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Learning naturalistic driving environment
with statistical realism

Xintao Yan 1,6, Zhengxia Zou1,4,6, Shuo Feng 1,2,5, Haojie Zhu1, Haowei Sun 1 &
Henry X. Liu 1,2,3

For simulation to be an effective tool for the development and testing of
autonomous vehicles, the simulator must be able to produce realistic safety-
critical scenarios with distribution-level accuracy. However, due to the high
dimensionality of real-world driving environments and the rarity of long-tail
safety-critical events, how to achieve statistical realism in simulation is a long-
standing problem. In this paper, we developNeuralNDE, a deep learning-based
framework to learn multi-agent interaction behavior from vehicle trajectory
data, and propose a conflict critic model and a safety mapping network to
refine the generation process of safety-critical events, following real-world
occurring frequencies and patterns. The results show that NeuralNDE can
achieve both accurate safety-critical driving statistics (e.g., crash rate/type/
severity and near-miss statistics, etc.) and normal driving statistics (e.g.,
vehicle speed/distance/yielding behavior distributions, etc.), as demonstrated
in the simulationof urbandriving environments. To thebest of our knowledge,
this is the first time that a simulation model can reproduce the real-world
driving environment with statistical realism, particularly for safety-critical
situations.

Autonomous driving technologies are revolutionizing the future of
transportation systems in unprecedented ways and speeds. However,
safety remains the key challenge for the development and deployment
of highly automated driving systems1,2. Simulation provides a con-
trollable, efficient, and low-cost venue for both developing and testing
autonomous vehicles (AV)3,4. But for simulation to be an effective tool,
statistical realismof the simulated driving environment is amust2,4–7. In
particular, the simulated environment needs to reproduce safety-
critical encounters that AV might face in the real world with
distribution-level accuracy. Unfortunately, the real-world naturalistic
driving environment (NDE) is spatiotemporally complex and highly
interactive. Therefore, how to achieve statistical realism for such
simulators is a long-standing problem in the field.

In recent years, great efforts have been made in developing
simulators for autonomous driving systems. Thanks to rapid advances

in artificial intelligence (AI), computer vision and graphics, and
high-performance computing devices, accurate vehicle dynamics,
photorealistic rendering, and realistic sensor simulation are nowbeing
realized and accessible. Some well-known simulators include Intel’s
CARLA8, Google/Waymo’s CarCraft9 and SimulationCity5, Tesla’s
simulator, Microsoft’s AirSim10, NVIDIA’s DRIVE Sim11, Baidu’s AADS3,
and Cruise’s simulator, etc. Despite the above efforts and advance-
ments, these simulators mainly focus on the fidelity of the vehicle
rather than the driving environment, especially for the background
road user behavior. The behaviors of background agents are
either replayed from logged data or simulated using oversimplified
heuristic rules, which leaves a significant gap between the simulation
and the real-world driving environment.

The key to high-fidelity NDE is accurate modeling of human
driving behavior. Microscopic traffic simulators, which mimic the
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interactive agent behaviors through a combination of physics-driven
models and hand-crafted rules, such as car-following models12,13, lane-
changingmodels14,15, gap-acceptancemodels16, etc., have been studied
and developed in the transportation engineering domain for decades.
Some well-known traffic simulators are SUMO17, VISSIM18, and
AIMSUN19. Due to the limited capability of the underlying parametric
models and manually encoded rules, the model fidelity is constrained.
Many attempts have been made by using neural networks20–25,
Markovian-based models6,26, Bayesian networks27,28, and game
theory29, etc., to achieve better performance in modeling specific
behaviors (e.g., car-following) or specific scenarios (e.g., unprotected
left turn). However, they can hardly be generalized and scaled to
model complex urban environments and highly interactive scenarios.

The focus of this study is to build a high-fidelity simulator that is
statistically representative of real-world driving environments, parti-
cularly for those long-tail safety-critical events. Especially, we aim to
produce safety-critical events with distribution-level accuracy,
including both crashes and near-misses, which are critical for training
and testing AVs. This differentiates our proposed NeuralNDE model
from most existing simulators based on imitation learning (including
generative adversarial imitation learning)30–36, where statistical realism
is hardly considered and cannot be achieved. For example, the crash
rates of these simulation environments are significantly higher (e.g.,
SimNet33) than that of real-world traffic. Moreover, these methods can

only generate short-time simulations in the order of a few seconds
(e.g., D2Sim36), which limits the capability of full-length trip training
and evaluation of AVs. To reproducehigh-fidelity safety-critical events,
there are also methods proposed based on real-world event recon-
struction. For example, the researchers constructed the simulation
environment based on real-world fatal collision events from various
data sources including police reports37. However, it may be difficult to
reconstruct near-miss events using this method since the information
needed for reconstruction is usually not available. Therefore, these
reconstruction-based methods and our learning-based method serve
to complement each other when building high-fidelity simulators.

The lack of statistical realism for simulation can potentially mis-
lead AV development in both training and testing. An illustration
example is shown in Fig. 1a. Consider a roundabout environment that
includes multiple vehicles. At time t, a vehicle (vehicle 1) is circulating,
and another vehicle (vehicle 2) is about to enter the roundabout. Their
potential future positions are denoted by shaded blue areas, and they
have a probability to collide if vehicle 2 fails to yield. Assume the
distance between the two vehicles in the real world follows certain
distribution as shown by the red curve and the simulated results are
the dashed blue curve. This statistical difference, i.e., distribution
inconsistency between the real world and simulation, will lead to an
underestimation of vehicle crash rate and therefore provide optimistic
estimates of AV safety performance. Also, since the distance between
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Fig. 1 | Modeling naturalistic driving environment with statistical realism.
a Statistical errors in simulation may mislead AV development. b The underlying
naturalistic driving environment distribution is highly complex and in a high-
dimensional space since it involves multiple agents and long-time horizons. The
simulation environment needs to achieve statistical realism, i.e., distribution-level
accurate statistics regarding human driving behaviors in both normal and safety-

critical driving conditions. cMajor challenges for modelingmulti-agent interaction
behaviors and constructing naturalistic driving environments. The challenges
include the “curse of dimensionality” for multi-agent highly interactive behaviors,
the “curse of rarity”38 of safety-critical events in the realworld, and the “distribution
shift” for long-time simulations.
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vehicles in the simulation environment is not consistent with the real
world, an AV agent trained in it might not fit in real traffic due to the
large sim-to-real gap. In real-world driving environments, instead of
two agents, multiple human drivers are continuously interacting with
each other and their states are progressively evolving for a long-time
horizon. Therefore, the underlying joint NDE distribution is extremely
complex and in a very high-dimensional space as shown in Fig. 1b. The
goal of NDE modeling is to achieve distribution-level accuracy under
both normal driving and safety-critical situations. Therefore, a wide
range of environment statistics, for example, vehicle speed and dis-
tance distributions, crash rate, crash type and severity distributions,
near-miss measurements, etc., need to be consistent with the
real world.

The challenges of modeling NDE with statistical realism mainly
come from three aspects as shown in Fig. 1c. The first challenge is from
the “curse of dimensionality”. The real-world driving environment is
highly interactive and spatiotemporally complex with large numbers
of road users and long-time horizons, which make NDE modeling a
very high-dimensional problem. The second challenge is from the
“curse of rarity”38. Since safety-critical events (e.g., crashes) rarely
happen in the real-world driving environment (on average 10�6 cra-
shes per driving mile for human drivers39), modeling such rare events
in high-fidelity requires anextremely highprecision of themicroscopic
behavior. The compounding effects of the “curse of rarity” on top of
the “curse of dimensionality” in the real world NDE will make it even
more challenging38. The third challenge is from the “distribution
shift”30, which is particularly critical for learning-based simulators.

Short-term and small modeling errors may accumulate both in space
and time, which might lead to out-of-distribution behaviors like fre-
quent offroad, unrealistic collision, or even the collapse of the entire
simulation. Moreover, due to the highly interactive nature of the
driving environment, unrealistic behaviors of a single agentwill impact
and propagate to all agents in the simulation.

In this paper, we solve this long-standing problem by developing
NeuralNDE—a novel deep learning-based framework for simulating
Naturalistic Driving Environment with statistical realism. The overview
of the proposed framework is shown in Fig. 2a. We frame the simula-
tion modeling under an imitation learning paradigm with deep neural
networks under the supervision of large-scale real-world demonstra-
tion. The behaviormodeling network takes in all roadusers’past states
within a historical time window as input and predicts their joint dis-
tribution of future actions. We leverage the recent advances in fun-
damental models (e.g., GTP40 and BERT41) and use Transformer as the
backbone of the behavior modeling network to characterize multi-
agent interaction behaviors. The behavior modeling network can
achieve distribution-level accuracy in normal driving conditions,
however, it cannot achieve such accuracy in safety-critical conditions,
due to the rarity of safety-critical events in the training data, whichwill
lead to inaccurate statistics like unrealistically high crash rates. To
tackle this issue, a conflict critic mechanism is introduced during the
inference time as shown in Fig. 2b. It will monitor the generated tra-
jectories, and if there is a potential conflict, there is a certain prob-
ability to accept vehicles performing dangerous behavior, which
makes NeuralNDE capable of realizing accurate safety-critical
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Fig. 2 | The proposed NeuralNDE framework. a The framework and training
pipeline of theNeuralNDE. Two types of loss, i.e., imitation loss and adversarial loss,
will be backpropagated to train the behavior modeling network to learn multi-
agent interactive behaviors. The adversarial loss will also be used to train the dis-
criminator for distinguishing between real-world and simulated trajectories. The
safety mapping network is pretrained and fixed when training the behavior mod-
eling network and the discriminator jointly. b Demonstration of the behavior
modeling network, conflict critic module, and safety mapping network during
inference time. The behavior modeling network predicts the action distribution of
each vehicle. In safety-critical situations, predictions can be inaccurate and lead to
unrealistically high crash probability, because the training data is overwhelmingly

from normal driving situations. Therefore, the safety mapping network will guide
vehicle behavior and rectify their actions in such situations. With a certain prob-
ability, we will accept the generated conflict without passing it to the safety map-
ping network. The acceptance probability is trajectory-dependent and will be
calibrated to fit ground-truth safety-critical statistics (e.g., crash rate and crash type
distribution). Therefore, the conflict critic module controls the occurring fre-
quencies and patterns of dangerous driving behavior during the simulation.
c Illustration of the simulation process. The historical states of all road users will
pass through the behavior modeling network, conflict critic module, and safety
mapping network to generate the states at the next timestep. This process will
proceed progressively to simulate the driving environment.
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statistics. Otherwise, the generated behaviors will be guided and rec-
tified by the safety mapping network to resolve the conflict. The dif-
ferentiable safety mapping network is a neural mapper pretrained
from physics and driving rules to map unsafe behaviors to a feasible
domain of safety. To further overcome the distribution shift issue, we
integrate the generative adversarial training as in GAN42 and GAIL43,
where a discriminator is introduced to be jointly trained with the
behavior modeling network. During the simulation process, as shown
in Fig. 2c, the state of all road users will be updated based on the
behavior modeling network, conflict critic module, and the safety
mapping network in each simulation step to autoregressively generate
the simulation environment.

To demonstrate the effectiveness of our approach, we construct
two multi-lane roundabout environments located in the US and Ger-
many, respectively, using real-world data. An illustration video is pro-
vided in Supplementary Movie 1. The simulated environment is
validated to be statistically accurate with the real world, including
vehicle instantaneous speed, distance, and yielding behavior. More
importantly, the proposed NeuralNDE can achieve accurate safety-
critical statistics including both crash and near-miss measurements,
for example, crash rate, crash type, crash severity, post-encroachment
time (PET44), etc. The fidelity of NeuralNDE-generated crash events is
further validated against real-world crash videos and police crash
reports. To the best of our knowledge, this is the first time that a
simulation environment can systematically reproduce the real-world
driving environment with statistical realism, particularly for those
long-tail safety-critical events that are critical to AV safety. In addition,
the proposed environment can perform long-time (hour-level) simu-
lation,where theAVunder trainingor testing can continuously interact
with background vehicles. The proposed NeuralNDE should be readily
integrated with different high-fidelity AV simulators, for example,
CARLA5, which focuses on photorealistic rendering and sensor simu-
lations, to provide a realistic traffic environment. Furthermore, it
should be noted that the proposed NeuralNDE model can be used for
other safety-related applications other than AV training and testing.
For example, the proposed NeuralNDE model can be used to estimate
the safety performance of a traffic facility under different traffic flow
conditions.

Results
Dataset
Roundabout is an important and challenging urban driving environ-
ment for AVs. We validate our model using a real-world dataset col-
lected froma two-lane roundabout located at State St. andWEllsworth
Rd. intersection, Ann Arbor, Michigan, USA (abbreviated as AA data-
set). The illustration figure of this two-lane roundabout is shown in

Fig. 3a. This is a busy roundabout with a large traffic volume and the
fourth-highest crash rate in Michigan45. A roadside perception
system46,47 is deployed for real-time traffic object detection, localiza-
tion, and tracking to collect all vehicle trajectory information (e.g.,
position, heading) within the roundabout at 2.5 Hz. The AA dataset
includes both detailed normal and safety-critical driving conditions
data. The safety-critical events data, which includes crash event tra-
jectories, crash videos, police crash reports, etc., are crucial for pro-
viding safety-critical statistics ground-truth to validate the simulation
fidelity. To the best of our knowledge, real-world safety-critical rare-
event data are not available in most existing public datasets, however,
they are essential for constructing and validating the performance of
generated simulation environments. More details about the dataset
can be found in Supplementary Section 1a.

We also use an open dataset, rounD48, which is collected at a two-
lane roundabout located at Neuweiler, Aachen, Germany, to further
demonstrate NeuralNDE performance in normal driving conditions.
Due to space limits, we will use results on AA datasets to illustrate the
performance, and the results using the rounD dataset can be found in
Supplementary Section 2b.

Experiment settings
The proposed NeuralNDE simulator is first initialized with a randomly
sampled trajectory clip of 2 seconds with all agents following their
logged trajectories. Then, all agents’ behaviors are controlled by
NeuralNDE. At each simulation time step, new vehicles will be gener-
ated in each entry lane by following a Poisson process whose arrival
rate is calibrated using the dataset. Also, vehicles will leave the road
network when reaching exit areas. Each simulation episode lasts for
3600 seconds with a simulation resolution of 0.4 seconds. If a crash
happens, the simulation will be terminated early. We use
~15,000 simulation hours of data to validate the statistical realism of
the NeuralNDE, where all data are used for calculating crash-related
metrics and 100 hours of data are used for other metrics. We con-
ducted the experiments on the University of Michigan’s Great Lakes
High-Performance Computing (HPC) cluster using 1000 cores and
2000 GB RAM. It took around 1440 seconds of real-world time to
conduct 3600 seconds of simulation. Therefore, the simulation speed
ratio (simulation time/real-world time) is ~0.4. More details about
experiment settings can be found in Supplementary Section 1b.

Evaluation metrics
To evaluate the fidelity and statistical realism of the proposed Neur-
alNDE, a suite of statistical metrics is examined, with both normal and
safety-critical driving behaviors. The metrics include (1) vehicle
instantaneous speed distribution; (2) vehicle distance distribution; (3)
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Fig. 3 | Illustration figure of the studied location. a Illustration figure of the Ann
Arbor roundabout. b Illustration figure of the yielding area. The vehicle in the red
yielding area is the yielding vehicle. The vehicle in the corresponding conflicting

quadrant is the conflicting vehicle. The yielding distance and yielding speed are
demonstrated in the figure.
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vehicle yielding distance and yielding speed distributions; (4) vehicle
crash rate; (5) vehicle crash type distribution; (6) vehicle crash severity
distribution; (7) vehicle post-encroachment time (PET) distribution.
Detailed definitions for the metrics are introduced in the following
paragraphs.

The instantaneous speed distribution is collected when vehicles
travel in the roundabout circle. The speed is calculated using the
Euclidean distance traveled between two timesteps divided by the
simulation time resolution. To measure the distance between two
vehicles, each vehicle is approximated using three circles with an equal
radius as shown in Supplementary Fig. 1a. Vehicle distance is defined
by the nearest circle centers of two vehicles.We use r = 1:0meters and
l = 2:7 meters in this study.

A vehicle is considered to yield if it reaches a running stop, i.e.,
speed smaller than 5mph, in the yielding area of each entry as shown in
Fig. 3b. Vehicles in the corresponding circle quadrant as shown in
Fig. 3b are conflicting vehicles for the vehicle in the yielding area. The
vehicle yielding distance is the Euclidean distance between (1) the
yielding vehicle at the entrance and (2) the nearest conflicting vehicle
in the roundabout. The speed of the closest conflicting vehicle is
recorded for the vehicle yielding speed distribution.

Two agents are considered in a crash if their rectangle bounding
boxes overlap. The crash rate is calculated by the number of collisions
divided by the total travel distances of all vehicles. The crash type is
adopted from the definition of the National Highway Traffic Safety
Administration49. More information can be found in Supplementary
Section 1c.

We use the change in velocity (Delta-V), a widely used metric to
estimate occupant injury risk to measure the simulated crash severity.
It is defined by the difference between the vehicle impact speed and
the separation speed. The impact speed is the vehicle speed at the
crash moment, and the separation speed is calculated based on the
conservation of momentum. Then based on the Delta-V we can obtain
the occupant injury level. More information can be found in Supple-
mentary Section 1c.

The post-encroachment time (PET) is a widely used surrogate
safety measure for characterizing near-miss events. It is defined by the
time difference between a vehicle leaving the potential conflict area
and a conflicting vehicle entering the same area. We will only consider
the PETwithin the roundabout circle wheremost conflicts happen.We
rasterize the roundabout into 1:3 × 1:3meters blocks, and each block is
a potential conflict area.

We compare the statistics between the simulated results and the
empirical ground-truth data. To quantitativelymeasure the divergence
between two distributions, Hellinger distance and KL-divergence are
used as measurements. For two discrete probability distributions P
and Q, their Hellinger distance DH is calculated as follows:

DH P,Qð Þ= 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

ffiffiffiffiffiffiffiffiffiffi
P xð Þ

p
�

ffiffiffiffiffiffiffiffiffiffi
Q xð Þ

p� �2
,

s
ð1Þ

which is directly related to the Euclidean norm of the difference
between the square root of the two probability vectors. The range of
Hellinger distance is between 0 to 1, and the smaller the value, the
more similar the two distributions. Suppose P is the real-world data
distribution andQ is the simulated distribution, the KL-divergenceDKL

can be calculated as

DKL P,Qð Þ=
X
x

P xð Þlog P xð Þ
Q xð Þ : ð2Þ

KL-divergence ranges from 0 to infinity, and also the smaller the
value, the more similar the two distributions.

We compare the proposed method with SUMO17—a widely used
simulation platform for traffic environments, andother state-of-the-art
methods.Moredetails for the SUMOsimulator settings canbe found in
Supplementary Section 1d.
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Statistical realism of normal driving behavior
Since high-fidelity normal driving behavior is the prerequisite for
reproducing accurate safety-critical events, in this section, we will first
validate the statistical realism of normal driving statistics of the pro-
posed NeuralNDE. An illustration video is provided in Supplementary
Movie 2. Vehicle speed and position are direct outcomes of micro-
scopic driving behaviors, and they are critical for both training and
testing theAV. TheproposedNeuralNDE cangenerate accurate vehicle
instantaneous speed distribution as in the real world, as shown in
Fig. 4a. Compared with the SUMO baseline, vehicle speeds in Neur-
alNDE are naturally distributed among the whole range, covering both
low and high-speed situations. Furthermore, NeuralNDE can also
accurately reproduce vehicle distance distribution as shown in Fig. 4b,
reflecting the full distribution of encounters that AV might face in the
real world.

In a two-lane roundabout environment, a highly interactive loca-
tion is at the roundabout entrance where entering vehicles need to
yield to conflicting vehicles within the roundabout. Many real-world
conflicts and crashes occur in this location, and the fidelity of these
safety-critical events depends on the accuracyof the yielding behavior.
Therefore, we will examine the yielding behavior simulated by Neur-
alNDE to further demonstrate its fidelity in modeling human interac-
tions. The yielding behavior depends on the distance to the conflicting
vehicle and the speed of the conflicting vehicle that is traveling within
the roundabout. The results of yielding distance and yielding speed
distributions are shown in Fig. 4c, d, respectively. We can find that
NeuralNDE can accurately replicate human-yielding behavior and sig-
nificantly outperforms the SUMO simulator. Human drivers are natu-
rally heterogeneous and have different characteristics. Different
drivers often exhibit diverse driving behaviors and make different
decisions, for example, somedrivers aremore aggressive andonly give
way when conflicting vehicles are very close while others might be
more conservative. The proposed NeuralNDE is directly learned from
real-world data without hand-crafted rules, therefore, it canmaster the
nuanced yielding behavior of human drivers and generate a realistic
and diverse driving environment.

Statistical realism of safety-critical driving behavior
The key challenge of current AV development is how to handle safety-
critical driving situations occurring in the real world, therefore, the
simulation environmentmust be able to reproduce these long-tail rare
events with high fidelity. In this section, we will examine the perfor-
mance of NeuralNDE in generating safety-critical events,which include

both crash and near-miss situations. The first important statistic is the
crash rate. The ground-truth crash rate of the studied roundabout is
1:21 × 10�4 crash/km (more details can be found in Supplementary
Section 1c). The crash rate of the NeuralNDE is 1:25 × 10�4 crash/km,
which can accurately reproduce the real-world ground truth.

Notonly can theproposedNeuralNDE reproduce an accurate crash
rate, but also the detailed composition of crash types and crash severity
distribution as shown in Fig. 5a and Fig. 5b, respectively. The ground-
truth crash type and crash severity distributions are summarized from
all crash events that happened at this roundabout from 2016 to 2020
based on police crash reports50 (more details can be found in Supple-
mentary Section 1c). These demonstrate that NeuralNDE can generate
accurate and diverse crash events following real-world occurring pat-
terns, which are crucial for comprehensive testing of AVperformance in
different potential crashes. Compared with most state-of-the-art
methods, for example, refs. 30,33–35,51, none of them compared
their simulation results (e.g., crash rates/types/severities) against the
real-worlddata. To thebest of ourknowledge,weare theonly study that
validated the simulated safety-critical statistics with real-world ground
truth. For each crash type, we will further compare NeuralNDE-
generated and real-world crash events in the later section to qualita-
tively demonstrate the fidelity of our approach. These results validate
the capability and effectiveness of the proposed NeuralNDE in gen-
erating accurate crash statistics, which is critical for AV applications.

In addition to crashes, near-miss situations are also important.
Two measurements, vehicle distance, and PET distributions, are
examined to validate the NeuralNDE fidelity. The closest distance
between vehicles objectively characterizes potential conflicts between
them. To validate the near-miss fidelity, we will focus on the vehicle
distance that is smaller than a certain threshold, for example,
10meters is used in this case. The PET is a widely used surrogate safety
measure for identifying near-miss situations. The closer the distance
and the smaller the PET, themore dangerous the situation. The results
of the distance distribution in near-miss situations are shown in Fig. 5c.
We can find that NeuralNDE can replicate the distance in near-miss
situations with high accuracy. Similarly, the simulated PET distribution
canalso accurately reproduce real-world dangerousdriving conditions
as shown in Fig. 5d. These results demonstrate that in addition to
crashes, NeuralNDE can also characterize real-world near-miss statis-
tics, which validates the modeling accuracy of the proposed method
regarding vehicle safety-critical behaviors.

To validate the effectiveness of each module of the proposed
framework, we conducted ablation studies and the result can be found
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in Supplementary Section 2a. It demonstrates that the Transformer-
based behavior modeling network and the generative adversarial
training technique are important for modeling multi-agent interaction
behavior, and conflict critic module and safety mapping network are
essential for generating realistic safety-critical events.

Generated crash events
The proposed NeuralNDE can generate complex and diverse interac-
tions that happen in real-world traffic. Human drivers naturally exhibit
different characteristics and spontaneously interact, negotiate, and
cooperate to navigate through the roundabout, as shown in Supple-
mentaryMovie 1. During vehicle interactions, crashesmay happen due
to different reasons, for example, failure to yield, improper lane usage,
etc. In this section, we showcase three generated crashes by Neur-
alNDE. By comparing them with real-world crash events, we can
demonstrate that NeuralNDE can generate realistic and diverse crash
patterns. These results further validate NeuralNDE fidelity on vehicle
safety-critical behaviors which are very difficult to model. The illus-
tration figures of the three crash examples with corresponding real-
world crash events are shown in Fig. 6. The video version of these
events can be found in Supplementary Movie 3.

The first case is an angle crash caused by failure to yield as shown
in Fig. 6a, where themain image denotes the crash event generated by
NeuralNDE, and the image in the red box is a real-world crash event.
For the NeuralNDE results, vehicles’ current states and their past tra-
jectories are shown by rectangles and lines, respectively. For better
visualization, only vehicles that are of our interest are shown in colors
and other vehicles are shown in gray. In this case, vehicle #1 (shown in
blue) is circulating within the roundabout, and vehicle #2 (shown in
pink) is at the south entrance. We can find that vehicle #2 fails to yield
to the right-of-way of vehicle #1, and chooses to enter the roundabout
aggressively. As a result, vehicle #1 cannot decelerate in time and a

crash happens. The generated crash is very similar to what would
happen in the real world as shown by the images in the red box of
Fig. 6a. As captured by the roadside camera, vehicle #2 at the entrance
fails to yield and finally crashed with vehicle #1 within the roundabout.

The second case is a sideswipe crash caused by improper lane
usage as shown in Fig. 6b. In this case, two vehicles enter the round-
about from the west entrance side by side. Vehicle #1 (shown in blue)
drives in the inner lane and vehicle #2 (shown in pink) drives in the
outer lane. When they are approaching the south part of the round-
about, vehicle #2 recklessly steers into vehicle #1’s lane and leads to a
crash. This type of improper lane usage crash also frequently occurs in
the realworld. As shownby the images in the red box of Fig. 6b, vehicle
#1 also improperly intrude into the lane of vehicle #2, causing a crash
to happen.

The third case is a rear-end crash caused by failure to stop within
assured clear distance. In this case, vehicle #1 (shown in blue) is
stopped and waiting to enter the roundabout, while vehicle #2 (shown
in pink) fails to maintain a safe distance from vehicle #1 and causes a
rear-end collision. The NeuralNDE-generated crash is very similar to
the crash event happening in real traffic as shown in Fig. 6c. From these
results, we can find that NeuralNDE can generate realistic crash events
that occur in the real world. The ability to reproduce these rare safety-
critical events is essential for AV testing.

Model scalability
Modeling a large traffic network is more challenging than modeling
individual scenarios because of two reasons: 1. It will be difficult to
obtain full trajectory data for all vehicles in the network; 2. Error
accumulation issuemay becomemore noticeable because the elapsed
time for each agent will be longer. The key idea for extending to a
traffic network is that a large network can be decomposed into sub-
areas, where critical subareas (e.g., intersection, roundabout, highway
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entrance and exit, etc.) that involve complex interactions will be con-
trolled by NeuralNDEmodels, and other subareas (e.g., road segments
connecting different scenarios, etc.) can be controlled by traditional
rule-based models. Therefore, we only need to have trajectory data to
build NeuralNDE models for those critical nodes in a large network,
and connect these nodes with links that are modeled by traditional
rule-based approaches (for example, car-following and lane-changing
models).

As a proof-of-concept, we build a “network”, as shown in Fig. 7,
that involves two scenarios, i.e., a four-way stop sign-controlled
intersection and a two-lane roundabout. We use SUMO17 simulator to
generate vehicle trajectory data and use it as the ground truth of the
NDE. We assume the traffic network is not fully perceptional and we
only have vehicle trajectory data in the intersection and roundabout
areas. Therefore, these two areas are controlled by trained NeuralNDE
models, and the transition areas between the two scenarios are con-
trolled by rule-based IDM car-following model13 and SL2015 lane-
changing model17. The proposed method can generate high-fidelity
simulation, as shown in Supplementary Movie 4. More details about
experiment settings can be found in Supplementary Section 1f.

We simulate the network and collect the data in the intersection
and roundabout areas to quantitively evaluate the performance. The
simulated network can still achieve statistical realism and the results

are discussed below.We run around 100 hours of simulation to collect
the data. For the intersection area, we evaluate vehicle instantaneous
speed and distance distributions to demonstrate the performance of
normal driving behavior, as shown in Fig. 8a, b, respectively. From the
results, we can find that the simulated distribution is consistent with
the ground truth. We further validate the statistical realism of the
safety-critical driving behavior. The results of vehicle distance in near-
miss situations (smaller than 10meters) andPETare shown inFig. 8c, d,
respectively. We can find that the proposed method can replicate the
ground-truth with high accuracy.

For the roundabout area, the vehicle instantaneous speed, dis-
tance, yielding speed, and yielding distance results are shown in
Fig. 9a–d, respectively. The safety-critical events metrics (vehicle dis-
tance in the near-miss situations and PET) are shown in Fig. 9e, f, which
also demonstrate satisfactory performance. These results serve as a
proof-of-concept to demonstrate the performance and scalability
potential of our proposed NeuralNDE models for simulating large
traffic networks.

Discussion
The proposed NeuralNDE demonstrates promising performance for
modeling a complex urbandriving environmentwith statistical realism
for both normal and safety-critical driving conditions. To the best of
the authors’ knowledge, this is the first time that a simulation envir-
onment can be statistically representative of the real-world driving
environment. More importantly, it can accurately characterize long-
tail rare-event statistics, for example, crash rate, crash type, and crash
severity distributions, which are very difficult to achieve but will
notably influence AV training and testing accuracy.

For simulation-based AV testing, there are two critical problems
that need to be solved. The first one is how to build a high-fidelity
simulation environment and the second one is how to develop an
accelerated testing methodology that can evaluate the AV perfor-
mance accurately and efficiently. This work is focusing on the first
problem, where the high-fidelity simulator is a prerequisite and foun-
dation for simulation-based AV testing applications2,4,52. In our prior
works2,4, we have developed accelerated testing methodologies that
use a purely data-driven NDE model, which can be replaced with the
high-fidelity NeuralNDE. We should note that human-driven vehicles
might behave differently if they are interactingwith anAV53. Therefore,
further development and enhancement for NeuralNDE might be
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Fig. 7 | Proof-of-concept for modeling a road network. It involves two scenarios,
i.e., a four-way intersection and a two-lane roundabout, The areas denoted by red
rectangles are controlled by NeuralNDEmethods, and the areas denoted by yellow
rectangles are controlled by model-based methods.
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required in the future to consider the AV influences on surrounding
vehicles.

Methods
Behavior modeling network
We frame the behaviormodeling via imitation learningwith the help of
large-scale real-world offline demonstrations. Given a large-scale col-
lection of real-world vehicle trajectory data, we aim to jointly model
both vehicle-to-vehicle interactions and their long-term state trajec-
tories within a certain temporal range. In our framework, we consider
each vehicle instance as an agent with stochastic actions and future
stateswhere the actions and statesof each agent are not only related to
its own historical trajectories, but also to that of all other agents.

Suppose sti and ati represent the state vector (e.g., location, pose,
vehicle size, etc.) and action vector (e.g., acceleration, yaw rate, etc.) of
ith agent at timestep t. Sτ:t

N = fst�τ + 11 , . . . st1, . . . s
t�τ + 1
N , . . . stNg represents

a collection of the state trajectories of allN agents from all τ timesteps
ahead of the current time t. The modeling of all agents’ future actions
can be thus essentially considered as a conditional probabilistic
inference problem, i.e., to estimate the joint distribution of actions
from all agents pðat1, . . . ,atN∣Sτ:t

N Þ given their historical states as condi-
tional inputs. To accurately model the joint distribution, the Trans-
former model is used as the backbone of our behavior modeling
network. Transformer models originated from the field of natural
language processing54, and have revealed remarkable performance in
many applications, including computer vision55, bioinformatics56, and
multimodal data generative modeling57.

There are three advantages tomodeling each agent as a “token” in
the language model. The first advantage is that the Transformer is
naturally suitable for modeling long-term interactive behavior in a
multi-agent environment. The self-attention mechanism is capable of
characterizing inter-token relations, which model the interaction
between agents. The position-wise feed-forward network in the
Transformer can capture intra-token information, whichmeasures the

influenceof the historical states of each agent on their future behavior.
The second advantage ismodel scalability. In this study, ourmodel can
handle up to 32 objects simultaneously, considering the size of the
roundabout and for the convenience of experiments. However, the
framework we designed should be able to handle a much larger
number of objects, as each agent in the simulation is modeled as a
“token”. It has been shown in previous studies58,59 that the Transformer
can handle up to thousands of “tokens”. The third advantage is the
permutation invariant property. TheTransformer block is permutation
invariant to the order of tokens. Therefore, by modeling each agent as
a token, we do not need to specify the order of agents, which are
geographically located in a two-dimensional space (i.e., on a road),
making it difficult to order them in a one-dimensional space (i.e.,
determine the token order in input).

At each timestep of modeling, the behavior modeling network FM
takes in the historical states Sτ:t

N of all agents and is trained to jointly
predict their future actions (at1, . . . ,a

t
N). Instead of predicting deter-

ministic actions values, we predict the stepwise action distributions
and consider distribution as amulti-variable Gaussian over their action
space:

p Sτ:t
N

� �
=FM Sτ:t

N

� �
∼N μt

a,i= 1...N,Σ
t
a,i= 1...N

� �
, ð3Þ

where p Sτ:t
N

� �
is the joint action distribution and μt

a,i= 1N and Σt
a,i= 1N are

the mean and covariancematrix of the Gaussian distribution. After we
obtain the joint distribution of actions, a group of action vectors for
each agent are sampled:

at1, . . . ,a
t
N  N μt

a,i= 1...N,Σ
t
a,i= 1...N

� �
: ð4Þ

Then, for each agent, its new state vector st + 1i is determined by a
differentiable state transition function T determined by vehicle

a

Ground truth
NeuralNDE

Pr
ob

ab
ilit

y 
de

ns
ity

Vehicle instantaneous speed (m/s)
0 3 6 9 12 15 180.00

0.05

0.10

0.15

0.20

0.25

: 0.015

: 0.062

b

Ground truth
NeuralNDE

Pr
ob

ab
ilit

y 
de

ns
ity

Distance (m)
0 20 40 60 800.00

0.01

0.03

: 0.009

: 0.055

c

Ground truth
NeuralNDE

Pr
ob

ab
ilit

y 
de

ns
ity

Yielding speed (m/s)
0 3 6 9 12 15 180.0

0.1

0.2

0.3

: 0.030

: 0.092
0.02

d

Ground truth
NeuralNDE

Pr
ob

ab
ilit

y 
de

ns
ity

Yielding distance (m)
0 10 20 30 40 500.00

0.02

0.04

0.06

0.08

: 0.013

: 0.058

e

Ground truth
NeuralNDE

Pr
ob

ab
ilit

y 
de

ns
ity

Distance (m)
0 2 4 6 80.0

0.1

0.3

: 0.066

: 0.160

f

Ground truth
NeuralNDE

Pr
ob

ab
ilit

y 
de

ns
ity

Post-encroachment time (PET) (s)
0 1 2 3 40.0

0.2

0.4

0.6

: 0.033

: 0.116
0.2

10

Fig. 9 | Statistical realismof the roundabout area in the road network. aVehicle
instantaneous speed distribution. b Vehicle distance distribution. c Yielding speed
distribution. d Yielding distance distribution. e Vehicle distance distribution in

near-miss situations. f Post-encroachment time (PET) distribution in near-miss
situations. DH and DKL denote the Hellinger distance and the KL-divergence,
respectively.

Article https://doi.org/10.1038/s41467-023-37677-5

Nature Communications |         (2023) 14:2037 9



dynamics:

st+ 1i =T ati ,s
t
i

� �
: ð5Þ

The above processing will be repeated so that new states of all
agents can be generated in an auto-regressive manner. In practice,
instead of one-step prediction, multiple timesteps (e.g., κ steps) pre-
dictions St:κ

N = fst + 11 , . . . st+κ1 , . . . st+ 1N , . . . st+κN g will be made by the
behavior modeling network. Note that to simulate the uncertainty of
drivers, during the simulation, at each timestep, we will sample from
the joint distribution to determine all agents’ future trajectories and
then simulate forward. Also, our model can be easily extended to
generate multimodal outputs, where several Gaussian distributions
instead of one will be predicted to further improve the uncertainty of
drivers60.

The proposed behaviormodeling network consists of a frequency
encoding layer, an input embedding layer, a Transformer backbone,
and a prediction layer, as shown in Fig. 10a. Detailed network archi-
tecture can be found in the later section. The input embedding layer is
a fully connected layer with weights shared across different tokens.
The Transformer backbone consists of several standard BERT41 layers
stacked on top of each other. Since the action prediction is indepen-
dent of the input order of theN agent, we, therefore, have removed the
“positional encoding”, which is a standard encoding layer in Trans-
formers to capture order-related information for sequence input data.
Also, before the state vectors are input to the input embedding layer,
we adopt the ideas of Mildenhall et al. 61 to use frequency encoding,
which applies a set of sine and cosine basis functions that projects the
vectors to high-dimensional space to improve capturing high-
frequency variation in the state spaces. Suppose γ defines a mapping
function fromR1 toR2L+ 1, where L is the order of frequencies. The state
value s after mapping can be written as follows:

γ sð Þ= s,sin 20πs
� �

,cos 20πs
� �

, . . . ,sin 2L�1πs
� �

,cos 2L�1πs
� �h i

: ð6Þ

To train the model FM with implicit variance, in the prediction
layer, two prediction heads are attached for each input token at the
output end, one for predicting μt

a,i, another for predicting Σt
a,i. The

training of the behavior modeling network can be formulated as a
maximum likelihood estimation process. Given N agents of T time-
steps, the state trajectories within [t � τ, t] are used as input and the
action vectors at time t are used as the ground truth (t = 1, . . . ,T), then
the likelihood function can be written as follows:

p FM
� �

=p s11,s
2
1 , . . . , s

t
i , . . . ,s

T
N

� �
: ð7Þ

For simplification, we assume that there is no correlation
between variables in the multivariate Gaussian distribution, so the
action covariance matrix for each agent is a diagonal matrix, i.e.,

Σt
a,i ≈diagðσt

i,1, . . . ,σ
t
i,DÞ, D is the dimension of the action vector. Then

the joint probability of an action vector ati can be implied as follows:

p sti
� �

=
YD
j = 1

1

2πð Þ12
1
σt
i,j

exp �
μt
i,j � at

i,j

� �2

2ðσt
i,jÞ

2

8><
>:

9>=
>;
, ð8Þ

where μt
i,j represents the predicted jth action value at time t for

ith agent.
We approximate the joint probability distribution pðFMÞ in Eq. (7)

as the multiplicative form of each agent’s marginal probabilities, and
combine it with Eq. (8) to derive the loss function in the negative log-
likelihood form as follows:

LM FM
� �

=
XT
t = 1

XN
i = 1

XD
j = 1

ln σt
i,j

� �
+

μt
i,j � at

i,j

� �2

2 σt
i,j

� �2

2
64

3
75: ð9Þ

The approximation of Eq. (7) will not affect the solution since the
term 1

2 ðμt
i,j � at

i,jÞ
2
=ðσt

i,jÞ
2 in Eq. (9), which represents the expected

prediction accuracy of the actions, can still make the model converge
to the optimal solution. Note that althoughwedon’t have ground truth
for the predicted variance σt

i,j , it can be jointly estimated as implicit
variables along with the mean action μt

i,j during the training process,
where a high uncertainty prediction naturally responds to a large
variance and vice versa. The training details can be found in Supple-
mentary Section 1e.

Conflict critic module
The simulated environmentmust be able to reproduceaccurate safety-
critical driving statistics including both near-miss and crash events.
Although the behavior modeling network can generate realistic con-
flicts, it may not be able to achieve distribution-level accuracy, due
to the rarity of safety-critical events in the training dataset. For
example, the crash rate can be unrealistically high, and the crash type
distribution can be inconsistent with the real-world driving environ-
ment. To tackle this issue, we design a model-based conflict critic
module Fc to control the occurring frequencies and patterns of safety-
critical behaviors during the inference time to achieve statistical rea-
lism, as illustrated in Fig. 2b. The input to Fc are the sampled κ steps
predicted trajectories of all N agents St:κ

N = fst+ 11 , . . . st +κ1 , . . . st+ 1N , . . .
st+κN g generated by the behavior modeling network at the current time
t. The output of Fc is the acceptance probability pa for not passing
through the safety mapping network:

pa = Fc St:κ
N

� �
: ð10Þ

If there is a potential conflict in predicted trajectories St:κ
N , we will

have a probability pa to accept it, and a probability 1� pa to reject it
and let the safety mapping network guide and rectify the dangerous
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driving behavior. The acceptance probability is trajectory-dependent,
which means that for those conflict patterns that have a higher prob-
ability of occurring in the real world, we will have correspondingly
higher pa to accept it. Therefore, by calibrating the Fc function, we can
control the generation process of safety-critical events to match real-
world statistics in both near-misses and crashes. Specifically, in the
study, each crash type will have a specific acceptance probability.
The implementation details and calibrationmethods are introduced in
the following paragraphs.

In this study,we consider vehicle conflicts in a one-stepprediction
for simplicity. Let St+ 1

N denotes all vehicle states predicted by the
behaviormodeling network at the next timestep t + 1. If there is a crash
happening in the predicted trajectory, we will have a certain prob-
ability to accept the crash and generate it, otherwise, the vehicle
behavior will be rectified by the safety mapping network to avoid the
crash. The acceptance probability will depend on the predicted crash
type that happens in St + 1

N andwill be calibrated asdiscussed in the next
paragraph. For the same crash type, the acceptance probability will be
the same. If there is no crash in St + 1

N , the acceptance probability will be
zero. An illustration figure is shown in Fig. 10b. By calibrating the
conflict critic module, i.e., obtaining the acceptance probability pa jð Þ
for different crash types j, we can realize accurate crash rate and crash
type distribution of the simulation environment.

The calibration process is divided into two steps, where the first
step aims to fit the crash rate and the second step tries to fit the crash
type distribution. In the first step, we first assume a uniform accep-
tance probability (pua) for different crash types and try to fit the
ground-truth crash rate. The calibrationprocess is, at thefirst iteration,
making a random initial guess of the uniform acceptance probability
p1
ua 2 ð0,1�, then run simulations to obtain the currentNeuralNDE crash

rate at the first iteration c1. Then linearly update the uniform accep-
tance probability as follows

pi+ 1
ua = cgt � p

i
ua

ci
, ð11Þ

where cgt denotes the desired ground-truth crash rate, and i denotes
the current iteration number. Continue this process until the
NeuralNDE crash rate is close to the ground truth with satisfactory
accuracy. In the second step, we will calibrate the acceptance
probability for each crash type. The acceptance probability pa jð Þ for
crash type j needs to satisfy the following systemof linear equations to
fit both crash rate (Eq. (12)) and crash type distribution (Eq. (13)):

X
j

p jð Þpa jð Þ = pua: ð12Þ

p jð Þpa jð ÞP
jp jð Þpa jð Þ = cgt jð Þ,8j 2 J, ð13Þ

where cgt jð Þ is the ground-truth probability of crash type j, pua is the
uniformacceptanceprobability obtained fromthefirst step, andp jð Þ is
the probability of crash type j occurring in NeuralNDE using the
uniform probability pua. For Eq. (12), the summation of p jð Þpa jð Þ
overall potential crash types j is the overall acceptance probability
considering different crash types. It needs to be equal to the uniform
acceptance probability (pua) obtained in the first step, which can
guarantee the accurate crash rate of the simulation. Therefore, the
acceptance probability pa jð Þ equals to

pa jð Þ=pua �
cgt jð Þ
p jð Þ : ð14Þ

We will use pa jð Þ as the acceptance probability of different crash
types j 2 J for the conflict critic module.

Safety mapping network
To improve the modeling accuracy and achieve statistical realism in
safety-critical conditions, we propose a safety mapping network that
can guide vehicle behavior in safety-critical situations by mapping the
unsafe vehicle behaviors to their closest safe neighbors. The safety
mapping network serves as a safety guard to rectify vehicle behaviors
before an imminent crash. Given the current state and predicted κ
steps future actions of all agents fSt

N,A
t:κ
N g, the safety mapping net-

work FS jointly predicts the rectified actions At:κ,*
N of all agents as fol-

lows

At:κ,*
N =FS St

N,A
t:κ
N

� �
: ð15Þ

If there is an impending crashusing the original action vectorAt:κ
N ,

the safety mapping network will modify the action vector to resolve
the potential conflict. Note that the action rectification will only be
done if the original action vector will result in a predicted crash,
otherwise the action output by the safetymapping network will be the
same as the original action vector.

The safety mapping network is trained to imitate existing model-
based safety guards based on domain knowledge. In this study, for
simplicity and generality, we consider one-step prediction and use a
physics-based safety guard as the training target. The illustrationfigure
is shown in Supplementary Fig. 2. When two vehicles are going to
collide with each other, we resolve the potential conflict by setting a
repulsive force between them. The force is projected to the heading
direction of each vehicle and restricts their action to avoid the crash.
We generate a large number of offline random states-response pairs
based on the above rules. The loss function for training the safety
mapping network can be written as follows:

LS FS
� �

= ∣∣FS St
N,A

t
N

� �
� Â

t
N∣∣1

, ð16Þ

where Â
t
N are the ground truth rectified actions of each agent at time t,

∣ � ∣1 represents the sum of element-wise absolute distance. Since the
action rectification also involves complex interactions between agents,
we also use the Transformer as the backbone of the safety mapping
network. Similar to the behavior modeling network, each agent is
considered as an individual token, and the Transformer is trained to
predict the residue between the rectified and the reference control.
After training, the pretrained safetymapping network will be fixed and
embedded into the framework, therefore, the whole pipeline can be
trained end-to-end as shown in Fig. 2a.

By incorporating the safetymapping network,we canmitigate the
inevitable modeling error of the behavior modeling network in safety-
critical situations. We showed that the safety mapper significantly
reduces the modeling error (e.g., measured by crash rate) by several
orders of magnitude in Ablation studies, while such behavior is
extremely difficult for existing data-driven approaches to master due
to the “curse of rarity” issue discussed previously. Also, it helps to
decouple the safety objective when training the behavior modeling
network and let it focus on realistic multi-agent interaction modeling.
It should be noted that the proposed method is not limited to the
chosen physics-based rule. Different safety guards proposed recently
can also be used, for example, safety envelope-based methods62,
potential force field-based methods63,64, online verification
methods65, etc.

Generative adversarial training
To further improve the realism of the generated trajectories and tackle
the distribution shift issue, generative adversarial training is adopted
when training the behavior modeling network. The key to the gen-
erative adversarial training is a minimax two-player game under which
twonetworkswill contestwith eachother and force the generateddata
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to be indistinguishable from real ones42. During the training, we rollout
forward the simulation for several steps and assume the generated
trajectories can be easily differentiated from real ones if they exhibit
unrealistic patterns (e.g., offroad or other distribution shift behaviors).
To this end, we introduce a discriminator network – a multi-layer
perceptron network, which takes in the state trajectories of an agent
and is trained to distinguish whether the input is sampled from the
real-world dataset or from the simulation. Meanwhile, we force the
behavior modeling network to capture the true distribution of real
trajectories and make generated data indistinguishable from the dis-
criminator side. In thisway, the adversarial loss can bebackpropagated
to the behavior modeling network to further improve the modeling
fidelity.

Suppose D represents the discriminator network, Ŝ∼pRðSt
NÞ

represents a trajectory sampled from the real-world data distribution,
and S∼pGðSt

NÞ represents a trajectory generated from the simulation.
We follow a standard adversarial training pipeline and define the
adversarial loss functions as follows:

Ladv FM,D
� �

= E Ŝ∼pR St
Nð Þ logD Ŝ

� �h i
+ ES∼pG St

Nð Þ log 1� D Sð Þð Þ� �
: ð17Þ

During the training process, since all components are differenti-
able, the networks FM and D can be alternatively updated under a
unified objective. By combining the loss function (Eq. (9)) of the
behavior modeling network FM, our final objective function is defined
as follows:

F*M,D
* = argmin

FM
max

D
LM FM

� �
+β Ladv FM,D

� �	 

: ð18Þ

where FM tries tominimize this objective whileD tries tomaximize it. β
is a pre-definedhyperparameter for balancing theweights between the
two loss terms.

Network architecture
The network architecture of the behavior modeling network is shown
in Fig. 10a. Each road user is considered as a token and the input to the
network is its historical trajectory, i.e., position (x, y coordinates) and
heading (cosine and sine of heading), of all road users within the his-
torical time window. The number of historical steps at the input is set
to τ = 5 with a resolution of 0.4 seconds per step. Then, the input will
pass through the frequency encoding61 layer, inwhichwe apply a set of
sine and cosine basis functions that project the vectors to high-
dimensional space to improve capturing high-frequency variation in
the state spaces. Suppose γ defines a mapping function from R1 to
R2L+ 1, where L is the order of frequencies, we use L=4 in the study. The
input embedding layer is a fully connected layer that converts the state
dimension to the Transformer hidden layer dimension. Then a set of
(N =4) standard BERT41 transformer layers is stacked together. The
dimension of the hidden layer in the Transformer block is 256, the
number of heads in multi-headed attention layers is 4, the dimension
of intermediate layers in the position-wise feed-forward net is 512, the
probability ofdropoutof various hidden layers is0, and theprobability
of dropout of attention layers is 0. Then, the output from the Trans-
former will pass through prediction heads (single layer MLP with 256
neurons) to generate the final output. In practice, we directly predict
the states of each vehicle rather than actions for simplicity. Therefore,
the output of the behavior modeling network is the predicted trajec-
tory, i.e., stochastic position (one prediction head for the mean of
position, one prediction head for the variance of position, and one
prediction head for deterministic heading), of each vehicle in the
prediction time horizon. The number of prediction steps at the output
is set to κ = 5 with a resolution of 0.4 seconds per step.

The discriminator is a four-layer MLP with dimensions
1024*512*256*1. The activation function is LeakyReLU with a slope

equal to 0.2. The input of the discriminator is the trajectory either
from the behavior modeling network or the real-world sample and
the output is a scalar value. Similar to the behavior modeling net-
work, frequency encoding is applied before passing through
the MLP.

The network architecture of the safety mapping network is the
same as the behavior modeling network. The input of the network is
also the position and heading of all vehicles. The safety mapping net-
work is performed frame-by-frame, so the input includes only the
vehicle state at the current step. The output of the safety mapping
network is the position and heading after rectifications that project the
unsafe state to the nearest safe one.

Data availability
The Ann Arbor roundabout dataset that we used to train NeuralNDE is
publicly available at https://github.com/michigan-traffic-lab/Learning-
Naturalistic-Driving-Environment. The ground-truth crash type, crash
severity distributions, and police crash reports are available at https://
www.michigantrafficcrashfacts.org/. The background image of the
simulated Ann Arbor environment is from Google Maps. The rounD
dataset that we used to train NeuralNDE is publicly available at https://
www.round-dataset.com/ for non-commercial usage. The background
image of the simulated rounD environment is also from the rounD
dataset. Source data for figures are provided with this paper.

Code availability
The SUMO simulation platform is publicly available at https://www.
eclipse.org/sumo/. The source code used to analyze experiment
results and generate figures is publicly available at https://github.com/
michigan-traffic-lab/Learning-Naturalistic-Driving-Environment.
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