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Deducing subnanometer cluster size and
shape distributions of heterogeneous
supported catalysts

Vinson Liao 1,2, Maximilian Cohen1,2, YifanWang1,2 & Dionisios G. Vlachos 1,2

Infrared (IR) spectra of adsorbate vibrationalmodes are sensitive to adsorbate/
metal interactions, accurate, and easily obtainable in-situ or operando. While
they are the gold standards for characterizing single-crystals and large nano-
particles, analogous spectra for highly dispersed heterogeneous catalysts
consisting of single-atoms and ultra-small clusters are lacking. Here, we com-
bine data-based approaches with physics-driven surrogatemodels to generate
synthetic IR spectra from first-principles. We bypass the vast combinatorial
space of clusters by determining viable, low-energy structures using machine-
learned Hamiltonians, genetic algorithm optimization, and grand canonical
MonteCarlo calculations.Weobtainfirst-principles vibrations on this tractable
ensemble and generate single-cluster primary spectra analogous to pure
component gas-phase IR spectra. With such spectra as standards, we predict
cluster size distributions from computational and experimental data,
demonstrated in the case of CO adsorption on Pd/CeO2(111) catalysts, and
quantify uncertainty using Bayesian Inference. We discuss extensions for
characterizing complex materials towards closing the materials gap.

Actual catalytic materials are inherently heterogeneous and consist of
a distribution of sites, sizes, and shapes. Supported single-atom (SA)
and subnanometer cluster catalysts have been of great interest due to
their reduction in cost coupled with their notable catalytic activity and
selectivity in many relevant chemistries, including, but not limited to,
hydrogenation, oxidation, hydroformylation, reforming, and C-C
coupling reactions1–3. Advances in microscopy applied to single-atom
catalysts4,5 co-existingwith small clusters have revealed the complexity
of these materials and their dynamic nature, especially under working
conditions. Characterization, i.e., elucidating the distributions and
structure-dependent catalytic performances6, is challenging due to
many factors such as lowmetal loadings7, poor instrumental signal-to-
noise ratios (SNR), limitations of characterization techniques, the
inapplicability of certain operando measurements8, and the inherent
heterogeneity of the materials. Advances in addressing these chal-
lenges is imperative to improving catalyst characterization and even-
tually catalyst performance9,10.

Excitations, probed via infrared (IR) spectroscopy11, are sensitive
to interactions between adsorbates and metals, and have been
extensively used to study the structure of metal oxides, supported
metal particles and metal oxides, as well as single-atom catalysts12–14.
They can accurately probe adsorbate normal vibrational modes,
account for coverage effects, and can be used in-operando. Most IR-
based peaks, however, are typically assigned heuristically for relatively
simple spectra following the gold standard of well-defined single
crystals. Inorganic complexes in the form of homogeneous catalysts
have also served as molecular analogs to mononuclear metal active
sites of SA catalysts to aid in peak identification15–17. However, IR-
deduced detailed characterization of real-world catalysts is lacking18

due to strong interactions of the highlyundercoordinatedmetal atoms
with the support19–21, resulting in each cluster size and shape giving a
different signal that is difficult to distinguish in the sampled spectra.

First-principles calculations can help with peak interpretation,
but models are limited and often consider a single active site on a
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well-defined crystallographic plane. The disparity between simple
models and real-world working materials is reminiscent of the well-
known materials gap22,23. Current IR quantification methodologies to
bridge this gap have found limited applicability to real-world cata-
lysts, as they have mainly been restricted to spectra obtained from
large nanoparticles (NPs). A framework introduced by Lansford
et al. is restricted to spectra obtained from unsupported NPs18, and
predicts the fraction of planes and adsorbate site-types, but is
unable to distinguish the heterogeneity in the distributions of clus-
ters. Kale et al. utilized site-specific extinction coefficients with
peak deconvolution, interaction, and a priori assumptions about
nanoparticle size and coverage to determine the catalyst active
sites24, but again is limited to NPs in the order of tens of nanometers
in diameter.

Here, we develop a two-step framework to interpret and
deconvolute complex IR spectra of supported single-atoms and
subnanometer cluster catalysts exposed to adsorbates using first-
principles spectroscopies and data-based methods. We introduce a
methodology to mitigate the computational cost of isomeric com-
binatorial search by predicting an ensemble of low-energy (CO)m/Pdn

structures under working conditions that contributes maximally to
the spectroscopic signature. We utilize first-principles density-func-
tional theory (DFT) calculations coupled with signal processing
techniques to generate realistic, single-cluster primary spectra ana-
logous to pure component spectra in gas-phase IR spectroscopy25,26

for this ensemble. These primary spectra serve as calibration stan-
dards. We utilize a physics-driven surrogate model to construct
realistic synthetic spectra that accounts for coverage effects to
benchmark spectra deconvolution. Finally, we perform spectra
deconvolution of synthetic and experimental spectra within the
Bayesian Inference framework to predict cluster size distributions
and quantify uncertainty stemming from DFT errors and noise. We
derive a criterion for matching modeled and observed spectra using
the signal-to-noise ratio (SNR). We discuss the applications to char-
acterize complex materials under working conditions to close the
materials gap. We benchmark our methodology on Pdn/CeO2(111)
(n = 1–20) exposed to carbon monoxide (CO). Our framework can
accurately predict cluster size and shape distributions for both syn-
thetic and experimental spectra and is robust to overfitting spectral
peaks to noise. Our results obtained directly from the deconvolution
of IR spectra with little to no a priori assumptions are consistent with
those made from other characterization techniques. The methodol-
ogy is an important tool in catalyst characterization toward closing
the materials gap.

Results and discussion
Modeling overview
Here, we provide an overview of our framework for determining the
sizes and shapes of supported subnanometer clusters exposed to
adsorbates directly from IR spectra. Our methodology is inspired by
the deconvolution of gas and liquid-phase IR spectra composed of a
linear combination of pure component spectra, a consequence of the
Beer-Lambert Law. The linear contribution of each component is tra-
ditionally solved through a systemof linear equations via least-squares
fitting. Pure component calibration spectra can be easily obtained for
gas and liquid phase species (from an appropriate vendor, for exam-
ple) but is almost impossible to obtain for heterogenous catalysts due
to the difficulty in synthesizing samples with atomic uniformity.

Our framework is composed of two major steps: (1) generation of
calibration spectra from first principles (rather than experimentally)
and (2) deconvolution of spectra. Given the lack of calibration stan-
dards for heterogeneous materials, our framework utilizes computa-
tional IR frequencies and intensities to generate calibration spectra.
Each of these spectra, deemed primary spectra, reflects a catalyst
sample composed of a single supported cluster isomer exposed to
adsorbates. However, the number of cluster/adsorbate configurations
even for a single size can be huge. For instance, we estimate that
computing the primary spectra for every possible isomer of Pd20/CeO2

saturated with CO would take years. We bypass this combinatorial
search by computing a low-energy ensemble of metal/adsorbate
structures at working conditions for each cluster size using various
machine learning andoptimization techniques. This ensemble consists
of low-energy structures that are thermodynamically favorable and is
the subject of first principles primary spectra calculations. This step
reduces the number of first principles calculations by many orders of
magnitude. Experimental spectra of real materials is then deconvo-
luted by solving the system of linear equations associated with the
Beer Lambert Law within the Bayesian inference framework to predict
cluster size and shape distributions and their associated uncertainties.
The Bayesian approach, rather than the commonly used frequentist
approach, propagates errors and uncertainties associated with first
principles computed spectra. Figure 1 shows a schematic of the overall
Bayesian spectra deconvolution framework. We benchmark our fra-
mework using a model system of Pdn/CeO2(111) (n = 1–20) exposed to
saturated CO at 323 K.

Low-energy ensemble generation
The catalyst heterogeneity is evidenced by a distribution of cluster
sizes and shapes for each respective size (hereafter, also called isomers
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Fig. 1 | Schematic of the Bayesian infrared spectra deconvolution procedure.
Our framework is composed of two major steps, inspired by the deconvolution of
gas phase IR spectra: (1) generation of calibration spectra from first principles
(rather than experimentally) and (2) deconvolution of spectra. We determine a set
of low-energy structures, deemed the low-energy ensemble, of supported metal
clusters exposed to adsorbates at working conditions that contribute the most to
the final spectroscopic signature of the material. We compute the first-principles

electronic structure todetermine the IR frequencies and intensities (thus specifying
the unique spectroscopic signature) for each species in the ensemble and generate
primary spectra for each cluster/adsorbate configuration. Each primary spectra
serves as calibration spectra for a homogenously synthesized catalyst sample.
Finally, we perform deconvolution within the Bayesian Inference framework to
predict the distributions of the relative fractions of each cluster size directly from
experimental and computational spectra.
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or structures). The number of isomers grows exponentially with size,
and each isomer exposes a distribution of sites for adsorption and
reaction27. The existenceofmultiple support facets and defects further
enhances the heterogeneity of the material. Accounting for the com-
binatorics of all cluster structures and adsorbate configurations is
challenging for any supported metal and adsorbate system. Deter-
mining structures directly from spectra requires solving an optimiza-
tion problem tominimize the distance of computed and experimental
spectra. For each trial structure generated during the optimization,
adsorbate frequencies and intensities must be computed using DFT.
This task is incredibly costly, and the direct structure-to-spectra
matching approach is impractical. The heterogeneity of the catalyst
implies that distributions rather than a single size and structure need
to be accounted for, making optimization much harder. Furthermore,
experimental spectrometers have limited resolution in the frequency
domain, preventing the existence of an observable unique spectro-
scopic signature for each structure and rendering the deconvolution
problem ill-posed (theoretically, with an infinite spectroscopic reso-
lution, eachpotential adsorbate has a unique detectable spectroscopic
signature).

To tackle these barriers, we determine the ensemble of low-
energy metal/adsorbate configurations for each cluster size at a given
temperature and CO partial pressure using a cluster genetic algorithm
coupled with a Grand Canonical Monte Carlo (GCMC) algorithm28. To
achieve this, one needs to develop Hamiltonians describing the metal-
support, metal-metal, metal-adsorbate, and adsorbate-adsorbate (lat-
eral) interactions using DFT and machine learning. Machine learned
Hamiltonians allow for the prediction of electronic energies of arbi-
trary CO-Pd/CeO2 structures with a minimal amount of expensive first
principles calculations. The GCMC algorithm effectivelyminimizes the
Gibbs free energy to determine the structure of the metal cluster and
the distribution of surface adsorbates simultaneously at a specified
temperature and CO partial pressure. This simultaneous optimization
is necessary as adsorbates significantly alter the cluster structures to
create preferred low-energy sites. This optimization scheme is repe-
ated for each cluster size up to 20 Pd atoms. The lowGibbs free energy
structures of each size form the low-energy ensemble that contains the
most abundant structures contributing maximally to the spectral
intensity.

Figure 2a shows the most energetically stable cluster/adsorbate
configurations at 323 K saturated with CO for Pdn/CeO2(111) for
n = 5–20. We do not show Pd clusters smaller than 5 atoms as the
number ofpossible isomers isminimal. Overall, themetal clusters have
a flat or truncated pyramidal shape to maximize contact with the
support especially as cluster size increases. The ratio of surface
adsorbate coverage to the number of exposed surface metal atoms
approaches 1:1. In addition, strongmetal-support interactions also play
a significant role in CO adsorption that is not captured in traditionally
modeled extended surfaces. Our machine learned Hamiltonians, as
well asMonte Carlo simulations, show that CO prefers to adsorb on (1)
bridge and threefold sites tomaximizemetal coordination and (2) sites
that are closer to the support for electronic stabilization. On average,
our simulations show that clusters flatten under a CO environment,
suggesting that the stabilization gained via the adsorption energy of
CO serves as a thermodynamic driving force to offset the stability loss
by overwetting of the cluster to the support.

Figure 2b shows the distributions of the Gibbs free energy nor-
malized by the number of Pd atoms as a function of the cluster size.
The free energies are referenced to a CO reservoir and calculated
according to Eq. (2) of the Methods. The entropic contributions to the
free energies can be decomposed into the respective configurational
and vibrational contributions. We ignored vibrational entropy con-
tributions to the free energy differences, as the change in vibrational
entropy of adsorbed CO on different sites is typically less than 0.03 eV
at 323 K onmetals29–32. Configurational entropy is explicitly accounted

for by the Metropolis sampling scheme. The Gibbs free energies vary
widely (from −3.0 to −1.0 eV/atom) for the same size clusters and with
varying sizes due to the differences in the number of available surface
sites and site-types for different isomers. Notably, the structures of the
most stable Pd clusters with adsorbed CO differ from that of the bare
clusters. For example, the most energetically stable isomer of
bare Pd20/CeO2 becomes the 5th most stable isomer once CO is
introduced. Literature supports the observed phenomenon; upon CO
adsorption, Pd atoms diffuse and reconfigure, changing the observed
structure33–36.

To approximate the relative abundance of each cluster/adsorbate
for a given size, we utilize a Boltzmann equilibrium. Figure 2c shows
the ensemble probability density and Boltzmann probability density at
323 K for Pd20/CeO2 as a function of the normalized free energy (for
Pd5-Pd19/CeO2, refer to Fig. S1). Each point along the probability den-
sity curves represents a discrete minima (CO)m/Pd20/CeO2 configura-
tion sampled in the GCMC algorithm. The former refers to each
discrete state being equally probable, and the latter weighted by
Boltzmann statistics. The two probability density curves coincide at
the limit of infinite temperature. The shaded region represents the 95%
integrated probability density of the Boltzmann curve, chosen as
modern FTIR spectrometerswith a resolution of 2 cm−1 typically have a
signal-to-noise ratio (SNR) in the order 400 at the frequencies of the
highest observed intensity peaks (i.e., C-O stretch region of
1600–2000 cm−1). This corresponds to signal to perceived noise
amplitude ratio of 20:1 (refer to Supplementary Information for more
information)37,38. Thus, we expect 95% of the observed signal to be
from the system and 5% fromnoise. As a result, clusters with predicted
Boltzmannprobabilities outside the95% integratedprobability density
region contribute IR intensities indistinguishable from noise. The
ensemble of structures for each cluster sizewithin this 95% cutoff form
the low-energy ensemble. For our dataset, 40 unique structures of
(CO)m/Pd1-Pd20/CeO2 meet the 95% cutoff Boltzmann criterion, a
remarkably small number.

We also perform an analogous Boltzmann equilibrium analysis on
the bare Pdn/CeO2 clusters at an identical 323K to determine the effect
that CO has on the number of thermodynamically accessible states.
Figure 3 shows the ensemble and Boltzmann probability densities for
bare Pd20/CeO2 (for Pd5-Pd19/CeO2, refer to Fig. S2). We find that the
number of discrete states that meet the 95% cutoff Boltzmann criteria
doubles, from 4 to 8 states, between the saturated CO/Pd20/CeO2

system as seen in Fig. 2c and the bare system, respectively. For the
entire dataset, we find that 262 unique structures of Pd1-Pd20/CeO2

meet the 95% cutoff Boltzmann criterion, almost an order-of-
magnitude larger than those for (CO)m/Pd1-Pd20/CeO2. This suggests
that the introduction of CO to the system leads to a thermodynamic
confinement effect, limiting the number of thermodynamically
accessible states at low temperatures.

Primary spectra generation
We perform first-principles computations for the 40 configurations of
(CO)m/Pdn/CeO2 thatmake up the low-energy ensemble directly using
DFT to construct the primary spectra. We describe the details of
generating primary spectra from DFT-computed IR frequencies and
intensities in the Methods section. Primary spectra are analogous to
pure component spectra in gas-phase IR and are the spectroscopic
signature of catalyst sample composed of a single supported cluster
isomer exposed to CO. The primary spectra cannot easily be obtained
experimentally due to the difficulty synthesizing homogeneous sup-
ported clusters with atomic precision. We note that DFT-computed
frequencies are often systematically underestimated, and as a result, it
is customary to fit linear scaling factors to experimental data to
account for these errors. Linear frequency scaling factors are used for
our computed primary spectra, which are optimized during the fitting
procedure. Each cluster can be thought of as having a distribution of
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spectroscopic signatures stemming from the uncertainty of DFT, in
which the best spectra is chosen during the fitting procedure. Scaling
factors computed for adsorbates on well-defined single crystals are
used as informative priors to regularize and prevent overfitting. These
calculated factors serve as reasonable estimates for the error in DFT
frequencies. More information on the construction of linear scaling
factors can be found in the Supporting Information.

Figure 4 shows primary spectra at differential CO coverage (cor-
responding to 1 CO per cluster) and saturated CO coverage for various
Pd cluster sizes. Note that the intensities of the metal-carbon stretch
region (<1000 cm−1) are magnified tenfold for visibility. At differential
coverages (Fig. 4a, b), it is difficult to distinguish the spectroscopic
signatures of Pd1 and Pd10 as there are relatively few peaks observed.

Discerning cluster sizes at low coverages leads to high uncertainty as
many combinations of single high-intensity peak spectra can form an
observed IR spectra. However, at saturated CO coverage (Fig. 4c, d),
multiple high-intensity peaks couple as the surface contains more
adsorbates, leading to amorediscernable spectroscopic signature. It is
interesting that the dominant peak in the spectra of Fig. 4d (corre-
sponding to Pd20/CeO2), centered in the ~1650 cm−1 regime, is blue
shifted when compared to the spectra in Fig. 4c (corresponding to
Pd10). This can be rationalized byCOpreferentially adsorbing on lower
wavenumber bridge and threefold sites on the Pd20/CeO2 cluster,
while predominantly occupying higher wavenumber atop and bridge
sites on Pd10/CeO2. The preferential adsorption on threefold and
bridge sites on larger supported Pd clusters has also been observed in

a

(CO)5/Pd5 (CO)6/Pd6 (CO)7/Pd7 (CO)8/Pd8 (CO)9/Pd9 (CO)9/Pd10 (CO)9/Pd11 (CO)9/Pd12

(CO)10/Pd13 (CO)10/Pd14 (CO)11/Pd15 (CO)13/Pd16 (CO)12/Pd17 (CO)13/Pd18 (CO)13/Pd19 (CO)14/Pd20

b

c

Fig. 2 | Low energy structures versus Pdn/CeO2 cluster size for n = 5–20 at 323K
and saturated CO. aMost energetically stable adsorbed structures for a given Pdn/
CeO2. bDistribution of Gibbs free energies normalized by the number of Pd atoms.
c Ensemble probability and Boltzmann probability densities of Pd20/CeO2 isomers
saturated with CO at 323 K vs. the normalized Gibbs free energy of a configuration.
Each point along the probability density curves represents a discrete (CO)m/Pd20/
CeO2 configuration. The ensemble probability density assumes each discrete state

is equally probable, whereas the Boltzmann probability density weights each dis-
crete state by its respective Boltzmann factor.The shaded red region represents the
integrated 95% probability density; only 4 discrete configurations account for 95%
of the isomers under working conditions. At low temperatures, relatively few dis-
crete states are energetically accessible and dominate the ensemble of isomers
compared to high temperatures.
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the literature28. Thus, we choose to operate in the saturated CO cov-
erage regime for the remainder of our work due to increase in the
number of spectroscopic peaks as compared to at differential
coverages.

In the Supplementary Information, we elaborate further on the
effects of isomer configuration for identical sizes and CO adsorption
site-types on the generated primary spectra, at both differential and
saturated coverages. At differential coverages, the frequency of the
highest intensity peaks (i.e., C-O stretch frequencies) is almost
entirely determined by the adsorption site type (i.e., atop, bridge,
hollow), as shown in Fig. S3. This trend is observed at all cluster size
regimes studied, and even extends to CO frequencies at the palla-
dium nanoparticle and single-crystal regime39. At saturated cov-
erages, the spectroscopic signature of isomers of the same size
exhibit large differences as the surface contains many more adsor-
bates than at differential coverages, and the adsorbate configura-
tions vary greatly (Fig. S4). The ability to distinguish between
different isomers further supports our decision to operate at the
saturated CO coverage regime.

Synthetic spectra generation
To benchmark our deconvolution methodology, we construct syn-
thetic spectra representative of heterogeneous systems composed of
many different cluster sizes and isomers using our primary spectra.We
take advantage of the fact that IR spectral intensities obey Beers’ Law
and are linear with respect to the number of entities40. We construct
synthetic spectra by taking a direct vector sum of the desired primary
spectra weighted with their respective fractional contributions. Fig-
ure 5 shows an example of complex spectra of equal fractions of
supported monomeric, dimeric, and trimeric Pd clusters and their
individual primary cluster spectra. Intensities are normalized to ignore
the effects of metal loading (and, consequently, adsorbate loading).
One can see differences in the spectra with varying nuclearity; such
differences allow discriminating sizes and potentially isomers. A
broadening of the peaks when overlap among spectra of clusters
happens is also noticeable. The applicability of this surrogate model
(vs. direct DFT-computation of arbitrary heterogeneous systems)
depends on the following two assumptions: (1) adsorbates on different
clusters are non-interacting and (2) interacting adsorbates on the same
cluster are accounted for in the primary spectra. Assumption (1) is
often fulfilled for supported single atoms and clusters as metal load-
ings are low (i.e., high dispersion). Assumption (2) is accounted for
with directDFT computations of clusters exposed to high coverages of
adsorbates.

Spectra deconvolution via Bayesian inference (BI)
IR spectra deconvolution is traditionally difficult due to the linearly
overlapping peaks of many potential candidates, each with a unique
spectroscopic signature. Our Bayesian model leverages prior infor-
mation of the characteristic spectral pattern and uncertainty of viable
candidates for regularization to recognize overlapped signals. Expert
knowledge is used to specify tighter and more informative prior dis-
tributions, which lead to narrower predicted distributions41 (refer to
Methods section and Supplementary Information for more informa-
tion on the specification of prior distributions). We model the IR
spectrum, ~y, as a vector sum of wavenumber discretized primary
spectra,~xi, weighted by their relative fraction, ci, plus some noise, ɛ:

y!=
XN
i= 1

ci x
!

i + ε, ε∼N 0, σ2
XN
j = 1

Ej

XN
i= 1

ci x
!

iej

" #2

�
0
@

1
A ð1Þ

The error term, ɛ, is entirely random and is intended to account
for (1) background noise absent from the computational spectra, (2)
DFT error in computed frequencies, and (3) spectral intensities for
clusters/adsorbates not accounted for in the low-energy ensemble.We
note that the DFT errors in computed frequencies, are usually sys-
tematically underestimated due to the infinite mass approximation
and may not be entirely represented in the proposed mathematical
form. Here, Ej is the ðN x NÞ identity matrix (where N is the number of
primary spectra considered) with 1 in position j, jð Þ and zeroes every-
where else, ej is the ð1x NÞ row vector with 1 in position 1, jð Þ and zeroes
everywhereelse, andσ is a scalar controlling the amount of noise in the

spectra. The term
PN
j = 1

Ej
PN
i= 1

ci x
!

iej leads to a diagonal matrix with the

nonzero elements being the intensities of the reconstructed spectra,PN
i= 1

ci x
!

i, at each observed frequency, without noise. This allows for a

Gaussian error with standard deviation proportional (by a factor of σ)
to the observed amplitude signal at each frequency to be accounted
for. The scalar, σ, can assess the fit quality and is mathematically
equivalent to the reciprocal of the amplitude ratio (refer to Supple-
mentary Information for derivation). Ideally, σ should approach 0.05
as it mimics the 20:1 amplitude ratio for an observed SNR of 400 we
utilize to construct our low-energy ensemble. Thus,σ allows us to infer

the signal-to-noise ratio where the reconstructed spectra,
PN
i= 1

ci x
!

i, and

Fig. 3 | Ensemble and Boltzmann probabilities of bare Pd20/CeO2 at 323K. The
number of discrete statesmeeting the 95% cutoff criteria doubles from 4 to 8when
the system is bare versus saturated with CO. For cluster sizes between 5 and 19

atoms, we observe a range of two to ten-fold decrease in accessible states between
the two systems upon exposure to CO.
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observed spectra, y!, match. Note that this equation can also be used

to compare any two arbitrary spectra, y!1 and y!2, and their equivalent
SNRs. This is useful in analyzing spectra obtained from time-resolved
FTIR, for example, to determine statistically significant differences
over the temporal domain. The main objective of the Bayesian Infer-
ence methodology is the estimation of the posterior distributions of
each ci by iterative sampling while accounting for uncertainty in the
computed primary spectra and noise (σ) in the given experimental or
computational spectra. The theory and samplingmethodology behind
Bayesian Inference are given in Methods and Supplementary
Information.

For visual simplicity, we demonstrate the deconvolution process
on synthetic spectra containing equifractions of supported Pd1, Pd2,

and Pd3/CeO2 saturated with CO as constructed using the surrogate
model, like the one previously shown in Fig. 5. The only difference is
that we introduce random Gaussian noise corresponding to an SNR of
400 (σ =0.05) to mimic experimental spectra. Figure 6a shows the
synthetic spectra, the reconstructed and deconvoluted spectra (where
the means of the sampled posterior distributions are used as point
estimates for the cluster fractions), and the predicted spectral noise.
Note that themodel does not a priori assume that Pd4-Pd20/CeO2 is not
present in the system. The intensities of the metal-carbon stretch
region (<1000 cm−1) are magnified tenfold for visibility.

The most stable adsorption configuration for Pd1/CeO2 and Pd2/
CeO2 contain a single adsorbate on an atop site, so both primary
spectra contain a single distinct peak. However, the C-O stretch fre-
quencies are close together, and as a result, the broadened peaks
overlap (Fig. 6a, blue).Without the simulated noise, a slight shoulder in
the spectra can be observed to potentially distinguish the peaks
(Fig. 5a), but with the conservative amount of noise introduced,
heuristic assignment by the naked eye would be unable to discern
them. Our framework also utilizes the information in themetal-carbon
stretch region of 300–500 cm−1 that is otherwise lost to further dis-
tinguish these overlapping peaks. The primary spectra of Pd3/CeO2

contains a doublet, with only 1 peak within the vicinity of the Pd1 and
Pd2/CeO2 peaks, that is easily distinguished from the other peaks. The
predicted spectral noise is uncorrelated as a function of frequency and
exhibits random Gaussian-like behavior, and thus suggests that the
deconvolution procedure has not overfit spectral peaks to noise.

Figure 6b, c show examples of trace plots and sampled posterior
distributions for the noise term, σ, and the relative concentration of
Pd1, respectively. A trace plot shows the sampled values of a particular
parameter as a function of the number of iterations and is a visual way
to determine how well the sampling algorithm has converged to the
true posterior distribution. In general, random scatter around the
median value suggests that the sampling algorithm has converged.
Note that the Bayesian inference sampling methodology is inherently
stochastic, so a trace plot is useful for diagnostic purposes. Also shown
in the figure are the sampled posterior distributions, and the corre-
sponding means, medians, and 95% credible intervals (CI). The mean
and median of the distribution coincide and are often used as point
estimates when needed. The maximum a posteriori estimation (MAP),
equivalent to the distribution mode, is also often used as a point
estimate but may not be appropriate for distributions that are not
unimodal42. In this example, the mean, median, and MAP coincide and
can be used as point estimates for spectra deconvolution and recon-
struction. The mean value of σ =0.054 corresponds to an equivalent
SNR of 350, which is in good agreement with the specified SNR of 400
of the original synthetic spectra.

Finally, Fig. 6d shows the means and 95% CIs for each species
fractions. The true values of 0.33 for Pd1, Pd2, and Pd3 all lie within the
95% CIs of each distribution. The model predicts almost no clusters
that are larger than Pd3 without having evidence of this a priori. The
true value of 0 is statistically difficult to sample as that value is iden-
tically the prescribed lower bound of the sampled values of ci, so it
does not fall within the predicted 95% CI. Our framework can estimate
a distribution of the predicted metal cluster sizes on the support, but
lacks detailed structural information such as local metal dispersion
(i.e., heterogeneity in the distribution of the metal on the support),
preferredmetal adsorption sites (e.g., formation of adsorbate islands),
and support defects (e.g., existence of oxygen vacancies). These local
interactions that deviate from our proposed linear model are
accounted for by the error term in our model and cannot be directly
interpreted. Due to the limitations of our model and experimental
equipment resolution, determining local spatial information directly
from IR spectra is outside our current capabilities and is the scope of
future work.

We also demonstrate the efficacy and robustness of our decon-
volution method in the Supplementary Information over many

ba

c d

Fig. 4 | Primary spectra of CO on various sizes of Pd/CeO2 and CO coverages
fromDFT-computed frequencies and intensities. Linear scaling factors have not
been applied to these spectra. Differential coverage of CO on (a) Pd1/CeO2 and (b)
Pd10/CeO2. Saturated coverage of CO on (c) Pd10/CeO2 and (d) Pd20/CeO2. Differ-
ential coverage refers to a single CO molecular adsorbed on the most stable

adsorption site of the cluster. It is challenging to discern cluster sizes at differential
coveragedue to the spectrahaving aminimal number ofunique peaks. At saturated
coverage, multiple high-intensity peaks couple as the surface contains more
adsorbates, leading to a discernable spectroscopic signature. The intensities of the
metal-carbon stretch region (<1000cm−1) are magnified tenfold for visibility.
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ba

c d
Predicted Fraction

2.5% Mean 97.5%

Pd1 0.314 0.331 0.346

Pd2 0.325 0.341 0.357

Pd3 0.312 0.325 0.337

Pd4-Pd20 0.002 0.003 0.005

Fig. 6 | Synthetic spectradeconvolutionofa systemcontaining equifractionsof
supported Pd1, Pd2, and Pd3/CeO2 saturated with CO. a Plotted is the synthetic
spectra, reconstructed anddeconvoluted spectra, and the predicted spectral noise.
The means of the sampled posterior distributions are used as the point estimates
for the cluster fractions. The primary spectra of Pd1 (red) and Pd2 (purple) contain
singlet peaks with severe overlap and form a single peak in the synthetic spectra
that is difficult to discern by the naked eye due to noise and spectral broadening.

Trace andposterior distributionplots for (b)σ and (c) fraction of Pd1. The traceplot
shows the iterations of samples drawn from the posterior. The mean value of
σ =0.054 suggests that the two spectra are equivalent for a SNR of 350, which is in
good agreementwith the SNRof 400 of the original synthetic spectra.dMeans and
95% credible intervals (CI) of the predicted fractions. Themodel predicts almost no
clusters that are larger than Pd3.

a b

Fig. 5 | Synthetic spectra of a system containing equal fractions of supported
Pd/CeO2 monomers, dimers, and trimers saturated with CO. Here, the relative
intensities rather than absolute intensities are shown to ignore the effects of metal
loading. The intensities of the metal-carbon stretch region (<1000 cm−1) are

magnified tenfold for visibility. Shown are the (a) convoluted synthetic spectra and
(b) original primary spectra, with intensities weighted by their relative fractions.
There is a single unique isomer for each cluster size for these sizes.
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synthetic spectra with randomly generated cluster fractions and
varying amounts of simulated noise. Noise is simulated with signal-to-
noise ratios ranging from infinity (e.g., infinitesimally small noise, the
limit as σ approaches 0) to 25 (e.g., the lowest SNR of FTIR receivers
reported in literature, the limit as σ approaches 0.2037,38) by uniformly
sampling values of 0 <σ <0.20. Note both SNR bounds are unrealistic
for experimental spectra with modern day FTIR receivers and purely
serve as benchmarks. A parity plot comparing MAPs of the predicted
cluster fraction distribution versus true values of 100 synthetic spectra
is shown in Fig. S5. We obtain a mean absolute error (MAE) of 0.049,
but more importantly, the true cluster fractions lie within the 95% CI
for all 100 spectra. Surprisingly, the prediction error is not correlated
with σ, the amount of noise in the system, for the range of values
studied. This is a good indication the model is robust enough to avoid
overfitting spectra to noise.

Experimental spectra deconvolution
Detailed experimental surface and nanocluster characterization is
difficult to achieve forworkingmaterials and is often limited to simpler
ordered adsorbate overlayers on single crystals43. We test our spectra
deconvolutionmethodology on literature-reported IR spectra of 1 wt%
Pd on CeO2 nanorods saturated with CO at 323 K in which a tandem of
experimental characterization techniques was used44. The nanorods
are composed predominantly of the (111) facet of our primary spectra
dataset. The published spectra provided enough detail in the C-O
stretch region to be digitized, so we only utilize the frequencies and

corresponding intensities in the 1825–2400 cm−1 range, with a dis-
cretization of 2 cm−1. Spectroscopic information in the metal-carbon
region can be helpful for overlapping peak discrimination, as shown in
the previous synthetic spectra example, but is difficult to obtain in
practice.

Figure 7a shows the experimental spectra and the reconstructed
spectra using the means of the posterior distribution as the point
estimates for the relative species concentrations. There are no
spectroscopic signatures in our dataset that exceed 2200 cm−1, so we
cannot account for the broad peak centered around 2350 cm−1.
Spezzati et al. assigned this peak to CO2 rather than CO/Pd/CeO2,
which agrees with our procedure. Our reconstructed spectra account
for the major peaks at approximately 2100 and 2150 cm−1. Figure 7b
shows the trace and posterior distribution for σ, the error parameter
that accounts for noise. Our reconstructed spectra have a mean σ
value of 0.14 compared to the ideal value of 0.05. This suggests that
the reconstructed and experimental spectra are in good agreement
for an SNR of 60. Figure 7c shows the trace and posterior distribution
for the Pd1 fractions and suggests the presence of single atoms, with
a mean of 0.198. Finally, Fig. 7d shows the means and 95% credible
intervals (CI) of the predicted fractions of Pd1, as well as two aggre-
gated bins of Pd2-Pd5 and Pd6-Pd20. These bins were chosen to
demarcate monolayer from bilayer (or larger) clusters in our dataset.
Our results agree with Spezzati et al.’s TEM imaging, suggesting that
Pd is highly dispersed (either as single atoms or monolayer clusters)
on the support. However, we suggest that close to half of the clusters

ba

c d

Predicted Fraction

2.5% Mean 97.5%

Pd1 0.123 0.198 0.271

Pd2-Pd5 0.159 0.259 0.364

Pd6-Pd20 0.438 0.543 0.650

Fig. 7 | Experimental spectra deconvolutionof 1wt% Pd/CeO2 system saturated
with CO at 323K. a Discretized experimental and reconstructed spectra. Our
dataset has no spectroscopic signatures above 2200 cm−1, which agrees with
Spezzati et al.’s heuristic assignment to CO2. b Trace and posterior distribution for
σ, the error parameter. The spectra are equivalent at a SNR of 60. c Trace and

posterior distribution plots for Pd1. d Means and 95% credible intervals (CI) of the
predicted concentrations for Pd1 and bins of Pd2-Pd5, as well as Pd6-Pd20. We
choose these bins as the former contains monolayer clusters and the latter bilayer
(or larger) clusters.
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may reconfigure to larger 3-dimensional clusters (Pd6-Pd20) upon
exposure to CO.

We note that the oxidation state of Pd is uncertain and, as a result,
the clusters may not be entirely metallic. However, there is significant
evidence (by the authors and in literature) that small PdO clusters as
well as single atoms canbe reduced byCOat low temperatures21, sowe
assume that Pd is metallic. Comparison to the experimental spectra
provides further evidence for this.We also note thatwemodel a defect
free CeO2, while the extent of reduction of the support of the sample in
unknown due to limited characterization. The effect of oxygen
vacancies on IR spectra is undoubtedly an important topic for future
research.

We also benchmarked our methodology on a Pd/CeO2 system
with higher loadings (5wt%) reported by Binet et al.45. At high loadings,
we do not expect Pd to exist as single atoms or dimers/trimers due to
the high probability of sintering. The catalyst is predominantly com-
posed of (100) and (111) facets of CeO2, so part of the spectra may not
be accounted for inourmodel.Wenote that the samplewas reduced at
423 K in H2 but the authors were able to deduce, via methanol and
TCNE adsorption, no observable reduction of the support. Figure 8a
shows the experimental and reconstructed spectra. The reconstructed
spectra account for the major peak at ~1975 cm−1 and general spectral
intensities between 1300–1900 cm−1. Figure 8b shows the trace and
posterior distribution for σ with a mean of 0.11 compared to the ideal
value of 0.05. This suggests that the reconstructed and experimental
spectra are in good agreement for an SNR of 80. The reconstructed
spectra accounts for a large portion of the experimental spectra,

suggesting that the supportmaybe composedmainly of CeO2(111), the
(111) facet may stabilize more Pd, or that the spectroscopic signatures
on both facets are similar.We didnot pursue this point further, but it is
worth exploring in futurework. The trace and posterior distribution of
Pd1 (Fig. 8c) show little to no evidence for single atoms. Despite the
spectral intensities near 2050 cm−1 (the calculated frequency of the
C-O stretch of CO/Pd1; see Fig. 4a for primary spectra) in the experi-
mental spectra, the deconvolution process does not support the
existence of single atoms. Figure 8d shows the mean and 95% credible
intervals for Pd1, Pd2-Pd5, and Pd6-Pd20. Once again, the deconvolution
procedure finds little evidence for monolayer-supported clusters of
less than 6 atoms. Most of the Pd atoms at high loadings exist as large
multilayer nanoparticles, supported by the predicted concentrations
directly from spectra.

Deducing the structure of heterogeneous single-atoms and sub-
nanometer cluster catalysts has been a challenge. Surface spectro-
scopy, like IR, is sensitive to the sites exposed but the interpretation of
experimental spectra is challenging due to the inhomogeneity of real-
world worldmaterials. The combinatorial nature of cluster shapes and
sites, the DFT computational cost, and the lack of experimental
methods with atomic resolution impede detailed characterization. In
this work, we introduce a first principles-driven computational fra-
mework to characterize supported single-atoms and subnanometer
clusters exposed to adsorbates directly from IR spectroscopic data,
inspired by the deconvolution of IR spectra in the gas phase. We pre-
dict a low-energy ensemble of viable structures to reduce the combi-
natorial complexity of spectra deconvolution. We utilize calculations
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c d

Predicted Fraction

2.5% Mean 97.5%

Pd1 0.000 0.001 0.004

Pd2-Pd5 0.000 0.005 0.019

Pd6-Pd20 0.691 0.858 1.030

Fig. 8 | Experimental spectra deconvolutionof 5wt%Pd/CeO2 systemsaturated
with CO at 323K. a Discretized experimental and reconstructed spectra. b Trace
and posterior distribution forσ, the error parameter. The spectra are equivalent for
an SNR of 80. c Trace and posterior distribution plots for Pd1. d Means and 95%

credible intervals (CI) of the predicted fractions for Pd1 and bins of Pd2-Pd5, as well
as Pd6-Pd20. There is little evidence to suggest single atoms or small monolayer
clusters (<6 atoms) on the catalyst. We find that the supported particles are likely
large multilayer particles.
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of high-coverage adsorbate, low-energy structures to generate single-
cluster primary spectra. We use state-of-the-art UHV single-crystal
experiments as ground truths to correct for errors associated with
DFT-computed frequencies. Finally, we perform peak deconvolution
of synthetic and experimental spectra using Bayesian Inference to
characterize and interpret IR spectra and derive a criterion for deter-
mining the equivalence of modeled and observed spectra using the
signal-to-noise ratio. We determine cluster size distributions from
computational and experimental spectrawhile accounting for spectral
noise and uncertainties. The deconvolution procedure discriminates
overlapping peaks and discerns single atoms from small clusters and
large nanoparticles with results consistent with other experimental
characterization techniques. Our methodology allows deduction of
cluster sizes and shapes from experimental spectra without perform-
ing an unrealistic number of expensive quantum calculations. Appli-
cations in real-world materials will require an extension to many
different supported facets. The general methodology presented will
only improve as more accurate computational data is available.

Methods
Adsorbate probe molecule selection
IR spectroscopy requires the selection of an appropriate probe mole-
cule. Carbon monoxide is extensively used due to its well-defined
experimental peaks46. Its distinctive C-O stretch frequencies depend
highly on the adsorbate site-type and local metal coordination envir-
onment and can be accurately calculated47–49. Carbon monoxide also
does not strongly adsorb on CeO2(111); computed adsorption energies
are in the order of −0.2 eV, while adsorption energies on supported Pd
clusters are in the order of −2.0 eV50. This makes CO an ideal probe for
discriminating clusters based on their corresponding spectroscopic
signature.

Low-energy ensemble generation
Enumerating and calculating the first principles vibrational fre-
quencies and intensities of all positional combinations of cluster/
adsorbates is infeasible with current computational capabilities.
Rather, we determine the most energetically favorable ensemble of
(CO)m/Pdn/CeO2 configurations. We employ a machine-learned
Hamiltonian to describe the energy of bare Pdn/CeO2 and a cluster
genetic algorithm to predict low-energy structures51. We also devel-
oped a second machine-learned Hamiltonian to describe CO adsorp-
tion on Pdn/CeO2 clusters at arbitrary surface coverages that
accounted for lateral interactions28. Both Hamiltonians were trained
using DFT data.We used a rejection-free Grand CanonicalMonte Carlo
(GCMC) algorithm to minimize the free energy of (CO)m/Pdn and
determine the most stable adsorbate locations on low-energy clusters
for given cluster size, temperature, and CO partial pressure33. The free
energy of a specific (CO)m/Pdn configuration referenced to a CO
reservoir is given as:

GðT ,PCO,σÞ= EPdn=CeO2
+ EmðCOÞ�ads

Pdn=CeO2
ðσÞ �m ΔμCOðT ,P0Þ+kBT ln

PCO

P0

� �� �
ð2Þ

Where EPdn=CeO2
is the bare supported cluster electronic energy,

EmðCOÞ�ads
Pdn=CeO2

ðσÞ is the adsorption energy of (CO)m, μCO is the chemical

potential of CO, and P0 is a reference pressure. Zero-point energy
(ZPE) corrections to the electronic energies were not needed as
adsorbate frequencies were similar for identical cluster sizes, thus
leading to similar ZPE corrections that cancelled out when comparing
free energy differences. We ignored the vibrational contributions of
the Pd atoms to reduce computational time but note that these
vibrations may be important at high temperatures52. The GCMC
algorithm (Fig. 9) thus minimizes the Gibbs free energy for a given

cluster size at a given working condition. First, the algorithm initializes
a temperature, CO partial pressure, and bare Pdn/CeO2 structure. It
then enumerates all possible adsorption and desorption sites. For a
bare cluster, only CO may be adsorbed. We modified our previous
algorithm and developed a methodology using Delaunay Triangula-
tion to better determine all possible adsorption sites. Delaunay
Triangulation generates a triangular mesh from a set of points that
maximizes the enclosed volume. This triangular mesh is shown
pictorially in Fig. 9. Vertices, edges, and centroids of the triangles
correspond to atop, bridge, and three-fold sites, respectively. Adsorp-
tion vectors are computed as the normal vectors to the triangular faces
and place adsorbates with minimal steric hindrance. We describe the
Delaunay Triangulation algorithm inmore detail in the Supplementary
Information. The remainingGCMCalgorithm remains unchanged. This
modified algorithm generates realistic and optimal initial structures
for DFT calculations.

DFT calculations
Forces for the Hamiltonians and electron densities for dipole moments
were obtained using Vienna ab initio Simulation Package (VASP) ver-
sion 5.4 with the projector augmented wave method (PAWs)53. We use
the PBE (Perdew-Burke-Ernzerhof) functional54 with D3 dispersion
corrections55 as it has been used to accurately estimate frequencies for
adsorbates. A Hubbard U-term was added to the PBE functional
(DFT +U) employing the method by Dudarev et al.56. For Ce, a value of
Ueff = 4.5 eV was used as calculated by Fabris et al.57,58. All calculations
were performed with a 400eV plane wave cutoff and an energy con-
vergence of 10−6 eV. For cluster calculations, a periodic CeO2(111) slab
with a (4 × 4) surface unit cell of two layers thick and a vacuum gap of
15 Å was used. The bottom layer was fixed to the bulk position, and the
top layer was allowed to relax. For Pd slab calculations, themodel was a
periodic Pd slab with (4 × 4) surface unit cell of four layers thick.
Similarly, the bottom two layers were fixed to the bulk position, and the
top two layers were allowed to relax. A Monkhorst-Pack (1 × 1 × 1) and
((12/n) × (12/m) × 1)meshwere used for the Brillouin zone integration of
the cluster and slabs (where n and m are the number of atoms in the x
and y-directions of the slab, respectively), respectively. All input files
were created using the Atomic Simulation Environment (ASE).

Frequencies corresponding to the transition from the ground to
the first vibrational state were calculated using mass-weighted normal
mode analysis with the harmonic approximation. VASPprovides forces

Start

Initialize T, 
PCO, and Pdn

Enumerate all possible 
adsorption sites

Converged?

Terminate

Generate random time increments 
for each possible event

Choose top event
1. Add CO
2. Remove CO

Fig. 9 | Generation of low-energy cluster/adsorbate ensemble. Schematic
showing the steps of the rejection-free Grand Canonical Monte Carlo (GCMC)
scheme, with an example of triangular mesh generated by Delaunay Triangulation
to determine all surface atoms and possible adsorption sites on Pd20/CeO2. Ver-
tices, edges, and centroids of the triangles correspond to atop, bridge, and hollow
sites, respectively.
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for the construction of the Hessian using finite differences. A dis-
placement of 0.015 Å for adsorbate atoms from equilibrium positions
in the x, y, z directions were used for finite difference calculations of
the Hessian59. Eigendecomposition of the Hessian provides the fre-
quencies and directions of the vibrations from the eigenvalues and
eigenvectors, respectively. The corresponding vibrational intensities
are computed using the matrix product of the dipole Jacobian and
normal mode eigenvectors. We employ the software CHARGEMOL,
which uses the density-derived electrostatic and chemical (DDEC)
approach60–62, to integrate electronic densities from VASP to calculate
the dipole moments needed.

Primary spectra generation
We generate primary spectra from computed frequencies and inten-
sities for a given cluster/adsorbate system as pure component spectra.
Beforeprocessing the computed frequencies and intensities fromDFT,
it is customary to apply scaling factors to correct errors in the har-
monic approximation of the potential energy surface. We use the fol-
lowing linear scaling factors (α) and corresponding uncertainties (ur)
from NIST, as shown in Eqs. (3) and (4), to adjust our frequencies.

α =

Pn
i = 1

ðνi*ωiÞ
Pn
i= 1

ω2
i

ð3Þ

u2
r =

Pn
i= 1

ðω2
i *ðα � νi

ωi
ÞÞ2

Pn
i= 1

ω2
i

ð4Þ

where νi refers to experimental frequencies and ωi refers to DFT-
calculated frequencies. We utilize experimental spectra associated
with experiments of well-defined adsorbate overlayer structures and
known coverages on well-defined facets. Computed scaling factors,
and their associated uncertainties, are used as prior distributions
during the Bayesian Inference deconvolution procedure and serve as
regularization for determining the best fit scaling factor for the
provided experimental spectra. For more details on the computed
linear scaling factors, refer to the Supplementary Information.

Mixing intensities and frequencies directly is computationally
inefficient. Thus, we pre-process the scaled frequencies and intensities
using a Gaussian filter to generate discretized spectra ranging from 0
to 2400 cm−1 with a resolution of 4 cm−1, and a peak full-width half-
maximum of twice the frequency resolution to prevent significant
information loss63. We utilize a purely Gaussian filter initially because
observed random noise results in Gaussian signal response.

Gaussian filtered spectra =
1

σ
ffiffiffiffiffiffi
2π

p
XN
i= 1

Iie
�ðνi�EÞ2

2σ2 ð5Þ

whereσ is the standard deviation (asdeterminedby the FWHM), νi and
Ii are the frequencies and intensities associated with a computed
normal mode vibration, and E is a wavenumber vector from 0 to
2400 cm−1, with 4 cm−1 spacing.

We efficiently generate primary spectra of varying line shapes and
line widths by convoluting the Gaussian filtered spectra with an
impulse function composed of a linear combination of a Gaussian (G)
and Lorentzian (L) filter, as developed by Valentine et al.64. This
impulse function determines the final line shape and line width and
depends on the full-width half-maximum (FWHM) and fraction of

Lorentzian (fL)65.

G=
1

σ
ffiffiffiffiffiffi
2π

p e�
ν2

2σ2 ,whereFWHM =2σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p
ð6Þ

L=
2

π
ffiffiffi
3

p ð1 + 4ν2

3σ
Þ,whereFWHM = σ

ffiffiffi
3

p
ð7Þ

The final impulse function is given as a linear combination of the
Gaussian and Lorentzian filter, weighted by (1-fL) and fL, respectively.
Finally, the impulse function is convolved using a discrete Fourier
convolution with the Gaussian filtered spectra to generate the primary
spectra.

Synthetic spectra generation
To benchmark our Bayesian Inference methodology, we generate
synthetic spectra by taking advantage of the fact that IR spectral
intensities are linear with respect to the number of molecules. We
efficiently mix spectra by applying directly summing primary spectra,
each weighted by a randomly generated coefficient, ai, with the uni-
form probability distribution:

PðaiÞ=
(

1, ai 2 ½0,1�
0, otherwise

ð8Þ

The relative concentrations, ci, for given spectra are then given by
the following normalization:

ci =
aiPN

i = 1
ai

ð9Þ

Each of these randomly generated synthetic spectra corresponds
to the spectra of a sample containing relative cluster fractions given
by ci.

Spectral deconvolution via Bayesian inference
Bayesian inference allows us to estimate parameters, with uncertainty,
for a given dataset by providing probability distributions for each
parameter of interest (in the case of our model, we estimate the
probability distributions of ci, FWHM, fL, α, and σ). The fundamentals
of Bayesian inference are based on Bayes’ Theorem, which we present
in Eq. (10), for the simplest case of estimating a single parameter z
given observed data x.

pðz∣xÞ= pðx∣zÞpðzÞ
pðxÞ =posterior =

likelihood x prior
marginal

ð10Þ

Here, pðz∣xÞ, known as the posterior, is the product of the like-
lihood, pðx∣zÞ, the prior, p zð Þ, and the reciprocal of the marginal, p xð Þ.
The likelihood is the probability of observing the data x given the
parameter, the prior is the prior probability of parameter z, and the
marginal is the probability of observing the data x. Bayesian inference
allows us to estimate the posterior, p z,∣,xð Þ, using Bayes’ theorem for a
given set of data x, and amodel with parameters, z. Bayesian inference
is typically computationally expensive, but there have been advances
in techniques to numerically estimate the analytical form of the like-
lihood and prior terms66. We estimate the posterior distribution of the
model parameters using the No-U-Turn Sampling (NUTS), an adaptive
Hamiltonian Markov Chain Monte Carlo (MCMC) sampling algorithm
implemented in Python with a C + + back-end for computational effi-
ciency using the state-of-the-art Bayesian Inference package, Stan67,68.
More details on this estimation algorithm are provided in the Supple-
mentary Information.
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Statistical analysis
Markov Chain Monte Carlo methods, as well as other iterative sam-
pling algorithms, converge to the target distribution at the limit of
infinite simulations but rarely have strong guarantees for non-
asymptotic behavior. To monitor convergence of multiple indepen-
dent Markov chains, we assess the R-hat convergence diagnostic,
which compares the between and within chain estimates of each
sampled model parameter. This parameter assesses the how well
each chain has converged to a common distribution, i.e. the true
target distribution. Chains with poor inter and intra-chain agree-
ments have R-hat values greater than 1. We only use samples with
R-hat values less than 1.1, as is the recommended cutoff value
reported by the original authors of the statistic in literature. Formore
information on the derivation of R-hat diagnostic, refer to the
appropriate refs. 69,70. We utilize a minimum of 4000 total samples
over a minimum of 4 Markov chains, in which half the samples are
discarded as warm-up used for initialization. Once the target model
parameter distributions are obtained, we utilize a two-tailed 95%
credible interval for assessment, corresponding to a p-value of 0.05.
The means of the distributions are used as point estimated for the
target model parameters.

Data availability
All data needed to evaluate the conclusions in thepaper are available in
the main text or the Supplementary Information. DFT data and
example deconvolution code is available in the data repository on
Zenodo (DOI: 10.5281/zenodo.7036103).
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