
Article https://doi.org/10.1038/s41467-023-37661-z

DeMAG predicts the effects of variants in
clinically actionable genes by integrating
structural and evolutionary epistatic
features

Federica Luppino1,2, Ivan A. Adzhubei3,4, Christopher A. Cassa 3 &
Agnes Toth-Petroczy 1,2,5

Despite the increasing use of genomic sequencing in clinical practice, the
interpretationof rare genetic variants remains challenging even inwell-studied
disease genes, resulting in many patients with Variants of Uncertain Sig-
nificance (VUSs). Computational Variant Effect Predictors (VEPs) provide
valuable evidence in variant assessment, but they are prone to misclassifying
benign variants, contributing to false positives. Here, we develop Deciphering
Mutations in Actionable Genes (DeMAG), a supervised classifier for missense
variants trained using extensive diagnostic data available in 59 actionable
disease genes (American College of Medical Genetics and Genomics Second-
ary Findings v2.0, ACMGSFv2.0). DeMAG improves performanceover existing
VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical
data, and includes a novel epistatic feature, the ‘partners score’, which
leverages evolutionary and structural partnerships of residues. The ‘partners
score’ provides a general framework for modeling epistatic interactions,
integrating both clinical and functional information. We provide our tool and
predictions for all missense variants in 316 clinically actionable disease genes
(demag.org) to facilitate the interpretation of variants and improve clinical
decision-making.

Assessing the pathogenicity of genetic variants remains a significant
challenge in research and clinical translation. The American College of
Medical Genetics andGenomics (ACMG) recommends the reporting of
secondary findings in clinically actionable genes (e.g., ACMGSF lists1,2)
when patients undergo sequencing3. Knowledge of a pathogenic var-
iant in such a genemight improve clinicalmanagement, diagnosis, and
prevention. Given insufficient epidemiological, functional, or other
supportive evidence, over three quarters of variants which have been
submitted to ClinVar4 are classified as Variants of Uncertain

Significance (VUSs, Supplementary Fig. 1). The uncertainty about the
pathogenicity of a variant may pose a psychological burden for
patients5,6, left without guidance, and can lead to potential morbidity
and health costs associated with under and overdiagnosis7.

Many Variant Effect Predictors (VEPs) have been developed to
predict the functional impacts of these variants, and these tools are
often used in diagnostic variant interpretation8–12. A computational
evidence that a variant is predicted to have a deleterious effect is
considered “supporting evidenceof pathogenicity”when following the
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American College of Medical Genetics and Genomics/Association for
Molecular Pathology (ACMG/AMP) clinical guidelines for sequence
variant interpretation13,14. Most commonly used VEPs are supervised
methods which are trained using lists of pathogenic and benign var-
iants, and assign variants a pathogenicity score using sequence-based
and structural features. While most tools are designed to be used
exome-wide, specialized predictors can reach higher performance on
selected genes and disease phenotypes15.

Unsupervised methods, such as DeepSequence16, EVmutation17,
and EVE18 are agnostic to variant labels as they infer functional effects
from multiple sequence alignment (MSA). These methods rely on the
availability of high quality MSA data, which is often missing in dis-
ordered and low-complexity regions, and poorly conserved regions19.
Unsupervised methods characterize the fitness effects of mutations
independently from reported disease-causing variants, and do not
provide an interpretation of pathogenicity17,20. An exception is EVE,
which provides two gene-specific unsupervised thresholds for patho-
genic and benign variants respectively, however it leaves the most
uncertain variants without annotation18. The method relies on labeled
clinical data to identify the uncertain class. While this is useful for
clinical applications, it suffers from labeling biases of supervised tools
that use publicly available variants databases21.

Due to limited clinical data, there are two primary challenges in
training sufficiently accurate VEPs21. The first issue (type 1 circularity)
refers to a biased testing set and requires that the testing set contains
variants that were not used in the training of all supervised predictors.
This is challenging as many methods train models using variants col-
lected from similar sources, and can result in general inflation of pre-
dictive performance. The second issue (type 2 circularity) refers to an
intrinsic characteristic of clinical databases: variants in a given gene,
with an established link to a disease phenotype,may often be classified
as pathogenic22. VEPswhich use gene-based features, e.g., length of the
protein, can make predictions based on a gene’s characteristics and
pathogenicity, rather than on the attributes of a specific variant. This
bias hinders discrimination between pathogenic and benign variants
within a given gene and skews the predictive performance toward high
sensitivity and poor specificity23. Addressing these issues is crucial for
the development of an accurate predictor for clinical applications.

Comparative genomics and 3D structures of proteins contain
valuable information about the importance of residue positions and
substitutions. The evolutionary conservation of a position in ortholo-
gous sequences correlates with the tolerance to mutations within a
population, and can be used to predict the pathogenicity of genetic
variants24. Several conservation scores have been developed and are
used as predictive features in VEPs24–26. While most assume site-inde-
pendence, considering epistasis between pairs of residue positions
improves discrimination between disease-associated and common
variants17. Here, epistasis refers to the interdependence of the two
residue positions. An estimated 90% of variation is impacted by
epistasis27,28. For example, ~10–15% of substitutions in non-human
proteins are known to be pathogenic in their human orthologs29,30.
These are termed compensated pathogenic deviations29 as the
pathogenicity of the substitution is suppressed by another compen-
satory substitution either within the same gene31–35 or in another one36.
The compensatory mechanism often involves residues in close proxi-
mity in the 3D structure and the preservation of side-chain to side-
chain interactions29. In general, the hydrophobic coreofproteins tends
to evolve slowly, while the surface evolvesmorequickly37. Accordingly,
disease-causing mutations tend to occur in the hydrophobic core of
the 3D structure of the protein, while common variants tend to be
located on the surface, i.e. areas with high solvent accessibility38.
Incorporating epistatic and structural information comprehensively
only recently became possible at large scale with the arrival of
AlphaFold239 3D protein structure predictions, because many disease-
related genes donot have anexperimentally resolved crystal structure.

Here, we extend the traditional conservation paradigm to assess
variant effects with novel protein sequence- and structure-based fea-
tures. We designed an epistatic feature, the partners score, which
defines epistatic residue pairs based on co-evolutionary and 3D
structural partnership of residues as defined by AlphaFold239 models.
The partners score is informed by the clinical labels of partner resi-
dues, taking advantage of the wealth of existing clinical knowledge.
Based on their medical importance and the abundance of clinical
diagnostic data, we focused on interpreting missense variants in 59
clinically actionable disease genes in the ACMG SF v2.0 list, which we
refer to as ACMG SF genes2.

In this work, we develop DeMAG (Deciphering Mutations in
Actionable Genes), a specialized supervised classifier for the 59 ACMG
SF genes. DeMAG achieves the best overall performance across VEPs
when tested on variants with clinical annotations. Further, we evaluate
DeMAG on variants in additional 257 clinically associated disease
genes, that our model has not been trained on, and found that it has
high predictive power, reaching 91% sensitivity and 85% specificity. We
anticipate that as additional clinical data becomes available, more
genes can benefit from the partners score feature and from DeMAG
predictions in general. We share predictions and interpretations of all
~1.3millionmissense variants in the 59 ACMGSF genes and ~4.3million
variants for 257 other clinically relevant genes as a web application
(demag.org) and provide our software and data for download (git.mpi-
cbg.de/tothpetroczylab/demag/).

Results
Methodological overview
We developed DeMAG (Deciphering Mutations in Actionable Genes) a
supervised classifier to assess the pathogenicity of mutations in 59
clinically actionable disease genes (ACMG SF v2.0 list) and support
clinical decision making. First, we carefully curated pathogenic and
benign variants used for training the model (Fig. 1 and Supplementary
Fig. 2). For those variants, we then tested several sequence- and
structure-based features and selected those that discriminated
between variants with high confidence pathogenic and benign classi-
fications (Fig. 1 and Supplementary Table 1). We designed the partners
score, which is based on evolutionary and structural partnerships of
residues as estimated by AlphaFold2 structural models (Figs. 2 and 3
and Supplementary Fig. 3). Overall, DeMAG used only 13 features, 8
derived from sequence conservation, and 5 from 3D structural
models, disorder scores and epistatic relationships (Supplementary
Table 2).

We trained amachine learningmodel (Fig. 4), and validated it with
3 different ground-truth test sets: clinical (Fig. 5 and Table 1), func-
tional (deep mutational scanning, Supplementary Fig. 4), and benign
variants from population data (Fig. 6 and Table 2). We further eval-
uated its performance on an additional set of 257 clinically relevant
genes, which have sufficient numbers of variants with high quality
diagnostic interpretations (Supplementary Table 4 and Supplemen-
tary Data 1). Finally, we computed DeMAG pathogenicity scores for all
missense variants in the ACMG SF genes and additional 257 clinically
relevant genes.

Curated training set
In order to curate a high-quality training set, we considered several
independent sources of SNVs and set strict criteria to retain only high-
quality variants. We included high-quality ClinVar benign and patho-
genic variants with a review status of at least ‘two stars’, namely var-
iants labeled with no conflicts between all submitters or reviewed by
expert panels or practice guidelines. We supplemented pathogenic
variants with variants which have previously been described in the
medical literature in the Human Gene Mutation Database (HGMD)40,
that have not yet been observed in ClinVar (Supplementary Fig. 5). The
last source included all disease-causing mutations from UniProtKB. In
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total, the pathogenic class consisted of 6713 unique pathogenic
mutations (Fig. 1 and Supplementary Fig. 2a).

In addition to ClinVar, we collected benign variants from a large
population database, gnomAD41 (Genome Aggregation Database), and
additional population-specific databases, including individuals of
Korean42 and Japanese43 ancestry, as well as human orthologous
polymorphisms30 (Supplementary Fig. 2a). We defined benign variants
as those with a minor allele frequency (MAF) greater than the asso-
ciated disease prevalence; that is considered “Strong evidence of
benign impact” according to ACMG-AMP guidelines13,14. Using a
disease-specific MAF threshold, we gained almost 3000 benign var-
iants compared to using a generic MAF > 0.5% threshold (Supple-
mentary Fig. 2b). The benign class consisted of 4512 variants. The
above approach of using gene-specific MAF thresholds can generally
be applied to other genes to increase the number of benign variants.
Overall, we have a relatively balanced training set, which includes 40%
benign and 60% pathogenic variants (Supplementary Fig. 2d).

Development of the partners score to incorporate epistatic
effects
We designed a novel feature called the partners score based on the
observation that partner residues that are connected, either because
they are close in 3D proximity or because they are co-evolving,
share the samephenotypic effect (SupplementaryFig. 6a).Weused the
AlphaFold2 3D protein structural models to identify residues in spatial
proximity (<11 Å between C-alpha atoms, see Methods section) and
highly correlated positions inferred from multiple sequence align-
ments of homologous sequences44,45, to identify co-evolving residue
pairs. Co-evolving residues account for 13% of all partnerships while
spatially close ones account for the remaining 87%. There is an overlap

between the two types of partners, and 87%of co-evolving partners are
also spatially close partners in 3D space of the protein (Supplemen-
tary Fig. 6c).

Each residue position can be associated with only pathogenic,
only benign, both pathogenic and benign (mixed), or not being asso-
ciated with any known variant (Fig. 2a). Each residue has a score
(residue score) based on the type and number of connections it has
(Fig. 2b). We used amixture-based discriminant analysis46 approach to
define the partners score: first, the density of the residue score is
estimated independently for the pathogenic and benign class in the
training set assuming a gaussian mixture distribution (Fig. 2b). Then,
each variant is assigned a posterior probability of belonging to either
class, given the residue score and the prior probability of both classes
(i.e., frequency). The posterior probability of pathogenicity defines the
partners score (Fig. 2c and Methods section) which highlights how
mutations with the same phenotypic effects cluster both in linear and
3D space of the protein.

Partners score identifies functional sites
While only 13% of ACMG SF residues have annotated variants in the
training set, we can inform 74% of positions with the partners score by
making use of epistatic relationships (Fig. 2d). For example, the DNA
mismatch repair protein MSH6 has only 8 pathogenic and 7 benign
residue positions that are also co-evolving with other positions. With
the partners score, we annotated 255 positions whose clinical sig-
nificance has not been assessed yet. The same trend applies to posi-
tions in spatial proximity (Fig. 3a): amongst the spatially close residue
positions, only 53 have annotated variants (33 pathogenic and 20
benign). With the partner score based on spatial proximity, we anno-
tated 750 positions. Overall, if we consider both evolutionary and

Fig. 1 | Overview of DeMAG (DecipheringMutations in Actionable Genes). First,
we assembled a training set from 59 actionable genes; pathogenic variants were
collected from clinical databases such as ClinVar and Human Gene Mutation
Database (HGMD40). The benign class includes variants from different sources
including clinical, population, and non-human primate variants. The training set
consisted of 6713 (60%) pathogenic and 4512 (40%) benign variants. Next, we
annotated each variant with features, including EVmutation18, IUPred2A75, and
AlphaFold240 confidence score (predicted Local Distance Difference Test, pLDDT).
We designed a novel feature, the ‘partners score’, that captures the epistatic effects

both in the sequence and in the 3D space of the protein. It relies on the observation
that evolutionary coupled and spatially close residues are enriched in the same
phenotypic effect. Next, we trained a classification tree-based gradient-boosting
model using 13 selected features. Themodel was validated with 3 different types of
data: (1) clinical testing data from ClinVar, (2) benign variants from the Estonian
Biobank, and (3) deepmutational scanning data for four genes (BRCA1, TP53,MSH2,
and PTEN). Finally, we provide predictions for all variants in the 59 actionable genes
and extra 257 ClinVar genes and a web application (demag.org). Created with
BioRender.com.
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spatial partnerships, the partners feature assigns a score to 55% of all
MSH6 residues (750 positions). For the cellular tumor protein P53, we
observed a clear correlation between the partners score and Pfam47

protein domain annotations, e.g., residue positions of the low-
complexity region and disordered region are characterized by low
partners scores, while residue positions of the DNA-binding domain
has overall high scores (Fig. 3a and Supplementary Fig. 7). In addition,
we observed that the MSH6 ATP binding site has a partners score >0.6
(Fig. 3b). The role of the ATP binding site of the MSH2-MSH6 hetero-
dimer is crucial for DNA mismatch repair (MMR) competency: muta-
tions of the lysine residue in the MSH6 Walker A motif are complete
loss of function mutations in vivo in S. cerevisiae48. Moreover, all 14
mutations (G1134[A,R,E,V], P1135A, N1136D, M1137[T,V], G1138R,
G1139[D,C,V], S1141[C,P]) in this site are ClinVar VUSs, with no

definitive clinical interpretation, while they are predicted pathogenic
by DeMAG.

Overall, 67% of variants located in Pfam domains are patho-
genic in our dataset. Additionally, we find that variants in Pfam
domains have higher partners scores (Supplementary Fig. 7, p-value
<2.2e-16) supporting the utility of this feature in assessing variant
effects.

DeMAG reaches high sensitivity and specificity
Several existing VEPs, such as M-CAP and SIFT4G have high sensitivity
but low specificity23. Their recommended thresholds (M-CAP10 0.025
and SIFT4G 0.0524) are set to reach high sensitivity in variant inter-
pretation, while tolerating a high misclassification rate for benign
variants. This imbalance increases the number of potentially false

Fig. 2 | The partners score – integrating evolutionary and structural informa-
tion to inform variant assessment. a Co-evolving residue pairs in the protein
sequence and spatially adjacent residues (<11 Å) in the protein 3D structure. Resi-
dues are colored according to the phenotypic effect of associated variants within
the DeMAG training set, e.g., red for positions with only pathogenic variants (see
legend at left). The partners score informs residues positions that do not have any
associated variants but are either co-evolving or spatially close to residue positions
that have variants with known phenotypic effect (i.e., annotated in the training set).
b A point scale quantifies the connection between residue positions e.g., benign
positions are assigned −1, pathogenic 1, and mixed or not annotated 0. Next, we
defined the residue score as the sum of partners points per residue e.g., residue

glutamic acid (E) is connectedwith two pathogenic variants thus its residue score is
2. The partners score is derived via amixture discriminant analysismodel. First, the
residue score distribution (histograms) for the benign and pathogenic residue
positions is estimated with a gaussian mixture model (density lines). c The pos-
terior probability of belonging both to the pathogenic and benign class is com-
puted given the residue score and the prior probability (i.e., frequency of the two
classes). The partners score is defined as the posterior probability of pathogenicity.
The partners score feature is available for 74% of ACMG SF v2.0 residues positions,
while only 13% of positions have annotations in the training set. Created with
BioRender.com.
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positive variants (benign variants predicted incorrectly to be patho-
genic). To address this issue, we made extensive efforts to improve
training set balance by expanding the number of available benign
mutations (Fig. 1 and Supplementary Fig. 2d). We selected only 13
features with balanced performance in discriminating between
pathogenic and benign classes (Supplementary Table 1a and Methods

section), including 8 derived from sequence conservation, and 5 from
3D structural models disorder scores, and epistatic relationships
(Supplementary Table 2). DeMAGwas trainedwith a gradient-boosting
tree method49,50 (see Methods section) and it yielded high accuracy
(87%) and AUC-ROC (92%) values that correspond to high sensitivity
(87%) and specificity (85%), as well as high precision (90%) (Fig. 4c).

Fig. 3 | The partners score annotates residue positions lacking prior functional
or clinical assessments. aOn the top left, co-evolving residue positions are shown
for theDNAmismatch repair proteinMSH6. The innermost circle indicates residues
that are co-evolving with at least one other residue whose phenotypic effect is
known (i.e., annotated in the training set). Among such residues, 8 arepathogenic, 7
benign, and 255 lack prior assessment. The outer circle shows the partners score
resulting from co-evolutionary partnership of residues, which gives a score to 255
residue positions without known annotations. The outermost circle indicates the
Pfam domains of MSH6. On the right, AlphaFold 3Dmodel of the protein is shown.
Residue positions are colored based on the partners score derived from spatially

close partnerships of residues, which inform 750 previously unannotated residue
positions (55% of the protein length). Below, the same representation is shown for
the cellular tumor antigen P53 protein. The circle plot shows correlation between
partners score anddomainannotation: the residues that belong to theDNA-binding
domain have high partners scores while in the low-complexity region have low
partners scores (Supplementary Fig. 7). In total 208 (53%) previously unlabeled
residue positions are now annotated with partner scores. b A structural example,
whereMSH6 ATP binding site residues, have been previously shown50 to be critical
for DNA mismatch repair (MMR) function, have a high partners score.
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Overall and at the single gene level, DeMAG has a balanced sensitivity
and specificity (Fig. 4a, c), which corresponds to setting the threshold
to 0.5 to interpret a variant as pathogenic.

Epistatic and structural information improves performance
We investigated the contribution of each feature andobserved that the
partners score is the most informative one (Fig. 4b). In addition, a

structural feature, the normalized accessible surface area, is con-
tributing at least as much as other conservation-based features,
e.g., PSIC score25. In order to quantify the contribution of epistatic and
structural features, we trained DeMAG without those features and
observed a consistent decrease across all evaluation metrics (Fig. 4c).
In particular, the specificity dropped from 85% to 69%, while the
sensitivity decreased from 87% to 82%.

Fig. 4 | Epistatic and structural features improve DeMAG performance, both
within and across genes in the training set. a Performancewithin genes: formost
genes, variants are classified with high ROC-AUC> 70%. The high performance is
also maintained for the classification of pathogenic (sensitivity >70%) and benign
(specificity >70%) variants in most genes. b The feature importance of the 13
DeMAG features averaged across n = 4 cross validation (CV) folds (see Supple-
mentary Table 2 for features description). The whiskers of the boxplots range
correspond to ±1.5 times the IQR (inter quantile range). The lower (upper) bound of

the box of the boxplot corresponds to the 25th (75th) percentile. The center is the
median. The partners score feature stands out from the others with a median
importance of ~60%. c Performance metrics for DeMAG. The metrics represent
mean values obtainedby 4-foldCVwith standarddeviation inparentheses. Notably,
DeMAG shows balanced performance with 87% sensitivity and 85% specificity as
well as 90% positive predicted value and 80% negative predictive value. Removing
epistatic and structural features provides consistently lower performance than the
complete model.
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We explored the contribution of epistatic and structural features
at the gene level and observed an increase in sensitivity for genes with
high proportions of pathogenic mutations (Supplementary Figs. 8a
and 9). The specificity increased for genes with different proportions
of pathogenicmutations, albeitmainly for geneswith highproportions
of benign mutations (Supplementary Figs. 8a and 9). The difference in

performance with and without epistatic and structural features
appears to be independent of the number of training variants per gene
(Supplementary Fig. 8b).

While it is evident that DeMAG’s performance increased with
epistatic and structural features overall, the improvement at the gene
level is more challenging to assess.

Fig. 5 | DeMAG outperforms other VEPs on clinical variants. Pairwise compar-
ison of the performance of DeMAG and other VEPs on 1285 high-quality clinical
variants from the ClinVar testing set (852 pathogenic and 433 benign variants),
according to different performance metrics (specificity, sensitivity, Matthews
Correlation Coefficient (MCC), ROC-AUC and accuracy). The left panel shows
specificity and variants coverage of VEPs (squares) (e.g., SIFT has 95% coverage, see
Table 1 for exact values). The green horizontal line (y = 1) indicates that DeMAG has
100% coverage, it has prediction for all variants. DeMAG’s high specificity is on par

with EVE on its 73% variants coverage (thin black bordersquare). For EVE there are 2
comparisons: the first (bars without black border) indicate the performance when
uncertain class variants are excluded and the bars with black borders include the
uncertain variants as well. We assigned their class as if EVE was a random classifier
(Table 1).While all tools reach almost perfect ROC-AUC and sensitivity, DeMAGhas
the most balanced performance, namely the highest MCC (top right panel). For
confidence intervals calculated on 1000 bootstrap samples refer to Supplemen-
tary Fig. 14.

Table 1 | DeMAG outperforms other VEPs on clinical variants

VEPs Sensitivity Specificity Accuracy MCC AUC Variants predicted (n = 1285) VEP’s coverage

DeMAG 0.93 0.82 0.90 0.77 0.96 – –

SIFT4G 1 0.07 0.68 0.21 0.81 1226 0.954

DeMAG 0.94 0.82 0.89 0.76 0.96 – –

REVEL 0.99 0.62 0.86 0.69 0.96 1285 1

DeMAG 0.93 0.79 0.89 0.74 0.95 – –

DEOGEN2 0.91 0.58 0.80 0.53 0.91 964 0.750

DeMAG 0.93 0.79 0.89 0.74 0.95 – –

PolyPhen2 0.91 0.72 0.85 0.64 0.86 972 0.756

DeMAG 0.94 0.81 0.89 0.76 0.96 – –

VEST4 0.99 0.64 0.87 0.72 0.95 1280 0.996

DeMAG 0.94 0.81 0.90 0.76 0.96 – –

M-CAP 1 0.28 0.77 0.44 0.93 1256 0.977

DeMAGa/b 0.96/0.96 0.81/0.80 0.92/0.91 0.80/0.78 0.97/0.96 – –

EVEa/b 0.92/0.86 0.81/0.73 0.89/0.82 0.73/0.58 0.91/0.89 940/1165 0.731/0.906

Different performancemetrics for DeMAG and sevenpopular variant effect predictors (VEPs). The test set is assembled from theClinVar database, consistingof bothpathogenic (n = 852) and benign
variants (n = 433) submitted after the year 2017 (see Methods). The comparison in pairs guarantees that each predictor is evaluated on all the variants for which a prediction exists. DeMAG has 100%
coverage and it is the most balanced across all the metrics. The comparison with EVE includes two values. The first value indicates the performance on the variants which are predicted by EVE as
benign and pathogenic excluding the uncertain class (73%of all variants). The second value includes variants that EVEmisclassifies as uncertain.We assigned themas if EVEwas a randomclassifier.
aIf EVE’s Uncertain class variants are excluded from the testing set.
bIf EVE’s Uncertain class variants are assigned as if EVE was a random classifier.
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Many VEPs fail to predict functional effects observed in deep
mutational scans
The concordance between VEPs and multiplexed assays of variant
effects (MAVEs) on clinical data has been frequently reported20,51–53,
and both techniques are used to reevaluate VUSs according to ACMG-
AMP guidelines54. Usually, the agreement between DMS data and VEPs
is assessed through correlation coefficients and AUCs55, which do not
depend on a classification threshold that is needed for clinical
decision-making.

We validated DeMAG as well as other VEPs against Deep Muta-
tional Scanning (DMS) data as in prior studies20,23,52, using data for 4
genes (BRCA153, TP5356, PTEN57, and MSH258). Most variants in these
assays are not yet annotated in ClinVar (51%), and 41% are ClinVar VUSs
(Supplementary Fig. 4). Among the 7 VEPs evaluated, DeMAG per-
formed best on BRCA1 (35% Matthews Correlation Coefficient, MCC)
and PTEN (27% MCC), while EVE performed better for TP53 (39%MCC)
and MSH2 (38% MCC) (Supplementary Fig. 4).

TheDMSdata analysis indicates an overall poor performance of
VEPs on functional data, at least on these four genes (Supplemen-
tary Fig. 4). Importantly, while sensitivity and ROC-AUC values are
high (>80%) for all VEPs tested, the specificity values are worse than
the one of a random classifier (Supplementary Fig. 4). This might be
due to the high proportion of variants interpreted as functional by
DMS data, e.g., for MSH2, 92% of single nucleotide missense sub-
stitutions are assessed as functional, and classified as pathogenic by
VEPs. These results are in agreement with previous studies report-
ing weak performance of VEPs in predicting beneficial mutations
(gain-of-function) in DMS data52, and overall low concordance
(Spearman correlation coefficient <50%) between VEPs and DMS
data18.

DeMAG outperforms existing tools on clinical data
As VEPs often collect variants from similar database sources, it is
essential to benchmark different predictors against an unbiased test-
ing set to avoid type 1 circularity21. To compare our performance with
commonly used VEPs (PolyPhen-28, SIFT4G59, REVEL11, DEOGEN260,
M-CAP10, VEST49, and EVE18), we designed a clinical testing set com-
prising high-quality variants submitted to ClinVar after 2017. We
assume that, as the most recent supervised method we benchmarked
withwaspublished in 2016, none of thosemethods used these variants
for training as they were not yet part of the ClinVar database. We re-
trained DeMAGwithout these held-aside variants for testing, and used
this model to make predictions on the ClinVar variants (Supplemen-
tary Table 3 and Supplementary Fig. 10). The testing set had 852 (66%)
pathogenic and 433 (34%) benign variants. As not all VEPs have pre-
dictions for these variants, we benchmarked DeMAG in pairs (Table 1
and Fig. 5a). Overall, DeMAG reached the highest specificity, accuracy,
and MCC values (Table 1 and Fig. 5). DeMAG’s performance is con-
sistently high across the different evaluationmetrics, while other VEPs
present lower specificity compared to sensitivity (e.g., DeMAG 82% vs.
93%, and REVEL 62% vs. 99%).

It should be noted that EVE’s high accuracy (89%) dropped to 82%
when we included variants that the authors assigned as uncertain,
although they are actually annotated as benign or pathogenic variants
in ClinVar (Table 1 andMethods section). In addition, only DeMAG and
REVEL predict 100% of variants, while EVE has the lowest coverage
(73%) (Table 1 and Fig. 5). While each tool has different strengths,
DeMAG outperforms all other methods tested in at least one evalua-
tion metric reported.
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Fig. 6 | Comparison of VEPs on population data.Misclassification rate of benign
common variants within the Estonian Biobank. The test set constitutes of 94 var-
iants. On the y axis the misclassification rate and on the second y axis the VEP’s
variants coverage, identified by the colored squares. The green horizontal line
(y = 1) shows that DeMAG has 100% coverage, as wells as REVEL, M-CAP and
ClinPred. Among those tools DeMAG reaches the lowest misclassification rate.
VARITY reaches the lowest misclassification rate but covers only 80% of variants.
The comparison with EVE has 2 error bars: the first (black border and transparent
color) indicates the performance when uncertain class variants are predicted as if
EVEwas a randomclassifier, the inner (and shorter) bar indicates EVE’s performance
excluding uncertain variants. While EVE has lower misclassification rate than
DeMAG, it only gives certain predictions for 65% of variants. Although VARITY and
EVE classify these 94 variants with the lowest misclassification rate, DeMAGhas the
lowest misclassification rate among VEPs with 100% predictions. For confidence
intervals calculated on 1000 bootstrap samples refer to Supplementary Fig. 15.

Table 2 | Misclassification rate of common variants of the
Estonian Biobank

VEPs Misclassification rate Variants pre-
dicted (n = 94)

VEPs
coverage

DeMAG 0.44 [0.32,0.56] – –

SIFT4G 0.93 [0.86,0.99] 70 0.74

DeMAG 0.43 [0.33,0.52] – –

REVEL 0.51 [0.40,0.62] 94 1

DeMAG 0.36 [0.25,0.46] – –

DEOGEN2 0.59 [0.47,0.69] 75 0.8

DeMAG 0.36 [0.26,0.47] – –

PolyPhen2 0.53 [0.41,0.64] 72 0.77

DeMAG 0.42 [0.32,0.52] – –

VEST4 0.49 [0.39,0.60] 93 0.99

DeMAG 0.43 [0.33,0.52] – –

M-CAP 0.93 [0.87,0.97] 94 1

DeMAGa/b 0.39/0.44 [0.27,0.52]/
[0.34,0.55]

– –

EVEa/b 0.34/0.38 [0.23,0.47]/
[0.28,0.49]

61/81 0.65/0.86

DeMAG 0.43 [0.33,0.52] – –

ClinPred 0.73 [0.64,0.82] 94 1

DeMAG 0.35 [0.25,0.45] – –

VARITY 0.30 [0.20,0.40] 80 0.85

The square brackets indicate the 95% CI calculated on 1000 bootstrap samples. The test set
constitutes of 94 variants and4 out of 9VEPs havepredictions for all variants (DeMAG, REVEL,M-
CAP, ClinPred). Among those tools DeMAG reaches the lowest misclassification rate. Overall,
VARITY reaches the lowest misclassification rate but covers only 80% of variants. The compar-
ison with EVE has 2 rows: the first row indicates the performance when uncertain class variants
are excluded; the second row indicates the performance that includes uncertain variants. Their
class is assignedas if EVEwas a randomclassifier.WhileEVEhas lowermisclassification rate than
DeMAG, it only gives predictions for 65% of variants.
aIf EVE’s Uncertain class variants are excluded from the testing set.
bIf EVE’s Uncertain class variants are assigned as if EVE was a random classifier.
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We also benchmarked against common variants in the Estonian
Biobank61. While variants from the Estonian Biobank are not yet part of
gnomAD, 80% were already annotated in ClinVar (Table 3). Most var-
iants were VUSs (33%) and high-quality benign variants (30%). We
evaluated variants, not already annotated in ClinVar or in our training
set, and we filtered the variants based on MAF greater than the cor-
responding disease prevalence (Supplementary Data 2), resulting in a
total of 94 benign variants. For this analysis we also compared DeMAG
with some of the most recent supervised VEPs, VARITY12, and
ClinPred62. Since those tools were trained on ClinVar variants of our
test set, we did not include them in the previous ClinVar analysis.
VARITY has the lowest misclassification rate (30%) followed by EVE
(34%) and DeMAG (39%), however, both VARITY and EVE predict only
85% and 65% of variants, respectively (Table 2 and Fig. 6). DeMAG has
the lowest misclassification rate (43%) among VEPs (REVEL 51%,
ClinPred 72% and M-CAP 93%) that predict 100% of variants (Table 2
and Fig. 6).

DeMAG was designed and trained to aid clinical variant inter-
pretation of a specific, actionable gene set. However, the model and
the partners score framework can be extended to other genes that
have enough variants with known phenotypic information. Therefore,
we evaluated the generalizability of DeMAGonother clinically relevant
genes. We only included genes with at least 5 benign and 5 pathogenic
high-quality variants (review status of at least 2 stars) in ClinVar
(Supplementary Data 1). We used the same model trained on the 59
ACMG SF genes and evaluated its performance on the 257 new genes.
The results demonstrate that DeMAG generalizes well, reaching 91%
sensitivity and 85% specificity (Supplementary Table 4). We anticipate
that with the growth of clinical data, DeMAG will be used to evaluate
variants in even more genes by taking advantage of the partners score
framework.

Discussion
As genomic sequencing becomes more commonplace in clinical
practice and research, the interpretation of missense variants remains
amajor challenge. Correctly classifying the pathogenicity of variants is
essential to translating genomic information from actionable
genes into clinical care. We developed DeMAG, a specialized VEP that
reaches high performance for such actionable disease genes (ACMG
SF) (Fig. 4a, c). It demonstrates superior balance between sensitivity
and specificity (Fig. 5 and Table 1), and which has utility for variant
prioritization, rare variant studies, and to reclassify VUSs in the ACMG
SF genes. Asmany as 16% ofmissense VUSs in ClinVar are within the 59
ACMG SF genes, underlying the value of a specialized classifier. While
exome-wide predictors have a wide range of uses in basic research,
here we show that a specialized classifier reaches higher performance
on clinically actionable genes, and should be prioritized in transla-
tional research (Table 1 and Fig. 5).

The assembly of a high-confidence balanced training set is crucial
for the development of supervised predictors. For example, the

ClinVar Review status provides a system to evaluate the review quality
and agreement related to confidence of a variant assessment. Thus, we
included only variants whose clinical interpretation is shared among
different submitters, i.e., 2 or more review status stars. The joint ana-
lysis of clinical annotations between databases, namely ClinVar and
HGMD, allowed the removal of potentially conflicting or lower-quality
variants. Indeed, we removed almost 40% of disease-causing variants
in HGMD that were interpreted in ClinVar as VUSs (Supplementary
Fig. 5), and included a large number of new putatively neutral variants
which are statistically unlikely to be highly penetrant disease var-
iants (Supplementary Fig. 2a and b). As clinical databases become
increasingly important repositories for genetic variation in relation to
human health and disease phenotypes, it is crucial to implement
quality control pipelines to include only variants with non-conflicting
and clear interpretations.

As many VUSs are identified in diagnostic testing, many studies
are focusing on VUS assessment and reclassification54,63. For instance,
Dines et al.63 reclassified BRCA1 exon 11 as a cold spot, suggesting a
benign reinterpretation of variants located within that region. DeMAG
predictions for that region agree with such reclassification (Supple-
mentary Fig. 11). On the other hand, the reassignment of the BRCA1
coiled-coil domain (1393–1424) as a moderate benign region is in dis-
agreement with previous study that showed that mutations in that
region disrupt the complex formation with PALB2, which would impair
the Homologous Repair (HR) mechanism64. DeMAG agrees with this
work and it classifies at least 45% of all possible missense substitutions
in that region as pathogenic (Supplementary Fig. 11).

In addition to AUC-ROCs, VEPs should include other performance
characteristics and metrics, especially when training on unbalanced
data65. We have reported several performance metrics when bench-
marking DeMAG (Tables 1 and 2 and Figs. 5 and 6) that confirmed how
several popular VEPs often fail to correctly classify benign variants23

(Tables 1 and 2 and Figs. 5 and 6). As computational evidence is com-
monlyused andone of the classification criteria, bias in overestimating
pathogenicity contributes to labeling more variants as pathogenic in
publicly available databases.

The epistatic and structurally derived features are informative, as
DeMAG has inferior performancewithout these features for all metrics
considered (Fig. 4c). Despite the overall improvement, there are a few
genes that do not benefit from those new features (Fig. 4a and Sup-
plementary Figs. 8 and 9). Thismight be due to the imbalanced nature
of pathogenic and benign training variants within these genes (Sup-
plementary Fig. 2c). The performanceof genes that harbor almost only
pathogenic (orbenign)mutationswill be dominatedby high sensitivity
(or specificity), so an improvement in thedominantmetricwill result in
a substantial drop of the other one. For instance, the new features
increase sensitivity in FBN1, but as the gene has 93% pathogenic
mutations, the specificity drops by 27% (Supplementary Fig. 9 and
Fig. 4a). The same happens for APOB, MYH11 and APC. These genes
harbor benign variants in proportions >86%, and indeed, an increase in
specificity corresponds to more than 30% drop in sensitivity. Though
we are able to improve the overall balance in performance character-
istics, some clinically actionable disease genes have significant biases
which pose challenges for variant interpretation.

We observe that evolutionary coupled positions and spatially
proximalones are enriched for the samephenotypic effects, andmight
serve to identify functional sites, e.g., domains (Supplementary
Table 7). In agreement with previous reports12,16, we confirm that the
traditional conservation paradigm to interpret human coding mis-
sense mutations should be complemented with epistatic and struc-
tural information.

Although DeMAG was trained on the 59 ACMG SF genes, it gen-
eralizes well to an extended set of 257 ClinVar genes (Supplementary
Table 4). Extending to additional genes would require abundant clin-
ical data, which is not yet available for most genes (Supplementary

Table 3 | ClinVar clinical significance of common variants of
the Estonian Biobank

Review stars

Clinical significance 0 1 2 3

Benign 0 3 99 39

Pathogenic 1 1 2 0

VUS 1 48 106 1

Conflicting pathogenicity 0 168 0 0

Not annotated in ClinVar 117

The table shows the ClinVar clinical significance of the common variants from the Estonian
Biobank according to the review status stars which increase with the confidence of a variant
assessment. For example, among high-quality (review status with at least 2 stars) annotations
most variants are benign and VUSs.
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Fig. 12 and Supplementary Data 1). As large population sequencing
datasets become available, supervised predictors like DeMAG may be
able to further improve assessment of variant effects.

In conclusion, we anticipate that our tool and the web server
(demag.org) will facilitate variant assessment and clinical decision-
making. Moreover, the newly developed features can be applied to
other genotype-phenotype predictors and be generalized to other
genes and organisms.

Methods
Training dataset
Variant Call Format (VCF) files were collected from clinical and popu-
lation databases.Wedownloaded theClinVar4 VCFfile, version 2021.05
and retained variants with a review status of at least 2 stars, with either
a ‘pathogenic’ or ‘benign’ clinical significance (including likely benign
and likely pathogenic labels). Variants of conflicting interpretations
were excluded as well as variants which had only somatic labels. We
used the HumanMutation Gene Database40 (HGMD), version 2020.03,
to extract additional pathogenic mutations. We filtered for disease
mutations (DMs) and retained variants thatwerenot already annotated
in ClinVar (Supplementary Fig. 5). With this filtering we removed
HGMD variants with a VUS label in ClinVar (26%), as well as low quality
(zero and one review status star)ClinVar pathogenic variants (27%) and
ClinVar benign variants (1%). The PolyPhen-2 HumVar training dataset
derived from UniProtKB release 2021.0166 was used to collect both
pathogenic and benign variants.

We added common variants to the benign set from the Genome
Aggregation Database41 (gnomAD), the NCBI ALFA67 (Allele Frequency
Aggregator) project release 20201124, country-specific sequencing
projects, i.e., Korea42 (KRGDB) and Japan43 (3.5KJPNv2,), and variants
from human orthologues (PrimateAI30 and Human/Chimpansee sub-
stitutions extracted from the UCSC Genome Browser Multiz align-
ments of 100 vertebrates).Non-humanprimate variantswere collected
from the primateAI database but only Chimpansee and Bonobo species
were considered as the most closely related apes to humans. We
treated non-human primate polymorphisms as benign variants. In
addition, we considered variants from human population data as
benign, if their minor allele frequency (MAF) was greater than the
disease prevalence (BS1 classification of ACMG guidelines13,14). Disease
prevalence values were collected from Orphanet and MedlinePlus
(https://www.orpha.net, https://medlineplus.gov/). In case of multiple
disease prevalence values associated to a phenotype we chose the
highest value, according to a conservative strategy, and when una-
vailable, a MAF filter >0.5%was applied (Supplementary Data 2). These
variants collectively were considered benign to train and test
the model.

Both duplicates and conflicting variants, i.e., variants reported
both as pathogenic and benign among different sources, were
removed from the final training set. The number of training variants
among different sources and different genes are shown in Supple-
mentary Fig. 2.

Clinical testing dataset
The primary clinical testing set (852 pathogenic and 433 benign
variants) was built from the ClinVar database. To ensure the inde-
pendence of the testing set, we only considered variants submitted
to ClinVar after December 2017 (Supplementary Fig. 10). Because
the newest supervisedmethodwe benchmarked with was published
in 2016, these variants were not used in the training pipeline of any
of the predictors. As we used ClinVar variants for training, we
trained a different model for the performance test-
ing (Supplementary Table 3), excluding the variants held aside for
testing (Supplementary Fig. 10). This ensured unbiased comparison
of DeMAG to other predictors.

Functional variants testing set
In order to investigate the concordance between DeMAG predictions
and experimental data, we used DMS data for BRCA1, TP53, PTEN, and
MSH2. All datasetswere collected from the Supplementarymaterials of
the respective papers53,56–58. When possible, we assessed the con-
cordancebetween different experimental replicates to ensure a robust
functional score for each variant. For BRCA1, two scores were available
and as the correlation and the variance explained was 81% and 65%
respectively, we included all the variants. The authors assessed var-
iants’ functional scores in three categories: loss of function (LOF),
intermediate (INT), and functional (FUN). We did not evaluate the
intermediate class. After removing overlapping variants with our
training set, we evaluated 1587 variants: 1268 (80%) FUNC and 319
(20%) LOF. For PTEN, 8 different scores were available. Since the cor-
relation pattern among the replica was variable, we only evaluated
variants whose standard deviation among all available 8 scores was
smaller than 10%. In this case as well, we did not evaluate uncertain
functional categories, namely possibly wt-like and possibly low. We
evaluated 34 FUNC (64%) and 19 LOF (36%) variants. For MSH2, we
could not analyze the concordance among different replicas, as only
one score was provided. The total number of variants analyzed was
5075: 4737 (93%) FUNC and 338 (7%) LOF variants. The last gene we
analyzedwasTP53, forwhichwedid not havemore thanone functional
score but agreement between replica was already assessed by the
authors. We evaluated 1017 variants: 714 (70%) FUNC and 303 (30%)
LOF variants.

Common variants testing set
We assembled another testing set of putatively benign variants from
the Estonian Biobank61. To define benign variants, we applied the same
rule as for the common variants in the training set and used MAF
threshold greater than the disease prevalence (SupplementaryData 2).
In order to design an independent testing set, we removed variants
that were present in our training set as well as variants with a ClinVar
interpretation. As those variants were still not part of gnomAD at the
timewewrote themanuscript, it is unlikely that any VEPs used them in
their training sets. The test set consisted of 94 variants. We calculated
the misclassification rate and we constructed its 95% confidence
interval (CI) from 1000 bootstrap samples, using the 25th and 975th
value of the misclassification rate resampling distribution.

Pathogenicity scores
Pathogenicity scores were collected through dbNSFP68 v4.1a
command-line application. We have downloaded scores for SIFT4G
v2.4, VEST v4.0, PolyPhen-2 v2.2.3, M-CAP v1.3, DEOGEN2, and REVEL.
To calculate the accuracy, we used the threshold as recommended by
the authors, which is 0.5 for all themethods except forM-CAPwhich is
0.025 and SIFT4G which is 0.05. For EVE, we downloaded the predic-
tions from the web server (https://evemodel.org/download/bulk) on
2021.12.16 and used the columns “EVE_scores_ASM” and “EVE_-
classes_75_pct_retained_ASM” (as reported in the web server) respec-
tively for the continuous probability score and categorical
classification. EVE does not provide a unique threshold, rather a gene-
based predefined categorical feature with three different levels:
pathogenic, benign, and uncertain. When uncertain variants corre-
sponded to misclassified variants i.e., ground-truth pathogenic and
benign variants, we assigned them as if EVE was a random classifier.
VARITY and ClinPred precomputed scores were downloaded respec-
tively on 2022.01.05 and on 2022.11.15 from their web servers.

Variant annotation
We used MapSNPs from PolyPhen-2 v2.2.3 (http://genetics.bwh.
harvard.edu/pph2/dokuwiki/downloads) annotation tool to map the
genome assembly hg19/GRCh37 variants coordinates to missense
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coding SNPs. Only variants mapping to known canonical transcripts
according to the UCSC Genome Browser were retained.

Sequence-based features
We used the PolyPhen-2 v2.2.3 pipeline to annotate DeMAG features
(http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads). A com-
plete list and description is available at the PolyPhen-2 v2.2.3Wiki page
(http://genetics.bwh.harvard.edu/wiki/pph2/appendix_a). The new
features are annotated separately (see sections below). IUpred2A
scores were collected using the command line tool69 (https://iupred2a.
elte.hu/).

Epistatic and structure-based features
EVmutation. EVmutation scores17 were obtained using the EVcou-
plings Python package, version v0.1.170. EVmutation scores were
computed for protein residues covered by the multiple sequence
alignment (MSA) of the corresponding protein sequence. In order to
maximize the alignments coverage, and to cover regions other than
the most conserved domains, we optimised alignments. In particular,
protein sequences were tiled in regions of 100 residues with over-
lapping windows of 50 residues, i.e., 1–100, 50–150. TheMSAwas then
computed for each tiled region and for five different bit score
thresholds (0.1, 0.2, 0.3, 0.4, 0.5). For each of these combinations we
calculated the number of sequences in the MSA and the skewness of
the Evolutionary Couplings (EC) distribution. We merged adjacent
regions if either the number of sequences in the alignment was >5
times the length of the region or if the skewness of the EC distribution
was >1. At each step, we repeated the align and couplings stages of the
EVcouplings framework. We repeated these steps until no more adja-
cent regions could be joined together. Then, we computed the muta-
tion stage to obtain the EVmutation score. The final alignment
coverage for the ACMG SF genes is shown in Supplementary Fig. 13a.
While thepre-computedEVmutation scores availableon thewebserver
(downloaded on 2022.09.22) cover only 37% of ACMF SF v2.0 sites,
with our MSA pipeline we increased the coverage to 64% of residues.

Partners score. The partners score is derived from co-evolutionary
partners, i.e., evolutionary coupled residue positions, and structural
partners, i.e., spatially close residue positions (Fig. 2). Co-evolving or
coupled residue positions were identified using the EVcouplings fra-
mework. First, we obtained a list of coupled residue pairs, and then we
annotated the label (phenotypic effect) as in our training set for each
residue. If a residue position was associated with both pathogenic and
benign variants we assigned the label “mixed”. We excluded residue
positions that were coupled to only not annotated residues in the
training set. A residue that is not annotated is a residue that does not
have any variants with known label in our training set. We assigned a
score to each residue: 1 for pathogenic positions, −1 for benign and 0
for mixed or not annotated ones. The residue score is the sum of the
scores of all co-evolving positions (Fig. 2b) of any given residue posi-
tion. Then, we trained a mixture discriminant analysis model on the
residue score distribution of the training set variants. First, the model
estimates the density of the residue score distribution for the patho-
genic and benign variants independently. Next, the model predicts for
each residue position the posterior probability of belonging to the
benign and pathogenic class given the residue score and the prior
probability of being a pathogenic or benign position as in the training
set. The partners scoreof co-evolving residuepositions is the posterior
probability of belonging to the pathogenic class (Fig. 2d).

The significance of coupled residues is determined by their loca-
tion in the EC score distribution. A probabilitymodel has been defined
to identify strong coupled positions70. The higher the probability the
more likely the residues co-evolve. In order to select the best prob-
ability threshold, we trained the mixture discriminant analysis model
for different cutoffs using cross-validation.We selected the probability

cutoff (0.6)whichgives the smallest differencebetween sensitivity and
specificity (Supplementary Fig. 6b).

Similar approach was used for spatially close residue positions as
in AlphaFold2 3D models. In order to select the Ångström distance
threshold for considering a pair of residues as contacting in 3D space
we trained differentmodels with different cutoffs (4-11 Å).We selected
11 Å as the best distance, which gave the smallest difference between
sensitivity and specificity (Supplementary Fig. 6b).Wedidnot consider
larger distances to avoid introducingprotein-specific properties rather
than residues-based ones.

The residue pairs that co-evolve and are contacting in 3D space
overlap and as a consequence the partners scores based on pairs
defined by co-evolution and 3D structure correlate (Supplementary
Fig. 6c). Therefore, we combined them and took the union of all scores
to increase the coverage of positions. In case of overlap, when both
scores were available for a position, we chose the score based on the
spatially close residue pairs.

The mixture discriminant analysis approach was implemented
using the mclust71,72package in R. The best model is internally selected
by Bayesian Information Criteria73 (BIC) and it has 3 Gaussian compo-
nents with variable variance for the density of the residue score for
pathogenic variants and 4 gaussian components with equal variance
for the benign ones. Given the density estimation of the residue score
and the prior probabilities (i.e., frequency) of the benign and patho-
genic variants, themixturemodel predicts the posterior probability of
belonging to both classes (pathogenic and benign). We define the
partners score tobe equal to the posterior probability of pathogenicity
(Fig. 2d). In total, 49,822 residues have a partners score.

3D models
We collected protein 3D models built by AlphaFold2 model (version
v2.1.0, 2021.08.12) that resulted in 100% residue coverage among the
ACMG SF genes (Supplementary Fig. 3). For long genes (APC, APOB,
BRCA2, DSP, FBN1, RYR1, RYR2) AlphaFold2 produces different over-
lapping models that we combined to obtain one single complete
model. The models are ~1400 aa long with non-overlapping regions of
~200 aa that cover the full sequence.

Cross-validation scheme
In order to select features, hyperparameters and the best probability
and Ångström distance cutoffs, we trained the models using a cross
validation scheme. The cross-validation scheme ensured that each
testing fold contained different proteins than the ones in the training
folds. This prevents bias due to training and testing within the same
protein. In addition, each testing fold should have a distribution of the
pathogenic and benign class that reflects the one of the training set. To
respect these two principles, we considered 4 CV-folds for model
training and hyperparameters selection and 5 CV-folds for the features
selection pipeline.

Feature selection
Training set variants were annotated with a total of 91 features. Most
features were annotated with PolyPhen-2 v2.2.3 pipeline and a
description of each feature can be found here (http://genetics.bwh.
harvard.edu/wiki/pph2/appendix_a). After removing gene-based fea-
tures, 39 features were retained. In order to select the most dis-
criminative features to train the model with, we trained a univariate
logistic regression model. The CV strategy is explained above (see
Cross-validation scheme subsection). The features that had an ROC-
AUC above 0.7, while ensuring a corresponding sensitivity and speci-
ficity >0.5, were selected. The final model was trained with a total of 13
features. The feature selection process was repeated twice: once for
DeMAG and second time for DeMAG without the ClinVar testing set.
The same set of features were selected for both models, see Supple-
mentary Tables 1a and 2b.
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Machine learning models
DeMAGwas trained with a gradient-boostingmodel with classification
tree as base learner and Bernoulli deviance as loss function. R package
“gbm” version 2.1.8 was used for training74. We trained the model with
the 13 features selected during the feature selection pipeline. We
implemented a grid search for two of the parameters of the gbm
function: shrinkage and interaction depth. The combinations eval-
uated were 9, resulting from 3 values for the shrinkage parameter
(0.001, 0.0055, 0.01) and for the interaction depth (1, 2, 3). The best
combination of parameters was selected based on performance in
4-fold CV: the models were ranked based on the smallest difference
between sensitivity and specificity and if more than one model satis-
fied the condition themodel with the highest sensitivity and specificity
was selected (Supplementary Tables 1b and 2). As for the feature
selection, the grid search was performed for DeMAG without the
ClinVar test set as well. Once we identified the best parameters,
the gbm model was trained with 4-fold CV to inspect the robustness
of the 4models’ performance and to investigate any potential biases in
the training set. The final model was then trained on the complete
dataset. Thegradient-boostingmodelwas chosenover other ensemble
machine learning techniques such as Random Forest because it
explicitly handles missing values (6% of features annotations in the
training set), namely for eachdecision in the tree there are not only the
left and right nodes but a missing node as well. Missing information is
thus treated as information, in the sense that rather than attributing an
imputed value a priori, the model’s algorithm considers the missing
value as another value of the specific predictor and as such is included
as another node.

Testing the generalizability of DeMAG on an extended set of
257 genes
We evaluated DeMAG on an extended set of 257 ClinVar genes. We
used ClinVar VCF file version 2022.08.12. We retained only genes with
at least 5 benign and 5 pathogenic high-quality (at least 2 review status
stars) variants and we excluded genes longer than 1800 as AlphaFold2
models are less reliable for long genes. See above subsections for
features annotation. The only difference in features annotation was
that we used pre-computed EVmutation score (https://marks.hms.
harvard.edu/evmutation/downloads.html) and that we designed the
partners score based only on structural partnerships (spatially close
residues according to AlphaFold2 3D models (version v2.3.0, down-
loaded on 2022.09.06)).

Data analysis and visualization
All statistical analysis was done in R (see the github repository for the
lists of packages used). The figures and tables were made with R,
Adobe Illustrator, Biorender.com and LaTeX.

To visualize protein 3DmodelsweusedPymol. Thewebserverwas
created with RShiny app.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training set (with the exception of the HGMD variants) and all the
test sets generated for this study are available on gitlab (https://git.
mpi-cbg.de/tothpetroczylab/DeMAG) and on DeMAG webserver
(https://demag.org/) and have been deposited at this repository:
https://doi.org/21.11101/0000-0007-FB84-9. HGMD data were avail-
able to the authors under a subscription data use agreement which
prohibits sharing variant data from HGMD Professional (QIAGEN).
Users and developers may not make HGMD data publicly available.
(https://www.hgmd.cf.ac.uk/docs/disclaimer.html). The variants from
the Estonian Biobank have been obtained through the process

described here: https://genomics.ut.ee/en/content/estonian-biobank.
The collection of the raw data is described in the Supplementary
Table 5.

Code availability
The code is available on gitlab (https://git.mpi-cbg.de/
tothpetroczylab/DeMAG) and the webserver at https://demag.org/.
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