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Characterization of genome-wide STR varia-
tion in 6487 human genomes

Yirong Shi1,2,6, Yiwei Niu 1,3,6, Peng Zhang1, Huaxia Luo1, Shuai Liu1,3,
Sijia Zhang1,3, Jiajia Wang1, Yanyan Li1, Xinyue Liu1,2, Tingrui Song1,
Tao Xu 4,5 & Shunmin He 1,3

Short tandem repeats (STRs) are abundant and highlymutagenic in the human
genome. Many STR loci have been associated with a range of human genetic
disorders. However,most population-scale studies on STR variation in humans
have focused on European ancestry cohorts or are limited by sequencing
depth. Here, we depicted a comprehensive map of 366,013 polymorphic STRs
(pSTRs) constructed from 6487 deeply sequenced genomes, comprising 3983
Chinese samples (~31.5x, NyuWa) and 2504 samples from the 1000 Genomes
Project (~33.3x, 1KGP). We found that STR mutations were affected by motif
length, chromosome context and epigenetic features. We identified 3273 and
1117 pSTRswhose repeat numberswere associatedwith gene expression and 3′
UTR alternative polyadenylation, respectively. We also implemented popula-
tion analysis, investigated population differentiated signatures, and geno-
typed 60 known disease-causing STRs. Overall, this study further extends the
scale of STR variation in humans and propels our understanding of the
semantics of STRs.

Short tandem repeats (STRs; also known as microsatellites) are 1–6
base pair (bp) tandem repeats, accounting for approximately 3% of the
human genome1,2. The repetitive structure endows STRs with a higher
mutation rate than other parts of the genome3,4, ranging from
approximately 10−5 to 10−3 per locus per generation5.Mostmutationsof
STRs are due not to substitutions but rather to expansions or con-
tractions of repeat units6, resulting in digital length polymorphisms3.
After the seminal discovery that expansions of CGG repeats in the
FMR1 gene were linked to fragile X syndrome (FXS) in 19917–10,
researchers have identified approximately 60 STR loci implicated in a
range of Mendelian diseases to date, including ataxias, amyotrophic
lateral sclerosis, Huntington disease, frontotemporal dementia, and
various neurological disorders11,12. More importantly, although our
view remains incomplete, emerging evidence has shown that a sig-
nificant number of polymorphic STRs (pSTRs) can modulate various

molecular and cellular processes, such as DNA methylation13, gene
expression13–18, and alternative splicing19–22, suggesting that pSTRsmay
contribute to complex phenotypes3,23.

The last decade has witnessed the great success of genome-wide
association studies (GWASs) in human genetics, reporting tens of
thousands of single nucleotide polymorphisms (SNPs) associated with
over 1000 traits24. However, one major concern of most GWASs on
complex traits and polygenic disorders is the “missing heritability”
problem25, partly due to the standard GWAS analysis focused only on
SNPs26. Although overlooked by most GWASs and other association
studies, it is widely believed that pSTRs may contribute to missing
heritability of human traits and disorders3,12,23,27,28. Recently, a
phenome-wide association study identified 426 tandem repeat-
phenotype associations, in which GT repeats in NCOA6 and “ease of
skin tanning” were the most significant29. Furthermore, Margoliash
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et al. tested the association between STRs and blood and serum traits
using imputed STR genotypes and identified 118 high-confidence STR-
trait associations30. These studies greatly inspired us to discover trait/
disease-associating pSTRs; unveiling the contributions of pSTRs in a
range of complex traits would be an important long-term goal12,31. To
achieve this, one urgent need is to construct a full and accurate catalog
of pSTRs in the human genome3. Such a resource would also propel
our understanding of the mutational patterns and functional impacts
of pSTRs and serve as a reference point for identifying STR variants in
disease contexts28.

With advances in DNA sequencing technologies and computa-
tional approaches for STR genotyping12, there has been significant
progress in profiling STR polymorphisms in diverse control
populations32–39. However, these studies were limited by sample
number, population diversity, sequencing depth, or algorithms
employed; genome-wide pSTR data in diverse populations are still
insufficient3. For example, the largest genome-wide study of STR var-
iation to date genotyped 2,536,688 STR loci in 150,119 genomes from
the UK biobank using popSTR38. However, most individuals in this
study were white British, and popSTR is only able to genotype STR
alleles shorter than the read length40. Moreover, other large-scale
studies of pSTRs were also mainly from European ancestry cohorts,
and the diversity of pSTRs in East Asia and China is largely under-
covered. Even in the UK biobank cohort, there were only 1504 Chinese
samples38. As theHan Chinese population is the largest ethnic group in
East Asia and in the world41, constructing a comprehensive map of
pSTRs from the Han Chinese population is imperative and would help
to solve the critical part of the missing diversity.

Here, we collected whole genome sequencing (WGS) data of
3983 samples from the NyuWa dataset and 2504 samples from the
high-coverage 1KGP dataset to identify pSTRs. The samples in the
NyuWa dataset were mostly Han Chinese, in which 2999 members
were previously used for investigating small variants42 and mobile
element insertions43. The deeply sequenced 1KGP dataset44 has been
used to detect de novo tandem repeat expansions45 and reference
minisatellite variable number tandem repeats (VNTRs)46,47, while we
included it here to study variations of reference STRs and to increase
population diversity. Jointly analyzing two large cohorts enabled us to
obtain a systematic view of the STR variation in diverse populations,
with an emphasis on Han Chinese. GangSTR48 was employed to collect
information in the 765,227 autosomal STR loci, as it is the only algo-
rithm capable of accurately genotyping both short and expanded
STRs40,49,50. We first surveyed the pSTR call set for their basic char-
acteristics, such as allele frequency, genetic diversity, genomic dis-
tributions, and functional consequences. We identified pSTRs with
potentially functional impact through loss-of-functionanalysis, linkage
disequilibrium (LD) with GWAS SNPs, and expansion analysis. By uti-
lizing public RNA-seq data, we identified pSTRs affecting nearby gene
expression and 3′UTR alternative polyadenylation.We then performed
population analysis and identified many pSTRs with significant length
differences between and within superpopulations. Finally, we geno-
typed 60 known disease STRs in all samples with ExpansionHunter51

and provided the population-wide allele distributions of these loci.
This study represents one of the largest and latest genome-wide stu-
dies of STR variation in various populations and will further our
understanding of how this mutagenesis impacts the human genome.

Results
The pSTR call set
Wegenerated a genome-widemapof STRvariationby jointly analyzing
two cohorts: theNyuWadataset consisting of 3983Chinese individuals
sequenced to ~31.5X coverage42 and the 1KGP dataset consisting of
2504 samples sequenced to ~33.3X coverage (Supplementary
Data 1)44,52. We applied GangSTR48 to genotype 765,227 autosomal
STRs with repeat unit lengths of 2–6bp in each genome. With good

efficiency and scalability, GangSTR is capable of genotyping both
contracted and expanded STRs by leveraging evidence beyond repeat-
enclosing reads49,50 and has been utilized in other large-scale
studies29,53. To investigate pathogenic STRs and supplement our call
set, we also collected information on 60 known disease-causing STRs
(Supplementary Data 2; Fig. S1) in our cohorts by using another STR
genotyper, ExpansionHunter51. Similar to GangSTR, ExpansionHunter
outputs maximum-likelihood genotypes consisting of candidate
repeat alleles by incorporating multiple features of paired-end reads.
For the seven sites genotyped by bothGangSTR and ExpansionHunter,
their estimated repeat lengths were highly concordant (median con-
cordance rate: 99.2%; Supplementary Data 3).

To ensure the call set quality of GangSTR, we removed genotypes
with read coverage that was too low or too high, with reads supported
by only spanning or flanking reads, and with maximum likelihood
repeat lengths falling outside 95% confidence intervals. After call-level
filtering, the average call rates of samples in the NyuWa dataset and
1KGP dataset were 95.9% (Fig. S2a) and 98.4% (Fig. S2b), respectively.
Additional site-level filters, including STRs in segmental duplications,
STRs with call rates <20%, or genotypes violating Hardy-Weinberg
equilibrium, were also applied to further improve the call quality.
Thesefiltering steps increased the accuracyofour calls, as indicatedby
the improvement of Mendelian inheritance rates of STRs (Fig. S2c). An
average call rate of 98.3% was obtained for all STR loci (Fig. S2d), and
call rates did not show a marked decrease when the reference allele
lengths increased (Fig. S2e). For pSTRs with reference allele lengths
≤40bp, which accounted for 98.2% of all pSTRs, the mean differences
in length of each allele called compared to the reference allele were
approximately zero (Fig. S2f); the genotypes hadhigh-quality scores at
both the sample level and site level (Fig. S2g, h). Thesedata collectively
indicated that our catalog represents a high-quality map of STR var-
iation for humans.

In total, our analysis identified 366,013 pSTRs in the 6487 WGS
samples, with 306,602 and 276,294 pSTRs detected in the NyuWa
dataset and 1KGP dataset, respectively (Fig. 1a). Comparing pSTRs
detected from the NyuWa and 1KGP datasets, 89,719 pSTRs and
523,063 alleles were specific to the NyuWa dataset (Fig. 1b), with more
low-frequency alleles detected in the NyuWa dataset (Fig. S3a, b).
When restricted to East Asian individuals in the 1KGP dataset, 93.4%
pSTRs and 92.6% alleles could be detected in the NyuWa samples, with
more sites and alleles specific to the NyuWa samples, indicating the
great value of theNyuWadataset in profiling STRvariation (Fig. 1b).We
confirmed that the dataset-specific lociwere not due to low call rates in
another dataset (Fig. S3c, d). The major allele frequencies of shared
pSTRs between the NyuWa dataset and 1KGP dataset showed high
correlation, especially for pSTRs of EAS in 1KGP (Fig. S3e, f). Next, we
estimated the total pSTRs and the increase in pSTRs at different
sample sizes by randomly downsampling to different sizes with 100-
sample intervals. While the number of total pSTRs continued to rise
with increasing sample size, the number of common pSTRs plateaued
at a sample size of 100 (Fig. S4), consistent with a previous study33.

For controls, we also identified 290,454 high-quality mono-
morphic STRs (mSTRs) in all samples analyzed using the same strin-
gent filters (see “Methods”). For the reference STR set we analyzed,
there were more pSTRs than mSTRs for di- (χ2 P < 1 × 10−22), tri- (χ2

P < 1 × 10−22), and tetranucleotide (χ2 P = 8 × 10−22) STRs (Fig. S5a, b),
implying that STRs with shorter repeat units had higher plasticity, as
previously reported33,54. In addition, the reference allele lengths of
pSTRs were significantly longer than those of mSTRs (Fig. S5c; median
of pSTRs: 15, median of mSTRs: 12), suggesting an increased mutation
rate in longer reference allele lengths3,33.

pSTR mutational patterns
With the comprehensive repertoire of pSTRs, we next examined the
mutational patterns of STRs. We found that over half of the pSTRs
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(54.2%)werehighlymultiallelic (mean=4.26 alleles,median= 3 alleles),
and the allele number per locus decreased with motif length (mean:
8.82 to 2.61) (Fig. 2a), consistent with previous observations in
humans33, pigs55, C. elegans56, and A. thaliana57. The maximum allele
numbers of di-, tri-, tetra-, penta-, and hexanucleotide pSTRs were 51,
38, 73, 105, and 15, respectively. When restricted to common alleles
(allele frequency > 1%), 18.8%of pSTRshadat least twocommonalleles,
and dimeric pSTRs had the highest proportion of loci with multiple
common alleles (Fig. 2b). These data indicated that STRs with shorter

motif lengths showed a higher degree of length polymorphism; this
still held true when stratifying STRs by major allele length (Fig. 2c),
consistent with a previous report33.

Similar to the observations in C. elegans56, only 3.6% of loci had a
major allele frequency less than 0.5 (Fig. 2d; Fig. S6a), likely because of
the loss of genetic diversity resulting from recent explosive human
population growth58. Meanwhile, repeat distances between the most
common alleles and reference alleles revealed a symmetric spectrum,
with the reference alleles of the vast majority (94.6%) of pSTRs being
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themost common (Fig. 2e; Fig. S6b), largely consistent with a previous
report33. For dinucleotide STRs, the major alleles of 16.2% (12,559/
77,617) of the loci had at least one repeat away from the reference
alleles, reflecting the high instability of thesepSTRs (Fig. S6b). For each
pSTR, we then compared the repeat number of reported alleles with
the most common allele (Fig. 2f). We observed a higher proportion of
alleles longer than the major allele (45.2%) compared to alleles shorter
than the major allele (31.3%), and the allele frequency monotonically
decreased with deviation from the major allele (Fig. 2f; Fig. S6c),
coincidingwith the stepwisemutationmodel59.We alsoperformed this
analysis permotif length andpermajor allele length, and similar trends
were observed (Fig. S7).

We next investigated the chromosome distribution of pSTRs, as
STRs were nonuniformly distributed in the genome2. We observed a
modest enrichment within subtelomeric regions for hexameric pSTRs,
while no such bias was found for other types of pSTRs or mSTRs (Fig.
S8). Compared with other regions on the chromosome, there was a
significant increase (1.6-fold increase for the p arms and 1.8-fold
increase for the q arms) in hexameric pSTR density in the last 5Mbp of
chromosome arms (Permutation P < 1×10−4). We also applied another
method for investigating the chromosome distribution of structural
variants (SVs) to validate this result60. As expected, we also found
significant enrichment of hexanucleotide pSTRs in subtelomeric
regions (Fig. S9; Fig. S10). For comparison, a similar analysis was
applied to mSTRs, but no such patterns for hexameric mSTRs were
found (Fig. S11). Previous studies have found a strong enrichment of
VNTRs in subtelomeres32,61,62 and associated it with double-strand
breaks62,63. We also observed amodest correlation between hexameric
pSTRs and double-strand breaks defined by PRDM9 protein binding
hotspots in DNA63 (Fig. S12). These analyses implied the influence of
chromatin context and STRmotif length in determining STRmutation
rates throughout the genome.

As genomic niches may influence STR instabilities3,5, we next
correlated the occurrences of pSTRs and mSTRs with various genome
features (Fig. S13; Supplementary Data 4). Largely in line with previous
reports, we found that pSTRs were positively correlated with gene
count5, GC percent, active transcription64, and various euchromatin
markers, including H3K9ac, H3K27ac, and H3K4me3. Instead, pSTRs
were negatively correlated with markers of heterochromatin, such as
CpG DNA methylation and H3K9me3 (Fig. S13a, c), a reflection of the
links between epigenetic changes and STR instability3. Of note, we
observed that dinucleotide pSTRs occurred less often in tran-
scriptionally active regions, possibly due to the depletion of dinu-
cleotide STRs in genic regions65. In contrast, we did not observe such
patterns for mSTRs (Fig. S13b, d).

pSTR functional properties
Fluctuations in the length of pSTRs in specific genic and intergenic
regions can result in a variety of biological consequences via different
molecular mechanisms3,12. To assess the functional properties of
pSTRs, we first annotated pSTRs using Variant Effect Predictor (VEP).
We found that over ninety percent of pSTRs were in intronic (58.5%)
and intergenic (34.5%) regions, and only 1881 pSTRs were within cod-
ing sequences (CDSs), of which 1426 (75.8%) and 256 (13.6%) loci were
trimeric and hexameric pSTRs, respectively (Fig. 3a). We then exam-
ined the enrichment of STRs in different genic features by applying a
simulation-based method. Varying enrichment levels in different
genomic regions were observed for both pSTRs (Fig. 3b) and mSTRs
(Fig. 3c). In line with a previous report66, both pSTRs and mSTRs were
generally enriched in 5′UTRs and depleted in CDSs, and STRs with
differentmotif lengths showeddissimilar distributions across genomic
regions (Fig. 3b, c). Comparedwith theirmSTRcounterparts, di-, tetra-,
and pentanucleotide pSTRs were more highly depleted in coding
regions (Fig. 3b, c), reflecting their deleterious effects on gene
function67. In contrast, tri- and hexameric STRs were overrepresented

in 5′UTRs and CDSs compared with other STR types. This was likely
because triplet STRs are all in-frame indels that should have less of an
effect on transcript andprotein function thanother nontriplet STRs6,68.
Gene Ontology analyses showed that genes containing trimeric and
hexameric pSTRs in the 5′UTR and coding regions were enriched in
gene categories related to development and differentiation (Fig. S14),
in line with a previous report69.

To examine the selective constraint of pSTRs, we compared the
heterozygosity and entropy of each pSTR in different genomic
regions (Fig. 3d, e; Fig. S15). Using pSTRs in coding gene introns as
controls, pSTRs in coding regions showed significantly lower het-
erozygosity and entropy, as previously reported6. In coding regions,
pSTRs with motifs of multiples of three nucleotides had higher
variability than other pSTR types (Fig. 3d, e; Fig. S15). From the
perspective of pSTR-containing genes, we utilized another measure:
the loss-of-function observed/expected upper bound fraction
(LOEUF), where higher LOEUF scores indicate higher tolerances to
inactivation for given genes70. Higher LOEUF scores were observed
for genes with pSTRs in coding regions than those with pSTRs in
intronic regions (Fig. 3f).

In principle, pSTRs residing in coding regions can result in loss-of-
function (LoF) by disrupting open-reading frames or transcript spli-
cing. We identified 668 LoF alleles at 392 pSTR loci, including 254
frameshift mutations and 394 splicing region variants (Fig. S16a, b;
Supplementary Data 5). Most LoF alleles were low-frequency (allele
frequency <0.0001), especially frameshift variants (Fig. S16b), indi-
cating their harmful impacts on normal gene function. Consistently,
the genetic plasticity of LoF pSTRs was significantly lower than that of
other pSTR loci (Fig. S16c), a reflection of purifying selection against
LoF variants.

It has long been hypothesized that tandem repeat variation con-
tributes to complex traits in humans3,12,23,27,28. To identify pSTRs
potentially associated with complex human traits or diseases, we cal-
culated the LD in terms of the r2 between pSTRs and trait- or disease-
associated loci identified by GWASs (P ≤ 5 × 10−8)24. We identified 2871
pSTRs that were in high LD (“tagged”) with at least one GWAS SNP
(r2 ≥0.7), accounting for approximately 0.78% of all pSTRs (Fig. S17a;
Supplementary Data 6). The major allele frequencies for 303 of these
pSTRs were less than 0.5. Traits with the highest numbers of GWAS-
tagged pSTRs included height, body mass index, and mineral density
of the heel bone (Fig. S17b). These data exemplified the value of pSTRs
in complex phenotypes and the prospects of our pSTR call set for
future genotype-phenotype association studies.

pSTR gene-regulatory effects
pSTRs can affect variable phenotypes and disease susceptibility
through their gene-regulatory effects3,12. Previous genome-wide sear-
ches have identified thousands of pSTRs associated with human gene
expression13–18, but our understanding of this landscape remains
incomplete.Moreover, the direct exploration of pSTRs associatedwith
gene posttranscriptional regulation has not been performed, although
several single-gene studies have reported that pSTRs can modulate
RNA structure and function3. Here, we aimed to identify pSTRs asso-
ciated with total gene expression level (eSTRs) and 3′UTR alternative
polyadenylation (3′aSTRs) by leveraging public RNA-seq datasets of
lymphoblastoid cell lines (LCLs) from the Geuvadis project71. The LCL
dataset contained 445 individuals of European and African ancestry
overlapping with the 1KGP dataset, and some samples of this dataset
have been used for the identification of eSTR associations13,15. After
filtering lowly expressed genes and controlling for confounders (Fig.
S18), we paired pSTRs with genes within 500 kb and applied a linear
model todetect eSTRand3′aSTR associations. For eSTRassociations, a
total of 293,991 gene-STRpairswere tested, and 4131 pairs (4131 genes,
3273 pSTRs) exhibited significant associations at a gene-level false
discovery rate (FDR) of 10% (Supplementary Data 7; Fig. S19). The
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associations were corroborated by permutation controls (Fig. 4a) and
a previous study (Fig. 4b), which used 311 European individuals from
the LCL dataset to detect eSTRs15. We also compared our eSTR asso-
ciations with eSTRs detected using expression data from the
Genotype–Tissue Expression Project16 and found good consistency
(Fig. S20), with differences observed in various tissues. Using a similar
method, we tested 967,309 transcript-STR pairs to identify 3′aSTRs,
and 1984 pairs (1984 transcripts, 1117 pSTRs) were significant at
transcript-level FDR < 10% (Fig. 4c; Supplementary Data 8). For many
pairs, clear relationships between repeat numbers and the percentage
of distal poly(A) site usage index (PDUI) values of transcripts could be
observed (Fig. S21).

We next sought to investigate the genomic contexts of eSTRs and
3′aSTRs to understand their functionalmechanisms ingene regulation.
We found that eSTRs as well as 3′aSTRs were more concentrated in
regions with active histone marks (e.g., H3K9ac, H3k4me3, H3K4me2,
and H3K27ac) and open chromatin (Figs. 4d, S22a), largely consistent
with the observations of previous studies15,16. We found that eSTRs
were most enriched in 5′UTR regions and depleted in CDSs, while 3′
aSTR were more frequently found in 3′UTR regions (Fig. 4d). Con-
cordantly, eSTRs in 5′UTRs and 3′aSTRs in noncoding exons and 3′
UTRs had larger effect sizes than those in other regions (Fig. S23). We
also performed the same enrichment analysis using the chromatin
states defined by ChromHMM72. We found that both eSTRs and 3′
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aSTRs were significantly concentrated in active enhancers and regions
flanking transcription start sites (TSSs) (Figs. 4e, S22b, c). These results
revealed that eSTRs and 3′aSTRs had generally similar genomic char-
acteristics, andpSTRs in regulatory elements and accessible chromatin
regions often exerted gene-regulatory effects.

To further investigate the potential impacts of eSTRs and 3′aSTRs
on human traits, we compared the genomic locations of these pSTRs
with GWAS signals. Relative to pSTRs included in eSTR/3′aSTR ana-
lyses, the observed number of both eSTRs and 3′aSTRs tagged by

GWAS SNPs was significantly greater than expected (P < 0.001, Fig.
S24a, c), implying that these loci may have functional impacts found at
multiple GWAS SNPs. We also tested whether eSTR- or 3′aSTR-asso-
ciated genes were enriched in any gene sets implicated by previous
GWAS findings, as previously described15. We observed that genes
targeted by eSTRs were significantly enriched in GWAS genes for
allergic rhinitis, primary biliary cirrhosis, eczema, etc. (Fig. S24b). For
genes regulatedby3′aSTRs,we found that theywere enriched inGWAS
genes for primary biliary cirrhosis, sarcoidosis, myositis, etc. (Fig.

Fig. 4 | eSTRs and 3′aSTRs identified in this study. a Quantile‒quantile plot
comparing observed P values for STR-gene association tests (two-sided t-test in
linear model) versus the expected uniform distribution in eSTR analysis. The red
dots represent the observed association tests, and the gray dots indicate P values
for permutation control. The black line gives the expected P value distribution
under the null hypothesis of no association. b Correlations of the effect size of
eSTRs identified in this study and a previous study by Gymrek et al. The blue points
indicate eSTRs whose directions of effect were concordant in two studies, and gray
points denote eSTRs with discordant directions of effect for that eSTR. The eSTRs
detected in both studies are colored red, regardless of the concordance of effect.

c Quantile‒quantile plot comparing observed P values for STR-gene association
tests (two-sided t-test in linear model) versus the expected uniform distribution in
3′aSTR analysis. d, e Fold enrichment of eSTRs (left; n = 3273) or 3′aSTRs (right;
n = 1117) in designated genome regions (d) and chromatin states defined by
ChromHMM (e) in the GM12878 cell line. A permutation test was repeated 1000
times, and empirical P values were computed together with the enrichment values
by GAT v1.3.4. Points denote the enrichment values. Red and blue points denote
significant enrichments or depletions (P <0.05 after Benjamini & Hochberg cor-
rection), and bars show 95% confidence intervals.
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S24d). These results suggested that pSTR-associated genemodulation
effects could introduce variability in complex traits and polygenic
disorders. Themost enrichedGWAS traitswe found herewere relevant
to the immune system, partly due to the cell type (lymphoblastoid cell
lines) we used. It is also worth noting that our analyses in one cell type
may be limited in finding associations with other complex traits73.

Population analysis of pSTR
STRs are powerful markers in population genetics studies74. While
numerous studies have used STRs to examine variation patterns in
diverse human populations33,34,39,75,76, these studies were limited by
locus number, sample size or population diversity.We first utilized our
comprehensive catalog of pSTRs to study population structure using
principal component analyses and found that the clusters generally
resembled the trends foundwith SNPs42 and SVs77 (Fig. S25a). Principal
component 1 (PC1) separated individuals of African ancestry from
those of non-African ancestry, while American populations were scat-
tered among Europeans, South Asians, and East Asians; PC3 separated
populations of South Asians from all other individuals. We next per-
formed the same analysis with samples of East Asian populations (Fig.
S25b), and the results largely recapitulated the geographical distribu-
tions of these populations, with Chinese Dai, Kinh Vietnamese,
Southern Han Chinese, Northern Han Chinese, and Japanese indivi-
duals distributed alongside PC1.

We then counted the number of pSTRs per individual in the 26
populations. For each genome, the most abundant type of pSTR was
dimeric (median of 19,024), followed by tetranucleotide (median of
7611) (Fig. 5a). We also found that Africans harbored the greatest
numbers of pSTRs, corroborating the out-of-Africa model78, while
individualsof East Asia had the lowestnumber of pSTRs (Fig. 5a). In line
with SNPs79 and SVs77, individuals of African ancestry exhibited a
higher heterozygote/homozygote ratio of pSTRs than individuals from
other ethnic groups (median of 3.43 versus 2.32) (Fig. 5b, c). The
availability of genotypes of both SNPs and STRs enabled us to directly
compare the diversity between SNPs and STRs in diverse populations.
We computed the correlation between SNP heterozygosity and pSTR
diversity, in which SNP heterozygosity80 was the ratio of heterozygous
bi-allelic SNPs over the length of the autosomes, and pSTR diversity
was the average pairwise difference in pSTRs for each sample in each
population. We observed that pSTR diversity had a strong positive
correlation with SNP heterozygosity (R2: 0.99, P < 2.2E−16) (Fig. S26),
which was higher than that of mobile element insertions43. Africans
showed the highest pSTR diversity and SNP heterozygosity, whereas
both pSTR diversity and SNP heterozygosity of Americans showed
great variability.

We next investigated the sharing of pSTRs across 26 different
populations, and this analysis identified pSTRs shared in all popula-
tions (“All”), more than one (“Shared”), and specific to one population
(“Unique”) (Fig. 5d). For pSTRs detected in eachpopulation in the 1KGP
dataset, over 40% of pSTRs could be found in all 26 populations, and
the percentage of pSTRs unique to a specific population was less than
4%. Partly due to larger sample numbers (Southern Han Chinese in
NyuWa: 600, NorthernHanChinese in NyuWa: 418), we detectedmore
unique pSTRs in the two populations from the NyuWa dataset. Among
these 24,426 NyuWa-specific pSTRs, 43 loci contained LoF alleles and
2998 loci were found in disease genes from Online Mendelian Inheri-
tance in Man (OMIM) database, demonstrating the added value of the
NyuWa dataset.

pSTR length comparisons across populations
We then leveraged our call set to identify pSTRs with significant mean
length differences between superpopulations, as these loci may con-
tribute to the phenotypic differentiation between different popula-
tions. As samples of the 1KGP dataset were sequenced by one
institution (the New York Genome Center) with a PCR-free protocol44,

we restricted this analysis to the 1KGP dataset to avoid potential batch
effects. As previously done with VNTRs47, we performed pairwise
length comparisons using the Wilcoxon rank-sum test among five
continent populations for pSTRs with heterozygosity >0.1 and showed
the results using volcano plots, with notable outliers labeled with the
host genes of the loci (Fig. 6). These results well corroborated the
population structure analysis above: the pSTR lengths of Africans
showed substantial discrepancies with those of the other four super-
populations and Americans had STR length distributions similar to
those of Europeans and South Asians. We also used the fixation index
Rst81 between different populations to quantify population differences
in these pSTRs (Supplementary Data 9), and the results largely fit the
findings of length comparisons, with the lowest average Rst between
Americans and Europeans (mean Rst = 1.73%).

Based on the length comparisons, we selected four pSTRs fre-
quently classified as top outliers among superpopulations to investi-
gate further, and they resided in UBE2L3, DHTKD1, MYPN, and MGAT5
(Fig. S27). The observed differences using the Wilcoxon rank-sum test
were further validated by one-way ANOVAs and subsequent Tukey’s
multiple comparison test. The pSTR in the intron ofUBE2L3, a member
of the E2 ubiquitin-conjugating enzyme family, was mostly expanded
in individuals fromEast Asia (Fig. S27a), and this pSTRwas in strong LD
with several GWAS SNPs implicated in multiple phenotypes, such as
Crohn’s disease, high-density lipoprotein cholesterol levels, and sys-
temic lupus erythematosus (Supplementary Data 6). The pSTR in the
intron ofDHTKD1 showed longer repeats in Africans than in any other,
with an overall right-tailed length distribution (Fig. S27b). TheDHTKD1
gene encodes a dehydrogenase involved in mitochondrial energy
production82 and mutations in this gene have been associated with
2-aminoadipic 2-oxoadipic aciduria and Charcot-Marie-Tooth Disease
Type 2Q83,84. Of note,we found that thepSTR inDHTKD1 could regulate
the expression ofDHTKD1 in LCL (beta = −0.287, adjusted P = 3.61E−7),
suggesting that this pSTRmay contribute to the expressiondifferences
ofDHTKD1 in different populations. The cumulative plot of the pSTR in
MYPN revealed a bimodal distribution in East Asians and Africans, with
longer repeats in East Asian populations (Fig. S27c). MYPN encodes
striated muscle-specific sarcomeric protein, and mutations in MYPN
have been associated with multiple cardiac diseases85. The pSTR in
MGAT5 gene, encoding an important enzyme involved in the synthesis
of glycoprotein oligosaccharides, had longer repeats in individuals in
Africa, and it showed a similar bimodal distribution in East Asians as
the pSTR in MYPN (Fig. S27d).

We also compared the STR lengths among populations of East
Asia, and the results largely resembled the population structure ana-
lysis,with great differences detectedbetween Japanese individuals and
other East Asians (Fig. S28). Previous SNP-based studies have observed
genetic differences between northern (Han Chinese in Beijing, CHB)
and southern Han Chinese (southern Han Chinese, CHS)
individuals42,86, but we failed to detect marked differences in pSTR
length distributions between the two subgroups (Fig. S28), with no
pSTRs below the significance level of 5% at all the loci tested. In line
with this, the average Rst between northern and southern HanChinese
individuals was ~0.29–0.34% across motif lengths (Supplemen-
tary Data 9).

pSTR length variance analysis
In addition to the pSTRs with significant changes in mean lengths
between superpopulations, we also considered the highly variable
pSTRs in each superpopulation. Focusing on highly polymorphic
pSTRs (pSTR with heterozygosity >0.1), loci with the top 5% variance
within a population were considered highly variable. In total, we
identified 4616 highly variable pSTRs, ofwhich 1100 loci weredetected
in all superpopulations (Fig. 7a; Supplementary Data 10). GO enrich-
ment analysis demonstrated that genes enclosing these loci played
roles in the development and function of the nervous system (Fig. 7b).
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Concordantly, these genes were significantly enriched for genes pre-
dominantly expressed in the cerebral cortex (Fig. 7c). These results
suggested that highly variable STRs may contribute to divergences in
neurological phenotypes in humans. Among these highly variable loci,
three pSTRs were tagged by GWAS SNPs implicated in nervous or

immune system diseases, and their allele length distributions in dif-
ferent superpopulations were similar (Fig. 7d). STR “chr1:2609035” in
the intron of MMEL1 was tagged by multiple SNPs associated with
sclerosis, autoimmune disease, and rheumatoid arthritis; STR
“chr15:77705175” in the intron of LINGO1 was in high LD with SNPs
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related to neuroticism measurement, unipolar depression, and mood
disorder; STR “chr10:6586116” in the intron of PRKCQ-AS1 was tagged
by SNPs related to multiple traits such as asthma, eczema, and allergic
rhinitis (Supplementary Data 6).

To further detect pSTRs with significant changes in variance of
allele lengths among different superpopulations, we compared the
standard deviations (SDs) of allele lengths of each site and used per-
mutation test (1000 times) to get empirical p-values. Similar to pSTR
mean length comparisons above, we performed this analysis in the
superpopulations of the 1KGP dataset and pSTRs with heterozygosity
>0.1. As shown in Fig. S29a, many loci showed differential variability in
allele lengths between different superpopulations. Of note, we found
that one known disease locus “chr12:50505002”, at which GGC

expansion can cause FRA12A type of intellectual developmental
disorder, showed lowest variance in East Asians (Fig. S29b). This STR
was also in high LD with GWAS SNPs related to balding, body fat, and
fibrinogen (Supplementary Data 6). Another locus “chr8:127102614”,
which was in intron of non-coding gene PCAT1, showed highest var-
iance of allele lengths in African samples (Fig. S29b), and this site was
in high LD with multiple GWAS SNPs associated with prostate carci-
noma. STR “chr7:2812637” in intron of GNA12 had lower length var-
iance in East Asians and Africans than in other ethnical groups (Fig.
S29b), and we found that this site could regulate the expression of
GNA12 in LCL (beta = −0.49, adjusted P = 4.36E−21). The GNA12 gene
encodes a subunit of the G proteins and functions as modulators or
transducers in various transmembrane signaling systems87,88. In
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Fig. 7 | Highly variable pSTRs within superpopulations. a UpSet plot of highly
variable pSTRs identified from the NyuWa dataset and the five superpopulations in
the 1KGP. b Gene Ontology (GO) enrichment analysis for genes enclosing 1110
highly variablepSTRsdetected in all superpopulations. The top tenmost significant
items are shown. c Bar plot showing the adjusted p value of tissue-specific gene

enrichment. P-values were derived from hypergeometric test and corrected using
the Benjamini & Hochberg correction by TissueEnrich v1.16.0. d Distribution of
allele length for three examples of common highly variable pSTRs stratified by
population. The gray vertical line indicates the reference allele length for the
corresponding locus.
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addition, intergenic STR “chr2:44076978”, which had greatest length
variance in African individuals (Fig. S29b), could regulate the 3′UTR
alternative polyadenylation of multiple transcripts of PREPL, a
member of the prolyl oligopeptidase subfamily of serine peptidases.
These results together reveal another layer of population differ-
entiation signature of pSTR.

pSTR expansion analysis
Since dozens of STR expansions have been identified as causal variants
in a range of human disorders11, we next focused on detecting repeat
expansions in our call set. We used a similar expansion score as
described by Press et al.57, which compared the 95th percentile and
median of allele lengths of each pSTR. Tomitigate the confounding of
population differences, we performed this analysis in each super-
population. Using this metric, we identified 213 pSTRs with an expan-
sion score ≥2 in at least one superpopulation, mainly from di- and
tetranucleotide STRs (Fig. S30a; Supplementary Data 11). Most
expanded loci were found in intronic and intergenic regions, while
nonewere inCDS.Notably, the pSTR “chr1:200669896” in the 5′UTRof
DDX59was expanded in theNyuWadataset and East Asians in the 1KGP
and was in high LD with SNP rs6700559, which is associated with
coronary artery disease (Fig. S30b). There were several other expan-
ded STR loci taggedbyGWASSNPs, implying the potential influenceof
STR expansion on complex traits. For instance, the STR
“chr2:193509528” in intergenic regions was tagged by GWAS SNPs
associated with schizophrenia and a variety of neurological disorders,
including Tourette syndrome and autism spectrum disorder (Fig.
S30b). In addition, the STR “chr5:151073583” in the intron of TNIP1was
in high LD with the GWAS SNP rs3792783, which is related to systemic
scleroderma (Fig. S30b).

STR variation in known disease loci
In humans, dozens of pathogenic STR loci have been found at which
repeat number expansion above the locus-specific pathogenicity
threshold could cause genetic diseases, which are called repeat
expansion diseases and primarily affect the nervous system89. For the
diagnosis of these diseases, whole genome sequencing (WGS) was
increasingly implemented as a first-tier screening test and was a fea-
sible approach because of advances in bioinformatics90. To char-
acterize the variations in these STRs in our dataset, we analyzed 60
disease-causing STR loci that we collected (Fig. S1; Supplementary
Data 2). After filtering the alleles by the number of supporting reads
(method), we observed a repeat number distribution in the population
similar to that reported by gnomAD v3.1.270 for each STR locus,
including 7 STRs with at-risk expansion alleles (Fig. S31) and the others
without such alleles. To verify the accuracy of genotypes, we com-
pared themwith the results from twoprevious studies (see “Methods”)
and observed high concordance atmost loci (Fig. S32). Furthermanual
inspection of the read visualizations confirmed 42 expansion alleles in
total, which were equal to the threshold or longer than the threshold
by oneor two repeats. These results indicated a rarepresence of at-risk
expansion alleles in the natural human population. Allele distributions
of these STRswere provided and could be used as a comparison set for
studies of tandem repeat diseases.

Discussion
Despite theplethora andhigh instability of STRs in thehumangenome,
they have been more or less overlooked in most population genomic
studies3,4. Accordingly, resources for pSTRs in diverse human popu-
lations are clearly lacking compared to other types of variants, such as
SNPs and SVs. Moreover, to our knowledge, there are no population-
level studies of genome-wide STR variation in Chinese individuals;
thus, it is imperative to fill this gap. Here, using a state-of-the-art STR
genotyper, we jointly analyzed the deep WGS 6487 genomes from the
NyuWa and 1KGP datasets to perform a genome-wide interrogation of

more than 700,000 STRs. We described our STR call set and then
analyzed the mutational patterns, functional properties, gene-
regulatory effects, and expansion of pSTRs. The results of these ana-
lyses deepenedour knowledgeof STRbiology. Then,weusedpSTRs to
implement population analysis and investigate population differ-
entiated signatures.We also identified highly variable pSTRswithin the
superpopulation and explored their potential effects on complex
human traits. We also genotyped 60 known disease-causing STRs to
provide their allele distributions.

By combining the NyuWa dataset (3983 genomes) and the 1KGP
dataset (2504 genomes), we constructed a large and high-quality
resource of STR variation for diverse populations, especially for the
Han Chinese population, which would fill the scarcity of STR variation
resources in East Asian populations and benefit future STR studies. In
total, our call set included 366,013 pSTRs and 290,454 mSTRs with
2–6bp repeat motifs, in which 89,719 pSTRs were specifically identi-
fied in the NyuWa dataset. Within the pSTR call set, we found that
54.2%of pSTRswerehighlymultiallelic and that the STRmutation rates
were influenced by motif length, chromatin context and genomic
niche. We also observed a significant enrichment of hexameric pSTRs
in subtelomeric regions and a modest correlation between hexameric
pSTRs and double-strand breaks.

It is fundamental to know the functional impactof STRvariation in
humans. We found that trimeric and hexameric STRs were over-
represented in the 5′UTRs and CDSs. We found that pSTRs in CDSs
tended to be less variable and were under strong selective constraint.
We also identified 668 LoF STR alleles that could affect open-reading
frames or transcript splicing. A total of 2871 pSTRs were found in high
linkage disequilibrium with GWAS SNPs, which indicated a potential
association between these pSTRs and complex human traits and dis-
eases. Furthermore, we identified some pSTRs with gene-regulatory
effects, including 3273 eSTRs and 1117 3′aSTRs. These pSTRs were
enriched in regulatory elements and accessible chromatin regions.
Later, we performed expansion analysis and identified 213 expanded
pSTRs. These results extended our understanding of the functional
impact of STR variation and provided a set of STRs with potentially
functional impacts.

The large sample size and high population diversity of our dataset
enabled us to conduct a population analysis basedonSTRs. The results
of the population structure analysis suggested the power of pSTRs to
distinguish populations. Using both STR and SNP genotypes, we
observed a strong positive correlation between pSTR diversity and
SNP heterozygosity. Later, we identified a set of population differ-
entiatedpSTRsbasedon lengthdifferences between superpopulations
of the 1KGP dataset. We also found 1100 pSTRs that were highly vari-
able in all superpopulations. Enrichment analysis suggested that these
pSTRs potentially contribute to divergences in neurological pheno-
types in humans.

Finally, we provided the allele distributions of 60 known disease-
causing STRs and observed the rare presence of pathogenic expan-
sions. Compared with previous studies, our allele distributions
involved the genotypes of many Han Chinese individuals. Therefore,
these distributions could serve as a comparison set for studies of
tandem repeat diseases, especially for such studies in Chinese
populations.

However, our study is limited by the STR genotyper we used.
GangSTR v2.4.2 cannot analyze mono-nucleotide repeats resulting
from their absence in the reference file and cannot analyze sex-
chromosome STRs because the analysis of haploid genotypes was not
supported. In addition, this tool was designed to analyze the repeat
number variation of STR loci; hence, STR alleles with mutations inside
the repeat units or interruptions remained undiscovered. Another
limitation is that variations of nonreference (not included in the
GangSTR reference file) STR loci have not yet been included. In the
future, we would consider combining different STR identification and
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genotyping tools, including reference-independent tools, to provide a
broader description of STR variation in humans.

Methods
Samples and preprocessing
This studywas approved by theMedical Research Ethics Committee of
Institute of Biophysics, Chinese Academy of Sciences and complies
with all relevant ethical regulations. All participants provided written
informed consent. The informed consent is used to collect samples for
genome studies conducted by Chinese Academy of Sciences. Deep
WGS data in this study were collected from the NyuWa dataset
(~31.5x)42 and the 1KGP dataset (~33.3x)44,52. The NyuWa dataset con-
tained 4013 unrelated individuals from different provinces in China42,
and was not ascertained for a specific health status. 2999 samples of
the NyuWa dataset were reported before42 and 1014 samples were
newly sequenced using the Illumina platform. TheGATKBest Practices
Workflows germline short variant discovery pipeline91 was employed
to process and align reads to the human reference genome (GRCh38).
For the 1KGP dataset, 2504 CRAM-format files mapped to the human
genome build GRCh38 were downloaded from https://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_
coverage/, which were recently sequenced at >30x coverage by the
New York Genome Center44. The CRAM files were first converted to
BAMs using SAMtools v1.1492. We then estimated the autosome cov-
erage of all samples using mosdepth v0.3.3 (https://github.com/
brentp/mosdepth). For the NyuWa dataset, the sexes of all samples
were determined using guess-ploidy in BCFtools v1.1093. The sample
information used in this study can be found in Supplementary Data 1.

Genome-wide STR genotyping
Owing to its ability to genotype genome-wide STRs in a reliable and
efficient way49,50, we used GangSTR v2.4.248 to genotype autosomal
STRs with option “--include-ggl”. The reference file “hg38_ver13.-
bed.gz” for GangSTR were downloaded from https://github.com/
gymreklab/GangSTR, and there were 765,227 autosomal STR loci
(115,771 dinucleotide, 134,296 trinucleotide, 325,745 tetranucleotide,
155,589 pentanucleotide and 33,826 hexanucleotide STRs) retained
after excluding siteswith unit length >6 bp. Themedian length of these
loci was 12 bp. 3994 samples from NyuWa dataset and 2504 samples
from 1KGP dataset were successfully genotyped by GangSTR. The fil-
tering steps for GangSTR calls were largely concordant with previous
study53. DumpSTR in TRTools toolkit v4.1.094 was used for call-level
filtering with options “--vcftype gangstr --zip --gangstr-min-call-DP 20
--gangstr-max-call-DP 1000 --gangstr-filter-spanbound-only --gangstr-
filter-badC”. Thenwe examined the call rate of each sample. 11 samples
fromNyuWawhichhada call rate <50%were removed. FilteredVCFsof
6487 samplesweremerged usingmergeSTR in TRTools toolkit v4.1.094

with default parameters, andmerged VCFwas then subjected to locus-
level filtering by dumpSTR with parameters “--filter-regions
GRCh38GenomicSuperDup.bed.gz --filter-regions-names SEGDUP
--min-locus-callrate 0.2 --min-locus-hwep 0.00001”. The file
“GRCh38GenomicSuperDup.bed.gz”weredownloaded from theUCSC
Genome Browser database95 and was to remove sites overlapping
segmental duplications. Then the remaining sites with more than one
allele were considered as polymorphic STRs (pSTRs), otherwise as
monomorphic STRs (mSTRs). The final call set consisted of 366,013
pSTRs and 290,454 mSTRs from 6487 genomes. Some per-locus sta-
tistics including maximum observed allele length, heterozygosity, bit-
entropy of the distribution of alleles, mean allele length, mode allele
length, and variance of allele length were computed by statSTR in
TRTools toolkit v4.1.016.

Genotyping known pathogenic loci
Therewereno knowncases of STRdisease for samples in this study. To
supplement the genome-wide analysis of GangSTR, we collected 60

known disease STR loci (Supplementary Data 2) frommultiple sources
including ExpansionHunter51, STRipy96, Stranger (https://github.com/
Clinical-Genomics/stranger), and gnomAD (https://github.com/
broadinstitute/str-analysis). ExpansionHunter was designed to tar-
geted genotyping analysis. It had good correlations with PCR-based
assays90,96 and has been successfully used in several large-scale
cohorts90,97,98. We used ExpansionHunter v5.0.051 to genotype 51
“standard” or “imperfect GCN” loci across all 6487 samples with
default options. For nine “replaced/nested” loci (RFC1, BEAN1, DAB1,
MARCHF6, RAPGEF2, SAMD12, STARD7, TNRC6A, and YEATS2)96, we
used “call_non_ref_pathogenic_motifs” in str-analysis v0.9.4 (https://
github.com/broadinstitute/str-analysis) to genotype all samples, as
ExpansionHunter was unable to differentiate between the pathogenic
and reference repeat motifs96. We then merged the calls from Expan-
sionHunter and “call_non_ref_pathogenic_motifs”, and filtered out
alleles with fewer than five total supporting reads. For all individuals at
each locus, we used REViewer v0.2.799 to visualize alignments of reads
if the inferred repeat length exceeded the normal range or pathogenic
threshold of this locus. We then manually inspected each image for
read visualization to validate the authenticity of these events.

There were seven disease loci which were also in GangSTR call set
(Supplementary Data 3). To compare the calls between GangSTR and
ExpansionHunter/str-analysis, we defined genotype concordance
metric as Saini et al.100. The genotype concordance ci was: 1 if both
alleles match; 0.5 if only one allele matches; 0 if neither alleles match.
Then genotype concordance for a STR locus is the average over all the
samples: C = 1

n

Pn
i = 1ci.

To compare the allele distributions of our call set with those from
STRipy database96, and gnomAD database v3.1.270 (https://gnomad.
broadinstitute.org/short-tandem-repeats?dataset=gnomad_r3), we
downloaded the allele distributions from https://gitlab.com/
andreassh/stripy-pipeline and https://gnomad.broadinstitute.org/
downloads#v3-short-tandem-repeats, respectively. We then plotted
the distributions of each loci using box plots (Fig. S32).

Mendelian inheritance rate
To validate the pipeline of genome-wide STR analysis by GangSTR, we
used 60 trio families (in-house WGS data from Han Chinese) to eval-
uate Mendelian inheritance. We first generated STR calls for these
samples using the pipeline above. For each trio, a STR locus was con-
sidered to follow Mendelian inheritance if one allele of the child’s
genotype was same to any one allele of the father’s genotype and
another one was same to any one allele of the mother’s genotype, and
the proportion of genome-wide STR loci that followed Mendelian
inheritance was defined as Mendelian inheritance rate.

Subtelomeric enrichment of STRs
We first cut each chromosome arm (p arm and q arm) into 1 Mbp
consecutive windows, and removed windows overlapped with cen-
tromeres. Then the number of pSTRs/mSTRs in each window was
summed. The mean STR number in the subtelomeric bins on each
chromosome arm (outermost 5 Mbp of each chromosome arm end)
was compared to the mean number of STRs in all other bins to get the
fold increase, as described in ref. 62. Acrocentric arms (13p, 14p, 15p,
21p, and22p)were not considered.We thenperformeda 10,000 round
permutation test by exchanging the bin sums, and counted the num-
ber of events with permutated fold increase greater or equal to the
observed fold increase. We divided this number by 10,000 to get the
empirical P-value.

Chromosome-level analyses of STR density
To check the distributions of pSTRs andmSTRs across the genome, we
adopted the method by Collins et al. which has been used to investi-
gate the chromosome density of structural variants60. For 22 auto-
somes, we first segmented each chromosome into 100 kb consecutive
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bins and removed bins overlapped with centromeres. Then we coun-
ted the number of STRs (pSTRs or mSTRs) in each bin and smoothed
the count using an 11-bin (~1 Mbp) rolling mean for each chromosome.
For comparison of chromosome context, each bin was assigned to a
percentile based on the position of that bin on its respective chro-
mosome arm relative to the centromere (0: centromere; −1: p-arm
telomere; 1: q-arm telomere). Next, the normalized bin positions (i.e.,
−1 to 1) were cut into 500 uniform intervals, and values across all
autosomesbasedon the normalized interval positionwereaveraged to
generate “meta-chromosome” density. Finally, the “meta-chromo-
some” density was normalized by its mean value to get the “fold-
enrichment” values, as shown in Figs. S9, S10, and S11. To compare the
density of STRs between different chromosome contexts, we con-
sidered normalized positions within the outermost 5% of each chro-
mosome arm as “telomeric”, the innermost 5% as “centromeric” and
the other 90% of each arm as “interstitial”. The “fold-enrichment”
scores in the given chromosome context were subjected to test if the
values were greater or smaller than 1 with Student’s t-test. We adjusted
P-values using the Bonferroni method and the significant level was
set to 5%.

Correlation analysis of STR and genomic features
To correlate the pSTR occurrences with genome features, we used the
methods described by Kojima et al.101, which has been used to study
mobile element variants. We repeated the procedure here for clarity.
We first segmented the 22 autosomes into 1 Mbp consecutive bins and
removed bins overlapped with centromeres. We counted the number
of pSTRs/mSTRs in each bin. Next, we examined the correlations of
pSTRs/mSTRs count with various genome features, such as GC per-
cent, CpG count, gene count, A/B compartment, DNase hypersensitive
sites, histone modifications, transcription factor (TF) binding sites,
DNA methylation level, and replication timing. The public data used
here can be found in Supplementary Data 4.

GC percent. “nuc” function in BEDTools v2.27.1102 was used to get GC
percent of each 1 Mbp genome bin.

CpG count. CpG island regions of the human GRCh38 genome were
downloaded fromUCSCGenomeBrowser database (accessed at 2022/
04/16)95 and the count of CpG in each genome window was generated
using bedmap in BEDOPS v2.4.40103.

Gene count. Using GNECODE v39104, we counted the number of all
genes and protein-coding genes across 1 Mbp windows. For all genes,
genes annotated as “level 3”, “TEC” or “pseudogene” were excluded.

A/B compartment. Two mcool format files of H1-hESC Hi-C data105

were downloaded from NCBI GEO106: GSM5057489, formaldehyde
fixation followed by HindIII; GSM5057481, formaldehyde and DSG
fixation followed by HindIII cleavage. Then, we used GENOVA v1.0107 to
get compartment scores under 1 Mbp resolution.

DNase hypersensitive sites. DNase-seq peak files of H1-hESC cell and
H9-hESCcellweredownloaded fromthe ENCODEproject108 (Accession
number: ENCFF905XDS, ENCFF574LKL, ENCFF338KTY, and
ENCFF190JAO). We computed the average number of peaks in each 1
Mbp window of these three datasets.

Histone modifications and TF-binding sites. We counted the num-
ber of peaks of histone protein modifications in H1-hESC and H9-
hESC and several TFs (CTCF, phospho-Pol-II A, Pol-II, and EP300) in
H1-hESC from the ENCODE project (accession number in Supple-
mentary Data 4)108. The number of peaks in each 1 Mbp bin was
counted and the average number was used for analysis if replicates
were available.

DNA methylation level. DNA methylation of three types of sites was
considered in H1-hESC: CpG, CHG, and CHH. DNA methylation of two
types of sites was considered in H9-hESC: CpG and CHG. Methylation
state datasets in bigBed format of whole genome bisulfite sequencing
(WGBS)were retrieved from the ENCODEproject (accession number in
Supplementary Data 4)108. We used methylKit v1.16.1109 to read and
compute the average methylation level across all sites in each 100 kb
genome bin. Only sites with at least five reads were included for ana-
lysis. To control the outliers,weexcluded genomebinswith fewer than
500, 2500, and 10,000 CpG, CHG, and CHH sites, respectively.

Replication timing. Replication timing (RT) was calculated using the
Repli-Chip datasets of H1-hESC cell from the ENCODE project (Acces-
sion number: ENCFF000KUF, ENCFF000KUG, and ENCFF000KUH)108.
As the original datasets were mapped to human GRCh37 reference
genome, we first performed liftover of probe positions from GRCh37
toGRCh38 for each dataset. The RT level across probes in eachbin and
across replicates were then averaged.

Functional annotation
We annotated pSTRs using Variant Effect Predictor v99.2 (VEP)110 with
Ensembl database version 104111, with parameters “--pick --sift b
--polyphen b --hgvs --symbol --canonical --biotype --protein --domains
--uniprot --tsl --numbers --distance 2000,1000”. Gene set enrichment
analysis for geneswith trimeric andhexamericpSTR in their CDS and 5′
UTR regions was performed by clusterProfiler v3.18.0112. Alleles anno-
tated in the following categories were considered loss-of-function
ones: frameshift mutations, splicing region variants, coding sequence
variants, and start or stop codon variants. The enrichment of pSTRs
across different genomic features was quantified by GAT v1.3.4113 with
1000 permutations.

We also annotatedpSTRs by their linkagedisequilibrium (LD)with
GWAS risk SNPs. GWAS risk SNPs with P-value ≤ 5 × 10−8 and their
related traits were obtained from GWAS Catalog v1.0.224. GWAS SNPs
that related to only “educational attainment”, “mathematical ability”
and “intelligence” were removed because these traits were strongly
associated with environmental and socioeconomic factors. For the
remaining GWAS risk SNPs, we first converted the genotype data into
indicator matrix using PLINK v1.9114. LD between STR-SNP pair was
defined as the squared Pearson correlation between STR dosage and
SNP dosages, as described before100. STR dosage was defined as the
sumof the repeat number of two alleles. Only pSTRs within 250 kb of a
GWAS risk SNP were considered in LD calculation, and STR genotypes
seen less than three times were removed, as described previously16.
STR-SNP pair with r2 ≥0.7 was considered as strong LD. A complete set
of pSTRs tagged by GWAS risk SNPs can be found in Supplemen-
tary Data 6.

Identification of eSTR
To detect expression differences among individuals with different STR
genotypes, BAMs files of 462 lymphoblastoid cell lines (LCLs) from
Geuvadis consortium71 were downloaded from: https://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data_collections/geuvadis/working/
geuvadis_topmed/. Of these samples, 445 samples overlappedwith the
2504 1KGP genomes set (CEU: 89, FIN: 92, GBR: 86, TSI: 91, YRI: 87).
These BAM files were produced by the TOPMed RNA-seq pipeline
(https://github.com/broadinstitute/gtex-pipeline), with reads aligned
to the human GRCh38 reference genome using STAR v2.5.3a115. We
applied featureCounts v2.0.3116 to count reads of genes with GENCODE
v34 annotation104. Next, we generated log2 normalized FPKM values
using edgeR v3.32.1117, after filtering lowly expressed genes by “filter-
ByExpr” function in edgeR. To account for hidden batch effects and
other unobserved confounders, we used covariates for sex and
population structure and detected additional hidden factors using
Iteratively Adjusted Surrogate Variable Analysis (IA-SVA)118, as

Article https://doi.org/10.1038/s41467-023-37690-8

Nature Communications |         (2023) 14:2092 13

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/geuvadis/working/geuvadis_topmed/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/geuvadis/working/geuvadis_topmed/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/geuvadis/working/geuvadis_topmed/
https://github.com/broadinstitute/gtex-pipeline


described before46. For population structure, we used the top ten
principal components determined from the principal component
analysis (PCA) of the SNP genotypes from the 445 individuals. Only
SNPs withminor allele frequency≥0.05 were used for PCA; pruning of
27 known long-range LD regions119 and subsequent PCA were per-
formed by PLINK v1.9114. For IA-SVA, we used sex and top ten genotype
principal components as the known covariates to estimate a set of
latent covariates for the expression values. We chose fifteen hidden
covariates based on the correlations between covariates (Fig. S18).
Finally, expression values were adjusted for sex, population structure
and hidden factors using a linear model. Adjusted expression matrix
was used for eSTR identification. This left 15,627 genes expressed in
the LCL dataset.

The eSTR identification method was similar to previous
studies15,16. Only STRs within 500 kb of a gene expressed in the LCL
dataset were included. To ensure the site quality and the eSTR
detection power, we kept loci where at least 50 of the 445 samples had
a genotype call and loci with heterozygosity ≥0.1. We also filtered
genotypes of each pSTR locus to control for outliers by removing any
genotypes seen fewer than three times out of 445 samples. If there
were less than three genotypes after filtering samples, the STR locus
was discarded16. Finally, we converted the STR genotype calls to
dosage (sum of the deviations in the STR allele repeat numbers from
the reference allele repeat number). The final STR dosage matrix
contained 39,933 sites.

For each gene-STR pair, a linear model as expression ∼dosage
was used to test the associations between STR dosage and gene
expression. As described before16, we applied a gene-level FDR
threshold of 10% to determine significant STR-gene pairs. For each
gene, we first adjusted the P-values from association test withmultiple
STRs using Bonferroni method and we selected the lowest P-value.
Then we used the P-values (one per gene) from all genes as input to
“p.adjust” function in R to get final Q-values for each gene, with “BH”
method. At last, we used alpha level of 10% to get all significant STR-
gene pairs. We also repeated the above procedure after shuffling the
sample identifiers, as a negative control.

Identification of 3′aSTR
Starting with the 445 LCL BAM files mentioned above, we first con-
verted them to bedGraph files using BEDTools v2.27.1102, and only
uniquely mapped reads were included. We then used DaPars v2.0
algorithm120 to get a percentage of distal poly(A) site usage index
(PDUI) value for each transcript in each sample under default settings.
Similar to expression data processing, we included sex, population
structure, and hidden IA-SVA factors to adjust the PDUI values. To
remove lowly expressed genes, we only considered genes retained in
eSTR analysis. The adjusted PDUI data was then used for 3′aSTR
identification, containing 44,742 transcripts.

Using the normalized STR dosage data above, we adopted a
similar method to test the associations between STR genotypes and
transcript PDUI values. For each transcript-STR pair, we used linear
regression to test their association and controlled FDR of 10% at
transcript-level. Similarly, we also permuted the sample identifiers to
repeat the association test for each transcript-STR as a negative
control.

Genomic context enrichment analysis of eSTR and 3′aSTR
To examine the enrichment with epigenetic features of eSTR and 3′
aSTR, we downloaded the peak files of ChIP-seq of histone marks and
CTCF and ATAC-seq of the GM12878 cell line from the ENCODE
project108 (Accession number: ATAC-seq, ENCFF748UZH; CTCF,
ENCFF796WRU; H3K4me3, ENCFF998CEU; H3K27me3, ENCFF291DHI;
H3K9ac, ENCFF981JOU; H3K27ac, ENCFF023LTU; H3K4me1, ENCFF321
BVG; H3K36me3, ENCFF432EMI; H3K4me2, ENCFF283LNH; H3K9me3,
ENCFF725UFY). To validate the results of GM12878 cell line, we also

downloaded peak files of DNase-seq, CTCF ChIP-seq, histone ChIP-seq
of GM06990 cell line (Accession number: DNase-seq, ENCFF239QAE;
CTCF, ENCFF031WEA; H3K27me3, ENCFF307CEJ; H3K4me3, ENCFF
253XQQ; H3K36me3, ENCFF884ZOW) and GM12865 cell line (Acces-
sion number: DNase-seq, ENCFF754VPH; CTCF, ENCFF541DDH;
H3K4me3, ENCFF438JMP). In addition, we also downloaded chromatin
states data of these three cell lines from EpiMap121, which were in 18
categories defined by ChromHMM72.

To quantify the enrichment of eSTRs and 3′aSTRs in these epi-
genetic and genomic features, we adopted GAT v1.3.4 to get the fold
enrichment value and empirical P-values. Then the P-values in each
analysis were adjusted by “p.adjust” function with “BH” method in R
and a significant level was set to 5%.

GWAS hit enrichment analysis of eSTR and 3′aSTR
By randomly sampling n STRs from the STRs in eSTR/3′aSTR analysis
1000 times, where n was equal to the number of observed eSTRs or 3′
aSTRs, we counted the times in which number of STRs tagged by
GWAS lead variants was larger than actual number of eSTRs/3′aSTRs in
LD with GWAS lead variants, and computed an empirical P-value
(Fig. S24).

We also tested that whether eSTR/3′aSTR-associated genes were
enriched in genes implicated by previous GWAS listed in GWAS
catalog24. We first retained GWAS signals with P-value <5 × 10−8. For
each trait, we retrieved the relevant genes from the columns “Reported
Gene(s)” and “Mapped_Gene” and trait with fewer than 10 genes that
were excluded, as described before15. We then performed the gene set
enrichment analysis using clusterProfiler v3.18.0112 and showed the top
traits in Fig. S24.

SNP heterozygosity and STR diversity
SNPheterozygositywas defined as the ratio of heterozygous SNPs over
the length of the human genome80, and themean value was computed
when multiple samples were included, as described in previous
studies43,122. STR diversity was computed as the average number of STR
differences between every two individuals in a given population. For
the NyuWa dataset, high-quality bi-allelic SNP calls were used for SNP
heterozygosity calculation. For deeply sequenced 1KGP dataset, SNP
calls were downloaded from https://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/data_collections/1000G_2504_high_coverage/working/20201028_
3202_phased/ and only bi-allelic SNPs were included. The number of
heterozygous autosomal SNP numbers for each samplewas computed
by VCFtools v0.1.16123. STR diversity was computed by “gtcheck”
function in BCFtools v1.793.

Principal component analysis
To perform PCA, STR genotypes for each sample were first converted
into dosage data (sum of repeat number of two alleles). Only pSTRs
withmajor allele frequency <0.95were used for each PCA, and PCAwas
done by using “prcomp” function in R. Tomatch the sample number of
NyuWa populations to the sample number of 1KGP populations, we
sampled 100 individuals from Northern Han Chinese (CHN) and
100 samples from Southern Han Chinese (CHS) of the NyuWa dataset.
We repeated three times of the sampling procedure and found that the
PCA results (Fig. S25) were stable.

Comparison of pSTR lengths across superpopulations
To identify pSTRs that were significantly different in mean length
across superpopulations,wefirst combined the repeat numbers of two
alleles for each STR locus in each sample. This analysis was restricted
to the 1KGPdataset to avoid potential batcheffect. To restrict to highly
polymorphic STRs, we filtered out loci with heterozygosity <0.1. For
each site, we then usedWilcoxon rank-sum test to compare the length
distributions between each two superpopulations. We adjusted the P-
values using the “p.adjust” function in R with “BH” method.
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Comparisons with adjusted P <0.01 were considered to be significant.
The results were shown using volcano plots (Fig. 6).

Rst levels
We used the definition of Rst from a previous study81. The fixation
index Rst between populations for pSTRs was defined as: Rst = St� Sw

St
,

where St was the average variances of allele length in all individuals
under investigation, and Sw was the average variances in allele length
within each population. Only pSTR loci with heterozygosity >0.1 were
used for Rst calculation. For allele length of each locus, the repeat
number of two alleles was combined.

Identification of highly variable pSTRs within superpopulation
For each pSTR in each superpopulation, we computed the variance of
the loci among all individuals, and loci with top 5% variances were
considered highly variable. In this analysis, only pSTRs with hetero-
zygosity >0.1 (in each superpopulation) were included, as these loci
had higher levels of polymorphisms. Gene set enrichment analysis for
genes enclosing these pSTRs was performed by clusterProfiler
v3.18.0112. Enrichment of these genes for tissue-specific genes was
conducted in TissueEnrich v1.16.0124.

Comparison of pSTR variances across superpopulations
To identify pSTRs with significant change in variance of allele lengths,
for each site, we calculated the differences of standard deviations (SD
diff) of allele length in any two superpopulations of the 1KGP dataset.
We restricted this analysis to pSTRs with heterozygosity >0.1. To
compute empirical p-values, we randomly shuffling the sample labels
and then calculated the fraction of times the absolute value of original
SDdiff is less or equal to the SDdiff generated by the shuffled samples.
In this study, we perform 1000 permutation per site. We adjusted the
P-values using the “p.adjust” function in R with “BH” method. Com-
parisons with adjusted P < 0.01 were considered to be significant. The
results were shown using volcano plots (Fig. S29).

Expansion analysis of pSTR loci
In each superpopulation of the 1KGP dataset, we employed a similar
expansion score metric as Press et al. previously described57 to detect
expanded loci. For each STR locus, the expansion score was defined as
(95th percentiles of allele length −median allele length)/median allele
length. Then we define expanded loci as those with expansion scores
≥257 in each superpopulation.

Statistical analysis
All of the statistical analyses in this study were briefly described in the
main text and performed using R v4.0.3125.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The DNA sequencing data of NyuWa samples used in this study
have been deposited in the Genome Sequence Archive (GSA) in
National Genomics Data Center, China National Center for
Bioinformation/Beijing Institute of Genomics, Chinese Academy
of Sciences, under accession number HRA004185 (https://ngdc.
cncb.ac.cn/gsa-human/). These data are available under restricted
access for privacy protection and can be obtained by application
on the GSA database website (https://ngdc.cncb.ac.cn/gsa-
human/) following the guidance of “Request Data” on this web-
site. These data have also been deposited in the National Omics
Data Encyclopedia (NODE) of the Bio-Med Big Data Center,
Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, under accession number OEP002803 (http://www.

biosino.org/node). The user can register and login to this web-
site and follow the guidance of “Request for Restricted Data” to
request the data. A full list of pSTRs generated in this study has
been deposited in the Genome Variation Map (GVM) in National
Genomics Data Center, China National Center for Bioinformation/
Beijing Institute of Genomics, Chinese Academy of Sciences,
under accession number GVM000464. The user can contact the
corresponding author to apply for permission to access this data.
The reference genome GRCh38 used in this study is available at
https://console.cloud.google.com/storage/browser/genomics-
public-data/resources/broad/hg38/v0/. The alignment files for the
1KGP dataset are available at https://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/data_collections/1000G_2504_high_coverage/. Genotype
data for SNPs and indels for the 1KGP dataset is available at
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/
1000G_2504_high_coverage/working/20201028_3202_phased/.
RNA-seq data of the GEUVADIS Project is available at https://www.
internationalgenome.org/data-portal/data-collection/geuvadis.
The chromatin states data for GM12878, GM06990, and GM12865
cell lines is available at https://personal.broadinstitute.org/cboix/
epimap/ChromHMM/observed_aux_18_hg38/CALLS/. GWAS Cata-
log variants are available at https://www.ebi.ac.uk/gwas/docs/file-
downloads. Results of STRs in LD with GWAS SNPs, QTL analyses,
and expansion analysis generated in this study are provided in the
Supplementary Data file and are also available from a public
website (http://bigdata.ibp.ac.cn/STR).

Code availability
Analysis scripts for reproducing the analysis and figures in this study
are provided in the GitHub repository: https://github.com/YiweiNiu/
STR_2022/releases/tag/v0.1.
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