψ0

�
∣Uyn

F γsμU
n
F ∣ψ0

�
, ð4Þ

with ∣ψ0

�
=
NN

i = 1∣+ ii being the product state of eigenstates of Pauli
operator X with eigenvalue one, and superscript s∈ {L, R} conforming
with the representation of the Majorana operator. The order in the
limit is important: one first takes the limit over the number of qubitsN,
and then the limit over the number of cycles D.

In spite of the fact that the true limit cannot be reached experi-
mentally, we measure the quantities Fs

μðωÞ approximately using
the largest available N and D. The values of D must not exceed
the Majorana mode lifetime τ such that D/τ≪ 1. First, we initialize the
qubits in theproduct state ∣ψ0

�
and apply ann-cycle circuit as shown in

Fig. 1a for n =0,…,D − 1. For each circuit, we determine the expecta-
tion of γR,Lμ . In the last step, we estimate the approximate value of Fμ(ω)
by summing up the results for each n-cycle circuit with corresponding
Fourier coefficients eiωn/D.

As an example, Fig. 1c shows the function ∣FL
1 ðωÞ∣ and its use in

detectingMajoranamodes and topological phases. The plots illustrate
thedependenceof this function on angleϕ for thefixed θ =π/8 and are
similar to differential conductance spectra found in solid-state
experiments8. The function is equal to the topological mode density
at the boundary, FL

1 ð0Þ= ðψL
1 Þ

2
. In particular, we observe a strong signal

for ω =0 in the topological phase for value ϕ =0, as it indicates the
presence of the left MZM. Strong peaks also appear at frequencies
ω = ±π indicating the presence of MPM for ϕ =π/2. The peaks’ inten-
sities decrease in the bulk for intermediate angles. For θ =π/8 the
boundary signal disappears at ϕ =π/8 and 3π/8 as the system transi-
tions into the trivial phase.

Next, the values of Fs
μðωÞ for μ > 1 help us recover Majorana

wavefunctions ψs
μ. Plots in Fig. 2a–c illustrate the normalized absolute

values of wavefunctions corresponding to MZMs and MPMs in both
non-interacting (φ =0) and interacting (φ =π/16) regimes. The results
for the non-interacting regime are in a good agreement with the the-
oretical prediction. In the interacting regime, where we add an extra
set of noisy two-qubitZZgates in eachFloquet cycle,we expect to see a
visibly higher level of noise in the resulting wavefunction as can be
seen in Fig. 2c.More data to evaluate device performance is presented
in the “Methods” section.

Detecting trivial modes
Majorana modes may not be the only modes responsible for zero-
frequency signals9–14. In this work, we demonstrate that quantum
simulators can be used to distinguish unpaired Majorana zero modes
from the other topologically trivial localized excitations. Topological
Majorana π modes can be treated similarly. We use a generalized
notation Δk =∑νψkνγν for both zero-frequency trivial and topological
Majorana modes, [Δk,UF] = 0, and ψkν are real wavefunctions that are
localized at the boundaries. In contrast to Majorana modes residing at
opposite boundaries, any pair of trivial modes must always be loca-
lized near the same position. Below we assume that the effect of dis-
order on the localization of the wavefunction is negligible.

We examine the two-point correlation function (ω = 0)

Tμ,ν = lim
N,D!1

1
D

XD�1

n =0

~ψ0

�
∣Uyn

F γμγνU
n
F ∣~ψ0

�
, ð5Þ

where ∣~ψ0i= ∣ψai∣s2i∣s3i… ∣sN�1i∣ψai, where ∣sii are random states in Z-
basis with eigenvalues si = ± 1, and ∣ψai= cosa∣0i+ i sina∣1i for
a∈ [0,π] being a phase. For simplicity, we consider the non-
interacting case λ =0. Then the value of the correlation function for
μ = 1 and ν = 2 is (see Supplementary Note 3)

T 1,2 = i cos2a lim
N!1

X
kk 0

ψ2
k1ψ

2
k02 � ψ2

k2ψ
2
k01

� �
: ð6Þ

If there is only one pair of topological modes separated by the system
size, then T1,2 = 0. Indeed, in this case

P
kk0ψ2

k1ψ
2
k 02 � ψ2

k2ψ
2
k01 =

ðψR
1 Þ2ðψL

2Þ2 � ðψR
2 Þ2ðψL

1 Þ2 / Oð2�ΘðNÞÞ. A pair of trivial localized states at
the left boundary, however, would result in T1,2 > 0. At the same time,
T1,2N is non-zero for both cases, while in the middle of the system, i.e.
T1,x = 0 for x = 2cN and 1 > c >0. As a consequence, correlation function
indicates the presence of zero-frequency modes but has a different
structure for trivial and Majorana modes.

In order to illustrate this method, we consider two examples of
non-interacting systems, λ = 0. In the first example, we use the
Hamiltonian in the topological phase (θ = π/4,ϕ = π/16). We com-
pare this case to a trivial system with a slightly modified Hamilto-
nian. In particular, we set to zero theXX-termand Z-term for thefirst
and the last qubits, thus decoupling them from the rest of the sys-
tem (see Supplementary Note 4). The state of the rest of the qubits
is governed by the Floquet evolution in Eq. (2) with parameters
(θ = π/16, ϕ = π/4). This modification mimics a possible error when
some of the links between the qubits are dysfunctional. The mod-
ification produces two trivial full-electron modes at opposite
boundaries, which is equivalent to four non-topological Majorana
modes Δ1 = γ1, Δ2 = γ2, Δ3 = γ2N−1, and Δ4 = γ2N. Using only the
observables in Eq. (4), it is difficult to distinguish between these
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modes and topological modes. However, if we measure the
sequence ∣T1,2x∣ for x = 1,…, N for a random configuration of the
initial state, it shows an important difference. As shown in Fig. 2d,
the curve for trivial case is characterized by two peaks at x = 1 and
x = N, while topological system has only one peak around x = N.
Thus, observation of a single peak provides reliable evidence dis-
tinguishing topological Majorana modes from the other possible
trivial modes.

Braiding Majorana modes
Finally, we introduce a method for braiding the Majorana modes,
which we call Fast Approximate Swap (FAS). Here we examine the
parametrized map

Eαð�Þ : = lim
N,D!1

1
D

XD�1

n =0

Uy
nαð�ÞUnα , ð7Þ

where Unα =U
n
F expð�αγ1γ2NÞUn

F , and α∈ [0,π] is a real parameter.
This quantum channel is equivalent to selecting the unitary Unα for
n = 0,…, D-1 with uniform probability 1/D.

Let us assume that the system is reflection-symmetric such that
the localized modes satisfy ψL

1 =ψ
R
2N = ξ and ξ2 ≥ 1/2. Then, by setting

the angle α0 = arcsinð1=
ffiffiffi
2

p
ξÞ, the action of the map on topological

Majorana operators is

Eα0
ðΓRÞ=pΓL, Eα0

ðΓLÞ= � pΓR, ð8Þ

where p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ2 � 1

q
≤ 1 (see Supplementary Note 4). This procedure

constitutes approximate FAS method of braiding that aims to replace
the conventional adiabatic process. This method applies in both the
interacting and non-interacting regimes.

We also establish the effect of proposed braiding map on Major-
ana operators in absence of localization in non-interacting limit λ =0,

Eα0
ðγμÞ=p ψR

μΓL � ψL
μΓR

� �
: ð9Þ

This allows us to detect the relative phase of Majorana fermions after
braiding. The braided mode wavefunction can be defined similarly to

Eq. (3) as

~ψ
s
μ =

1
N ψ0

�
∣Eα0

ðγsμÞ∣ψ0

�
, ð10Þ

whereN is normalization coefficient. After braiding, assuming that the
system is reflection-symmetric, we expect the braided wavefunctions
to satisfy ~ψ

L
μ =ψ

R
μ and ~ψ

R
μ = � ψL

μ. This behavior is illustrated in Fig. 3,
where we compare wavefunctions in Eqs. (3) and (10).

Our braiding procedure depends on the parameter α0 that is
generally unknown without prior access to the system. Although here
we calculated it analytically, it may be difficult to find this angle the-
oretically for genericHamiltonians, inwhich case itwould benecessary
to rely on experimental data. For instance, one can evaluate the angle
using themeasuredMajorana wavefunction. In Supplementary Note 4,
we discuss an alternative method of finding the proper value of α0.

Discussion
In this work, we propose a framework for detecting, verifying, and
braiding Majorana modes on near-term programmable quantum
simulators by employing the Floquet dynamics. This scheme can be
generalized to the continuous evolution of static Hamiltonians by
replacing the discrete Fourier transformation in our work by its con-
tinuous version. Itwouldhavebeenpossible to runour experiments on
larger qubit devices.However,Majoranamodes exist at theboundaries
rather than the bulk, and our current experiments are sufficient to
make conclusive statements about the detection and braiding of the
topological Majorana modes.

The finite lifetime of the Majorana modes is attributed to natural
tendency of Floquet systems to “heat up”. Adding disorder such as
randomization of phases in Z gates, i.e. ϕ→ϕ + δi, where δi∈ [ −W,W],
can reduce the heating because of the many-body localization (MBL)
phenomenon50. However, such a simplistic scheme may require dis-
order valuesW that can cause transition into the trivial phase. Avoiding
phase transition would require finding good model parameters51 or
using more sophisticated techniques32.

Thiswork illustrates the power of synthetic near-termqubit-based
quantum computers for demonstrating and studying topological

(a) (b) (c) (d)
Scenario I (trivial)

Scenario II (topological)

Tw
o-

po
in

t 
fu

nc
tio

n

Fig. 2 | Detection of Majorana modes. Panels a–c show the absolute value of the
experimentally observed Majorana mode wavefunctions ∣ψs

μ∣ (dots) in comparison
with its theoretical prediction (lines) for N = 10 qubits. Wavefunctions are further
normalized because under noise effects Eq. (3) is inexact. Bottom panel illustrates
the density function gðx,ωÞ= ∣FL

2x�1ðωÞ∣2 + ∣FR
2x�1ðωÞ∣2, the bright peaks show the

frequency of the modes. a MZM extracted using ibm_montreal device in the
topological phase θ =π/4, ϕ =π/8, and φ =0, using D = 11 cycles. b MPM extracted
using the same device in topological phase θ =π/4,ϕ = 3π/8, andφ = 0, usingD = 11

cycles. c MZM wavefunction extracted using ibm_mumbai device for interacting
topological phase θ =π/4, ϕ =π/16, and φ =π/16, using D = 21 cycles. d Difference
between trivial phase θ =π/16 and ϕ =π/4 with two trivial boundary modes (blue,
circles) and topological phase θ =π/4 and ϕ =π/16 (red, squares) quantified by
∣T1,2x∣ in Eq. (5), measured using ibm_toronto device. The result is calculated as the
averageof 10 random initial states andD = 11 cycles. The errorbars are one standard
deviation. The expectation values used to generate all figures are calculated by
averaging over 8192 circuit runs.
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phases of electronic systems. Indeed, if we neglect noise, the observed
dynamics of bosonic system can perfectly simulate fermionic topolo-
gical phases if themeasurements aremade in the non-local qubit basis.
Unlike solid-state devices, however, the Majorana modes in this work
are subject to decoherence because noise breaks the parity symmetry
protecting the topological phase in fermionic systems. This is a serious
drawback for using then in topological quantum computation. None-
theless, with improvements in coherence time, the role of noise can be
sufficiently reduced as tomake this type of quantum simulation useful
in studying topological quantum matter. Solid-state systems such as
nanowire devices6,7 can be studied through continuous-time local
Hamiltonian simulations. Floquet systems similar to those studied in
this work, in the limit of large frequency, are equivalent to such

simulations. A potentialmodel of a nanowire could incorporate a qubit
“ladder” representing the two spin values (up and down) and local
gates that account for hopping, spin-orbital coupling, and density-
density interactions.

This work can be extended to regimes beyond the current clas-
sical simulation capabilities. By using devices with higher connectivity,
it is possible to study generic two-dimensionalmaterialswith abroader
variety of topological phases and to explore new possibilities for
topological quantum computation. Further, the method studied for
extracting the Majorana modes may be extended to the study of local
integrals of motion in many-body localized systems, similarly to the
proposal in ref. 52.

Methods
We replicate the Floquet dynamics in Eq. (2) on IBM Qiskit using the
circuit in Fig. 1(a). We transpile the circuit on Qiskit using native gates
and run it on the IBM quantum hardware (see Fig. 4). In particular, for
the special value θ =π/4 (φ =π/4), each XX-gate (ZZ-gate) requires a
CNOT gate in combination with single qubit gates. For other non-zero
angle values, two-qubit gates require two CNOTs in combination with
other single-qubit gates. Therefore, to reduce the depth, part of the
experiment is designed to investigate the case θ =π/4.

For the simulation of quantum systems, Majorana operatorsmust
be encoded using qubits. We use the Jordan-Wigner transformation to
implement this encoding. In particular,wedefine left representation as
γL2k�1 =ZL

kXk and γL2k =ZL
kY k , where ZL

k =
Qk�1

i = 1 ð�ZiÞ are Z-string
operators and k = 1,…,N. This representation is equivalent to themost
common convention. Alternatively, the right representation is
γR2k�1 =ZR

kYk and γR2k = � ZR
kXk , where ZR

k =
QN

i= k + 1ð�ZiÞ. A more tra-
ditional approach for accessing these operators experimentally is to
measure each qubit inside the string in the basis (X, Y, or Z), return-
ing ± 1 values for each qubit. In this case, we can use the product of the
obtained results as the measured value. The disadvantage of the con-
ventional method is that it has lower precision due to accumulated
measurement errors. Therefore, we adopt a scheme that involves only
one measurement, as described below.

In order to measure γLμ, we use the expressions

Uy
kX 1Uk = ð�1Þk�1ZL

kXk , V y
kY 1Vk = ð�1Þk�1ZL

kY k , ð11Þ

where

Uk : =UYX
1 . . .UYX

k�1, Vk : =UXY
1 . . .UXY

k�1, ð12Þ

Fig. 4 | Configuration of IBM hardware. a Layout of the ibm_hanoi device.
Sequence A of 21 qubits was used to generate the frequency-resolved boundary
oscillations shown in Fig. 1c; sequence B of 10 qubits was used to perform the
braiding experiment shown in Fig. 3. b Layout for the ibm_montreal device.
Sequence C of 10 qubits was used to reproduce theMajoranamode tomography in

Fig. 2a, b. c Layout for the ibm_mumbai device. Sequence D of 10 qubits used to
generate the Majorana mode tomography in Fig. 2c. d Layout for the ibm_toronto
device. Sequence D of 10 qubits used to generate the topological/non-topological
mode separation experiment in Fig. 2d.
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Fig. 3 | Braiding.Comparison of normalizedoriginal wavefunction in Eq. (3) for the
left (a) and right (c) modes and braided wavefunction in Eq. (10) for the left (b) and
right (d) modes with the theoretically estimated angle α0 = 0.263127π. We use the
5-qubit systemon ibm_hanoidevicewith theparametersϕ =π/16, θ =π/4, andφ =0
and maximum number of cycles D = 11, averaged over 30 experiments each with
8192 shots. Error bars are one standard of deviation. Experimental data are repre-
sented by points, whereas theoretical predictions are represented by lines. Plots
illustrate that modes acquire a relative minus sign after braiding ~ψ

L
μ =ψ

R
μ

and ~ψ
R
μ = � ψL

μ.
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and can be expressed as a product of two-qubit unitaries UYX
j :=

expð�i π4 Y jX j + 1Þ andUXY
j := expði π4 XjY j + 1Þ. According to these expres-

sions, to measure the string operator γL2k�1 =ZL
kXk , we apply the gates

UYX
j consecutively and in the reverse order for j = k − 1,…, 1. Next, we

measure the first qubit (j = 1) in X-basis. Similarly, to measure the
operator γL2k =ZL

kY k , we perform similar gate sequence but with
unitaries UXY

j and measure the qubit j = 1 in Y-basis. Finally, the
measurement of γRμ can be done by mirroring the entire circuit.
The measurement results are shown in Fig. 5 for different regimes.
There we compare the data from the device with noiseless classical
simulations. To make the comparison more vivid, we have added a
rescaled experimental curve where we compensate the decay of the
signal by the same depth-exponential factor for all observables.

Next, to evaluate T1,2k defined in Eq. (5) we need to probe the
operator iγ1γ2k = (−1)kY1Z2…Zk−1Yk. In order to measure the Pauli string
Y1Z2…Zk−1Yk, we note that

Y 1Z2 . . .Zk�1Yk = ð�1Þk�1Gy
1ZL

kY kG1 ð13Þ

whereGi =HiS
y
i , where Si is S-gate andHi the Hadamard gate applied to

qubit i. Thus, the procedure of measuring this operator is the same as
ZL

kY k with the difference that in the latter we applyG1 before the series
of UXY gates.

Finally, applying the unitary exp �αγ1γ2N
� �

, which is necessary for
generating Unα in Eq. (7), can be implemented in a similarmanner. The
implementing circuit consists of the series of gates UXY

j for
j = 2,…,N–1 followed by expð�iαY 1Y 2Þ, then by the series of UXYy

j in
reverse order.

Results are obtained using IBM quantum hardware53. The experi-
ments are performed on four different 27-qubit devices: ibm_hanoi,
ibm_montreal, ibm_mumbai, and ibm_toronto. The number of qubits
utilized for each experiment vary; Fig. 4 shows the chosen subsets. For
example, we perform experiments represented by Fig. 2 using 10
qubits as the smallest system size that exhibits an overlap between
unpaired Majorana modes which is smaller than the effect of noise. In

contrast, braiding experiments are performed on 5 qubits as the effect
of noise is stronger due for deeper circuits. The depth of the circuits
are chosen to be 11 and 21 cycles.

Data availability
Source data are provided as a Source Data file. Source data are pro-
vided with this paper.

Code availability
The code to run the experiment and access the data presented in this
study is publicly available on GitHub using the link: https://github.
com/IBM/observation-majorana.git.
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