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PeSTo: parameter-free geometric deep
learning for accurate prediction of protein
binding interfaces

Lucien F. Krapp1, Luciano A. Abriata 1, Fabio Cortés Rodriguez1 &
Matteo Dal Peraro1

Proteins are essential molecular building blocks of life, responsible for most
biological functions as a result of their specific molecular interactions. How-
ever, predicting their binding interfaces remains a challenge. In this study, we
present a geometric transformer that acts directly on atomic coordinates
labeled only with element names. The resulting model—the Protein Structure
Transformer, PeSTo—surpasses the current state of the art in predicting
protein-protein interfaces and can also predict and differentiate between
interfaces involving nucleic acids, lipids, ions, and small molecules with high
confidence. Its low computational cost enables processing high volumes of
structural data, such as molecular dynamics ensembles allowing for the dis-
covery of interfaces that remain otherwise inconspicuous in static experi-
mentally solved structures. Moreover, the growing foldome provided by de
novo structural predictions can be easily analyzed, providing new opportu-
nities to uncover unexplored biology.

Molecular interfaces are ubiquitous in biology and of utmost relevance
beyond their central role in establishing cell boundaries and intracel-
lular organization1–3. Especially so around proteins, which perform
their functions by interacting with other proteins as well as with
nucleic acids, membranes, and molecules and ions of various kinds.

Predicting the interactions that a given protein can establish
with other molecules remains a major challenge in biology, still
open despite numerous developments along various fronts4–7.
The most modern methods for predicting protein interactions
currently target the prediction of either specific pairs of inter-
acting residues/atoms, relying intensively on the analysis of
residue–residue coevolution patterns and thus limited to
protein–protein interactions, or predicting only which regions of
a protein are prone to interaction7–14. Even the latter, presumably
a simpler problem, is yet far from solved, and most methods aim
mainly at discovering protein interfaces tailored to interact with
other proteins, with a strong focus on features of the protein
surface and in some cases also exploiting their sequence con-
servation. These methods are thus limited, because calculation of

protein surfaces and mapping of their properties are time-con-
suming, complicating their high-throughput application at the
proteome scale; besides, they require parametrizations and are
very sensitive to details and errors of the 3D structure or
model7,10,12–15. Meanwhile, methods that rely on sequence con-
servation or residue coevolution often perform poorly for shallow
sequence alignments. Approaches based on folding protein
complexes de novo simultaneously discovering the interaction
interfaces and subunit conformations, such as AlphaFold-
multimer16, are limited to protein–protein interactions, are far
slower than predicting the interaction interface from structures
and will fail if the folding protocol itself fails.

Here, building on the recent successful application of
transformers17–20 to various problems in natural language processing
and protein structure prediction, we developed a rotation-equivariant
transformer-based neural network that acts directly on protein atoms
predicting interaction interfaces with high confidence, without the
need forparameterizationof the system’s physics, running fast enough
to process large structural datasets such as ensembles frommolecular
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dynamics simulations or entire foldomes.Webuild on this transformer
to develop PeSTo—the Protein Structure Transformer—a generalized
predictor of protein binding interfaces.

Trained to predict protein–protein interaction interfaces, PeSTo
outperforms the state of the art. Training to predict other kinds of
binding interfaceswas straightforward as themethoddoes not depend
on any explicit parametrization of physicochemical features. There-
fore, confident predictions of protein interactions with nucleic acids,
lipids, ligands and ions are also easily produced. Given the computa-
tional performance of the method, we could provide it not only as
standalone code but also implemented in a user-friendly webserver
[https://pesto.epfl.ch/]. PeSTo runs fast enough to allow processing of
large volumes of structural data, such as molecular dynamics trajec-
tories, enabling the discovery of cryptic interacting interfaces21,22, and
the continuously growing foldomeprovidedbyAlphaFoldpredictions,
which allows us to perform a detailed analysis of the human
interfaceome.

Results
The Protein Structure Transformer (PeSTo)
Many successful methods combine transformers17,18 and geo-
metric deep learning7 representing structures as graphs or point
clouds and integrate the requirement of the invariance or
equivariance of the neural network23–29. The major breakthroughs
come from the field of protein folding30, where AlphaFold19 inte-
grates attention in the Evoformer blocks and the structure mod-
ule and the third track of the RoseTTAFold20 model uses a SE(3)-
Transformer31 to refine the atom coordinates during folding.
Moreover, the recurrent geometric network32 (RGN2) leverages
the Frenet-Serret formulas to represent the backbone of proteins,
and the geometric vector perceptron33 (GVP) uses linear opera-
tions to compose vector features with gating34. Multiple other

machine learning-based protein–protein interaction site predic-
tion methods have been developed7,35–37.

We introduce here PeSTo, a parameter-free geometric transfor-
mer that acts directly on the atoms of a protein structure. As shown in
Fig. 1 and detailed in Methods, the structure is represented as a cloud
of points centered at the atomic positions, and its geometry is
described through pairwise distances and relative displacement vec-
tors which guarantee translation invariance. The atoms are described
using only their elemental names and coordinates without any explicit
numerical parametrization such as mass, radius, charge or hydro-
phobicity. Each atom is associated with a scalar state (q) and a vector
state (p) encoding the properties of the structure. We define a geo-
metric transformer operation acting on this cloud of points to update
these states using the states and geometry in their local neighborhood
as shown in Fig. 1a. The interactions between atoms for all nearest
neighbors (nn) is encoded using the geometry (i.e., distance and dis-
placement vector) and the state of the pair of atoms involved. Amulti-
head attention layer eventually decodes and regulates the propagation
of the information (Supplementary Algorithm 1).

The geometric transformer operation is translation-invariant,
rotation-equivariant and independent of the order of the atoms and
order of the interactions. In order to retain the rotation equivariance
of the vector states (see Supplementary Methods), the transformer
attention linearly combines the scaled vectors from the local geo-
metry and local state vectors to dynamically propagate vector state
information based on the local context. The attention operation
allows for a dynamic number of nearest neighbors (nn). However, in
practice, the operation ismuchmore computationally efficient with a
fixed number of nearest neighbors. In the same fashion as applying
convolution operations on an image, chaining geometric transfor-
mers can propagate information at a longer range than the local
context of a single operation. Therefore, the main architecture is
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Fig. 1 | Overviewof thePeSTomethod. a Primary geometric transformer acting on
the scalar and vectorial state of an atom at layer t. The interactions between the
central atom and the nearest neighbors are encoded. A transformer is used to
decode and filter the interactions information and to compute the new state of the
central atom (Supplementary Algorithm 1). b The architecture of PeSTo for the
prediction of interaction interfaces. The model is composed of multiple layers of

geometric transformers with a set number of nearest neighbors (nn) and residual
connections. The structure is reduced to a residue representation through an
attention-based geometric pooling (Supplementary Algorithm 2). The residue
states are collapsed, and the final prediction is computed from a multi-layer per-
ceptron (MLP). c Example of application of the primary geometric transformer to
all atoms in a structure.
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based on a bottom-up approach, starting from a small context of 8
nearest neighbors (≈3.4 Å radius) up to long-range interactions with
64 nearest neighbors (≈8.2 Å radius, Fig. 1b). The size of the context
gradually increases allowing themodel to progressively includemore
information while remaining cheaper in computation requirements
and memory for deep models. The residual connection between
geometric transformers enables to train deeper neural network
architectures. Two additional modules aggregate the atom-based
geometric description at the residue level independently of the
number of atoms within a residue (i.e., geometric residue pooling,
Supplementary Algorithm 2) and predict whether each amino acid is
at an interacting interface or not (Fig. 1c).

In comparison with previous approaches like the SE(3)-
transformer31 that uses spherical harmonics to encode geometrical
context, our method simply uses vectors, modulating their informa-
tion through the transformer attention. Compared to equivariant
convolution, our method is based on graphs with geometry and per-
forms message-passing using transformers.

Protein–protein interface prediction
We trained a PeSTomodel using over 300’000protein chains from the
PDB (see “Methods”) to predict which residues are involved in a
protein–protein interface asflaggedby anoutput value ranging from0
to 1 (Fig. 2a). Zero means that the residue is predicted to not be
engaged in interactions,while values of 1 predict the residue tobe at an
interface. In practice, the actual value of the prediction reflects the
confidence of the prediction at the residue level, such that values
farther away from 0.5 imply higher confidence, see Supplemen-
tary Fig. 1.

We first evaluated the performance of PeSTo against the most
recentmethod develop to address a similar task, namely ScanNet15. We
used a benchmark dataset of 417 structures commonly shared by the
twomethods (see “Methods”). On this benchmark PeSTo outperforms
ScanNet without multiple sequence alignment (MSA) with a median
receiving operating characteristic (ROC) area under the curve (AUC) of
0.93 against 0.87 (Fig. 2b and Supplementary Table 1 for an extended
comparison on different datasets and metrics including precision-
recall AUC and Matthews correlation coefficient). Moreover, we com-
pared the speed of the two methods quantitatively (Supplementary
Fig. 2), finding that the average runtime for PeSTo (5.3 ± 2.8 s) and
ScanNet without MSA (9.1 ± 1.8 s) on CPU are comparable. However,
the runtime of ScanNet with MSA (160 ± 83 s) is two orders of magni-
tude slower than PeSTo, providing no substantial improvement
against PeSTo according to all metrics (Supplementary Table 1).

We further compared PeSTo on the same dataset used to
benchmark MaSIF-site7,36 (one of the best algorithms currently avail-
able), which we excluded from our training set at 30% sequence
identity. PeSTo reaches a median receiving operating characteristic
(ROC) area under the curve (AUC) of 0.92 against 0.8 for MaSIF-site
followed by SPPIDER35 and PSIVER37 (Fig. 2b). The interfaces predicted
by PeSTohave a higherROCAUC thanall othermethods benchmarked
here for 38 out of 53 structures.

Finally, we compared the protein–protein interfaces as predicted
by PeSTo against those predicted by AlphaFold-multimer. We selected
23 dimers (i.e., 46 interfaces) from the structures within the validation
set of PeSTo and AlphaFold (see “Methods”). We observed that PeSTo
performs almost as well as AlphaFold-multimer (see Supplementary
Table 2) without the additional cost of computing any multiple
sequence alignment. These results show therefore how our method
can be used to quickly screen for potential interfaces with an accuracy
comparable to AlphaFold-multimer.

To further showcase the quality of the predictions in real-world
applications, we tested proteins from the Protein-Protein Docking
Benchmark 5.038 (PPDB5)dataset in their unbound conformations. The
example in Fig. 2a shows PeSTo recovering the interaction interface of

Streptogrisin B with ovomucoid from its unbound conformation
(0.93 Å RMSD from the bound state) with a ROC AUC of 0.96. Overall,
on the whole PPDB5 dataset composed by a variety of targets of vari-
able difficulty for the general task of protein–protein docking, PeSTo
reaches a median ROC AUC of 0.78 for predictions on the unbound
structures and 0.85 for the respective bound states.

Importantly, the short time needed to run the model (i.e., 300ms
for a 100 kDa protein from PDB load to prediction on a single NVIDIA
V100 GPU, Supplementary Fig. 3) allows us to evaluate snapshots from
large structural ensembles efficiently, extracted from molecular
dynamics (MD) simulations. We applied PeSTo for protein–protein
interface prediction on conformations sampled by 1 µs-long atomistic
MD simulations of the experimentally derived unbound and bound
subunits of 20 selected binary complexes taken from the PPDB5
(Fig. 2c). The bound and unbound structures along with the MD-
sampled conformations reach a median ROC AUC of 0.85, 0.82 and
0.79, respectively (see Supplementary Table 3 for additional metrics).
We observe that the model performs almost as well on experimentally
solved bound and unbound conformations. Although overall the ROC
AUC decreases with a higher RMSD from the bound structure (Sup-
plementary Fig. 4), ourmethod is still able to recover the interfacewith
a ROC AUC higher than 80% for most structures and MD-sampled
conformations.

In some cases, processing MD trajectories of unbound proteins
with PeSTo identifies certain interfaces better than when PeSTo is run
on the starting static structure, which suggests an impactful practical
application of our method to real-life situations (Fig. 2d). Striving to
provide a protocol for every-day applications of PeSTo, we consider
that a usermight look for a handful of high-ranked residue predictions
to characterize the binding interface. We define therefore the “recov-
ery rate” as the ability to predict the 10%high-ranked residues, which in
the case of our MD dataset correspond to 3 ± 2 residues. If all these
residues are predicted correctly, we consider that the interface is fully
recovered. Out of 20 complexes composed by 40 constituent subunits
and relative interfaces, the model has a perfect recovery rate for 16
interfaces when applied straightaway on the experimental structures
of the unbound subunits. Out of the remaining 24 cases, we show that
it is possible to fully recover the binding interface for additional
16 subunits (80%) using MD to more extensively sample the protein
conformation landscape and clustering to further group predicted
interfaces.

For instance, PeSTo predicts no interface for the experimentally
solved structure of the unbound porcine pancreatic elastase (PDB ID
9EST) (Fig. 2e). The unbound experimental conformation has a back-
bone RMSD of 1.2Å from the bound complexwith elafin (PDB ID 1FLE).
However, MD simulation starting from the unbound porcine pan-
creatic elastase alone shows a conformational switch leading to the
recovery of the interaction interface with elafin with a cluster center
ROC AUC of 0.92 and perfect recovery rate of predicted bind-
ing interface (i.e., 3 residues in this case). Inspecting theMDsimulation
unveils that the motion of a loop in elastase is required to allow elafin
to enter the pocket and accommodate an inter-molecular β-sheet that
stabilizes the complex as solved experimentally.

General protein binding interface prediction
In light of the results for protein–protein interface predictions, we
extended the model to find and identify more types of interfaces,
resulting in a generalized PeSTo model that predicts protein interac-
tion interfaces with other proteins as well as with nucleic acids, ions,
ligands, and lipids. We trained a generalized PeSTo model with PDB
structures featuring all the kinds of expected interactions, asdescribed
in Methods. The interface predictions for protein–nucleic acid inter-
faces are almost as good as for protein–protein interfaces, reaching
ROC AUC of 0.89 for the testing set (Fig. 3a). The generalized model
can also detect ion, ligand, and lipid interfaces with ROCAUCs of 0.87,
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0.86, and 0.77, respectively on each testing set (see Supplementary
Table 4 for additional metrics). The model does experience some
confusion between ions and ligands as revealed by the confusion
matrix (Supplementary Fig. 5). Poorer performance on protein–lipid
prediction depends on the quite limited number of protein–lipid
complexes available so far in the PDB (only 0.7% of the utilizable data
we compiled). We note that retraining the model on the same dataset
but with a maximum of 5% sequence identity instead of 30% between

training, validation and test sets results in equivalent performances
within ±1% ROC AUC in average over all interfaces prediction type,
confirming PeSTo stability over homology reduction.

We next illustrate the generalized PeSTo model showcasing five
examples from the testing set that attest to its capacity to discern
among various interfaces, even when they are overlapping or under-
represented in the PDB. The first example (Fig. 3b) corresponds to the
colicin E7 endonuclease domain, which binds DNA through an
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Fig. 2 | Assessment of protein–protein interface predictions with PeSTo.
a Example of protein–protein interface prediction for the unbound conformation
of Streptogrisin B (PDB: 2QA9) as can be retrieved at [https://pesto.epfl.ch/]. The
confidence of the predictions is represented with a gradient of color from blue for
non-interfaces to red for interfaces. The ligand in yellow was subsequently added
based on the structure of the complex (PDB: 3SGQ) to show the quality of the
prediction. b Comparison against other methods for protein–protein interface
prediction. The methods are evaluated on PeSTo groundtruth on two different
testing datasets for ScanNet andMaSIF-site. c Benchmark of ourmethod on bound
and unbound experimental structures, as well as their conformations sampled by 1
µs-long MD simulation for 20 complexes taken from the PPDB5. d Recovery rate
(considering top 10% predicted residues) for the clustering of predicted interfaces

on 1 µs-longMD simulations of the unbound state only, compared to the predicted
interface of the experimental structure for the unbound receptor (uR) and ligand
(uL) for 20 complexes taken from the PPDB5. e Protein–protein interface predic-
tion on the experimentally resolved structure of unbound porcine pancreatic
elastase (left, PDB: 9EST) and an open conformation sampled using MD (center)
and selected using clustering on the conformations. The ligand in yellow was
subsequently added based on the structure of the complex (PDB: 1FLE) to show the
quality of the prediction. R217 is shown in licorice to illustrate the rearrangement of
the loop region. (Right) The root mean square deviation (RMSD) from the experi-
mental unbound conformation and recovery rate average over 4 frames are shown
as a function of the simulation time (the red dots indicate the selected snapshot
shown in (d)). Source data are provided as a Source Data file.
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Fig. 3 | General proteinbinding interfacepredictionwithPeSTo. aROCcurve for
the predictions of different types of interfaces with PeSTo. (b–f) Examples of pre-
dicted binding interfaces. The confidence of the predictions is represented with a
gradient of color from blue for non-interfaces to red for interfaces. The structures
in yellow and green were added subsequently from the reference complexes.
bColicin E7 endonuclease domain in complexwith DNA and a zinc ion (PDB: 1ZNS).
c core-biding factor subunit alpha-2 in complex with core-binding factor subunit

beta andDNA (PDB: 1H9D).dAntigen-binding fragment in complexwith RNA (PDB:
6U8K). (e) Steroidogenic factor 1 bound to a phosphoinositide (PDB: 7KHT).
f Predicted interfacewith nucleic acid for themycobacterial integration host factor
(: 6TOB). Residues observed to bind DNA through solution-state NMR are repre-
sented with spheres. The DNAmolecule is modeled from an X-ray structure of the
protein homolog from S. coelicolor, crystallized with DNA (PDB: 4ITQ). Source data
are provided as a Source Data file.
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interface that includes a zinc ion (PDB ID 1ZNS). Running the apo-
protein through the generalized PeSTo returns correct predictions for
both interfaces, even in the overlapping part. The second case (Fig. 3c)
corresponds to the complex formed byRUNX1 with a dsDNA bound to
one end and the protein CBFβ bound to the other (PDB ID 1H9D).
Running the isolated RUNX1 through the generalized model returns
clear, accurate interfaces through theDNAandprotein channels. In the
third example (Fig. 3d) we challenge the generalized model with the
structure of an antibody that binds RNA (PDB ID 6U8K) as opposed to
most available antibodies which are bound to other protein targets.
The generalizedmodel correctly predicts no interface for proteins and
the correct interface for RNA.

Although on interfaces with lipids the generalized PeSTo per-
forms less well, in practice we observe that the model is able to
accurately detect lipid-binding pockets for soluble proteins (exempli-
fied by the steroidogenic factor in Fig. 3e) and even the membrane-
spanning regions of transmembrane proteins (Supplementary Fig. 6).
Despite not specifically trained for any of these, in both cases PeSTo is
able to detect specific pockets for lipids with stronger scores. We note
that many protein interfaces with lipids are only partially evident in
PDB structures (for example a single lipid bound to a membrane-
spanning region), resulting in low training data quality thus leading to
an artificial drop of the ROC AUC.

Interestingly, we also find that PeSToextends its prediction power
over its own training, as exemplified for the case of a DNA-binding
bacterial integration host factor (mIHF) for which an X-ray structure of
the DNA-bound form was available (Fig. 3f). This structure presents in
the biological assembly one DNA-binding interface39 that was included
in the training set, but solution-state NMR titrations have shown a far
more extensive interaction surface, mainly spread over two surface
patches as required to bend DNA as demonstrated by AFM40. PeSTo’s
predictions for this protein go beyond its training, pointing at two
surface patches that match very well with the NMR data in solution.

High-throughput prediction of binding interfaces for the human
proteome
Wesought to explore thewhole humanproteomeand analyzewhatwe
call hereafter the interfaceome, namely all the potential protein
interfaces able to bind other proteins, nucleic acids, lipids, ligands and
ions. For this task, we obtained all the structures and models for
human proteins in the AlphaFold-European Bioinformatics Institute
(AF-EBI) database19,41. The database currently includes highly accurate
structures, many actually containing domains with experimentally
solved structures, models with no structures in the PDB or with little
homology to PDB structures yet highly accurate as judged by Alpha-
Fold predicted local distance difference test (pLDDT) and predicted
alignment error (PAE), and also several models of very low pLDDT and
PAE scores. We selected 7464 high-quality models for further analysis
from the total of 20504 entries based on their pLDDT and PAE scores,
as described in Methods.

We could immediately notice that our model produces robust
results that further validate the quality of interface predictions. In
particular, the amino acid distributions for specific molecular inter-
faces recapitulates known biochemistry (e.g., Arg and Lys residues are
mostly engaged in nucleic acid interactions, hydrophobic amino acids
in lipid-binding sites, etc., see Supplementary Figs. 7, 8). Furthermore,
mapping the predicted interfaces to UniProt-annotated features
showed strong agreement with the expected functional roles of the
binding interfaces (Fig. 4a and Supplementary Data 1). Additional
support for the quality of the predictions came from the mapping of
the predicted interfaces and their subcellular localizations, GO func-
tions and processes (Supplementary Figs. 9–19).

We interrogated further the human interfaceome for the geo-
metrical features of the predicted interfaces and observed that when
computing their solvent-accessible surface areas (SASA), interactions

with proteins and nucleic acids involve the largest areas with 32 ± 22
and 29 ± 23 nm2, respectively, while ligands and ions involve small
pockets of 16 ± 7 and 7 ± 4 nm2. The SASA distribution for protein–lipid
interactions has instead a bimodal distribution that reflects specific
lipid-binding sites (17 ± 9 nm2) and large lipid coronas surrounding
transmembrane protein domains (75 ± 19 nm2, Supplementary Fig. 20).

As further validation, extending the analysis to another eukaryotic
proteome, we compared PeSTo predictions to the available predic-
tions of protein binary complexes of the yeast proteome derived with
AlphaFold and RoseTTAFold42. Also in this case, we observed a very
good correlation between sets of residues involved in interfaces with
the ROC AUC steadily increasing as the analysis is limited to regions of
the models of higher quality (Fig. 4d). Moreover, we identified addi-
tional binding interfaces that can extend further the interaction net-
work of binary complexes and can be used as complementary means
to better describe and model the architecture of large protein com-
plexes (Supplementary Fig. 21).

Notably, 47% of the UniProt annotations formutation sites fall in a
predicted interface, 28% correspond to pathogenic natural variant
sites, and 14% to benign natural variant sites with a baseline of 19% for
random residues being within an interface (Fig. 4b). As we make all
these predictions fully available in the PeSTo website and the under-
lying structural models are freely available in the EBI database, it is
straightforward for cell biologists to consult where exactly these
pathogenic mutations fall and what interactions they might compro-
mise, in order to develop rational working hypotheses that could help
further therapeutic development.

Carrying on to a large-scale analysis of the predicted interfaces,
we observed strong segregation for certain kinds of interfaces and a
quite large overlap for others (Fig. 4c and Supplementary Fig. 22). An
example of the former case is that of protein interfaces prone to
interact with proteins or with ions/ligands, which are highly segre-
gated. Studying these patterns further could potentially help in the
discovery of allosteric regulation mechanisms. Among pairs of inter-
faces that feature a quite extensive overlap are those that mediate
interactions with other proteins and with lipids, which could possibly
point at reversible protein dimerization/oligomerization at mem-
branes.On actual application of PeSTo to address biological questions,
specific cases shall be looked at carefully, and overlaps or lack thereof
might bring information as exemplified next.

Importantly, the availability of high-resolution structures and
high-quality AlphaFold models of the human proteome, as well as
other proteomes, provides biologists with the opportunity to imme-
diately and easily interrogate specific interaction predictions of their
proteins of interest, developing quickly working hypotheses, and
designing new experiments, allowing in turn to discover new biology.
Among multiple interesting examples, we highlight here two cases of
proteins that lack structures in the PDB but where the application of
PeSTo to AlphaFold models proposes clear prompts to drive forward
biological studies: the human receptor for retinol uptake STRA6
(UniProt Q9BX79, Fig. 4e) and the PRAME family member 1 (PRA-
MEfm1, UniProt O95521, Fig. 4f).

STRA6 is modeled in the AlphaFold—EBI database as a monomer,
although onewould expect it to bemost likely a dimer likemost small-
molecule transmembrane transporters. We applied PeSTo to the
model as provided (i.e., asmonomer) and to amodel of the dimer built
with AlphaFold-multimer. PeSTo predicts in both cases interfaces
prone to interactwith other proteins andwith lipids. In themonomeric
model, part of the interface predicted to interact with lipids overlaps
with an interface predicted for proteins, suggesting this is the region
for homodimerization within the membrane. Accordingly, this inter-
face is not predicted for the dimer, and the new set of residues pre-
dicted to interact with lipids makes perfect sense as the membrane-
spanning region (Supplementary Fig. 23). Another set of residues
predicted to form interfaces for protein binding map to 4 locations
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outside the transmembrane region (Fig. 4e). On the cytoplasmic side
of the membrane, three STRA6 segments with strong predicted
potential for protein interaction map to a site made up of two folded
elements that overlap with sequence segments that Berry et al.43

actually proposed as a binding site for regulator cellular retinol-
binding protein 1 (CRBP1), next to a predicted interaction site that
corresponds to a knownkinase binding site (JAK2).On the extracellular
side of the membrane, a binding site expected for the carrier retinol-
binding protein (RBP) is also predicted. Therefore, residues with high
protein interaction scores (e.g., K324-K348 for the reported RBP, L251-

R257andR638-L46 around the reportedCRBP1 site, andD612-K626 for
the kinase site, Fig. 4e) are potential candidates for mutagenesis stu-
dies aimed at probing the various interactions.

The second exampleworth describing, PRAMEfm1, is annotated in
UniProt as presumably linked to cell differentiation, proliferation, and
apoptosis processes through negative regulation of transcription. The
protein has very weak sequence homology to some ribonuclease
inhibitors, and a high-confidence AlphaFold model finds substantial
structural similarity to some of them except for certain insertions and
deformations in the N-terminal half. Contrary to PeSTo’s predictions
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Fig. 4 | PeSTo-based analysis of the human proteome. a Percentage of entries
with specific UniProt features for which PeSTo predicts an interaction
interface at the annotated sequence region. b Percentage of sites with
mutations, pathogenic or benign natural variants within a predicted inter-
face. The baseline is the probability of a random residue being within an
interface. c Percentage of overlapping interfaces for all 10 pairs of five
interface types. d Comparison of predicted protein-binding interfaces from
PeSTo using the models of yeast protein complexes predicted by Humphreys

et al.42. Regions of the predicted structures are filtered out at different
pLDDT thresholds. e Human receptor for retinol uptake (STRA6, UniProt
Q9BX79). Protein interfaces predicted with PeSTo. Sites of interest as
described by Berry et al.43 are highlighted with spheres and are consistently
found by PeSTo predictions. See also Supplementary Fig. 23. f PRAME family
member 1 (PRAMEfm1, UniProt O95521) predictions for protein (left) and
nucleic acid (right) interfaces. See also Supplementary Fig. 24. Source data
are provided as a Source Data file.
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on the ribonuclease inhibitor, which are perfectly confined to the
known ribonuclease binding interfaces (Supplementary Fig. 24), on
AlphaFold-EBI’s model for PRAMEfm1 PeSTo detects two clear regions
prone to protein interactions. A region in the C-terminal half could
accommodate proteins similar to how the ribonuclease inhibitors
interact with ribonucleases, immediately suggesting a set of residues
whosemutationswoulddisrupt the interactionwith aprotein target on
this side (e.g., rim made of short stretches of β-turns around H243,
T278, G303, Q360, N387, L422, T455, and the C-terminal P464-L472).
The second protein interface predicted by PeSTo maps to the
N-terminal half, it includes a short segment of low confidence, possibly
disordered, and overlaps with a large surface region predicted by
PeSTo to bind nucleic acids. This stands as another clear region whose
roles could be explored experimentally by targeting residues L122-
Q145 and possibly the connecting β-strands too. Although it is hard to
advance specific roles for PRAMEfm1 from this computational analysis,
in the context of the UniProt annotations PeSTo predictions would
suggest a role as a hub connecting other proteins (through the
C-terminal half) to nucleic acids (through the N-terminal half), likely
RNAgiven its cytoplasmic localization, andpossibly regulatedby other
proteins that also bind to the N-terminal half.

We finally compared protein–protein interface predictions of
PeSTo with modeling protein–protein interactions using AlphaFold-
multimer16, a procedure richer in information as including also evolu-
tionary couplings. On the STRA6 example, AlphaFold-multimer pre-
dicts binding of CRBP1 onto STRA6 around the same residues that we
discuss from literature, i.e. essentially the same prediction as PeSTo.
However, AlphaFold-multimer does not predict any interaction at all
for JAK2 and predicts an incorrect binding site for RBP. In the case of
PRAMEfm1, we detect a plausible interface for nucleic acid binding,
which AlphaFold is not trained to predict, and we detect a protein
interaction region of high confidence but without any information
about the identity of the partners, precluding to test with AlphaFold
any obvious, specific complex. These comparisons highlight a synergic
intersection between PeSTo and AlphaFold-multimer for the predic-
tion of protein–protein interactions. Namely, PeSTo can produce
predictions that are consistent with the reported biochemistry, while
AlphaFold-multimer can interrogate these binding interfaces when the
network of interactions is known.

Discussion
We showed here that a geometrical transformation of protein atomic
coordinates suffices to detect and classify protein binding interfaces at
high resolution, surpassing the prediction capabilities of other meth-
odswithout theneedof explicitly describing thephysics and chemistry
of the system, hence without the overhead of pre-computing mole-
cular surfaces and/or additional properties. All this with modest
computational resources and at a very high speed that enables the
analysis of large structural ensembles, for example those produced by
molecular dynamics simulations, which discloses the opportunity to
investigate the dynamic features of protein interaction networks.
Likewise, large structural datasets, like those being created by the
latest generations of tertiary protein structure prediction tools, can be
easily analyzed, as done here for the human foldome, with the possi-
bility to quickly access new biological discoveries.

To make PeSTo-based predictions for proteins available to the
community, we implemented it in awebserver athttps://pesto.epfl.ch/,
accessible free of charge without registration. The server takes any
protein structure andmodel in PDB format (uploaded or fetched from
the PDB or the AlphaFold-EBI databases) and returns them with addi-
tional information reporting on the confidence of the prediction on a
per-residue basis. Output files can be downloaded or visualized right
within the website. Furthermore, we provide the source code (https://
github.com/LBM-EPFL/PeSTo) as to facilitate application to large
structural ensembles as done here for the human interfaceome.

Provided that sufficient training data are available, the
method can be easily upgraded (as for instance to improve fur-
ther protein–lipid predictions) and is reusable for other specific
applications. In fact, the parameter-free PeSTo architecture is
general enough that could be easily accommodated to pursue
other structure-based problems such as docking or modeling
interactions with materials. The description is totally agnostic to
the exact physicochemical properties of the atoms in the struc-
ture, thus easily extendable to other materials and fields, and is
probably also less sensitive to problems related to the starting
structures such as missing atoms as compared to methods that
require intermediate calculations of surfaces and volumes.

Given the ever-growing accumulation of structural information
and rapid expansion of predicted foldome data, PeSTo stands as an
accurate, flexible, fast, and user-friendly solution to dissect the vast
and dynamic interaction landscape of proteins and can be readily used
to discover new and richer biological insights.

Methods
Datasets
The dataset is composed of all the biological assemblies from the
Protein Data Bank44. The subunits are clustered using a maximum of
30% sequence identity between clusters. The clusters of subunits are
grouped into approximately 70% training set (376216 chains), 15%
validation set (101700 chains), and 15% testing set (97424 chains). We
selected the best hyperparameters by evaluating the model on the
validation set. The testing set is composed of the clusters containing
any of the 53 subunits from the MaSIF-site benchmark dataset or
230 structures from the Protein-Protein Docking Benchmark 5.038

(PPDB5) dataset. Additionally, we extracted a subset 417 structures
common in thebenchmarkdataset of ScanNet15 and the testing dataset
of PeSTo. Unless specified, all the examples selected to assess the
quality of the predictions from the model belong to the testing set.

Structure processing
All models of the structures are loaded as a single structure. The chain
name is tagged with the model identifier to distinguish subunits from
different models. Moreover, the chain name of all non-polymer che-
mical molecules is tagged to have them in separate subunits. Dupli-
cated subunits, molecules, and ions generated when concatenating
multiplemodels are removed. The first alternate location of the atoms
is kept. Water, heavy water, hydrogen, and deuterium atoms are
removed from the structures.

Features and labels
We identified the 30 most common atomic elements on PDB. The
element is used as the only feature as a one-hot encoding. The input
vectorial features are initially set to zero. The distances matrices and
normalized displacement vector matrices are used as geometrical
features. Amino acids, nucleic acid, ions, ligands, and lipids are selec-
ted from a list of 20, 8, 16, 31, and 4 most common molecules,
respectively. Non-native molecules used to help solving the structure
are ignored. An interface is defined as a residue–residue contactwithin
5 Å. All protein–protein interfaces as well as protein–nucleic acid,
protein–ion, protein–ligand, and protein–lipids interfaces are identi-
fied. The details of the interface for each subunit are stored in the
dataset as an interactions types matrix (79×79). This enables the
selection of specific interfaces as labels at the start of the training
session without having to rebuild the whole dataset. The interfaces
targets can be selected from any combinations of subsets from the 79
molecules available.

Protein Structure Transformer architecture
The input features are embedded to an input state size of S = 32 with a
3 layers neural network with hidden layer size of 32. Each geometric
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transformer is composed of 5 neural networks of 3 layers to perform
the multi-head self-attention (S = 32, Nkey = 3, Nhead = 2) as described in
Supplementary Algorithm 1. For structures with a number of atoms
smaller than the set number of nearest neighbors (nn), the additional
non-existent interactions are sent to a sink node with a scalar and
vector state set to zero. 4 sets of 8 geometric transformers with an
increasing number of nearest neighbors for each set (nn = 8, 16, 32 and
64) are applied in succession. The geometric residue pooling module
aggregates the encoding at the atomic-level of the structure to a
residue-level description by using a local multi-head mask on the
atoms forming each residues (S = 32, Nhead = 4) as described in Sup-
plementary Algorithm 2. The last module is a multi-layer perceptron
with 3 layers of hidden size of S = 32 decoding the state of all residues
and computing the prediction, returning a confidence score
from 0 to 1.

Training
Themodel is trained to predict protein interfaces with protein, nucleic
acid, ligand, ion, or lipid. The best neural networks architecture was
trained for 8days on a singleNVIDIAV100 (32GB)GPU. Subunitswith a
maximum of 8192 atoms (≈100 kDa) without hydrogens are used to
limit the memory requirement during training. Subunits with less than
48 amino acids are ignored during training.We trained only on thefirst
bioassembly provided by the PDB database. The effective generalized
protein interfaces dataset after filtering is composed of 113805 sub-
units for training and 29786 subunits for testing.

Evaluation
Our method was compared with ScanNet15, MaSIF-site7,36, SPPIDER35

and PSIVER37. ScanNet is the most recent geometry-based deep
learningmethod forprotein–protein interface prediction.MaSIF-site is
the best available surface-based deep learning method for
protein–protein interface prediction. SPPIDER is a long-standing and
well-tested method used as a reference for protein–protein interface
prediction. PSIVER only uses sequence information and is bench-
marked to show the difference in performance between structure-
based and sequence-based methods. The benchmarking of PeSTo was
performed using structures taken from the testing dataset exclusively.
We use 512 structures per interface type for the protein, ion and ligand
interfaces predictions. The low amount of structures available limits
the testing dataset to 391 and 161 structures for the nucleic acid and
lipid interfaces prediction, respectively.

AlphaFold-multimer benchmark
We identified 23 dimers (i.e., 46 interfaces) not present in the training
set of PeSTo or of AlphaFold and with a maximum of 20% sequence
identity with the AlphaFold-multimer training set (i.e., structures
published up to April 30th 2018)16. Wemodeled the protein complexes
using the implementation of AlphaFold-multimer by ColabFold with
MMseqs245 with the default parameters of 10 recycles and 5 predicted
models.We extracted the protein–protein interfaces of the AlphaFold-
multimer models (i.e., residue–residue contacts within 5 Å) and com-
puted the average interfaces over the 5 predicted models. PeSTo was
used to predict the protein–protein interfaces for the 46 subunits.
Lastly, we computed the accuracy, precision, Matthews correlation
coefficient (MCC), receiver operating characteristic (ROC) and
precision-recall (PR) area under the curve (AUC) on the PeSTo pre-
dicted protein–protein interfaces and the average protein–protein
interfaces of the AlphaFold-multimer predicted models, which are
reported in Supplementary Table 2.

Molecular dynamics simulations
20 complexes from the PPDB5 dataset were selected based on the
resolution of the structure and the difficulty to parametrize. For
each, we performed a classical 1 µs-long MD simulation in the NpT

ensemble (at 1 atm and 300 K, after NVT equilibration over 2 ns
and with settings as in ref. 46) of the subunits alone for the bound
receptor (bR), unbound receptor (uR), bound ligand (bL), and
unbound ligand (uL). All systems were setup using
CHARMM36m47 and its recommended TIP3P water model, and
MD simulations were run with Gromacs 202048. For the general
analysis, 500 frames per simulation are used to evaluate PeSTo
for a total of 400,000 frames (Fig. 2c), which are further clus-
tered using the CLoNe algorithm49 for the analysis of the unbound
states (Fig. 2d).

Human interfaceome
We downloaded all the available 20’504 (at the time of writing)
AlphaFold predicted structures version 2 for human sequences from
the AlphaFold-European Bioinformatics Institute (AF-EBI) database19,41.
The same pipeline and data analysis can be applied to any organism.
The most accurate AlphaFold structure models are selected with a
minimum of 70% of the structure with a pLDDT > 70 and average
PAE < 10 Å in the well-folded regions (pLDDT > 70). The analyzed
dataset is composed of 7464 quality predicted structures from a total
of 20,504.

PeSTo was applied to all models. For the analysis of interface
residue composition and UniProt-annotated sequence regions, we
considered only predicted interfaces with high confidence (>0.8) at
well-folded regions (pLDDT > 70). Interface residues are grouped into
interfaces by connecting all residues at well-folded regions (pLDDT >
70) and at a predicted interface (>0.5) with alpha carbon within 10Å.
We selected only the predicted interfaces of quality with average
predicted interface confidence above 0.8 for all analyses. Two quality
interfaces of different types are overlapping if they share at least 5
residues. Solvent-accessible surface area per atom of all models was
computed using the Shrake and Rupley algorithm50 implemented by
MDTraj51.

The UniProt-annotated features and GO terms for all corre-
sponding 20’504 AlphaFold models were downloaded from Uni-
Prot website52. The features analyzed include a curated list of
annotated features, the subcellular localization, the mutation
sites, natural variants, and the GO biological process and mole-
cular function. The pathogenicity of natural variants was extrac-
ted from the clinical significance of genetic variations available at
dbSNP53.

We downloaded all the 1102 predicted yeast protein complexes
with AlphaFold and RoseTTAFold byHumphreys et al.42, and extracted
the interfaces from the predicted complexes with an interface defined
as a residue–residue contact within 5 Å. PeSTo was applied to predict
the protein–protein interfaces on the subunits of the predicted
complexes alone.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used freely available data as described in Methods. The data and
code to reproduce the datasets and experiments are available at
[https://github.com/LBM-EPFL/PeSTo]. A previously published struc-
ture can be accessed via the accession codes 2QA9, 3SGQ, 1FLE, 9EST,
1ZNS, 1H9D, 6U8K, 7KHT, 6TOB, and 4ITQ. Source data are provided
with this paper.

Code availability
The source code is available [https://github.com/LBM-EPFL/PeSTo]
and implemented in the webserver [https://pesto.epfl.ch/]. An
archived version of the code used to produce the results presented in
this work is available at [https://doi.org/10.5281/zenodo.7728869].
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