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Automated optimisation of solubility and
conformational stability of antibodies and
proteins

Angelo Rosace1,2,8,9, Anja Bennett 1,3,4,9, Marc Oeller 1, Mie M. Mortensen5,6,
Laila Sakhnini1,7, Nikolai Lorenzen7, Christian Poulsen3 & Pietro Sormanni 1

Biologics, such as antibodies and enzymes, are crucial in research, bio-
technology, diagnostics, and therapeutics. Often, biologics with suitable
functionality are discovered, but their development is impeded by develop-
ability issues. Stability and solubility are key biophysical traits underpinning
developability potential, as they determine aggregation, correlate with pro-
duction yield and poly-specificity, and are essential to access parenteral and
oral delivery. While advances for the optimisation of individual traits have
been made, the co-optimization of multiple traits remains highly problematic
and time-consuming, asmutations that improve one property often negatively
impact others. In this work, we introduce a fully automated computational
strategy for the simultaneous optimisation of conformational stability and
solubility, which we experimentally validate on six antibodies, including two
approved therapeutics. Our results on 42 designs demonstrate that the com-
putational procedure is highly effective at improving developability potential,
while not affecting antigen-binding. We make the method available as a web-
server at www-cohsoftware.ch.cam.ac.uk.

Over the past few decades, protein-based biologics have risen to
become a key class of therapeutic molecules1,2, as they offer a range of
favourable characteristics, including high specificity, low toxicity and
immunogenicity, and the possibility of replacing or supplementing
endogenous proteins and hormones3. Furthermore, antibodies are
also key reagents in biomedical research and diagnostics, and
recombinant enzymes find crucial applications in industrial
biotechnology.

However, proteins and antibodies destined to research, diag-
nostic, biotechnology, and especially therapeutic applications are

required to endure a wide range of stresses related to manufacturing,
development, shipping, storage, and administration. As these stresses
are not present in vivo, natural proteins and antibodies have not
evolved to withstand them4.

Therapeutic applications in particular, have stringent require-
ments, which include high biological activity at relatively low admin-
istration dosage and frequency, high concentration formulations, and
long product shelf-life5. Compared to intravenous delivery, sub-
cutaneous delivery of biotherapeutics has many advantages for
patients and reduces healthcare costs. However, only about one third
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of currently approved antibodies is administered in this way6. A major
challengewith thisdelivery route is theneed to formulate antibodies at
high concentrations (up to 200mg/mL for some approved antibodies)
to enable the delivery of the required dose in small injection volumes
(~0.5–2.0mL)6. Consequently, insufficient product solubility and the
occurrence of aggregation are bottlenecks preventing subcutaneous
delivery.

Emerging directions in biotherapeutic development, where pro-
gress may provide broad benefits, include oral delivery and inhalation
delivery7. These administration routes would be highly convenient for
patients, andmay facilitate the targeting of specific organs such as the
gastrointestinal tract, the lungs, and potentially the brain. However,
insufficient stability of antibodies is a major obstacle to oral and
inhalation delivery, including denaturation by shear stress in neb-
ulization or low pH in the stomach, and degradation by proteases in
the lung or digestive and microbial enzymes7. Therefore, high con-
formational stability and solubility will be key requirements for next-
generation antibody drugs7,8.

Solubility and conformational stability are among the most
important properties underpinning the developability potential of
biologics, which is defined as the likelihood of a drug candidate with
suitable functionality to be developed into a manufacturable, stable,
safe, and effective drug that can be formulated to high concentrations
while retaining a long shelf-life9–11. Poor solubility is a major bottleneck
for manufacturing10,12 and has been linked to increased binding
polyreactivity13,14, which is emerging as a keydeterminant of attrition in
clinical development15. Similarly, high conformational stability is
essential to ensure efficacy and safety during manufacturing, for-
mulation, storage, shipping, and administration10,16, and various stu-
dies have reported strong correlations of stability and solubility with
production yield17–20.

Solubility and conformational stability also determine colloidal
stability, that is the long-term integrity of a formulation, through their
link with aggregation. Self-association can be triggered via two main
pathways. In one, aggregation hotspots on molecular surfaces drive
the initial intermolecular assembly, forming aggregates that then may
act as seeds to drive further aggregation and may also increase solu-
tion viscosity21,22. In the other, the presence of partially or fully unfol-
ded states lead to the transient exposure of hydrophobic patches that
can elicit the formation of misfolded aggregates23. Therefore, max-
imising solubility and conformational stability can be expected to
translate into reduced aggregation propensity, which is perhaps the
most common of the degradation reactions that a protein can
experience during its biotechnological or therapeutical
development24. Unfolded and aggregated biologics not only loose
activity, but have been reported to be associatedwith increased risk of
inducing immunogenicity upon injection25–27. Therefore, regulatory
agencies require formulations with minimal amount of aggregates at
the end of the formulation shelf-life to grant market approval28,29.

Taken together, the stresses that biologics must endure, and
especially the requirements they need to meet, imply that their bio-
physical properties must often be optimised far beyond the typical
values of natural proteins and antibodies5. While methods of in vitro
directed evolution are routinely employed to optimise binding affinity,
the simultaneous optimisation of multiple biophysical traits remains
problematic30. As the fundamental forces that drive protein folding,
aggregation, and binding are the same, such traits are often conflict-
ing, in the sense that mutations that improve one of them tend to
worsen the others5,31–33.

This process of multi-traits optimization can be compared to
solving a Rubik’s cube, where each face represents one biophysical
property. Changing one face will affect other faces, often detrimen-
tally, and solving a single face is much simpler than completing the
puzzle. In protein engineering, it remains highly challenging to select
mutations that selectively improve properties of interest while leaving

the others unaffected, and there is an unmet need to develop tech-
nologies that enable the simultaneous optimisation of different traits.

Computational approaches offer a promising avenue to generate
such technologies, as they allow for highly controlled parallel screen-
ings of multiple biophysical properties. Although the problem may in
principle be addressable experimentally throughmassive spending on
molecule screening campaigns, this strategy would not be advisable
from an environmental standpoint, and companies and laboratories
worldwide are increasingly scrutinised on this aspect. Conversely,
computer calculations are rapid, inexpensive, and have no material
requirements, while their ability to pinpoint specific mutations redu-
ces the environmental impact of downstream experiments by mas-
sively lowering the number of candidates for screening. Taken
together, these advantages make the implementation of computa-
tional methods in antibody and protein development pipelines parti-
cularly attractive.

In this work, we contribute to addressing this challenge by
introducing a fully automated computational strategy for the simul-
taneous optimisation of solubility and conformational stability, which
have been reported to be conflicting in some cases5,34–36. The pipeline
works by removing surface-exposed aggregation hotspots leading to
poor solubility, and by proposing mutations expected to increase
conformational stability and solubility, thus decreasing the population
of partially or fully unfolded states in solution. The approach leverages
phylogenetic information to reduce false positive predictions and to
prevent the modification of functionally relevant sites. Then, the
pipeline relies on the CamSol method37 to carry out predictions of
solubility changes uponmutation, and on the energy function Fold-X38

for the predictions of the associated stability changes. Both algorithms
have separately been validated on experimental data for a wide range
of proteins and antibodies (CamSol Refs. 4,14,23,37,39–44 and FoldX
Refs. 19,34,45–48). Our method also includes an ad-hoc recipe to
obtain and exploit suitable phylogenetic information for immunoglo-
bulin variable domains, as these are a key class of biologics that,
because of their modular nature, cannot be handled with standard
tools for searching homologs.

We validate our approach experimentally by using it to design
mutational variants of six different antibodies: three nanobodies and
three single-chain variable fragments (scFv), two of which are
approved therapeutics.

Results
The goal of the computational pipeline is to design protein or antibody
variants by predicting combinations of mutations that increase both
conformational stability and solubility, or one of the two without
affecting the other. The method relies on the knowledge of the native
structure of the target protein or on the availability of a goodstructural
model, and on a multiple sequence alignment (MSA) of homologous
sequences. A position specific scoring matrix (PSSM) is then extracted
from the MSA, to provide information on the frequency of the amino
acids observed among homologous proteins at each position of the
input structure.

The algorithm is built to handle input proteins consisting of
multiple polypeptide chains, as well as bound structures where the
binding partner can be excluded from the design. Users are also
allowed to provide additional input parameters as explained below in
the Algorithm Pipeline section.

Phylogenetic information reduces false positive predictions of
stability change
The phylogenetic information is used in the pipeline to enable the
identification of candidate mutations based on their observed fre-
quencies in natural variants of the protein or antibody under scrutiny.
Therefore, these mutations are more likely to be well-tolerated, and
thus less likely to disrupt stability49. We hypothesized that restricting
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the mutational space to those mutations that are enriched in natural
variants will greatly decrease the number of False Positive (FP) pre-
dictions, which can be quantified through the False Discovery Rate
(FDR, see Supplementary Methods).

For stability predictions, we define False Positives as those
mutations predicted to be stabilizing while being destabilizing in
practice, and False Negatives (FN) as the opposite (see Fig. 1A). In the
context of computational design, and in particularof algorithmsaimed
at yielding mutational variants to improve biophysical properties, FNs
can be regarded as missed opportunities. These mutations will not be
suggested by the algorithm, even if they would be beneficial. However,
provided that at least some beneficialmutations are identified, FNs are
not the main concern. FP mutations on the other hand would be sug-
gested by the algorithm, leading to a potential waste of time and
resources in the experimental production and characterization of
designs containing such prediction mistakes. It is therefore of para-
mount importance that a method for the automated design of muta-
tional variants has the lowest possible FDR50.

We decided to assess the performance using a recently published
database of experimentally characterized mutations51, which is a
curated subset of the ProTherm database where inaccuracies and

biases have been removed51–53. This database contains thermodynamic
information on the stability changes caused by 755 point mutations
within 81 different proteins, and it was developed for the specific
purpose of benchmarking computational methods of predicting sta-
bility changes51.

The results of our analysis show that the FDR of the FoldX energy
function can be decreased in a statistically significant way by incor-
porating filters based on phylogenetic information (Fig. 1B). More
specifically, we have screened different parameters for the search of
homologous sequences and different implementations of the PSSM
(see Supplementary Methods and Fig. S1). Our results show that the
FDR of the stability predictions can be decreased from ~26% to ~21%
(p < 0.0001) by restricting the search space to mutations with positive
log-likelihood, that is mutations that are observed at that position
more often than their background probability (i.e., more often than
expected by random chance). The FDR can then be further improved
to ~15% (p < 0.00001) by only considering mutations that both have a
positive log-likelihood and increase the frequency over that of the WT
residue (i.e., positive Δlog-likelihood, Fig. 1B). These results are in line
with strategies of consensus designs54,55, as well as with previously
reported findings18,19. All p-values were calculated explicitly through
random resampling (see Supplementary Methods), which demon-
strates that it is the specific choice of phylogenetic filtering that is
behind this performance improvement, andnot a generic restrictionof
the database size. We also verified that the observed performance
improvement is not a consequence of simply removing many of those
mutations with predicted ΔΔG close to 0, which would be within the
expected error of FoldX (see Supplementary Methods and Fig. S3).

We further verified that similar results can beobtainedwhenusing
a PSSM containing only raw frequency counts, as opposed to log-
likelihood scores (Fig. S1). Such PSSM of raw frequencies is often
referred to as Position Probability Matrix (PPM) or Position Weight
Matrix (PWM). While log-likelihood scores are generally preferable, as
they correct the observed frequencies for the expected background
probability of observing each amino acid by random chance, their
calculations are often unreliable for alignments containing small
numbers of sequences (e.g., <50). Therefore, in cases where the input
protein only has a few homologs, the employment of a PWM provides
more reliable information, and our algorithm automatically switches
to it when less than 50 sequences are contained in the input MSA.

We note that a similar analysis was not possible for the solubility
prediction, as a dataset of experimentallymeasured solubility changes
upon mutation, which is large enough to draw any statistically sig-
nificant conclusions on changes in FDR, is not currently available.
Moreover,while all globular proteinsmust retain good conformational
stability to function, one may expect to find an evolutionary pressure
towards maintaining high solubility only for those proteins that are
expressed to high concentrations, suggesting that the phylogenetic
filtering we implemented may not be as beneficial for solubility
predictions23,56. However, the typical performance of the CamSol
method in ranking protein and antibody mutational variants is high
(Pearson R ≳0.9)4,14,37,39,40,43, thus indicating that the FDR of CamSol
predictions is already low.

In summary, implementing phylogenetic filtering can reduce the
FDR of stability predictions by 11%, at the expense of being left with a
smaller—but typically large enough—mutational space to sample. A
reducedmutational spacemeans that sometimes potentially beneficial
mutations will be left out, but also that the overall pipeline will run
much faster, as it only needs to sample a sub-region of the mutational
space that is evolutionarily grounded.

Algorithm pipeline
Themethod is implemented as awebserver (www-cohsoftware.ch.cam.
ac.uk/index.php/camsolcombination). Therefore, the user interacts
with it through an input form.

Fig. 1 | Phylogenetic information reduces false discovery rate. A Comparison of
the experimental ΔΔG against the FoldX-predicted ΔΔG values. Labels are applied
to the four quadrants of the graph. (FN: False Negatives, TN: True Negatives, TP:
True Positives, FP: False Positives). The Pearson correlation coefficient (R) for the
dataset is also shown. The green quadrants identify mutations whose overall effect
(stabilizing or destabilizing) is correctly predicted. B Bar plot of the FDR of the
FoldX prediction obtained by applying different filtering based on phylogenetic
information (see legend). The PSSMs employed were obtained with HHblits57 using
a coverage parameter of 60 and identity of 95. Statistical significance was calcu-
lated explicitly with random resampling (see Supplementary Methods,
****p <0.0001 and *****p <0.00001).
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Input processing. The required input consists of a protein structure in
pdb format, its type (antibody Fv region or other protein), and the
alignment file(s) to use in the pipeline. If the input protein is not an
antibody or nanobody, the user must provide .hhm or.a3m files
obtained with HHblits for each chain in the input protein that is not
manually excluded from the design. Such files may be obtained by
running a HHblits search with a local installation57, or more straight-
forwardly from the MPI Bioinformatics Toolkit webserver58 by follow-
ing the instructions linked on the CamSol Combination webserver
homepage.

If the input protein is an antibody or nanobody, the user can
choose between a set of pre-compiled alignments of species-specific
antibodies (human or mouse), therapeutic antibodies (post phase-I
clinical trial)59,60, or single-domain antibodies obtained from multiple
camelid species61 (see Supplementary Methods). The need for special
alignments for antibodies is due to their modularity, and high degree
of conservation in the framework regions coupled with high variability
in the binding loops. These features make standard alignment tools
unreliable for antibodies, as an excessive number of gaps is typically
introduced in loop regions. Furthermore, especially when antibodies
are destined to therapeutic applications, it is important to be able to
select candidate substitutions that are observed in the relevant species
(e.g., from sequences of human origins) to reduce the chances of
introducing immunogenic motifs. Similarly, for single-domain anti-
bodies, candidate substitutions must be selected based on alignments
of VH sequences known to be able to autonomously fold and remain
soluble in the absence of a VL partner.

The user can also provide optional parameters to the design cal-
culations. These include residue positions or whole chains to exclude

from the design, the maximum number of mutations to try simulta-
neously, and residues to exclude from the list of potential substitution
targets. For example, the default proceduredoes not introduce certain
chemical degradation hotspots such as cysteines and methionines, as
these are known oxidation sites, and solvent-exposed cysteines may
trigger covalent dimerization. Users may also consider excluding
asparagines, as these are often prone to deamidation or glycosylation.

The algorithm automatically identifies groups of identical chains
that may be present in the input structure. In this way, different
mutations are never suggested on chains that are identical in
sequence, as in practice such chains would be encoded by the same
gene. Identical chains are identified from the seqres field in the header
of the input PDB file, and from the atom sequence only if the seqres
field is not present. In the PDB format, the seqres sequence corre-
sponds to the sequence that was used in the structural determination
experiment, while the atom sequence is the one for which 3D coordi-
nates have been obtained. The two sequences may differ for example
when there are regions of missing electron density. An option is also
provided tomanually input sequence identity specifications, as groups
of chain IDs of identical polypeptide chains, to offer maximum flex-
ibility to accommodate ‘non-canonical’ PDB structures.

When started, the algorithm first calculates a log-likelihood Posi-
tion Specific Scoring Matrix (PSSM) from the MSA (Fig. 2). If the
number of aligned sequences is below 50, a simpler raw frequency
PWM is used instead. The PSSM provides information on which resi-
dues aremost conserved at each position in the protein sequence, and
which mutations are observed in natural variants at each site.

As an example, Supplementary file 1 is the final report of a run on
bacillus licheniformis alpha-amylase (PDB ID 1bli). The PSSM plotted
therein, calculated from an alignment of homologs obtained from the
HHblitswebserver by simplyuploading the sequence58, reveals that the
active site of the enzyme (Asp 231, Glu 261 and Asp 328) is highly
conserved, and so are known ion-binding sites on its surface. Given the
high conservation in the PSSM, no mutation would be tried at these
positions in the automated pipeline. This example shows that incor-
porating phylogenetic information can preserve functionally relevant
residues in automated computational design pipelines, without the
need to manually exclude them from the calculation, which, depend-
ing on the case, may require high domain expertise.

Selection of candidatemutation sites. After processing the input, the
algorithm automatically identifies candidatemutation sites. Candidate
sites for mutation are identified based on their contribution to solu-
bility, as predicted with the CamSol method37, and their level of con-
servation, as obtained from the PSSM (Fig. 2).

First, CamSol is used to calculate intrinsic solubility profiles for
each chain of the input structure. These profiles associate each residue
with a number that reflects its impact on the overall solubility23,37. This
calculation relies solely on the knowledge of the amino acid sequence,
which is extracted from the seqres field of the input pdb file (if present,
otherwise from theatom sequence) to account for the contributions to
the solubility of possible regions with unassigned 3D coordinates.
CamSol predictions rely on a combination of physicochemical prop-
erties of amino acids, including charge, hydrophobicity, and pro-
pensity to form secondary structure elements37. These properties are
first considered at the individual residue level, then averaged locally
across sequence regions to account for the influence of neighbouring
residues, and finally considered globally to yield a solubility score23,39.
This score, which is one number for the whole sequence or multiple
sequences in the caseof a complex39, will later beused to rankdifferent
mutational variants. Intrinsic profiles are used to identify candidate
mutation sites (i.e., residues in the sequence) that contribute strongly
to poor solubility of the protein sequence. At this step, only those sites
that are solvent-exposed on the protein surface are flagged as possible
candidate mutation sites, as buried poorly soluble residues are

PSSM

Check for interacting mutations

Fig. 2 | Schematic representation of the algorithm pipeline. Roman numbers
refer to the subsections of the algorithmpipeline section in themain text. Coloured
in white are the input processing steps, in blue the tools included in the algorithm,
in yellow the core algorithm steps, and in red the output.
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expected within the hydrophobic core of globular proteins. More
specifically, residues are considered solvent-exposed if they have a
solvent exposure of at least 10%, calculated by dividing the observed
solvent-accessible surface area of each residue by that of the amino
acid type under scrutiny in the context of a fully extended Gly-Xxx-Gly
three-peptide37. Typically, a relatively low solvent exposure results in
structurally corrected solubility scores close to zero, because of the
effect of the exposure weight in the CamSol structurally corrected
calculations (see Ref. 37). However, thermal fluctuations may tran-
siently expose such poorly solublemotifs, thus leading to aggregation.
It is therefore important to identify poorly soluble sites that are close
to the surface and may therefore become exposed through thermal
fluctuations. We refer to this group of candidate mutation sites as
identified from the solubility of the sequence.

Second, the algorithm focuses on predicting potential aggrega-
tion hotspots on the protein native state, which are defined as groups
of residues on the surface that create patches of poor solubility. The
prediction is based on theCamSol structurally corrected calculation as
described in detail in Ref. 37. In this calculation, the intrinsic profiles
are modified to account for the proximity of amino acids in the 3D
structure and for their solvent exposure. The corrected profiles are
used to identify those mutation sites that contribute most to the
overall aggregation propensity of possible surface hotspots. We refer
to this group of candidate mutation sites as identified from the solu-
bility of the structure.

Third, also those sites that are relatively well conserved (with
conservation index greater than 0.25, see Supplementary Methods),
and where the frequency of the WT residue is low (log-likelihood ≤ 0,
or in case of a PWM, frequency<0.05) are added to the list of candidate
mutation sites, since they may be stability liabilities and represent
good candidate sites to further optimize solubility and stability. The
lower bound on the conservation index is necessary to avoid flagging
positions that are intrinsically poorly conserved (e.g., within the CDR3
of an antibody). We refer to this group of candidate mutation sites as
identified from conservation.

Fourth, those residues that are exposed on the surface, and that
have PSSM-permitted mutations predicted to increase the solubility
are also added to the list of candidate mutation sites, unless the
position has a conservation index greater than 0.7 and the wild-type
residue is already the consensus residue. This group of candidate
mutation sites is referred to as identified from exposed solubility, as
mutations here can be exploited to further increase the solubility and
stability even if the sites are not predicted as liabilities. If the input
protein has already got many candidate mutation sites in the previous
three classes (maximum total number currently set to 100), then sites
in this latest class arediscarded from the list of candidates to safeguard
computational efficiency.

The typical number of mutation sites in each of these four groups
strongly depends on the protein under scrutiny. The final report from
the webserver contains a table with all identified candidate mutation
sites, which include information on how each site was identified (col-
umn “identified from”, see Supplementary files 1–9).

Last, an option is provided for the user to input custommutation
sites, which, if given, are considered in the next steps of the pipeline
alongside those identified automatically.Custommutation sites can be
exploited for example to remove known chemical or post-translational
liabilities, such as deamidation or glycosylation sites, with mutations
predicted to improve solubility and/or stability.

Single mutational scanning. Once the candidate mutation sites are
identified, all possible amino acid substitutions allowed by the PSSM
are tested as candidate mutations at each site. The user can decide
which criterion to use for allowed substitutions from the filtering in
Fig. 1B. The two options are either all substitutions with log-likelihood
>0 (i.e., observed more than random, positively enriched), or only

those that also increase the frequency from the WT residues (log-
likelihood > 0 & Δlog-likelihood >0), which is the default. Based on the
results in Fig. 1B, the first option should be used in those cases where
too few or no mutations are suggested by the algorithm at the end of
the pipeline when running with the default log-likelihood >0 & Δlog-
likelihood >0.

Allowed substitutions at each site are then singly ranked using the
CamSol intrinsic solubility score, as this calculation is extremely fast4.
Except for mutations happening at non-solvent-exposed sites identi-
fied from conservation, all mutations predicted to decrease solubility
are discarded at this step. The output of this first part of the algorithm
thus consists of a longlist of all PSSM-permitted mutations at all
identified sites, comprising only solubility-improving mutations at
those sites identified based on their low solubility.

This longlist is thenused as the startingpoint for the calculationof
stability change uponmutation with the energy-function Fold-X38. The
energy-function isused to calculate for each longlistedmutation aΔΔG
score. This is the predicted difference in stability (ΔG) between the
wild type and themutant62. Onlymutationswith calculatedΔΔG<0are
predicted to be stabilizing (or at least not de-stabilizing), and conse-
quently further considered in the method pipeline. Therefore, the
shortlist of candidate mutations contains single-point mutants char-
acterized by the difference in CamSol solubility score betweenmutant
and WT (Δ CamSol score), the difference in calculated stability (ΔΔG),
and the difference in frequency (Δlog-likelihood). We are thus left with
a list of mutations that are singly predicted to increase protein solu-
bility and/or conformational stability.

If identical chains were identified in the input processing, the
effect of the shortlisted point mutations is propagated to all chains
identical to the chains on which they had been modelled. This means
that the CamSol score is re-calculated after mutating the sequence of
identical chains, and that the ΔΔG, initially calculated on only one
chain for computational efficiency, is multiplied by the number of
chains in the same group (this approximation is then tested at step (v)
if needed).

Finally, these scores reflecting the changes in solubility, stability,
and conservation are combined into the Mutation Score (see Supple-
mentary Methods), which is used to provide a preliminary ranking of
the single mutations. An intermediate output table is produced, con-
taining the results of the single-mutational scanning. Mutations are
namedwith a single string concatenatingWTamino acid, Chain ID, pdb
residue number, and mutated amino acid (e.g., LA24D to denote a
leucine to aspartic acid substitution at residue number 24 of chain A).
The final report from the webserver contains an extract of this table
with those substitutions that improve the Mutation Score, and scatter
plots showing predicted solubility and stability gains (see Supple-
mentary files 1–9). The full table with all explored substitutions is also
provided by the webserver as a.csv file inside the output zip folder.
Therein, users can find all details of each attempted mutation,
including its calculated contributions to the FoldX total energy (e.g.,
electrostatics, hydrogen-bonds, solvation, etc.).

Combining multiple mutations. The shortlisted mutations are then
combined to create designs harbouring multiple mutations. Before
beginning the combination, the single-point mutants with a negative
Mutation Score (if any) are discarded. Then, all Δlog-likelihood of the
single mutations are normalized, dividing by the standard deviation of
the PSSM, to make them comparable among different chains.

To increase computational efficiency, the mutation combination
process does not re-run all calculations for each possible combination
of mutations, as in particular FoldX requires significant processing
time. In the first instance, point mutations are combined by summing
their ΔΔGs and normalised Δlog-likelihoods, while the intrinsic solu-
bility score is re-calculated from the sequences harbouring all muta-
tions, as the CamSol intrinsic calculation is adequately fast
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(~200 sequences/seconds on a single core23). A combination of muta-
tions isflagged as “potentially interacting” if at least twoof itsmutation
sites are in proximity in the input structure, as assessed from the
contact map that was calculated at the beginning in the CamSol
structurally corrected solubility calculation37 (see Supplementary
Methods). The underlying assumption for this procedure is that
mutations that are distant in the structuremay be expected to yield an
addictive contribution to the stability, or in other words that the
overall stability change can be calculated by summing the stability
changes of the individual mutations. However, this assumption breaks
down when the mutations are close to each other in the structure.
Therefore, combinations containing at least two mutations in proxi-
mity are flagged so that, if they occur in the final shortlist, their pre-
dicted stability can be recalculated by explicitly modelling these
combinations (see step (v)).

Once the three metrics (ΔCamSol score, FoldX ΔΔG, and Δlog-
likelihood) are computed for all combinations, the Mutation Score is
calculated. If multiple identical chains are present in the input struc-
ture, the CamSol and ΔΔG scores are re-calculated as explained in
section (iii). Pointmutations are combined recursively in this way until
the maximum number of simultaneous mutations decided by the user
is reached, or until all identified suitable mutation sites have been
combined, whichever happens first.

To preserve computational efficiency, the combinatorial space is
gradually reduced during the combination process. Starting from the
triple combinations onward, the algorithm considers only the top-
ranking substitution for each candidate mutation site from the single-
mutational scanning, as ranked by their Mutation Score.

We define a group of combinations as the ensemble of all com-
binations with the same total number of mutations (e.g., double
mutants, triple mutants, etc.). Within each group, combinations are
ranked according to their Mutation Score. Because of the addictive
nature of the mutation score, the predicted top-ranking combination
across all groups is almost certainly in the group with the maximum
number of mutations attempted. However, this may not be beneficial
in practice, as with each new mutation the chances of introducing a
false positive in the combination increase. Therefore, a procedure is
implemented to select those groups that embody the best balance
between the number ofmutations and predicted gain in solubility and/
or stability.

The best groups are identified by those points in the recursive
combination process, where the gain of carrying out an additional
mutation becomes less favourable than it has been for the preceding
mutations, as assessed by the growth of the Mutation Score as a
function of the number of mutations (see Supplementary Methods).
This procedure thus identifies one or more groups that embody the
maximum gain with the minimum number of mutations (Fig. S4).
Then, the algorithm creates a final shortlist of designed variants, which
contains the three top-ranking combinations for each of these best
groups, as well as the top-ranking combination from all other groups,
so that at least one combination per total number of mutations is
proposed in the final output for the user to consider.

Check for potentially interacting mutations. If any design flagged as
“potentially interacting” ends up in the final shortlist, then its muta-
tions are explicitly modelled one by one tomake sure that the stability
of the variant is not compromised by unfavourable interactions
between different mutations. This process enables to test the
assumption that the ΔΔG for a combination can be calculated as the
sum of the ΔΔGs of its single-point mutations. Operationally, this is
achieved by carrying out each mutation in the combination under
scrutiny subsequently, using the output model of the previous step as
input, so that the final model contains all mutations.

All mutations considered up to now where singly predicted to be
stabilising (ΔΔG<0). Therefore, if this test discovers a mutation

predicted to be destabilizing (ΔΔG ≥0), it indicates unfavourable
interactions with other mutations that have already been modelled at
nearby positions. If such mutation is found, the algorithm tries to
replace it with another substitution among those that were shortlisted
for the same position by the single mutational scanning step. If
applying this replacement results in a ΔΔG<0, then the alternative
mutation is kept. If this is not the case, the process is repeated to
explore up to three alternative substitutions per position. If no suitable
alternative is found, the disruptive mutation site is removed from the
combination under scrutiny.

After this check, the Mutation Score of the combination is upda-
ted with the new ΔΔG that has been explicitly calculated. If the new
score is lower than that initially predicted by summing the ΔΔG of the
point mutations, a comparison is carried out with all other designs in
the samegroup, asnowadifferent combinationwith a higherMutation
Score might exist. If this is the case, the new top-ranking design is
shortlisted, and the mutation-interaction check is repeated on it. If
needed, this procedure is repeated up to three times for each group.
Ultimately, the best ranking design among those combinations that
have been checked (or onewithout the “potentially interacting” flag) is
returned as the best for its group. This process, therefore, updates the
final shortlist and the predicted best designs.

The final output consists of an html report with a description of
the top-ranking designs, and the key results of each step of the pipe-
line, including graphs and descriptions (see for example Supplemen-
tary files 1–9). A zip folder is also provided containing detailed CSV
tables with the results of all calculations, and themodelled structure of
all top-ranking designs in PDB format.

Experimental validation
After developing thepipeline,wefirst applied it to a nanobody thatwas
isolated from a recently introduced naïve yeast-display library63. This
nanobody, calledNb.b201, binds to human serumalbuminwith a KD in
the high nanomolar range. The automated design procedure was run
by allowing a maximum of 6 simultaneous mutations, with the phy-
logenetic filtering of log-likelihood >0 only, and by using the pre-
compiled MSA of single-domain antibody sequences (see Supplemen-
tary Methods). As input, we used the structure of Nb.b201 without the
antigen, and paratope residues were excluded from the list of candi-
date mutation sites (chain C of PDB ID 5vnw, paratope residue num-
bers: 33,50,52,58,98,102-105).

The first step of the method is to compare the input sequence
with the PSSM of the single-domain antibody MSA (Fig. 3A). Nb.b201
originated from a library based on the consensus sequence of nano-
bodies observed in the PDB63. Therefore, we find that the framework
regions aremostly identical to the consensus sequence (top rowof the
matrix), thus focusing the candidatemutation sites to theCDR regions.
The CamSol structurally corrected profile (Fig. 3B) reveals some small
aggregation hotspots that cluster together on the surface (Fig. 3C), the
larger of which comes from a paratope region in the CDR3, around
residue F105. However, because the paratope regions were excluded
from the design, the algorithm did not directly flag these sites for
mutation. Conversely, using the criteria described in section “(ii)
Selection of candidate mutation sites”, the algorithm identified a total
of 30 possible sites for mutation (Fig. 3C and Supplementary file 2),
some of which are relatively close to the hotspots and may thus pro-
vide compensatory mutations. Of these 30 sites, 7 were shortlisted at
the end of the single mutational scanning step, yielding a total of 17
different point mutations (Fig. 3D). The other sites were discarded
because either no mutation was allowed by the PSSM at that position,
or none of the allowed mutations was predicted to be solubilising by
CamSol, or had a negative FoldX ΔΔG. All mutations at these seven
sites were then combined into multiple designs harbouring up to
6 simultaneous mutations and, following the check for potentially
interacting mutations, the best designs were returned (Fig. 3E).

Article https://doi.org/10.1038/s41467-023-37668-6

Nature Communications |         (2023) 14:1937 6



Based on the analysis, we set out to produce Nb.b201 variants
with the proposed mutations to evaluate their effect on both sta-
bility and solubility (see Supplementary Methods). We decided to
test seven different single mutational variants, so to singly cover
more of the mutations predicted to be beneficial, three double
mutants, and the best predicted triple and quadruple mutants
(Table 1). Although the top-ranking designs contained five muta-
tions (Fig. 3E), we excluded Q1E from experimental testing, as the
nanobody variants were produced in HEK293 cells, which yields
N-terminal pyroglutaminated glutamine (see Table S2 and Supple-
mentary Methods). Therefore, had we tested this mutation, we
would have measured the difference between pyroglutamine and
glutamic acid, instead of the predicted difference between gluta-
mine and glutamic acid. We note, however, that the mutation Q1E is
well-known in the nanobody field, and it was previously shown to be
stabilising or neutral in a highly diverse set of eight nanobodies
(mean sequence identity = 0.67)64, thus suggesting that this pre-
diction is unlikely to be wrong.

All nanobody variants were obtained at high purity (Table S2). The
circular dichroism (CD) spectra of triple and quadruple mutants, as
well as those of the single mutants not contained in the quadruple
mutant, were indistinguishable from that of the WT and fully compa-
tiblewith awell-foldedVHHdomain (Fig. S5). Abiolayer interferometry
(BLI) experiment confirmed that all variants bound their antigen (HSA)
withKD values in the high nanomolar range in agreementwith previous
reports for Nb.b20163 (Fig. S9, Figs. S13–17 and Table S5).

Conformational stability was measured with heat denaturation
using nano differential scanning fluorimetry (nanoDSF, see Supple-
mentary Methods). Strikingly, all variants had an apparent melting
temperature greater than that of theWT (Fig. 4 and Table 1). Themost
stable variant was the quadruple mutant, with an apparent melting
temperature greater than that of the WT by 13.6 °C.

We then attempted to measure relative solubility with poly-
ethylene glycol (PEG) precipitation, using a recently introduced
method65. However, a first experiment carried out with WT and
quadruple mutant revealed that these nanobodies do not precipitate
in PEG-6K at PEG concentrations up to 30% (weight/volume). A mild
drop in soluble concentrationwasobservedonly for theWTat33%PEG
(Fig. S6), a concentration at which the pipetting of the automated
robot starts to become less accurate because of the very high viscosity
of the PEG solution65. While this result hints at a higher relative solu-
bility of the quadruple mutant, it shows that PEG precipitation cannot
be used to measure the relative solubility of all designed variants.
Therefore, we resorted to using ammonium sulfate (AMS) instead of
PEG as a precipitant in the assay. Although the two precipitants work
through different principles, good correlations between these two
types of protein precipitation measurements are reported in the
literature66, and AMS has previously been used to assess the relative
solubility of monoclonal antibodies14. Our results reveal that all
designed variants had a midpoint of AMS precipitation greater than
that of the WT (Fig. 4A and S7). The assay, however, was not accurate
enough to determine the rank-order of all variants with certainty, and

Fig. 3 | Main pipeline steps for Nb.b201. A Representation of the PSSM calculated
fromanalignment of 1396 single-domain antibody sequences. The log-likelihoodat
each position (colour-bar) is used to select candidate amino acid substitutions
(allowed log-likelihood > 0). The sequence above the panels is the wild-type
Nb.b201, residues in red have log-likelihood <0 (T55). The dark red line is the
conservation index (highmeans positionmore conserved). Grey boxes denoteCDR
positions. Green or gold triangles point to mutation sites where at least one can-
didate mutation was shortlisted by the single-mutational scanning step (panel D).
The last two residues (LE) do not have PSSM information, as they belong to a
cloning restriction site. B CamSol profiles of Nb.b201. The CamSol intrinsic profile
is coloured red to blue, where redmeans aggregation-prone and blue aggregation-
resistant. It is common for globular proteins to have large aggregation-prone
regions in their intrinsic profile that drive the hydrophobic collapse during folding.

The structurally corrected profile is coloured in grey/green/magenta, regions of
low negative scores (magenta) are potential aggregation hotspots, regions of high
score (green) are solubility promoting. C The CamSol structurally corrected profile
is colour-coded (see colour-bar) on the surface of Nb.b201. Sidechains shown as
“ball & stick” are identified candidatemutation sites, those labelled in gold or green
are sites where at least one mutation was shortlisted at the single mutational
scanning step, those labelled in green are also found among the top-ranking
designs returned at the end. Figure made with UCSF Chimera. D Results of the
single mutational scanning step as a scatter plot of ΔCamSol score (x-axis) against
FoldX ΔΔG (y-axis, data points are means and error bars are SD over 3 runs) for all
shortlisted mutations (ΔCamSol>0 & ΔΔG<0). E Final designs returned by the
pipeline, ranked as described in the main text.
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the confidence intervals of the fitted AMS50% are typically very broad
(Fig. 4A, S7 and Table 1).

To get more accurate estimates, we carried out measurements of
cross interaction chromatography (CIC, Supplementary Methods)67,68.
Higher retention times (RTs) in this chromatography technique indi-
cate a higher degree of non-specific interactions with the IgG mixture
(IgG pool purified from human serum) immobilised on the resin, or
increased ‘stickiness’. Owing to the strong correlation observed with
solubility measurements, CIC was originally proposed as an assay to
identify highly soluble antibody candidates67. A similar correlationwith
solubility was also reported more recently for a library of 17 mono-
clonal antibodies14. We find that, unlike AMS-precipitation measure-
ments, CIC measurements were highly accurate, with duplicate
experiments yielding virtually identical RTs (Fig. 4B).

Our results reveal that 8 designs, including triple and quadruple
mutants, had better CIC performance than the WT, showing up to
49 seconds decrease in RT (Fig. 4B). Two variants, H53P and H53P
T55G, showed similar performance to the WT, and two others, H53R
and T100R, showed worse performance by 10.1 and 4.1 seconds,
respectively. Notably, these two variants with higher CIC RTs than that
of the WT are both mutations to arginine. Arginine residues in anti-
body CDRs have been associated with reduced specificity by several
investigations60,69–71. Therefore, it is perhaps not surprising that these
arginine variants perform worse in cross-interaction assays than they
do in relative solubility assays such as the AMS precipitation.

Altogether, the results of this validation show that all designed
Nb.b201 variants tested experimentally have improved conforma-
tional stability and relative solubility, and themajority of these designs
also reduced cross-interactions. We also observed statistically sig-
nificant correlations between the in-silico predictions underpinning
variant selection in our pipeline (FoldX and CamSol) and the corre-
sponding experimental measurements (Fig. S8).

To demonstrate the generality of these results, the computational
method was run on two additional nanobodies and three antibody
variable regions (Fv), comprising both VH and VL domains. We selec-
ted two anti-SARS CoV-2-RBD nanobodies, called H11-H4 and H11-D4,
which were obtained by screening a llama-derived naïve library and
further optimised via in vitro affinitymaturation72.We also selected the
CR3022 antibody, which originally was obtained from a SARS CoV-1
patient, but is also able to neutralise SARS CoV-2 and some of its
variants of concern73,74. Finally, we selected the clinically approved
antibodies adalimumab and golimumab (Humira® and Simponi®,
respectively). These two antibodies both target human TNF-α, and
were selected based on a study that characterised the biophysical
properties of all clinical-stage antibodies, where adalimumab had no
self-association or cross-reactivity flags, while golimumab had
several17. The latter three antibodies were formatted as scFvs in
this study.

For all the aforementioned antibodies, the antigen-bound struc-
ture was used as input for the automated design and the most strin-
gent PSSM filtering was applied (log-likelihood & Δlog-likelihood > 0,
see Supplementary Methods for more details). This approach differs
from the one applied to Nb.b201, where the input was the structure of
the nanobody without the antigen, all paratope residues were expli-
citly excluded from the design, and we used the looser PSSM filtering
(log-likelihood > 0 only). We limited the design to amaximum number
of mutations of 5 and 3 for scFvs and nanobodies, respectively
(see SupplementaryMethods formoredetails). In all cases,we selected
the top design with the maximum number of mutations for experi-
mental validation, in addition to several other designs for each anti-
body (Table S3).

Asmostmutations returnedby the algorithmwerewithin theCDR
regions, we carried out an antigen-contact analysis on the bound WT
structures to flag those mutations more likely to impact binding affi-
nity. Three mutations were flagged in this way: L106P in H11-H4 and

Y30G on the light chain of golimumab, both expected to disrupt
binding, and T52S on the heavy chain of adalimumab, expected to be
neutral (see Supplementary Methods). We decided to experimentally
test these flagged mutations anyway, in the context of the returned
top-ranking designswhere they appear.However, in the case of the top
H11-H4 and golimumab designs harbouring the two flaggedmutations
expected to disrupt binding, we also tested the corresponding designs
obtained by excluding such mutations (Table S3).

In total 27 additional antibody variants were tested: the 5WTs and
22 designs. We found that all variants had good purity and expected
MW (Table S2). For each variant, we measured apparent melting
temperature (Tm), cross-interaction chromatography retention time
(CIC RT), and binding affinity (KD) using BLI.

Fig. 4 | Experimental characterisation of designed nanobodyNb.b201 variants.
A Scatter plot of the melting temperature (Tm) against the ammonium sulphate
midpoint of precipitation (AMS50%, used as a proxy for relative solubility). Vertical
error bars are the 95% confidence interval on the fitted AMS50%, horizontal error
bars, which are often smaller than the data point, are standard deviation over two
independent melting experiments (which are shown individually in B). B Scatter
plot of the measured Tm against the cross-interaction chromatography (CIC)
retention time. Data from two independent experiments (black points) are repor-
ted. In both panels the dashed lines are drawn across the mean measurements of
the WT Nb.b201 (red marker).
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Our results revealed that 19of 22designs (86.4%) hadan improved
Tm over that of the corresponding WT (Fig. 5A), thus confirming the
low false discovery rate of our automated design procedure. The lar-
gest improvements in stability for each antibody were ΔTm =9 °C for
adalimumab (5 mutations), 3.1 °C for golimumab (4 or 5 mutations),
6.9 °C for CR3022 (4 mutations), 5.7 °C for H11-D4 (3 mutations), and
6.6 °C for H11-H4 (3 mutations). Two of the three designs with wor-
sened Tm are H11 nanobodies harbouring the mutation T111H. H11-D4
and H11-H4 are closely related nanobodies that are affinity-matured
variants of the sameparental nanobodyH1172. For both, the loss inTm is
small (ΔTm ≥ –0.5 °C). Therefore, the only problematic false positive in
these stability predictions is the A94P mutation in the light chain of
adalimumab, which leads to a loss of 5.5 °C in Tm. Notably, this
destabilising mutation is also present in the two designs with five
mutations, which nevertheless have a Tm 8 and 9 °C greater than that
of theWT (respectively for H:A23K-T52S-W53P-S55G;L:AL94 and A23K-
A40P-S49G-W53P;L:A94P). This finding suggests a strong compensa-
tory effect from the other four mutations.

Similarly, CIC RT results show that all designs have a retention
time comparable to, or better than that of their WT (Fig. 5B). The only
exception is, again, the mutation T111H in the nanobody H11-H4. This
mutation increases the RT by 26.1 s over that of theWT, and by 15.6 s in
the context of the double mutant Y88P-T111H, while Y88P alone
improves the RT in agreement with predictions (ΔRT = –6.6 s). Sur-
prisingly, the same T111H mutation performed on the closely related
H11-D4 is essentially neutral (ΔRT = 2.8 s), suggesting that the local
physicochemical environment plays an important role.

The analysis of the CIC data further reveals that the scFv CR3022
and adalimumab WT already have excellent CIC performance, with a
RT at the low end of the dynamic range of the assay (Fig. 5B). This
finding was expected for adalimumab, as it aligns with previous
reports17. Also expected, was the poor performance of golimumabWT,
whose RT is 1minute and 28 seconds worse than that of adalimumab
WT.Wefind that all adalimumabandCR3022designs haveRTs roughly

comparable to those of their WT, in agreement with these being
already at the low end of the dynamic range of the assay. Conversely,
the golimumab designs improve the RT substantially, with −20.7 and
−54 s for the quadruple and quintuple mutants, respectively. The best
performing single-mutational variant of golimumab, SH52D, improves
the RT by −25.5 s. The golimumab designs showed the biggest
improvement in CIC RT and themostmodest improvement in stability
(ΔTm = 3.1 °C), while the opposite is true for adalimumab designs
(ΔRT = –6.6 s and ΔTm =9 °C). This observation suggests that the
automated design, when operating within the constraint of maximum
five mutations, successfully prioritised mutations that primarily
address the main liability of the antibody under scrutiny.

Finally, measurements of binding affinity at the BLI reveal that
most designs have aKDcomparable to thatof theWT (Fig. S9). Notable
exceptions, with aKDmore than3-foldworse than thatof theWT,were
designs harbouring the two mutations flagged prior to antibody pro-
duction (L106P in H11-H4 and Y30G in golimumab), and all adalimu-
mab designs harbouring the W53P mutation in the heavy chain. More
specifically, as expected from the antigen-contact analysis, the proline
substitution L106P in the CDR3 ablated the binding of H11-H4, while
the Y30G substitution in the light chain of Golimumab increased the
KDby a littlemore than 3 folds, in linewith the removal of an antibody-
antigen hydrogen bond (see Supplementary Methods).

While a loss of affinity is undesirable in antibody engineering,
testing the flagged mutations helped to verify the predictions of the
automated design. The L106P mutation leads to a ΔTm of 0.8 °C and a
ΔRT of −19.8 s, while the Y30G mutation leads to a ΔTm of 0 °C and a
ΔRT of −33.3 s (obtained comparing H11-H4 Y88P-L106P-T111H with
H11-H4 Y88P-T111H and golimumab AH23K-AH40P-SH52D-TH121L-
YL30G with golimumab AH23K-AH40P-SH52D-TH121L, respectively).
The improved ΔRT is in line with the predictions, as these mutations
singly contributed the biggest improvement in CamSol score when
compared to all other suggested single mutations. Similarly, the small
effect onΔTm reflects themodest FoldXΔΔGofonly −0.5 kcal/mol and
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Fig. 5 | Experimental characterisationofdesigns fromfive antibodies.ABar plot
of the melting temperature (Tm) for each variant (x-axis labels). B Bar plot of the
cross-interaction chromatography (CIC) retention time (RT). In both panels, data
from two independent experiments (black points) are reported, and the height of

the bar is their mean. Bars are coloured in groups according to the WT scFv or
nanobody of each variant (see legend), and the bar corresponding to the WT is
hatched. A coloured horizontal dotted line demarks themeasurement of theWT in
each group and serves as a guide to the eye.

Article https://doi.org/10.1038/s41467-023-37668-6

Nature Communications |         (2023) 14:1937 9



−0.01 kcal/mol for L106P and YL30G, respectively (see Supplementary
files 8 and 5, single mutational scanning section therein).

The WH53P mutation in adalimumab is improving stability and
cross-reactivity in agreement with the predictions (ΔTm = 3 °C and
ΔRT = −8.1 s over the WT). However, it led to a substantial affinity loss
even if it was not flagged as it’s not in direct contact with the antigen
(see SupplementaryMethods). In hindsight, the substitution to proline
is highly likely to affect the loop conformation and thus the binding
affinity, especially as the adjacent residue at position 52 is in direct
contact with the antigen. As the WH53P mutation is present in all
adalimumab multi-mutant designs, and so is AL94P, which was unfa-
vourable in regards to Tm, we decided to produce and evaluate a
second round of adalimumab designs consisting of combinations of
the other mutations (Table S3).

These second-round adalimumab designs comprised four triple
mutants, three quadruple mutants, and one quintuple mutant. The
latter contains all mutations returned by the automated design except
forWH53P andAL94P. All 8 designs had amelting temperature greater
than that of the WT, by a minimum of 4.9 °C and a maximum of 8.6 °C
for the triple mutant AH23K-AH40P-SH55G and the quintuple mutant
AH23K-AH40P-SH49G-TH52S-SH55G, respectively (Fig. 5A). All
second-round designs had a CIC RT comparable to that of the WT,
which is already at the low end of the dynamic range of the assay
(Fig. 5B), and bound TNF-αwith a KD at least as good as that of theWT
(Figs. S9, S14 and Table S4).

As a further validation, we benchmarked the predictions of our
method with published experimental data for generic proteins (not
antibodies). Since stability and solubility are crucial properties of
recombinant proteins, there are many reports of experimentally
characterised mutations that improve at least one of these
properties62,75,76. However, ourmethod automatically identifies specific
mutations that should be performed, which are thus unlikely to be
those that were characterised in previous studies. To circumvent this
issue, we looked at Deep Mutational Scanning (DMS) data77. In DMS, a
library of variants is created and introduced into a system inwhich the
genotype is linked to a selectable phenotype. When selection for the
function of the protein is imposed, variants with high activity increase
in frequency, whereas variants with low activity decrease in frequency.
High-throughput DNA sequencing is used to measure the frequency
before and after selection, and a fitness score reflecting the activity of
each variant is calculated77,78. DMS libraries are usually constructed by
mutating one site at the time, often to all 19 alternatives, across the full

length of the protein77. Therefore, fitness scores are typically available
formost of themutations predicted by ourmethod,making thesedata
particularly suitable for a benchmark. Nonetheless, a limitation of such
benchmark is that DMSdata report on the functionality of the protein,
not on its stability and solubility. On one hand, variants with hindered
stability or solubility should express poorly, andhence have lowfitness
scores. On the other, however, variants with the highest fitness scores
are typically not the most stable or soluble, but those with the best
activity. Consequently, mutations suggested by our method should
have higherfitness than randomlyperformedmutations butwould not
necessarily be top-ranking.

We obtained DMS data77 from the work of Kovilakam Sruthi
et al.78, who collated data for seven unrelated proteins from various
sources. We ran the CamSol Combination pipeline on these proteins
by allowing a maximum of one mutation, as fitness scores are only
available for one mutation at a time (see Supplementary Methods).
Sites for mutation are identified automatically by our method based
on their conservation and contribution to solubility (section “(ii)
Selection of candidate mutation sites”). We find that, for all seven
proteins, mutations at these sites correspond to variants with higher
fitness scores than the background distribution of mutations at all
sites (p-value ≤ 10−5, Fig. S10, see Supplementary Methods). The
method then carries out all PSSM-allowed mutations at the identi-
fied sites and shortlists those that are singly predicted to improve
conformational stability and solubility (section “(iii) Single muta-
tional scanning”). For all seven proteins, we find a very consistent
trend, whereby the distribution of fitness scores of shortlisted
mutations is more skewed toward high fitness than that of all DMS-
characterised mutations at the same sites, which in turn is more
skewed towards high fitness than that of all mutations at all sites
(Fig. S10). This trend meets the threshold for statistical significance
(p < 0.05) for four proteins, and for six when comparing fitness
scores of shortlisted mutations to the background of all mutations
(Fig. S10B). We note that p-values greater than 0.05 are associated
with a small number of shortlisted mutations, rather than with a
different trend in the fitness scores of shortlisted mutations
(Fig. S10A, B). Overall, despite the limitation of benchmarking with
DMS data reporting on protein function, we find that shortlisted
mutations are associatedwith high experimental fitness. This finding
suggests that the false discovery rate of our computational proce-
dure is low also for generic proteins, as poorly expressing variants
and mutations that disrupt protein function are not shortlisted.

Table 1 | Experimentally characterised designed Nb.b201 variants

Nb.b201 variant Tm (°C) AMS50% (M) CIC RT (min) ΔTm (°C) ΔRT (s)

WT 70.1 ± 0.05 0.76 in (0.75,0.79) 11.859 ±0.003 0 0

A31D 72.7 ± 0.1 1.25 in (1.20,1.28) 11.543 ±0.014 2.6 ± 0.1 −19.0 ± 1.1

H53P 70.5 ± 0.05 0.94 in (0.82,1.19) 11.889 ± 0.001 0.4 ± 0.05 1.8 ± 0.1

H53R 71.3 ± 0.05 1.40 in (1.31,1.42) 12.033 ±0.002 1.2 ± 0.05 10.4 ± 0.3

T55D 76.6 ± 0.3 1.37 in (1.16,1.47) 11.399 ± 0.003 6.5 ± 0.3 −27.6 ± 0.0

T55G 80.7 ± 0.1 1.22 in (1.04,1.35) 11.588 ±0.003 10.6 ± 0.1 −16.2 ± 0.0

T100K 74.7 ± 0.1 1.47 in (1.45,1.48) 11.736 ±0.001 4.6 ± 0.1 −7.4 ± 0.1

T100R 73.1 ± 0.05 1.25 in (1.07,1.39) 11.932 ± 0.002 3.0 ±0.05 4.4 ± 0.3

A31D T55D 78.5 ± 0.1 1.27 in (1.09,1.42) 11.045 ±0.001 8.4 ± 0.1 −48.8 ± 0.2

A31D T55G 82.9 ± 0.2 1.49 in (1.45,1.51) 11.204 ±0.001 12.8 ± 0.2 −39.3 ± 0.2

H53P T55G 80.4 ± 0.1 1.61 in (1.58,1.65) 11.872 ± 0.002 10.3 ± 0.1 0.8 ± 0.3

A31D H53P T55G 82.0 ± 0.1 1.18 in (1.08,1.22) 11.444 ±0.003 11.9 ± 0.1 −24.9 ± 0.4

A31D H53P T55G T100K 83.7 ± 0.1 1.19 in (1.06,1.38) 11.120 ±0.001 13.6 ± 0.1 −44.3 ± 0.2

WT and rationally designed mutational variants with their measured conformational stability (apparent melting temperature, Tm; apparent because heat denaturation is not reversible), relative
solubility in ammonium sulphate precipitation (AMS50%), and cross interaction chromatography retention time (CIC RT). Values are mean ± standard deviation, except for the relative solubility
column,which reportsfittedAMS50% and lower and upper 95%confidence interval on this fitting parameter (see Fig. S7). Tmwasmeasured in duplicates and reported at a 0.1 °C resolution, when the
two measurements were identical a standard deviation of 0.05 was arbitrarily assigned. Δ are calculated as differences between the value of the variant under scrutiny and that of the
corresponding WT.
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In summary, we validated themethod predictions on six different
antibody fragments, including two approved therapeutic antibody and
three nanobodies, and we benchmarked them against DMS data from
seven unrelated proteins. We tested experimentally a total of 34
designs, plus 8 second-round adalimumab designs. We covered 33
different amino acid substitutions, some of which were tested singly
and others only as part of combinations (Table S3). Most designs had
improved stability and cross-reactivity, and we only identified two
problematic false positive substitutions (AL94P in adalimumab and
T111H in H11-H4). Even if most mutations are in the CDR region, only
one unexpectedly affected the affinity (WH53P in adalimumab), and
this was readily fixed by expressing a second round of designs based
on the same computational predictions. The best designs for each
antibody are reported in bold in Table 2. Taken together, these results
demonstrate that our automated computational pipeline is highly
effective at designing antibody variants with improved developability
potential.

Discussion
In this study, we have presented a fully automated computational
pipeline and associated webserver for the design of conformationally
stable and soluble protein variants, with a particular focus on immu-
noglobulin variable domains.

The simultaneous improvement of stability and solubility is of
high relevance, as these two properties underpin many liabilities that
can hamper the development of biologics, such as aggregation, low
expression yield, or instability upon long-term storage. Furthermore,
very high stability and solubility are required to access new adminis-
tration routes for biologics, such as oral and inhalation delivery.

Our approach combines predictions of these two biophysical
properties with the analysis of phylogenetic information. We have
shown that including phylogenetic information significantly reduces
the false discovery rate of stability predictions by analysing a large
database of experimental data (Fig. 1). Furthermore, of the 34 designs
from 6 different antibodies we tested experimentally, 31 (91%) had an

Table 2 | Experimentally characterised designed antibody variants

Antibody Variant Tm (°C) CIC RT (min) ΔTm (°C) ΔRT (s)

Adalimumab WT 57.9 ± 0.05 10.521 ± 0.011 0 0

AL94P 52.5 ± 0.2 10.514 ± 0.022 −5.4 ± 0.2 −0.4 ± 2.0

SH55G 58.7 ± 0.05 10.509 ±0.008 0.8 ± 0.05 −0.7 ± 0.2

WH53P 60.9 ± 0.2 10.386 ±0.018 3.0 ±0.2 −8.1 ± 0.5

AH23K AH40P SH49G WH53P AL94P 66.8 ± 0.1 10.456 ±0.028 9.0 ±0.1 −3.9 ± 1.1

AH23K TH52S WH53P SH55G AL94P 65.9 ± 0.05 10.427 ± 0.014 8.0 ±0.05 −5.6 ± 0.2

AH23K AH40P SH49G 63.6 ± 0.05 10.495 ±0.025 5.7 ± 0.05 −1.6 ± 2.2

AH23K AH40P SH55G 62.8 ± 0.1 10.495 ±0.000 4.9 ± 0.1 −1.6 ± 0.6

AH23K SH49G SH55G 65.0 ±0.05 10.527 ± 0.026 7.1 ± 0.05 0.4 ± 2.2

AH40P SH49G SH55G 65.1 ± 0.1 10.512 ± 0.029 7.2 ± 0.1 −0.5 ± 2.4

AH23K AH40P SH49G SH55G 65.1 ± 0.05 10.536 ±0.010 7.2 ± 0.05 0.9 ± 1.2

AH23K SH49G TH52S SH55G 66.0 ±0.05 10.534 ±0.009 8.1 ± 0.05 0.8 ± 1.2

AH40P SH49G TH52S SH55G 65.5 ± 0.3 10.490 ±0.014 7.6 ± 0.3 −1.9 ± 1.5

AH23K AH40P SH49G TH52S SH55G 66.5 ±0.05 10.552 ±0.010 8.6 ±0.05 1.9 ± 1.3

CR3022 WT 65.3 ± 0.1 10.545 ± 0.005 0 0

MH40P 66.8 ± 0.05 10.610 ±0.020 1.4 ± 0.1 3.9 ± 1.5

MH40P AL86P 67.0 ± 0.05 10.585 ±0.005 1.6 ± 0.1 2.4 ± 0.6

TH9P MH40P SH89E SH56G 72.2 ±0.2 10.340 ±0.000 6.9 ±0.2 −12.3 ±0.3

TH9P MH40P TL59K AL86P 69.1 ± 0.1 10.620 ±0.000 3.8 ± 0.05 4.5 ± 0.3

TH9P MH40P QH67R TL59K AL86P 72.1 ± 0.1 10.635 ±0.015 6.7 ± 0.2 5.4 ± 0.6

Golimumab WT 62.4 ± 0.05 12.085 ±0.015 0 0

AH40P 63.8 ± 0.05 12.075 ±0.005 1.4 ± 0.05 −0.6 ± 1.2

SH52D 62.5 ± 0.1 11.660 ±0.000 0.1 ± 0.1 −25.5 ± 0.9

AH23K AH40P SH52D TH121L 65.5 ±0.1 11.740 ±0.010 3.1 ±0.1 −20.7 ±0.3

AH23K AH40P SH52D TH121L YL30G 65.5 ± 0.05 11.185 ± 0.035 3.1 ± 0.05 −54.0 ± 3.0

Nb H11-D4 WT 67.6 ± 0.05 11.049 ±0.002 0 0

T111H 67.1 ± 0.05 11.095 ±0.002 −0.5 ± 0.05 2.8 ± 0.2

Y88P T111H 71.7 ± 0.1 11.033 ±0.026 4.1 ± 0.1 −1.0 ± 1.6

Y88P W112I 73.7 ±0.1 10.871 ±0.034 6.1 ±0.1 −10.7 ± 1.9

F88P T111H W112I 73.2 ± 0.05 10.929 ± 0.046 5.7 ± 0.05 −7.2 ± 2.7

Nb H11-H4 WT 63.6 ± 0.1 11.870 ± 0.010 0 0

Y88P 69.6 ±0.05 11.760 ±0.030 6.0 ±0.1 −6.6 ± 1.2

T111H 63.2 ± 0.05 12.305 ±0.005 −0.4 ± 0.1 26.1 ± 0.3

Y88P T111H 69.5 ± 0.05 12.180 ±0.060 5.9 ± 0.1 18.6 ± 3.0

Y88P L106P T111H 70.2 ± 0.2 11.850 ±0.020 6.6 ± 0.3 −1.2 ± 0.6

WT and rationally designed mutational variants with their measured apparent melting temperature (Tm), and cross interaction chromatography retention time (CIC RT). Values aremean ± standard
deviation, Tm was measured in duplicates and reported at a 0.1 °C resolution, when the two measurements were identical a standard deviation of 0.05 was arbitrarily assigned. Δ are calculated as
differences between the value of the variant under scrutiny and that of the corresponding WT. The designs in bold embody the best balance of Tm, CIC RT, and binding KD (see Fig. S9).
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apparent melting temperature greater than that of their WT, as well as
all 8 second-roundadalimumabdesigns, confirming the lowFDRofour
stability predictions (Figs. 4 and 5). Other computational pipelines that
combine aggregation propensity and stability predictions include
Aggrescan3D v.236 and SolubiS35. However, these methods do not
consider phylogenetic information, and only suggest single mutations
to ‘gatekeeper’ residues (typically charged residues). Similarly, the
PROSS18,79 and the FireProt19,80 webservers have been successful in
designing mutations that improve stability, but do not explicitly con-
sider aggregation propensity, model combinations of mutations on
only one chain at a time, and their homolog search strategy is not
readily applicable to immunoglobulin variable domains.

Our algorithm is agnostic of the protein structure and can handle
input proteins comprising multiple polypeptide chains, takes into
consideration residues with missing coordinates in its solubility pre-
dictions (using the seqres sequence), and handles immunoglobulin
variable domains using custom-built precompiled MSAs. The pipeline
is slightly different depending on whether the input is an immu-
noglobulin variable region or a generic protein. For a generic protein
like an enzyme, a MSA is constructed from homologs found with the
HHblits algorithm. In this case, the inclusion of phylogenetic infor-
mation also safeguards against predicting mutations at functionally
relevant sites, as these are typically conserved by evolution. Con-
versely, different pre-compiled MSAs are provided for immunoglo-
bulin variable domains, representing themutational space observed in
human antibodies, mouse antibodies, nanobodies, and post-phase-I
clinical-stage antibodies.

Functionally relevant antibody residues (i.e., the paratope) are
found within hypervariable regions and therefore cannot be inferred
from phylogenetic information. However, when bound structures or
mutational studies are not available to determine paratope residues,
paratope predictors can be used. These algorithms predict those
residuesmost likely to be directly involved in antigen binding from the
antibody sequence. Many such predictors are available and their
accuracy has been rapidly increasing81–85, and one, called Parapred83,
can be accessed directly on our webserver. Whether predicted or
experimentally determined, functionally relevant positions can be
excluded from the design, as we have done for Nb.b201 in this work.

The computational pipeline is fully automated and accessible via a
user-friendly webserver. The input page enables the customisation of
various parameters and settings, thus making the design highly tune-
able to accommodate user-specific needs. Users can decide on target
residues to exclude, sites or whole chains that should not be touched,
can input extra “custom” mutation sites to test, choose between dif-
ferent PSSM thresholding and pre-compiled antibody MSA, and even
upload user-builtMSAs. Thewebserver implementation of themethod
is complemented by an easy-to-use graphical interface that guides the
user, including a simple guide on how to generate and download sui-
table alignments of homolog sequences from the HHblits webserver58.

The required input is the structure of the protein to be optimised.
While an experimentally determined structure may not always be
available, great advances are being made in the de novo modelling of
proteins86,87 and unbound antibody structures88–91. Models generated
with such software, or simpler homology models, can readily be used
as input for our algorithm. In the case of antibodies, we have run our
pipeline on an unbiased set of 19 Fv regions modelled with the
ImmuneBuilder webserver92, and compared these results with those
from runs on the corresponding crystal structures (see Supplementary
Methods). We find that there is a strong agreement between predic-
tions carried out onmodels andoncorresponding structures (Fig. S11).
In particular, it is rare for mutations present in any of the final designs
obtained from a model to be predicted to be non-beneficial on the
corresponding structure. Only 4 of 19 assessed Fv models contained
suchpotentially problematicmutations in theirfinal designs, and, in all
four cases, itwas only onemutation (Fig. S11).Overall, as approaches to

model protein and antibody structures are improving at an unprece-
dented rate, we expect that there will soon be no difference between
running our pipeline on a crystal structure or on a model.

We experimentally validated the predictions of the algorithm on
six antibodies: three nanobodies and three human antibodies, which
we expressed as scFv. Overall, we produced 48 antibody variants,
consisting of the 6 WTs, 34 designed mutational variants, and 8
second-round adalimumab designs. We measured thermal stability
(Tm), cross interaction chromatography retention time (CIC RT), and
binding affinity (KD) for all of these variants, and for variants of
Nb.b201 also the midpoints of AMS precipitation. These are widely
used in vitro developability assays, whose measurements are well-
known to be predictive of solubility and of high concentration
behaviour43,65,67,93,94. The key advantage of these assays, which is the
reasons why they are so widely used, is that they require low amounts
of purified protein material. To confirm the estimates of conforma-
tional stability obtained from the apparentmelting temperatures (Tm),
we also measured the ΔG from chemical denaturation of at least two
variants per antibody (Fig. S12).We find that, even ifΔGmeasurements
are affected by larger experimental uncertainties than Tm measure-
ments, there is a perfect agreement in themutational variants’ stability
rankings obtained with chemical and heat denaturation (Table S4).

The results of these experiments demonstrate that the compu-
tational procedure is remarkably successful at designing antibody
variants with increased stability and relative solubility, and reduced
cross-reactivity. We only found two false positive mutations (T111H in
the H11 Nbs, and AL94P in adalimumab), and two others (H53R and
T100R in Nb.b201) that improved thermal stability and AMS pre-
cipitation midpoint, but worsened the CIC retention time.

We noted that the two Nb.b201 variants with worsened CIC
retention times, but increased AMS precipitation midpoint, were both
mutations to arginine in the CDRs, which are well-known to contribute
to poor specificity60,69–71. This type of liability is easy to spot compu-
tationally, as most software for molecular viewing can highlight pat-
ches of positive charges. These can also be identified directly from the
CDR sequences, and are tabulated in various publications69,71. Auto-
mated assessment of sequence-based liabilities and their removal will
be the first area of improvement for future versions of the method,
including known drivers of cross-reactivity (e.g., number of CDR
arginine & tryptophan residues) as well as chemical liabilities (e.g.,
deamidation sites or post-translational-modification sites). At present,
users have the option to exclude specific residues from the list of
potential substitution targets. So, if any of the final designs contains
liabilities, the calculation can be re-run by excluding the relevant
residue(s) to get a different set of top-ranking designs (e.g., exclude
arginine for specificity, asparagine for deamidation and glycosylation,
etc.). Similarly, if any such liability is present in the WT protein, users
can add the corresponding site as custom mutation site in the algo-
rithm, so that mutations predicted to improve stability and solubility
will be suggested to remove the liability.

In conclusion, we have introduced and experimentally validated a
fully automated computational method that provides a time- and cost-
effective way to improve the stability and solubility of proteins and
antibodies, through the rational design ofmutations.We anticipate that
this algorithm will find broad applicability in the optimisation of the
developability potential of lead proteins and antibodies destined to
applications in research, biotechnology, diagnostics, and therapeutics.

Methods
All materials and methods are available in the Supplementary
Materials.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All data needed to evaluate the conclusions in this article, or that are
necessary to interpret, verify and extend the research in the article are
present in the paper and/or the Supplementary Materials and Sup-
plementary files. Additional details are available from the corre-
sponding author on request. Source data are provided with this paper.

Code availability
The method is made available to the academic community as a web-
server at www-cohsoftware.ch.cam.ac.uk/index.php/camsolcombina-
tion. In order to access the software, users need to register a free
account and log in.
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