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Coregistration of heading to visual cues in
retrosplenial cortex

Kevin K. Sit1 & Michael J. Goard 1,2,3

Spatial cognition depends on an accurate representation of orientation within
an environment. Head direction cells in distributed brain regions receive a
range of sensory inputs, but visual input is particularly important for aligning
their responses to environmental landmarks. To investigate how population-
level heading responses are aligned to visual input, we recorded from retro-
splenial cortex (RSC) of head-fixed mice in a moving environment using two-
photon calcium imaging. We show that RSC neurons are tuned to the animal’s
relative orientation in the environment, even in the absence of head move-
ment. Next, we found that RSC receives functionally distinct projections from
visual and thalamic areas and contains several functional classes of neurons.
While some functional classes mirror RSC inputs, a newly discovered class
coregisters visual and thalamic signals. Finally, decoding analyses reveal
unique contributions to heading from each class. Our results suggest an RSC
circuit for anchoring heading representations to environmental visual
landmarks.

A sense of direction is essential for animals to accurately perceive and
move through their environment. Rather than being coupled to
absolute coordinates, such asmagnetic north, direction is represented
in the brain as the relative orientation of an animal in its current
environment, termed “heading”. Although heading and head direction
are generally aligned in a freely moving animal, they can be experi-
mentally decoupled when head movement and environmental move-
ment are independent. For example, researchers have observed
heading responses in insects that track the movement of a virtual
environment even with the head immobilized1–3.

A distributed network4–8 of head direction (HD) neurons found
throughout the mammalian brain represent direction through
increased firing when an animal’s head is in a specific orientation
relative to the environment4,9–12. A central hub of this network is the
anterodorsal thalamic nucleus (ADN), which contains a high percen-
tage of HD neurons and is crucial for navigation4,12–14. Early investiga-
tions of responses in the HD cell network demonstrated that the
vestibular system plays a critical role in both the generation and
maintenance of HD neurons. Lesions of the vestibular system, either in
sensory organs15–17 or in upstream relay nuclei18,19, degrade the

responses of HD neurons in ADN and other regions in the HD cell
network, resulting in navigational deficits. Although HD cell responses
have been observed in restrained rodents in virtual environments, all
experiments to this point have involved physical head rotation, either
animal-controlled20–23, or experimenter-controlled24–26.

Despite the importance of vestibular input, previous work has
shown that the visual system, though not necessary for the generation
of HD cell responses, plays a crucial role in anchoring the responses to
cues in the external environment4,10,24,27. Experiments which remove
visual information by recording from animals in darkness have shown
that HD neuron firing gradually drifts from the animal’s physical head
direction over time10,27. Moreover, turning on the lights results in a
nearly instantaneous realignment of HD cell responses to visual cues,
even if the cues were inconspicuously moved in the darkness. This
suggests that visual information exerts a dominant influence on
representations, supplanting cues from other sensory systems28.
Indeed, behavioral experiments in several species that either dampen
or remove vestibular information have shown that animals are still
capable of successful navigation through the use of visual landmarks
alone1,16,29–31; though other sensory inputs, such as optic flow21,32,

Received: 22 April 2022

Accepted: 28 March 2023

Check for updates

1Department of Psychological and Brain Sciences University of California, Santa Barbara, Santa Barbara, CA 93106, USA. 2Department of Molecular, Cellular,
and Developmental Biology University of California, Santa Barbara, Santa Barbara, CA 93106, USA. 3Neuroscience Research Institute University of California
Santa Barbara, Santa Barbara, CA 93106, USA. e-mail: michael.goard@lifesci.ucsb.edu

Nature Communications |         (2023) 14:1992 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5366-8501
http://orcid.org/0000-0002-5366-8501
http://orcid.org/0000-0002-5366-8501
http://orcid.org/0000-0002-5366-8501
http://orcid.org/0000-0002-5366-8501
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37704-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37704-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37704-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37704-5&domain=pdf
mailto:michael.goard@lifesci.ucsb.edu


proprioception33, motor efference copy34, and olfaction35 also con-
tribute. Although visual input is known to play a critical role in regis-
tering heading representations to the environment, the mechanism of
alignment has not been fully elucidated. We define this mechanism as
the process by which visual information is used to reference the ani-
mal’s internal compass, so that the internal spatial maps properly
represent the external physical world.

Recent research has suggested that the retrosplenial cortex (RSC),
a cortical region in the HD cell network, may play an important role in
the integration of these signals6,7. Lesioning RSC degrades HD cell
responses in ADN36,37, suggesting that RSC directly contributes to HD
cell tuning, which is further supported by reciprocal projections from
RSC to ADN38–41. Furthermore, RSC is one of only two principal areas,
the other being the postsubiculum38,39,42, that receives direct innerva-
tion from both the visual cortex and the ADN. RSC also has important
roles in navigation, particularly regarding landmark detection43–48 and
path integration49,50, and has been shown to integrate visual informa-
tion with vestibular input in the angular head velocity (AHV) system51.
Finally, in the presence of conflicting visual landmarks, individual HD
neurons in RSC exhibit multimodal tuning curves that capture the
angular offset with respect to each landmark, suggesting that RSC can
represent and resolve this ambiguity46,52. These findings suggest that
RSC is uniquely situated to receive and integrate sensory information
from the visual system into a unified representation of heading.

Here, we use 2-photon calcium imaging of RSC cell bodies and
axonal inputs to investigate how visual cues are used to register
heading to the external environment.

Results
Neurons in the RSC represent heading in the absence of physical
head movements
In order to investigate the interaction of visual input and heading using
2-photon imaging of somata and axon terminals, we developed a pre-
paration in which mice are head restrained in a moving environment
(Fig. 1A). To clarify our terminology, in previous studies the relative
orientation of the head to the environmentwas generally determined by
physical movement of the animal’s head in a stationary environment,
leading to the term “head direction cells”. Since our experiments have
the head immobilized, we define tuned neurons as “heading cells”, since
they represent the relativeorientationof the stationaryhead toamoving
environment. Heading responses have been found in invertebrates in
preparations in which the head is immobilized1–3, but to date all
experiments investigating HD cells in mammals have incorporated
physical headmovement20–23. Virtual reality systems22,53–55 are commonly
used for navigation tasks in head-fixed preparations, but have some
significant drawbacks, such as a lack of depth cues, reduced somato-
sensory feedback, and limited proprioceptive input. To address these
limitations, we opted to use a walled circular chamber that floats on an
air table56 andcontains an arrayof sensors to collectmeasurements from
the chamber, including linear position, angular orientation, and speed
(Fig. 1A, D, see “Methods”). This approach holds vestibular input con-
stant, while allowing the mice to experience the visual and propriocep-
tive inputs associated with movement relative to the environment.

To determine ifmammalianRSCneurons show tuning for heading
even when the head is stationary, we allowed head-fixed mice to
ambulate within a floating chamber while simultaneously imaging
from the posterior dysgranular RSC (n = 4 recordings over 3 mice,
Fig. 1B). Posterior dysgranular RSC was chosen because it receives
direct projections from visual cortex40,48,57. To avoid excessive
smoothing of heading responses due to the slow temporal dynamicsof
calcium imaging, we deconvolved the calcium traces and inferred
spikes for all analyses (Fig. 1C).We thenmeasured the response of each
neuron as a function of the angular position of the cue card, revealing
that a proportion of neurons in RSC faithfully represent heading
(14.0%, 373/2665neurons; Fig. 1D, E), similar to theproportion found in

freely moving rodents6,7. However, we observed that mice did not
always fully sample the entirety of the cage in each recording (Fig-
ure S1). In addition,micemay have been able to use other sensory cues
besides vision, such as odor, to determine their heading.

To isolate the visual contribution to heading representations, we
transitioned to a controlled rotation design.We used guide bearings to
limit translation while rotating the chamber with a motorized wheel
(Fig. 1F). This approach has three distinct advantages: (1) it creates a
regular trial structure in the data, (2) it ensures equal sampling of the
entire range of headings, and (3) it reduces changes in the appearance
of the visual cues due to variable proximity during chamber transla-
tion. To take advantage of the trial structure of our data, we created a
newmethod to determine if a neuron was heading selective with a low
false positive rate (Figure S2, see “Methods”). Using this method, we
found a similar percentage heading neurons as in the experiments
without controlled rotation, comprising 14.2% (452/3179 neurons) of
the total number of cells recorded (n = 16 recordings over 5 mice,
Fig. 1G, Figure S3). We wanted to ensure that the recorded cells were
not simply activated by the passing of the visual cue over a visual
receptive field. We aligned all the cells using their cross-validated
preferred direction (see “Methods”), showing that heading-responsive
cells tile the entire circumference of the chamber, even when the cue
card is outside of the visual field of themouse; though we note there is
a moderate overrepresentation of responses when the cue is centered
in front of the mouse near 0° (Fig. 1H). Together, these results suggest
that the visual and proprioceptive input from the rotating chamber
sufficiently drive dysgranular RSC neurons to accurately represent
heading, even in the absence of vestibular modulation.

Heading cells exhibit similar preferred directions during rota-
tion of the animal or the environment
Previous research has emphasized the importance of vestibular infor-
mation for the function of the heading network58, so we next investi-
gated whether the same neurons exhibit matched tuning during head
fixation in a rotating environment versus during rotation of the head in
a fixed environment. To address this, we added a belt-driven rotation
collar to the previous experimental set-up, allowing physical rotation of
the mouse head plate with the window centered underneath the ima-
ging objective (Fig. 2A). The rotation had a constant, low angular velo-
city to allow the animal towalk along as the head platewas rotated. This
approach allowed us to compare responses in the same neurons across
two conditions: (1) in which the head rotates but the chamber is fixed or
(2) inwhich the chamber rotateswhile thehead isfixed (n = 5 recordings
across 4 mice; Fig. 2B). Since the head is physically rotating under the
microscope objective, we first registered each frame to a template
calculated from the average frame during the chamber rotation
recording (Fig. 2C). After registration, we defined a single set of ROIs
across the two recordings andmanually checked the quality of eachROI
for size, shape, and brightness to identify ROIs that contained the same
cell across conditions (Fig. 2D). We found that many neurons, though
not all of them, exhibit similar tuning across the two conditions, with
small differences in preferred direction (Fig. 2E). Across all recordings,
matched ROIs on average have the same heading preference with
respect to wall pattern across conditions, suggesting that cells accu-
rately represent heading with respect to the chamber’s visual cues
irrespective of head or chamber rotation (V32 = 14.1, p= 2.5 × 10−4, V-test
for nonuniformity against 0°; Fig. 2F). Not all cells retain the same
heading preference, possibly due to distal visual cues past the walls of
the chamber, which are not informative in the chamber rotation con-
dition, but provide potential landmarks in the head rotation condition.

Changing visual cues elicits coherent remapping in RSC neurons
The previous experiment demonstrates that many of the neurons we
found that are tuned to changes in head angle are also tuned for
changes in the rotation of the environment. Next, we wanted to
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confirm that heading-tuned neurons observed during head rotation
exhibit similar population dynamics as HD cells recorded during free
movement. HD cells have been found to remap in different environ-
ments, while maintaining a constant angular offset between pairs of
HD cells. As a consequence, moving an animal to an environment with
new visual landmarks elicits “coherent remapping”59, as the entire
population rotates to align to the new landmarks, while retaining the
same relative offsets between neurons (Fig. 3A). To test whether
heading cells in the rotating environment also have this quality, we
replaced all of the visual cues on the chamberwall between recordings

to alter the local landmarks and elicit remapping, creating two sepa-
rate contexts.When comparing the same cells across the twocontexts,
we found that the majority of heading cells indeed shift by the same
angular offset (n = 12 recordings over 4 mice; Fig. 3B). The angular
offset is not consistent across different recordings because the
remapping due to changing contexts is random. Therefore, to com-
pare across recordings, we first calculated the “phase offset” of each
neuron, defined as the difference in preferred heading across condi-
tions. Then, iterating through each neuron, we subtracted each neu-
ron’s phase offset to the averaged phase offset of all other neurons in
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Fig. 1 | Individual neurons in the RSC exhibit heading responses in the absence
of physical head movement. A Schematic of the imaging set-up. Mice are head
fixed inafloating chamber and allowed to voluntarilymove the chamberfloor using
their paws, allowing control of their position and orientation within the chamber.
Tracking information from the chamber is synchronized to the collection of the
two-photon image acquisition. B Left: Example widefield image of the entire cor-
tical window with the location of the imaged plane in dysgranular RSC indicated
with a red box. Scale bar = 1mm. Right: Example imaging plane in RSC using two-
photon microscopy (n = 4 imaging fields over 3 mice) Scale bar = 200 µm. C Top:
Neural responses are first extracted as changes in fluorescence (ΔF/F), then spikes
are inferred from the calcium traces. Gray traces show the ΔF/F trace and the green
trace shows the inferred spikes. Inset: Zoomed section of the blue box on the left.
Bottom: Example inferred spikes from a population of cells in a single recording.
D Example chamber tracking data from a single experiment, showing X position, Y
position, speed, and heading angle. E Example rate maps (top) and heading

direction tuning curves (bottom) from neurons recorded from RSC. Note that
neurons exhibit selectivity to heading, but not to allocentric position in the floating
chamber. F Schematic of the controlled rotation set-up. A motorized wheel is
added to control the rotation of the floating cage. The mouse is head-fixed in the
center of the chamber and the X-Y translation of the chamber is restricted by guide
bearings. The red arrows show the rotation of the wheel and chamber. G Left:
Example of a single neuron’s response to rotation in the chamber. The orientation
of the chamber (“heading”) is plotted against time, and the activity represented by
the line color as indicated in the inset colorbar. The neuron consistently responds
at the same heading across trials. Right: Average tuning curve across all trials,
showing the elevated response of the neuron at a specific heading. Inset: The same
tuning curve plotted in polar coordinates. H Tuning curves of all responsive neu-
rons, sorted by cross-validated angle of peak response, showing that the preferred
headings of the population span the entire environment.
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the same recording (“Δ phase offset”; see “Methods”) to determine
whether the neuron coherently remapped along with the population.
When combining measurements across all recordings, we found that
changing contexts caused the population of heading cells to coher-
ently remap, as indicated by low Δ phase offsets (V66 = 25.6,
p = 4.9 × 10−6, V-test for nonuniformity against 0°; Fig. 3C).

In summary, we show that heading cells retain their tuning whe-
ther vestibular signals are modulated (in head rotation) or not
modulated (in chamber rotation). In addition, we show that the
heading network in a head-fixed preparation exhibits the same func-
tional properties as in freely moving animals. Together, these results
show that modulation of vestibular input is not necessary for eliciting
heading responses in RSC if vision and proprioception are spared.
Rather, many of the same heading neurons remain active and accu-
rately represent the animal’s heading relative to the moving environ-
ment. Importantly, these results also show that the mammalian
heading network is capable of representing the animal’s heading
relative to the environment even when the head is immobilized.

The ADN and visual cortex send distinct information to RSC
In the previous experiments, we found that not all cells would retain
their preferred direction across conditions or coherently remap,

suggesting that there is significant heterogeneity inRSC, whichmaybe
due to differences in the inputs it receives from other brain regions.
Previous anatomical tracing studies38,40 have shown that RSC receives
direct projections from both ADN and the visual cortex which likely
contribute to RSC heading representations. However, the responses of
these projections have not been studied in behaving animals, and the
information that each area sends to RSC is not known. Tomeasure the
responses from RSC-projecting neurons in each of these regions, we
microinjected an AAV expressing GCaMP7b into ADN or the higher
visual areas anteromedial (AM) and posteromedial (PM) in separate
cohorts of wild-typemice.We chose AMand PM since they provide the
major input from visual cortex to RSC60 as well as their role in visual
processing61. We then imaged the axon terminals arising from ADN
(n = 17 recordings over 4mice) or AM/PM in RSC (n = 7 recordings over
3 mice; Fig. 4A). In order to distinguish classical visual responses from
heading responses, we used a pair of symmetric cues onopposite sides
of the chamber so that an identical visual stimulus would pass in front
of themouse twice for each full chamber rotation.We also recorded in
both light-on and light-off conditions to selectively gate visual input
(Fig. 4B). We postulated that projections carrying heading signals
would exhibit unimodal peaks that persist in the light off condition,
accurately representing heading regardless of light condition or cue

Fig. 2 | Neurons in the RSC retain similar tuning in head-rotation or chamber-
rotation conditions. A Example of the adapted head-rotation set-up for compar-
isons between head-rotation and chamber rotation experiments. In addition to the
motor-driven wheel that can rotate the chamber while the head is immobilized,
there is a separate rotation collar that can be used to rotate the mouse over the
stationary chamber. Inset: Zoomed in image of the rotation collar assembly. The
rotation collar contains an x-y translator to shift the axis of rotation to the center of
the imagingfield. Abelt-drive connects the collar to amotor for controlled rotation.
B Schematic of the two experimental conditions. Either the chamber or the head
rotates independently, shown with a red arrow, while the other remains stationary,
shownwith a dashed gray capped line. In both cases, this causes the visual cue card
to move across the visual field in the same direction. C Example of derotation
process for image timeseries. Each of the three raw images is rotated to match the
template on the right. Colored borders show the position and rotation of each

individual image. The final template shown on the right is after all the images have
been registered for the recording (n = 5 imaging fields over 4 mice). D Example of
three matched ROIs from the recordings. Purple denotes greater brightness in the
chamber rotation recording,whereas green denotes greater brightness in the head-
rotation recording. White denotes equal brightness and suggests good alignment
of the ROIs across recordings. HR: Heading rotation, CR: chamber rotation. E Three
example tuning curves from pairs of ROIs showing similar tuning preferences. The
tuning curve in the head rotation condition is shown in green, whereas the tuning
curve in the chamber rotation condition is shown in purple. F Histogram showing
the difference in peak heading preference across recordings formatched ROIs. The
zero-centered peak in the data (green) indicates that cells remained tuned to the
similar heading angles independent of head- or chamber-rotation. Shuffled dis-
tribution is shown in gray. ***p = 2.5 × 10−4, V-test for circular nonuniformity
against 0°.
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symmetry. On the other hand, projections communicating visual
landmark signals would exhibit a light-sensitive and bimodal tuning
curve, with peaks separated by approximately 180° due to the sym-
metry of the visual stimulus (Fig. 4C).

We found that responses fromADNand visual cortical projections
exhibit distinct responses in these conditions. In the light-on condi-
tion, ADN axons show a unimodal tuning curve, whereas visual cortical
axons show a bimodal tuning curve (Fig. 4D, E). In the light-off con-
dition, ADN axons maintain their response for several trials, whereas
visual cortical axons lose their tuning. These results show that the
information from the visual cortex is highly sensitive to environmental
cues and cannot be entirely sufficient for driving heading responses, as
any symmetrical environment would result in an inaccurate heading
representation. The accurate internal heading representation regard-
less of environmental symmetry suggests that the information from
the visual cortex must be processed prior to being integrated into the
heading network. Together, these results indicate that ADN and visual
cortex send distinctively tuned projections to RSC, which provide a
basis for aligning the heading signal with external cues.

A functional class of RSC neurons coregisters visual and heading
signals
How do neurons in RSC combine the disparate responses from ADN
and visual cortex?We imaged calcium activity in RSC cell bodies using
the same experimental conditions, allowing us to determine whether
RSC responses resemble thalamic or visual cortical inputs (n = 36
recordings over 6mice).We found a diversity of responses in RSC that
resembled both visual cortical inputs (discernible by a second peak in
light) and ADN inputs (discernible by a single peak in the dark) (Fig. 5A,
Figure S4A-B). These responses persisted regardless of rotation
direction (Figure S5, p =0.0094, bootstrapped KS-test, n = 4 record-
ings over 2 mice) or whether or not the animal was in control of the
arena (Figure S6, 0.031, bootstrapped KS-test, n = 7 recordings over 3
mice). To help classify RSC responses, we fit a sum of Gaussians to the
data then performed unsupervised clustering on the coefficients using
a Gaussian mixture model (GMM) to separate the cells into functional
classes (Fig. 5B; see “Methods”). We found that the data were optimally
clustered into three functional classes (see “Methods”), although we

note that the responses span a continuum rather than fully isolated
clusters.

The model returned a prominent class of cells that mirrored the
tuning curves of ADN axons, with a unimodal peak that is stable in
either light-on or light-off conditions, which we call “heading cells”
(Fig. 5C). We also found another class that mirrored the tuning curves
of visual cortical axons, with a bimodal peak in the light-on condition
that disappears in the light-off condition, which we call “landmark
cells” (Fig. 5D). Finally, the clustering returned a third major class of
cells, which combined the responses of ADN and visual axons, exhi-
biting bimodal responses in the light-on condition, but changing to a
more unimodal response profile in the light-off condition, which we
call “alignment cells” (Fig. 5E). The light-off peak in these alignment
cells was always at the same location as one of the two peaks in the
light-on condition, suggesting that landmark and heading responses
areprecisely coregistered in the alignment cells.Of the total number of
tuned cells (12.1 ± 1.1%), landmark cells made up the plurality of cells
(33 ± 3.5%), followed by alignment cells (28 ± 1.9%, mean ± s.e.m.), and
heading (22 ± 2.3%) cells. We then compared the flip scores in the light-
on and light-off conditions across cell classes46. The flip score mea-
sures the bimodality of a neuron’s tuning curve, providing a direct
measurement of the sensitivity of the neuron’s responses to the sym-
metric visual cues. Heading cells showed no significant difference in
flip score across conditions (F1,662 = 0.18,p =0.67, Fig. 5F).On the other
hand, both landmark (F1,1042 = 1062.5, p = 3.1 × 10−161) and alignment
(F1,816 = 209.5, p = 2.0 × 10−42) cells have significantly lower flip scores in
the light-off than the light-on condition. These results suggest that
there are separate functional clusters present in RSC population which
are differentially influenced by visual information.

Since ADN and visual cortex send tuned projections to RSC, we
hypothesized that the somatic responses would be the result of spe-
cific combinations of tuned connections. To show this, wefit gaussians
to the axonal data using the samemethods as for the somatic data. We
then plotted themusing the same linear discriminant axes, finding that
ADN axons and visual axons aremostly restricted to the boundaries of
the heading and landmark clusters, respectively (Fig. 5I), although
there is some overlapwith the alignment cluster boundary (Figure S7).
To further confirm this, we compared neurons in the standard rotation

Fig. 3 | The heading network coherently remaps when visual cues are changed.
A Schematic showing coherent remapping across two different contexts. Because
each individual neuron’s preferred heading is mapped as a relative offset to visual
landmarks, the relationships between neuron offsets would be expected to be
preserved across contexts, leading to a coherent population shift.BThree example
neurons from the same session showing a unified shift in preferred heading from
context A to context B. Tuning curve fromcontextA is shown ingreen, while tuning
curve from context B is shown in purple. Arrow shows the phase offset between

contexts. C Histogram showing that neurons coherently remap across conditions.
For each recording session, a neuron’s coherence with the population was calcu-
lated as the difference between the neuron’s degree of remapping and averaged
degree of remapping across the remainder of the population (see “Methods”). The
peak around 0 suggests in the real data (purple) shows that individual neurons are
shifting preferred directions in a similar amount to the rest of the population in
each recording. Shuffled distribution is shown in gray. ***p = 4.9 × 10−6, V-test for
circular nonuniformity against 0°.
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condition with visual cue rotation only (Fig. 5J). We found that the
visual contributions to tuningwere retained in visual cue only rotation,
but the loss of proprioceptive and somatosensory information
strongly degraded the heading cell responses (Fig. 5K). These results
support that projections fromvisual cortex andADN innervate specific
targets in RSC, leading to a functional class of cells capable of cor-
egistering visual cues and heading.

Contributions of distinct classes to representation of heading
The functional classes observedwould be expected to lead to different
representations of heading direction. We sought to understand the
contributions of each functional class to thepopulation-level codingof
heading. First, we confirmed that the heading network was able to
accurately represent the animal’s heading, even in an environment
with symmetric visual information, by decoding heading from popu-
lations of cells within a single imaging frame. To combine multiple
recordings, we created pseudopopulations of neurons by aligning

trials across recordings and then randomly sampling a subset of these
cells, determined by the number of cells in the smallest class (see
“Methods”). Restricting decoding to subpopulations of cells within
single imaging frames (of 100ms duration) increased the dynamic
range in decoder performance and allowed us to directly compare
performancebetween classes. In the light-on condition, there is a slight
systematic overrepresentation of 180° errors due to the symmetric
visual cues. To prevent 180° decoding errors from biasing the per-
formance metric, we opted to measure performance using “decoder
accuracy”, which is defined as the fraction of decoded headings that
are within 18° of the actual heading in each time bin. When sampling
across all the classes, the heading network shows remarkable accuracy,
even in the presenceof symmetric visual cues (mean decoder accuracy
= 0.82, 95% CI = [0.78, 0.86], Fig. 6A). When transitioning from light-on
to light-off, there is adrop in theperformanceof thedecoder, although
the performance remains above chance, suggesting that the heading
network continues to track heading, albeit less accurately, even in the

Fig. 4 | Imaging projections fromADNand visual cortex reveal distinctly tuned
responses sent to RSC. A Top: Example of injection sites in separate cohorts of
mice. AAV-Syn-GCaMP7b was injected into either ADN or AM/PM of WT mice.
Middle: Example imaging field in RSC of axon terminals originating from ADN
(n = 17 imaging fields over 4mice). Bottom: ExampleΔF/F traces and inferred spikes
for imaged ADN terminals it RSC.B Example schematic of experimental conditions.
The single white cue card has been replaced with paired symmetric cues on the
floating chamber, which is driven by a motorized wheel. Neurons from RSC are
recorded across light-on and light-off phases. C Schematic of expected axonal
responses. Left: Axons terminals encoding heading independent of visual cues are
expected to have unimodal tuning curves across both conditions that are not

affected by the light condition. Right: Axons terminals responding to visual cues are
expected to show a single peak in a single cue condition, but dual peaks in the
paired symmetric cue condition. In both cases, the responses will be reduced in the
light-off condition. D Responses of ADN axons across recordings. Top: Heat maps
in the light-on (left) and light-off (right) condition. Each row represents the aligned
response of a single axon, and axons are organized by similarity to a groupmean in
the light-on condition. Bottom: Single axon response in light-on and light-off
conditions (left). Averaged response across all ADN axons, showing an aligned
unimodal peak in both light-on and light-off conditions (right). Traces shown are
mean± s.e.m.E Sameas (D), but for visual cortex axons. Averaged response shows a
bimodal peak in the light-on condition, and no response in the light-off condition.
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absence of visual cues (mean decoder accuracy = 0.44, 95% CI = [0.34,
0.54], p = 7.6 × 10−3; Fig. 6A, bottom). To further parse the contribu-
tions of specific functional classes, we also performed population
decoding restricted to cells of one response type (heading, landmark,
alignment; Fig. 6B). As with the entire pseudopopulation, we can
examine the differences in decoder performance in light-on vs light-off
conditions as well as the contribution of the symmetric visual cues,

which manifests as increased 180° errors. We found that heading cells
were able to accurately decode in both light-on (mean decoder accu-
racy = 0.61, 95% CI = [0.56, 0.66]) and light-off conditions (mean
decoder accuracy = 0.44, 95% CI = [0.36, 0.52]), suggesting that they
contribute to the heading signal in both conditions (p = 0.11; Fig. 6B,
top). Since their decoder performance is lower than the population in
the light-on condition, heading cells alone may be insufficient for
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providing an optimal representation of instantaneous heading
(Fig. 6C, right; Table S1). As expected based on their tuning curves,
heading cells did not exhibit a preponderance of 180° errors, sug-
gesting they do not represent visual information directly and were
therefore not affected by the symmetric cues. In contrast, landmark
cells have very high decoder performance in the light-on condition
(mean decoder accuracy = 0.80, 95% CI = [0.75, 0.84]), with an over-
representation of decoder errors at 180°, which immediately plum-
mets to chance levels in the light-off condition (mean decoder
accuracy = 0.20, 95% CI = [0.14, 0.27]; p = 8.0 × 10−4; Fig. 6B, middle).
This suggests that landmark cells strongly drive the heading signal
when visual cues are present but provide almost no contribution in
their absence (Fig. 6C, right; Table S1). Lastly, alignment cells show
decoder performance that is between that of heading and landmark
cells, taking advantage of improved decoding from the visual cues in
the light-on condition (mean decoder accuracy = 0.71, 95% CI = [0.66,
0.76]), but retaining fairly accurate heading in the light-off condition
(mean decoder accuracy = 0.51, 95% CI = [0.43, 0.59], p =0.54; Fig. 6B,
bottom). This suggests that alignment cells can take advantage of the
visual cues in the light-on condition, while retaining accurate decoding
in their absence in the light-off condition, positing that they may be
responsible for integrating and registering visual landmark and head-
ing information (Fig. 6C, right; Table S1).

Taken together, we propose a working model to describe the
distinct roles played by heading, landmark, and alignment cells in the
registration of heading representations to visual cues (Fig. 6C). First, in
the light-on condition, all three classes are active, with landmark cells
faithfully representing the position of the visual cues, heading cells
relaying information from the heading network, and a subset of
alignment cells coregistering both sources of information, resulting in
an internal heading that is well aligned with the true external heading
(Fig. 6C, left). In the light-off condition, the landmark cells are silenced,
leaving the heading cells as the primary driver of internal heading, and
the alignment class exhibiting a responsematched to the heading cells
(Fig. 6C, center). Moreover, the lack of anchoring visual information
causes the headingnetwork todrift over time, and the internal heading
to becomes offset from the true heading. Upon restoring visual cues in
the light-on condition, landmark cells regain their tuning, relaying this
information to the appropriate subset of alignment cells, which are in
turn updated (Fig. 6C, right). The alignment cells then update the
heading cells, and the broader network via feedback projections from
RSC to the ADN, updating the heading representation throughout the
heading system. We propose that the co-registration of visual land-
mark and heading signals in the alignment cells thereby plays a critical
role in aligning the heading representation to external visual cues.

Discussion
One of the key findings of this paper is that heading, the relative
orientation of an animal in an environment, can be encoded separately
from physical head direction in the heading network. This finding is
consistent with previous studies in which humans solve complex

virtual navigation tasks without the requirement of physical move-
ment, suggesting that they can create an abstract mental map of their
direction independent of physical locomotion62–65. Research in inver-
tebrates further supports this view, as the E-PG (“compass”) neurons of
theDrosophila central complex, an analog of the heading network, are
active in virtual environments even when the fly is immobile1,2,31.

Here, we demonstrate for the first time that neurons in the
mammalian heading network show a similar capability during head
immobilization, using multiple sensory inputs to accurately repre-
sent relative heading. Although previous experiments have examined
the influence of non-vestibular sensory inputs on heading, they have
uniformly allowed free angular rotation of the head20–23. Indeed,
previous experiments with head-fixed mice also allowed for rotation
of the animal’s head, either via a rotational mount66 or physical
rotation of the entire animal67. As compared to traditional head-fixed
virtual reality setups, our floating chamber designs confers several
benefits. Beyond providing a three-dimensional visual environment,
the floating chamber maintains somatosensory and proprioceptive
cues present during locomotion through a physical environment.
Using a combination of these sensory cues, the heading cells (many
of which would be classified as HD cells in freely moving conditions)
appear to be able to compensate for the absence of vestibular
information, although not all neurons maintained their tuning
between head rotation and chamber rotation conditions. Because of
the heterogeneity of responses in RSC, a subset of RSC heading cells
may be more strongly driven by vestibular input, and therefore lose
their response during head fixation; whereas more visually driven
neurons are still responsive. This is reminiscent of previous studies
which found that including additional sensory modalities improves
the coding of AHV51,68 and HD35 cells. However, our results show that,
despite the reduced activity due to the absence of vestibular input,
neurons of the heading network in head-fixedmice remain functional
and are able to accurately track heading, expanding the repertoire of
experimental approaches.

The HD network has commonly been modeled as a ring attractor
network, with heading represented by neurons as an “activity bump”
that can be shifted by sensory inputs. Along with the results presented
here, other recent work has begun to elucidate the specific cells and
mechanisms that may be responsible for anchoring the activity bump
to visual landmarks. Jacob et al. found a specific class of cells that have
bimodal tuning curves in a two-chamber symmetric environment,
called “within-compartment bidirectional cells”, that were postulated
to develop their responses through Hebbian-based strengthening of
visual information with information from the heading network45,46.
Similarly, LaChance et al.69 found bidirectionally tuned cells in the
postrhinal cortex that could represent and discriminate between
symmetric visual cues, suggesting an important role in processing
visual landmarks. Lastly, recent modeling work70,71 suggests mechan-
isms within the RSC thatmay be specifically responsible for anchoring
heading to landmarks. However, there are some key differences in our
findings. Previous work in RSC has found bimodal responses in two

Fig. 5 | Unsupervised clustering of neural responses in the RSC reveals distinct
functional classes. AHeatmaps of the responses of all somas imaged in RSC. Each
row corresponds to a neuron in the light-on and light-off condition, and responses
are ordered by their preferred direction. Light-off responses are ordered based on
their light-on position. B Left: Example of a two-termGaussian fit on an aligned and
normalized tuning curve. The outputs of the two-term Gaussian for light-on and
light-off conditions are used for clustering. Right: Scatter plot of clustered
responses in a reduced dimension (LDA space). Histograms along the edges show
the distribution of values along each dimension. Cluster numbers are denoted by
color. Note that LDA plot is only for visualization, clustering was performed in full
8-dimensional space (see “Methods”). C Top: Heat maps showing the aligned
responses of the heading neurons (cluster 1), ordered by similarity to a cluster
averaged response. Bottom left: Example tuning curve in light-on and light-off

conditions for a single cell. Bottom right: Averaged responses of the neurons in the
heading cluster in light-on and light-off conditions. Traces are shown as mean ±
s.e.m. D Same as (C), but for landmark neurons (cluster 2). E Same as (C), but for
alignment neurons (cluster 3). F Histogram showing light-on and light-off flip
scores for the heading cluster. p =0.67, F-test. G Same as (F), but for landmark
neurons (cluster 2). p = 3.1 × 10−161, F-test. H Same as (F), but for alignment neurons
(cluster 3). p = 2.0 × 10−42, F-test. I Location of axonal data on the reduced dimen-
sional space. Gray dots are the positions of RSC soma. Red dots are ADN axons and
blue dots are visual axons. Colored circles represent the 95% CI ellipses sur-
rounding each cluster, with colors as above. J Schematic of standard rotational
experiment versus visual cueonly rotation.K Light-onand light-off tuning curves of
matched neurons in the standard rotation (top) and visual cue only rotation (bot-
tom) for each cell cluster.
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connected visually symmetric chambers, but not in a single chamber
with symmetric cues72. In our recordings, we found cells in RSC with
bimodal tuning curves in a single chamber with symmetric cues, akin
to studies in postrhinal cortex69. We postulate that the difference in
bimodal responses in RSCmay be due to the mouse being fixed in the
center, removingmodulation of both vestibular signals and proximity-
dependent visual cue size. Although our results are complementary to
this previous work, experimentally dissociating visual and heading

contributions enables the separation of cell types that were previously
combined. For example, although landmark and alignment cells may
have similarly bidirectional responses in symmetric environments,
removing visual input affects their responses very differently. As a
result, our experiments reveal novel cellular responses which support
the integration of visual and heading information.

Our results show that RSC integrates visual information into the
heading network, but other areas in the HD network may also play

Fig. 6 | Decoding analysis shows independent contributions of each functional
subclass to the overall heading representation in RSC. A Pseudopopulation
decoding of neural responses across trials. Top: Predicted heading plotted for each
100ms time bin (blue dots) overlaid on actual heading (black dotted line) for each
trial, transitioning from the light-on (yellow bar) to the light-off (gray bar) condi-
tion. The transition line between conditions is shown as a vertical gray dashed line.
Bottom: Decoder error (gray dots) and the average decoder accuracy for each trial
(green dots and line). The dashed green line denotes chance level for decoder
accuracy (0.10). Decoder accuracy is plotted as mean ± s.e.m. Bootstrapped t-test
(see “Methods”), n = 1000 bootstrapped samples. p = 7.6 × 10−3. B Top: Decoder
error (gray dots) anddecoder accuracy (green dots and line) for decoderusing only
heading cells across conditions (left). p =0.11 Comparison of decoder error
between heading class cells and other cell classes (T: total, H: heading, L: landmark,
A: alignment) showing differences in performance across classes (right). Red
shading indicates that the heading class outperforms the compared class; blue

shading indicates the opposite. Middle: Same as top, but for landmark cells only.
p = 8.0 × 10−4. Bottom: Same as top, but for alignment cells only. p =0.54 Decoder
accuracy is plotted as mean ± s.e.m. Bootstrapped t-test (see “Methods”), n = 1000
bootstrapped samples. C Schematic of circuit for integration of visual information
into the HD network, indicating changes in circuit representation during light-on
condition (left), light-off condition (middle), and back in the light-on transition
(right). Top: The blue feedback line describes putative feedback from the RSC to
the ADN, sending adjusted heading information. Bottom: Population likelihood
curves are shown in dark blue, with each cell class (heading, landmark, and align-
ment) shown in red, blue, and purple, respectively. Blue arrows above the like-
lihood curves denote the predicted internal heading at each time point. Black
arrows below the likelihood curves denote the physical head direction at each time
point. Dotted lines denote the previous position of the likelihood curve. n.s.: not
significant, *p <0.5, **p <0.01, ***p <0.001. Linear mixed-effects model.
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important roles. The postsubiculum shares many of the same prop-
erties as RSC, as the only other area in the heading network receiving
substantial monosynaptic input from both visual cortex and ADN73,74.
Lesioning postsubiculum degrades the heading signal in the ADN and
results in an inability to register to visual landmarks, similar to RSC
lesions75. Recent work has also suggested that the postrhinal cortex
may also play a role, as it contains visually driven heading cells that can
discriminate between symmetric landmarks69. In addition, cells with
bimodal responses have also been found in the medial entorhinal
cortex76, which has been shown to affect RSC activity77. Given that cells
in each of these areas exhibit similar visually-influenced tuning prop-
erties, are these systems redundant or complementary? Since the
regions are highly interconnected40,78, it is possible that they may
redundantly represent the same information, since registration of
visual information is generally important for maintaining heading
during spatial processing. Alternatively, the processing in each area
may be complementary, biased by the strength of their connectivity
with other brain regions43. For example, different visual areas may
provide different information (e.g., landmarks, coherent motion) to
downstream structures, which can integrate the diverse visual inputs
with heading direction signals. Further studies are necessary to
understandhow thedistributed regions in theHD cell network interact
during navigation.

In conclusion, our study provides evidence that neurons in theHD
cell network are capable of representing the heading of the animal
relative to the environment independent of physical head direction.
The dysgranular RSC is able to combine multisensory information to
create an abstracted map of heading, similar to how place cells can
encode abstract mappings of non-positional variables79–81. Finally, we
propose a potential circuit based on a newly discovered class of neu-
rons in RSC that act to coregister visual cues to the heading network.
Future studies of how heading and other spatial signals are aligned to
sensory input will be critical for understanding how internal repre-
sentations of the spatial environment are generated, maintained, and
updated by sensory information.

Methods
Animals
For cortex-wide calcium indicator expression, Emx1-Cre (Jax Stock
#005628) × ROSA-LNL-tTA (Jax Stock #011008) × TITL-GCaMP6s (Jax
Stock #024104) triple transgenic mice or Slc17a7-IRES2-Cre (Jax Stock
#023527) × TITL2-GC6s-ICL-TTA2 (Jax Stock #031562) double trans-
genic mice were bred to express GCaMP6s in cortical excitatory neu-
rons. For axon imaging experiments, wild-type C57BL/6J mice were
used. For all imaging experiments, 6–12-week-old mice of both sexes
(12males and 14 females) were implanted with a head plate and cranial
window and imaged starting 2 weeks after recovery from surgical
procedures and up to a maximum of 10 months after window
implantation.Micewere housed in cages of up to 5 animals prior to the
implants, and singly housed post-surgical procedure in a 12:12 light-
dark cycle with the following controlled parameters: temperature
(68–76 ºF), humidity (30-70%), ventilation (10–15 air changes per
hour). All animal procedures were approved by the Institutional Ani-
mal Care and Use Committee at UC Santa Barbara.

Surgical procedures
All surgeries were conducted under isoflurane anesthesia (3.5% induc-
tion, 1.5–2.5% maintenance). Prior to incision, the scalp was infiltrated
with lidocaine (5mgkg−1, subcutaneous) for analgesia and meloxicam
(2mgkg−1, subcutaneous) was administered pre-operatively to reduce
inflammation. Once anesthetized, the scalp overlying the dorsal skull
was sanitized and removed. Theperiosteumwas removedwith a scalpel
and the skullwas abradedwith adrill burr to improve adhesionof dental
acrylic. For all chamber-rotation mice, a 4mm craniotomy was made
centered over the midline (centered at 3.0mm posterior to Bregma),

leaving the dura intact. For a subset of these mice, AAV-Syn-Flex-
jGCaMP7b (Addgene #104493) was injected into either AM (3.0mm
anterior, 1.7mm lateral), PM (1.9mm anterior and 1.6mm lateral to
Lambda), or ADN (0.8mm posterior and 0.8mm lateral to Bregma,
3.2mm depth82) of Emx1-Cre mice. For head rotation experiments, the
4mm craniotomywas centered 3.0mmposterior and 1.0mm lateral to
Bregma, so that the axis of rotation was not centered over the sagittal
sinus. A cranial window was implanted over the craniotomy and sealed
first with silicon elastomer (Kwik-Sil, World Precision Instruments) then
with dental acrylic (C&B-Metabond, Parkell) mixed with black ink to
reduce light transmission. The cranial windows were made of two
rounded pieces of coverglass (Warner Instruments) bonded with a UV-
cured optical adhesive (Norland, NOA 61). The bottom coverglass
(4mm) fit tightly inside the craniotomywhile the top coverglass (5mm)
was bonded to the skull using dental acrylic. A custom-designed stain-
less-steel head plate (eMachineShop) was then affixed using dental
acrylic. In all conditions, the head plate was carefully positioned to
ensure a natural gait under recording conditions. After surgery, mice
were administered carprofen (5mgkg−1, oral) every 24 h for 3 days to
reduce inflammation. The full specifications and designs for head plate
and head fixation hardware can be found on our institutional lab web-
site (https://goard.mcdb.ucsb.edu/resources).

Floating chamber design and set up
For the floating chamber experiments (Fig. 1A), we used a set up based
on the Mobile HomeCage system (Neurotar Ltd.). Briefly, a 250mm
diameter carbon fiber chamber was placed on top of a perforated
metal base. Pressurized air fed into the metal base floated the cham-
ber, reducing friction and allowing the chamber to move readily. Mice
were then head fixed in the center of this chamber and allowed to
ambulate, which moved the chamber around the mouse while the
mouse remained still. The air pressure was tuned (2–4 PSI) so that the
chamber provided enough friction to create a natural gait. The
chamber contains a set ofmagnets which are read by the base in order
to report information about the position of the chamber (Tracking
Software v2.2.1, Neurotar Ltd.), which are then transformed using
custom code (MATLAB 2020b, Mathworks) to extract the position,
angle, and velocity of the mouse relative to the chamber.

For single cue experiments, the walls of the chamber contained a
single black cue (width: 60mm)set on topof awhite noisebackground
that spanned the entire inner circumference of the chamber.

For dual cue experiments, the walls of the chamber contained a
repeating pattern of stars or bars (width: 180mm), in an A–B–A–B
pattern. These stimuli were separated by black bars to separate the
cues (width: 15mm).

For remapping experiments, the walls of the chamber were divi-
ded into four quadrants, each with a different stimulus. Between
recordings, the stimuli were replaced with four new unique stimuli in
complete darkness, so that the mouse could not see the transition
between stimuli.

All wall cues were printed on nylon waterproof paper and
attached to the chamber walls using double-sided tape.

Forced rotation experiments. To ensure even sampling of the entire
rotation space, we carefully controlled the rotation of the chamber.
Three stabilizing bearings (608-2RS) were mounted on optical posts
(TR-series, Thorlabs) and placed around the cage to eliminate any X-Y
translation. A DC motor (ZGA37RG, Greartisan) was coupled to a
rubber wheel and used to spin the chamber using the outer surface.
The speed of the DC motor was controlled with a microcontroller
(UNO R3, Arduino) drive the rotation of the chamber (3–7 rpm).

The chamber was rotated for 90–120 s followed by a 5 s rest
period, which was then repeated 2–6 times for each recording. Mice
weremonitored via video to ensure that they followed along with the
chamber rotation. The total time spent rotating on the floating air
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chamber never exceeded 15min, in order to limit potential
discomfort.

For experiments in light and darkness, the lights in the experi-
mental box were switched using a microcontroller (UNO R3, Arduino).
The initial repeat was always performed in a light on trial, so that the
mouse could register visual landmarks in its environment. Afterward,
the box lights were turned on or off in between repeats, during the rest
period.

The chamber was thoroughly cleaned and disinfected between
experiments in order to remove any odor traces.

Physical head rotation experiments. The head rotation apparatus
consisted of a rotation collar (LCRM2, Thorlabs Inc.) attached to a
translating mount (LM2XY, Thorlabs Inc.) and a quick release adapter
(SM2QA, Thorlabs Inc.) The translating mount allowed for indepen-
dent adjustment of the imaging field about the axis of rotation to
optimize the imagingfield. The quick release adapterwasused inorder
to easily head fix mice to the apparatus. A closed timing belt for 3D
printers (2GT-610) was looped around the rotation collar and attached
to a DC motor (ZGHA37RG, Greartisan) and belt tensioner (6mm belt
pulley). Due to the danger of physically rotating themouse, we limited
the speed of the head rotation to 2 rpm and installed safety bars
alongside the body of themouse to ensure that the body of themouse
did not become twisted under the collar.

Visual cue only rotation experiments. To rotate the visual cues
independently of the chamber floor, we suspended a rigid nylon sheet
underneath the mouse and just above the floor of the rotating cham-
ber. This false floor was separated from the rotating chamber so that
the rotation of the chamber walls did not cause any movement of the
floor, eliminating somatosensory and proprioceptive cues.

Two-photon imaging
After >2 weeks recovery from surgery, GCaMP6s fluorescence was
imaged using a Bruker Investigator two-photon microscopy system
with a resonant galvo-scanningmodule. Posteriordysgranular RSCwas
targeted by imaging <1mm lateral of the sagittal sinus and <1mm
anterior to the transverse sinus.

For fluorescence excitation, we used a Ti:Sapphire laser (Mai-Tai
eHP, Newport) with dispersion compensation (DeepSee, Newport)
tuned to λ = 920 nm. For collection, we used GaAsP photomultiplier
tubes (Hamamatsu). To achieve awide field of view, we used a 16×0.8
NA microscope objective (Nikon) and imaged at a 414 × 414 µm,
690 × 690 µm, or 829 × 829 µm field of view spanning 760 × 760
pixels. Laser power ranged from 40 to 75mW at the sample
depending on GCaMP6s expression levels. Photobleaching was
minimal (<1%min−1) for all laser powers used. A custom stainless-steel
light blocker (eMachineShop) was mounted to the head plate and
interlockedwith a tube around the objective to prevent ambient light
from reaching the PMTs.

Two-photon post-processing
Images were acquired using PrairieView acquisition software (Bruker)
at 10Hz and converted into TIF files. All subsequent analyses were
performed in MATLAB (Mathworks) using custom code (https://
github.com/ucsb-goard-lab/Two-photon-calcium-post-processing).
First, images were corrected for X-Y movement by registration to a
reference image (the pixel-wise mean of all frames) using
2-dimensional cross correlation.

To identify responsive neural somata, a pixel-wise activity map
was calculated using a modified kurtosis measure. Neuron cell bodies
were identified using local adaptive threshold and iterative segmen-
tation. Automatically defined ROIs were then manually checked for
proper segmentation in a graphical user interface (allowing compar-
ison to raw fluorescence and activity map images). To ensure that the

response of individual neurons was not due to local neuropil con-
tamination of somatic signals, a corrected fluorescence measure was
estimated according to:

FcorrectedðnÞ= FsomaðnÞ � α FneuropilðnÞ � �Fneuropil

� �
ð1Þ

where Fneuropil was defined as the fluorescence in the region <30 µm
from the ROI border (excluding other ROIs) for frame n. �Fneuropil is
Fneuropil averaged over all frames. α was chosen from [0 1] to minimize
the Pearson’s correlation coefficient between Fcorrected and Fneuropil.
The ΔF/F for each neuron was then calculated as:

ΔF=F = ðFn � F0Þ=F0 ð2Þ

where Fn is the corrected fluorescence (Fcorrected) for frame n and F0
defined as themode of the corrected fluorescence density distribution
across the entire time series.

De-rotation of image time series. Because the microscope is fixed
relative to the mouse in the head rotation experiments, the images
from the microscope were de-rotated in order to be properly
processed66. The initial non-rotation period was used to create a
template that the remainder of the images would be registered to.
Registration was performed by maximizing the Mattes mutual infor-
mation between each frame and the template via a one plus one
optimizer (MATLAB,Mathworks). Thegeometric transformationof the
previous successfully registered image was applied as an initial trans-
form in order to optimize the performance and speed of the regis-
tration. After de-rotating each frame, an occupancy map was
calculated from the resulting images, and the image was cropped so
that only areas that contained all frames were included in further
analyses. The final image series was subsequently analyzed using the
two-photon processing pipeline described above. All the associated
code for derotation can be found here: https://github.com/ucsb-
goard-lab/2P-Derotation.

Axon terminal imaging. For axon terminal imaging, we processed the
TIF files using the Python implementation of Suite2P83. Briefly, TIFs
underwent rigid registration using regularized phase correlations.
Regions of interest were extracted via clustering correlated pixels, and
were manually checked based on location, morphology, and ΔF/F
activity. A specific configuration of Suite2P was used that is optimized
for detecting axon processes84. After defining ROIs, we used custom
code (MATLAB) to check that the same axon process was not sampled
multiple times (for ROIs with Pearson correlation >0.5, all ROIs except
one were excluded).

Analysis of calcium data
To avoid low pass filtering of heading tuning curves due to slow cal-
cium dynamics, we used a MATLAB implementation of a sparse, non-
negative convolution algorithm (OASIS) on ΔF/F traces85 with an
autoregressive model of order 1 for the convolution kernel.

For the floating chamber experiments with voluntary control, the
Rayleigh vector length (RVL) was used to determine if a cell was heading
selective. The RVL was calculated for each cell and compared against a
shuffleddistribution. Tocreate the shuffleddistribution, eachcell’s spike
data was circularly shuffled and the tuning curve and resulting RVL was
calculated. This was repeated 1000 times to create a distribution of
shuffledRVLs. Cellswhose trueRVLmetor exceeded the99thpercentile
of this distribution were considered to be heading selective.

For calculation of heading selectivity in the rotating chamber
experiments, each cell’s spike time series was divided into trials, with
each trial representing a single full rotation of the chamber. To cal-
culate tuning curves, the orientation of the chamber at each framewas
first binned into 60 bins of 6 degrees. Then, the response was

Article https://doi.org/10.1038/s41467-023-37704-5

Nature Communications |         (2023) 14:1992 11

https://github.com/ucsb-goard-lab/Two-photon-calcium-post-processing
https://github.com/ucsb-goard-lab/Two-photon-calcium-post-processing
https://github.com/ucsb-goard-lab/2P-Derotation
https://github.com/ucsb-goard-lab/2P-Derotation


calculated for each trial using the spike rate of the cell at each heading
bin, smoothed by a 15° moving average filter. The overall tuning curve
was calculated by averaging the responses across all trials.

Next, we determined whether each cell (or axon terminal) was
significantly heading selective. First, the reliability each cell’s heading
preference across trials was calculated by randomly splitting the trials
into two groups and calculating the correlation coefficient between
the resulting tuning curves. Then, each trial’s activity was circularly
shifted prior to calculating the correlation coefficient. This was repe-
ated 1000 times for each cell, creating a real and shuffled distribution,
which was compared via a two-sample Kolmogorov–Smirnov test.

Cohen’sdwas calculated to gauge the separation between the two
distributions. A cell was considered reliable if it passed the two-sample
Kolmogorov–Smirnov test at p <0.1 and had a Cohen’s d > 0.8. In
addition, A single-term (for single cue) or two-term (for dual cue)
Gaussian was fit to the trial averaged tuning curve as well as the trial
averaged shuffled tuning curves. As before, the tuning curves were
shuffled and fit 1000 times. The goodness of fit (r2) of the true fit was
compared against the 90th percentile of r2 for the shuffled fits to
determine if the cell’s tuning curve had the proper shape. These
threshold values were chosen so that the combined significance value
of the two measures is p =0.01. When repeating these procedures
using pre-shuffled data, no cells passed these criteria, suggesting that
the number of heading selective cells is accurate, and not due to
chance.

To compare tuning curves across cells regardless of preferred
direction, a cross-validated alignment was performed. For each trial,
the responses from every other trial were used to construct a tuning
curve, and the peak index of that tuning curve was used to align the
held out trial. For light-on and light-off experiments, individual tuning
curves for each condition were first calculated by only averaging trials
that belonged to each light condition. Cross-validated alignment was
performed on the light-on tuning curves, and the offsets applied to the
light-off tuning curves, so that the same circular offset was applied to
both conditions.

Calculation of coherent remapping. To determine whether or not a
population of neurons remapped coherently, we created cross-
validated procedure for testing individual cells. For each neuron in a
recording, the difference between its preferred direction in the first
and second context was calculated. Next, all other cells in the
recording were used to calculate an “expected offset” by taking the
median across all cell pair differences in preferred direction across
contexts. Lastly, the difference between the neuron of interest and the
median difference was taken to determine if the neuron of interest
remapped coherently with the remainder of the population. This
procedure can be summarized as follows:

Δphaseoffsetn = pref ðA,nÞ � pref ðB,nÞ
� �

� gprefðA,½0,N�≠nÞ � gprefðB,½0,N≠nÞ
� �

ð3Þ

where prefA and prefB is the preferred direction in context A or B,
respectively, of neuron n and N is the total number of neurons. gpref
denotes the median of preferred directions. Perfect remapping would
result in a difference of 0, suggesting that each neuron exhibited the
exact same heading offset as the rest of the population. This process
was repeated for each recording to measure the amount of coherent
remapping for each neuron in each recording. These values were
compared against a shuffled distribution, in which random neurons
were chosen and compared, rather than defined cell pairs.

Clustering of RSC soma responses. To categorize the response
profiles of RSC somata, unsupervised clustering was performed. First,
all cells werefit with a sumofGaussians asdefinedbelow for both light-

on and light-off conditions:

f ðxÞ=a0 +a1 × e
�ððx�b1Þ=c1Þ2 +a2 × e

�ððx�b2Þ=c2Þ2 ð4Þ

wherea0 is the baseline offset,a1, b1, c1,a2,b2, and c2 are the amplitude,
location, and standard deviation for the first and second peaks,
respectively. The coefficients a1, a2, c1, and c2 for each the light-on and
light-off tuning curves were fit with an 8 component Gaussian mixture
model (GMM). Coefficients b1 and b2 were omitted so that the location
of the peak was not a determining factor in clustering. A cluster
evaluation using silhouette analysis was performed to determine the
optimal number of clusters, which reported a local maximum at k = 3
clusters, resulting in a 3 component GMM. Each neuron’s Mahalanobis
distancewascalculated fromeach centroid, and theminimumdistance
among centroids was taken. Then, any outliers whose minimum
distance was significantly greater was assigned to a null cluster. In
order to separate the neurons into specific clusters, the outputs of the
GMM were used to create archetypal tuning curves that represented
these clusters in light-on and light-off conditions. The cosine distance
of each neuron’s light-on and light-off tuning curve was calculated
against each archetypal tuning curve, and the summed minimum
distance was used to determine the best fitting cluster for each cell.

Because of the high dimensionality of the GMM components, a
dimensionality reduction was performed for visualization (Fig. 5B). A
linear discriminant analysismodel (LDA) was trained on the outputs of
theGMM, and theweights from the trainedmodelwere used to reduce
the dimensionality of the real data to the first two dimensions for
visualization.

Clustering of axonal responses. To project the visual andADNaxonal
responses on the same axes as the somatic data, the trained LDA was
used to reduce the dimensionality of the axonal data. Bounding ellip-
ses were drawn based on the calculated 95% CI of the points in each
cluster.

Calculation of bimodality. To represent the bimodality of a neuron,
we used a flip score metric also described previously46. Briefly, an
autocorrelation of each cell’s tuning curve was performed. A bimodal
cell resulted in a peak centered at 180°, which was absent in unimodal
cells. The flip score was then calculated as follows:

Flip score=CC180� � ðCC90� +CC270� Þ=2 ð5Þ

where CC180°, CC90°, and CC270° are the correlation coefficients of the
autocorrelation at the 180°, 90°, and 270° positions, respectively.

Decoding RSC somatic activity
Preprocessing and alignment of calcium data. In order to aggregate
trial data across all recordings, the following preprocessing steps were
performed. First, each rest period in which the chamber does not
rotate between light-on and light-off conditions was identified. Indi-
vidual trials were then defined as full rotations either preceding or
following the rest period, so that each trial contained a full rotation of
the chamber. For light-off to light-on conditions, the rest period was
identified that separated light-off from light-on periods. By defining
full trials about the rest period, each trial was ensured to fully span
360°. Next, minor variations in the speed of rotation between indivi-
dual trials were accounted for by resampling both the heading infor-
mation and neural data to be equal length (200 bins) across all trials in
all recordings.

Decoding strategy. After preprocessing, the data were aggregated
and the raw calcium data were decoding using Bayesian decoding86.
Data were split into even and odd timepoints for training and testing.
All reported results are with testing data only.
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Calculating decoder performance metrics. Because each pseudo-
population had uneven numbers of neurons, we first performed a
bootstrapping procedure prior to calculating performance metrics.
We sampled, with replacement, neurons from each group, with the
number of neurons determined by the size of the smallest group
(n = 332 cells). For the “all tuned cells”group,we sample randomlywith
replacement from all three cell classes, preserving the rough propor-
tions of each response class. The analysis was performed on sampled
subpopulations for 1000 iterations to calculate the mean and boot-
strapped s.e.m. at each time point. The decoder error for each frame
was calculated as follows:

Decoder error = ∣Hdecoded � Hactual∣ ð6Þ

where Hdecoded is the decoded heading at each frame and Hactual is the
actual heading at each frame. Because of the overrepresentation of
180° errors due to the landmark cell contribution, we found that the
average decoder error did not well represent the actual trial perfor-
mance. Therefore, in addition to decoder error, we calculated the
decoder accuracy for each trial as follows:

Decoder accuracy=
X

ðDecoder error<18�Þ=Nframes × 1000 ð7Þ

where Nframes is the total number of frames in the current trial.
Decoder accuracy was displayed as bootstrapped plots with error

bars denoting the 2.5th and 97.5th percentile. If the confidence interval
did not overlap chance (0.18), the decoder accuracywas deemed to be
statistically significant. The specific decoding and decoder error
examples in the Fig. 6 plots were taken from the iteration with median
performance based on decoder accuracy to illustrate a representative
decoding session.

Statistical information
To test decoding error across recordings, paired t-tests were per-
formed. To test whether angular data were clustered around a mean
angle, a V-test was performed (Circular Statistics Toolbox,MATLAB). To
compare the differences between two distributions, a two-sample
Kolmogorov–Smirnov test was performed. To compare differences
across multiple animals, generalized linear mixed-effects models were
used to control for correlations of cells within the same animal. For
bootstrapped samples, the p-values were calculated as one minus the
fraction of iterations that passed a Student’s t-test or
Kolmogorov–Smirnov test at an alpha ≤0.05. All confidence intervals
were calculated from bootstrapped data. When performing boot-
strapping, data were randomly sampled with replacement. Statistical
comparisons between groups were performed as two-tailed tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited on the following
Dryad repository: https://doi.org/10.25349/D91G8Q. Source data are
provided with this paper.

Code availability
All of the code for generating Figs. 1–6 is available on the following
GitHub repository: https://github.com/ucsb-goard-lab/Neurotar-HD-
Experiments.
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