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Integrated transcriptome landscape of
ALS identifies genome instability linked
to TDP-43 pathology

Oliver J. Ziff 1,2,3 , Jacob Neeves1,2, Jamie Mitchell1,2, Giulia Tyzack 1,2,
Carlos Martinez-Ruiz 4, Raphaelle Luisier5, Anob M. Chakrabarti 1,
Nicholas McGranahan 4, Kevin Litchfield4, Simon J. Boulton 1,
Ammar Al-Chalabi 6, Gavin Kelly 1, Jack Humphrey 7 & Rickie Patani 1,2,3

Amyotrophic Lateral Sclerosis (ALS) causes motor neuron degeneration, with
97% of cases exhibiting TDP-43 proteinopathy. Elucidating pathomechanisms
has been hampered by disease heterogeneity and difficulties accessing motor
neurons. Human induced pluripotent stem cell-derived motor neurons
(iPSMNs) offer a solution; however, studies have typically been limited to
underpowered cohorts. Here, we present a comprehensive compendium of
429 iPSMNs from 15 datasets, and 271 post-mortem spinal cord samples. Using
reproducible bioinformatic workflows, we identify robust upregulation of
p53 signalling in ALS in both iPSMNs and post-mortem spinal cord. p53 acti-
vation is greatest with C9orf72 repeat expansions but is weakest with SOD1 and
FUS mutations. TDP-43 depletion potentiates p53 activation in both post-
mortem neuronal nuclei and cell culture, thereby functionally linking p53
activation with TDP-43 depletion. ALS iPSMNs and post-mortem tissue display
enrichment of splicing alterations, somatic mutations, and gene fusions,
possibly contributing to the DNA damage response.

ALS is a fatal neurodegenerative disease caused by death of motor
neurons1. However, there is substantial heterogeneity in both clinical
presentation and prognosis2. For instance, patients with limb-onset
ALS tend to progress more slowly than those with bulbar-onset ALS
who typically succumbwithin two years of diagnosis1. The pathological
hallmark of ALS is TDP-43 proteinopathy, which is observed in 97% of
cases and is characterised by the mislocalisation and aggregation of
TDP-43 in the cytoplasm of neurons3. More than 20 gene mutations
have been established to cause ALS, the most common being in
C9orf72, SOD1, TARDBP and FUS. However, in ~80% of cases, no
pathogenic mutation is identified4,5. Nonetheless, there is still genetic

susceptibility in these cases with heritability estimates of ~50%, and
genome-wide association studies have identified over 15 variants
associated with ALS susceptibility (for example UNC13A, TBK1, ATXN2,
NEK1)6–8. This clinical and genetic heterogeneity has made it challen-
ging to identify the pathogenic mechanisms across the spectrum
of ALS7.

A major hurdle in identifying the causes of ALS is the inaccessi-
bility of patient motor neurons. Although post-mortem ALS tissue has
revealed important insights, it represents the end-stage of the disease,
with few surviving motor neurons9–12. Human induced pluripotent
stem cell (iPSC)-derived motor neurons (iPSMNs) offer a potential

Received: 9 September 2022

Accepted: 22 March 2023

Check for updates

1The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. 2Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University
CollegeLondon, LondonWC1N3BG,UK. 3NationalHospital forNeurology andNeurosurgery,UniversityCollege LondonNHSFoundation Trust, LondonWC1N
3BG,UK. 4CancerResearchUKLungCancerCentre of Excellence, UniversityCollege LondonCancer Institute, London,UK. 5Genomics andHealth Informatics
Group, Idiap Research Institute, Martigny, Switzerland. 6Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience,
Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK. 7Nash Family Department of Neuroscience & Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. e-mail: o.ziff@ucl.ac.uk; rickie.patani@ucl.ac.uk

Nature Communications |         (2023) 14:2176 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1504-7245
http://orcid.org/0000-0002-1504-7245
http://orcid.org/0000-0002-1504-7245
http://orcid.org/0000-0002-1504-7245
http://orcid.org/0000-0002-1504-7245
http://orcid.org/0000-0001-5730-2112
http://orcid.org/0000-0001-5730-2112
http://orcid.org/0000-0001-5730-2112
http://orcid.org/0000-0001-5730-2112
http://orcid.org/0000-0001-5730-2112
http://orcid.org/0000-0002-4817-0565
http://orcid.org/0000-0002-4817-0565
http://orcid.org/0000-0002-4817-0565
http://orcid.org/0000-0002-4817-0565
http://orcid.org/0000-0002-4817-0565
http://orcid.org/0000-0002-6841-5718
http://orcid.org/0000-0002-6841-5718
http://orcid.org/0000-0002-6841-5718
http://orcid.org/0000-0002-6841-5718
http://orcid.org/0000-0002-6841-5718
http://orcid.org/0000-0001-9537-4045
http://orcid.org/0000-0001-9537-4045
http://orcid.org/0000-0001-9537-4045
http://orcid.org/0000-0001-9537-4045
http://orcid.org/0000-0001-9537-4045
http://orcid.org/0000-0001-6936-6834
http://orcid.org/0000-0001-6936-6834
http://orcid.org/0000-0001-6936-6834
http://orcid.org/0000-0001-6936-6834
http://orcid.org/0000-0001-6936-6834
http://orcid.org/0000-0002-4924-7712
http://orcid.org/0000-0002-4924-7712
http://orcid.org/0000-0002-4924-7712
http://orcid.org/0000-0002-4924-7712
http://orcid.org/0000-0002-4924-7712
http://orcid.org/0000-0001-7219-560X
http://orcid.org/0000-0001-7219-560X
http://orcid.org/0000-0001-7219-560X
http://orcid.org/0000-0001-7219-560X
http://orcid.org/0000-0001-7219-560X
http://orcid.org/0000-0002-6274-6620
http://orcid.org/0000-0002-6274-6620
http://orcid.org/0000-0002-6274-6620
http://orcid.org/0000-0002-6274-6620
http://orcid.org/0000-0002-6274-6620
http://orcid.org/0000-0002-3825-7675
http://orcid.org/0000-0002-3825-7675
http://orcid.org/0000-0002-3825-7675
http://orcid.org/0000-0002-3825-7675
http://orcid.org/0000-0002-3825-7675
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37630-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37630-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37630-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37630-6&domain=pdf
mailto:o.ziff@ucl.ac.uk
mailto:rickie.patani@ucl.ac.uk


solution. iPSMNs recapitulate pathological features of ALS, enabling
exploration of the functional consequences of genetic variants on
motor neurons during the initial phases of the disease13–15. Since
iPSMNs can be generated from any individual irrespective of their
genetic background, they enable sporadic ALS to be modelled, which
is not possible with animal models16. However, iPSMN cultures are
expensive and labour-intensive, and many studies have been limited
to three or fewer patients17–21. Despite this, there has been a
recent expansion of ALS iPSMN biobanks with initiatives such as
neuroLINCS22 and Answer ALS23, offering a unique opportunity to
identify generalisable motor neuron perturbations across ALS genetic
backgrounds.

Here, we report a robust analytical framework to identify unifying
transcriptomic aberrations underlying motor neuron dysfunction in
ALS, providing the largest resource of ALS iPSMNs and post-mortem
tissue to date.We identify an accumulationof somaticmutations and a
heightenedDNAdamage response in ALS,most strikingly in cases with
TDP-43 proteinopathy. This demonstrates the importance of tran-
scriptomic data in understanding how diverse genetic backgrounds
contribute to ALS and in mapping the landscape of ALS-related RNA
changes.

Results
iPSC-derived motor neuron resource
Our database search strategy identified 16 ALS iPSMN bulk RNA-
sequencing (RNA-seq) datasets, of which 15 passed quality control
(Fig. 1, Supplementary Fig. 1). iPSMNdifferentiation protocols for each
dataset were extracted and found to follow generally similar proce-
dures between datasets; however, there were notable differences in
the duration of cultures, which ranged between 12–42 days in vitro
(mean 31 days; Supplementary Data 1). All samples underwent

extensive quality control, and principal component analysis was used
to investigate the effects of sequencing and culture batch confounding
variables (Supplementary Data 2). This revealed two global clusters of
iPSMNs separated by PC1 and PC2 according to poly(A) or total Ribo-
Zero RNA library preparation (Supplementary Fig. 2-3). Principal
component gene loadings confirmed that the separationwasdriven by
histone and small nucleolar encoding genes, which represent non-
polyadenylated genes (Supplementary Fig. 2a).

iPSMNs showed high expression of neuronal markers across
datasets, except for one HB9-reporter dataset that also exhibited dif-
ferent RNA library preparations between ALS (Ribo-Zero) and control
(polyA) samples and was therefore excluded (Supplementary Fig. 4)24.
Although the expression of post-mitotic dorso-ventral motor neuron
domain markers varied between datasets (e.g. CHAT, MNX1 [HB9],
LHX3, FOXP1, ALDH1A2, ISL1), there was a strong expression of rostro-
caudal markers (HOX1-8) across datasets, which is consistent with
hindbrain, cervical, and thoracic spinal cord specification (Supple-
mentary Fig. 5–7).

For the integrated analysis, we included 15 datasets comprising
429 iPSMNs, of which 323 were from ALS patients and 106 were from
non-ALS controls. ALS iPSMNs carried pathogenic mutations in 10
different genes, including C9orf7222,23,25–28 (n = 60), SOD118,19,21–23

(n = 20), FUS20,23,25,29,30 (n = 14), and TARDBP23,26,31,32 (n = 10); whilst 208
(64.2%) were from patients without an identifiable ALS mutation,
which we refer to here as sporadic ALS (Table 1).

ALS iPSMNs activate the DNA damage response
To investigate the underlying mechanisms of motor neuron degen-
eration across all genetic subtypes of ALS, we first focused on identi-
fying pan-ALS gene expression changes. We performed an integrated
analysis comparing all 323 ALS versus 106 control iPSMNs, accounting

Fig. 1 | Study overview. Schematic summarising our analytic frameworkusing iPSC-derivedmotor neurons (iPSMNs) and post-mortem tissue to interrogate perturbations
across the spectrum of ALS. Made with BioRender.
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for batcheffects betweendatasets and sex (seeMethods).We found43
differentially expressed genes in pan-ALS versus control iPSMNs, with
20 upregulated and 23 downregulated in ALS iPSMNs (false discovery
rate [FDR] < 0.05, Fig. 2a, Supplementary Data 3). Amongst differen-
tially expressed genes most increased in ALS was the endor-
ibonuclease RNase L (RNASEL) which regulates the decay of
cytoplasmic RNA and localisation of RNA binding proteins (RBPs)33.

Functionalover-representation analysis revealed that upregulated
genes in ALS were enriched in the DNA damage response (hypergeo-
metric FDR = 2.2 × 10−5; SESN1, RRM2B, TNFRSF10B) and p53 signalling
(FDR = 2.7 × 10−5; CDKN1A [p21], TP53TG3E, FBXO22) whereas down-
regulated genes were overrepresented by DNA-binding transcription
factor activity (FDR =0.003; MYOG, TBX5, POU5F1) and ventral spinal
cord development (FDR =0.004; LMO4, OLIG2, FOXN4; Fig. 2b). Gene
Set Enrichment Analysis (GSEA) identified significant up-regulation of
the p53 signal transduction gene set (GO:0072331, n = 264) in ALS
iPSMNs (normalised enrichment score [NES]+ 1.44, enrichment
p = 4.9 × 10−4; Fig. 2c). Since p53 signalling and DNA damage response
are large pathways, we next explored more specific gene sets by
examining their daughter pathways. This revealed strong upregulation
of genes involved with the mitotic G1 DNA damage checkpoint and
intrinsic apoptosis signalling (Supplementary Fig. 8).

To further understand how signalling pathways are activated in
ALS iPSMNs, we performed a Signalling Pathway RespOnsive GENes
(PROGENy)34 analysis which leverages perturbation experiments to
infer pathway activity changes, weighting genes based on their
responsiveness. PROGENy revealed that the most substantial pathway
activity increase in ALS iPSMNs was in p53 (NES + 13.0, p <0.001), fol-
lowed by Mitogen-Activated Protein Kinase (MAPK; NES + 5.6,
p <0.001), whilst the greatestdecreasewas observed inWNT (NES−2.5,
p =0.03; Fig. 2d). Examining each gene in the p53pathway according to
its p53 weighting in PROGENy revealed that the genes with the stron-
gest responsiveness in p53 activity in ALS iPSMNs included CDKN1A,
SESN1, RRM2B, MDM2, C2orf66, ZNF561 and ZMAT3 (Fig. 2e).

We next inferred the activities of 429 transcription factors (TFs)
from their regulon expression within the DoRothEA database34.
Remarkably, this revealed that TP53 was the TF with the greatest
increase in activity in ALS (NES + 7.62, p < 0.001) followed by ZNF274
andATF4. The strongest TF decreases in ALSwere in PRDM14, ZNF263,
and SIX5 (Fig. 2f; Supplementary Data 4). Interrogating individual
genes constituting the TP53 TF regulon revealed the greatest increases
in ALS iPSMNs in TNFRSF10B, SESN1, RRM2B, CDKN1A, ZMAT3 and
MDM2. These integrated analysis results can be easily explored in the
interactive web application at https://oliverziff.shinyapps.io/als_
genome_instability/.

Although our statistical design adjusts for dataset batch effects, it
is plausible that changes between ALS and control groups were con-
founded by imbalances between total Ribo-Zero and poly(A) libraries.
To address this, we performed a subgroup analysis in poly(A) datasets
(10 datasets; 48 ALS, 43 control iPSMNs) and total Ribo-Zero (5 data-
sets; 275 ALS, 63 control iPSMNs) separately (Supplementary Fig. 9a,
b). Comparing ALS versus control iPSMNs revealed that in poly(A)
datasets there were 69, and in total Ribo-Zero datasets there were 12
differentially expressed genes (Supplementary Fig. 9c, d). Overlapping
differentially expressed genes between analyses revealed that RNase L
was significantly increased in ALS iPSMNs in both library preparation
analyses independently. Furthermore, we confirmed significant
increases in p53 pathway activity in ALS with both library prepara-
tions (polyA datasets: NES + 11.4, p < 0.001; Ribo-Zero datasets:
NES + 7.3, p < 0.001; Supplementary Fig. 9e, f). Likewise, TP53 TF
activity was significantly increased in ALS iPSMNs in both library
preparation groups (polyA datasets: NES + 6.54, p < 0.001; Ribo-Zero
datasets: NES + 5.12, p < 0.001; Supplementary Fig. 9g, h). We further
investigated changes between ALS and control samples in each
dataset separately. This revealed substantial heterogeneity between
datasets in ALS versus control gene expression changes (Supple-
mentary Fig. 10a, b). Despite this, both TP53 transcription factor and
p53 signallingwere independently upregulated in ALS iPSMNs in 11 of

Table 1 iPSMN datasets included in the integrated analysis

Reference Accession # Mutation ALS n Control n Library type Layout

Sareen et al. 2013 GSE52202 C9orf72 4 4 polyA Single

Kiskinis et al. 2014 GSE54409 SOD1 2 3 polyA Paired

Kapeli et al. 2016 GSE77702 FUS 3 2 polyA Single

Wang et al. 2017 GSE95089 SOD1 2 2 polyA Paired

De Santis et al. 2017 GSE94888 FUS 3 3 Ribo-zero Paired

Bhinge et al. 2017 PRJNA361408 SOD1 2 2 Ribo-zero Single

Luisier et al. 2018 GSE98290 VCP 3 3 polyA Single

Abo-Rady et al. 2020 GSE143743 C9orf72 3 3 polyA Single

Dafinca et al. 2020 GSE139144 C9orf72 4 8 polyA Paired

GSE147544 TARDBP 6 4

Catanese et al. 2021 GSE168831 C9orf72 6 6 polyA Paired

FUS 6

Smith et al. 2021 PRJEB47567 TARDBP 3 2 polyA Paired

Hawkins et al. 2022 GSE203168 FUS 2 2 Ribo-zero Single

Sommer et al. 2022 GSE201407 C9orf72 6 6 polyA Paired

NeuroLINCS, 2022 phs001231.v2.p1 sporadic 8 14 Ribo-zero Paired

SOD1 6

C9orf72 16

Answer ALS, 2022 AnswerALS data portal sporadic 200 42 Ribo-zero Paired

C9orf72 21

SOD1 8

6 other ALS mutations 9

Total 323 106
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17 datasets (Supplementary Fig. 10c, d). This indicates that neither
library preparation nor dataset batch effects were responsible for the
DNA damage response gene expression changes observed in ALS
iPSMNs.

To identify how gene expression changes relate to protein
expression changes in ALS iPSMNs, we interrogated mass spectro-
metry data in Answer ALS, which includes 204 iPSMNs (ALS n = 171,
controls n = 33). Across the whole proteome, no proteins were sig-
nificant at FDR <0.05 in ALS compared to control, however, 276 were
significantly different at unadjusted p <0.05 (Supplementary Fig. 11a;
Supplementary Data 5). Amongst these were the p53 pathway com-
ponents RBBP7, CSNK2B, PRMT1, CNOT9, which were each increased
in ALS iPSMNs. Functional over-representation analysis revealed
that proteins increased in ALS were enriched in protein metabolism
(e.g. PSDMD9, NAE1, PSMB5), RNA metabolism (e.g. APP, CSTF1,
CIRBP, SNRPD2), protein binding (e.g. RRBP1, RPS29, EIF1), as well as
other processes established in ALS pathophysiology (stress response,
cholesterol synthesis, nucleocytoplasmic transport) whilst proteins
decreased in ALS, were enriched in Golgi transport (Supplementary
Fig. 11b). Enrichment analysis of the p53pathwayprotein set revealed a
nonsignificant increase in ALS iPSMNs (NES + 0.98, p = 0.5; Supple-
mentary Fig. 11c). Comparing changes in mRNA expression with pro-
tein expression revealed a weak inverse correlation (R = −0.13;

Supplementary Fig. 11d), consistent with previous reports showing
poor correlations between mRNA and protein35,36.

p53 activation across ALS genetic backgrounds
To identify how ALS iPSMN changes compare between ALS genetic
backgrounds, we next examined the effect of each genetic subgroup
on gene expression separately. Of the 15 datasets, 7 included C9orf72
mutants (comprising 60 C9orf72 iPSMNs and 83 control iPSMNs), 5
included SOD1 mutants (20 SOD1, 63 controls), 5 included FUS
mutants (14 FUS, 55 controls), 3 included TARDBP mutants (10
TARDBP, 48 controls) and 2 included sporadic iPSMNs (208 sporadic,
56 controls). Controls from each dataset were utilised only if the
dataset had samples from the relevant genetic background.

Although we found 3,547 differentially expressed genes (adjusted
P <0.05) in TARDBP mutants, the other subgroups showed more
modest changes: FUS (239), C9orf72 (161), and SOD1 (7). Despite
sporadic ALS being the most well-powered, with 208 iPSMNs, only 4
genes were differentially expressed (Fig. 3a–e). Correlating
transcriptome-wide gene expression changes between ALS genetic
backgrounds revealed weak associations, with the strongest correla-
tion between SOD1 and sporadic lines (Pearson R = +0.38,
p < 2.2 × 10−16) and the weakest between SOD1 and TARDBP (R = −0.14,
p < 2.2 × 10−16; Fig. 3f, Supplementary Fig. 12a). To identify whether
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Fig. 2 | Differential gene expression in ALS versus control iPSMNs. a Volcano
plot of differential gene expression in ALS versus control iPSMNs using the Wald
test. b Functionally overrepresented terms in up-regulated (red) and down-
regulated (blue) differentially expressed genes using the hypergeometric test.
c GSEA of signal transduction by p53 (GO:0072331, n = 264) in ALS versus control
using the permutation test. NES, normalized enrichment score. d PROGENy sig-
nalling pathway activities in ALS versus control using the weighted mean method.
Pathways increased in ALS are red and pathways decreased are blue. *** represents

P <0.0001 and *P <0.05 (p53 p <0.001, MAPK p <0.001, WNT p =0.03).
e Expression changes of p53 signalling pathway genes in ALS versus control
according to their PROGENy weights. Genes increasing p53 activity in ALS are red
whilst genes decreasing p53 activity in ALS are blue. f Activities of 429 transcription
factors in DoRothEA inferred from their regulon expression changes in ALS versus
control. The normalised enrichment score in ALS versus control (x-axis) is plotted
according to the enrichment test p-value (y-axis).
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different ALS genetic backgrounds exhibit differential expression
within the same genes, we overlapped genes significantly changed in
expression (Supplementary Data 6). Although no genes were sig-
nificantly changed in expression across all ALS genetic backgrounds,
Uroplakin UPK3BL1 and nuclear pore complex interacting protein
NPIPA8 were changed in the C9orf72, TARDBP and FUS subgroups
(Supplementary Fig. 12b).

Functional over-representation analysis of differentially expres-
sed genes in each genetic subgroup revealed that C9orf72 mutants
upregulated genes involved with p53 (hypergeometric FDR =0.003)
and the DNA damage response (FDR =0.02) whilst downregulating
cytoskeleton (FDR =0.01) and microtubule genes (FDR =0.02). FUS
mutants showed upregulation of genes involved with transcription
(FDR = 1.5 × 10−8) and DNA-binding (FDR = 2.4 × 10−8) and down-
regulation of synaptic signalling genes (FDR =0.02). Conversely,
TARDBPmutants upregulatedneuronal (FDR = 7.8 × 10−29) and synaptic
genes (FDR = 1.2 × 10−32) and downregulated genes involved in the cell
cycle (FDR = 3.1 × 1030) and RNA splicing (FDR = 2 × 10−5, Supplemen-
tary Fig. 12c-e). There were no functional terms enriched amongst
SOD1 or sporadic ALS differentially expressed genes.

Examining PROGENy pathway activities in each genetic subgroup
revealed that apart from SOD1 (NES +0.33, p =0.16), the p53 pathway
activity was significantly increased in each of C9orf72 (NES + 10.9,
p <0.001), TARDBP (NES + 8.6, p <0.001), sporadic (NES + 4.2,
p <0.001) and FUS (NES + 3.2, p =0.018; Fig. 3g). Examining the other
signalling pathways revealed that hypoxia, VEGF and MAPK were also
increased across most genetic backgrounds, whilst WNT and PI3K
tended to be decreased (Supplementary Fig. 13a). Examining TF reg-
ulon activity revealed significantly increased TP53 activity in C9orf72

(NES + 9.3, p < 0.001), FUS (NES + 4.0, p = 0.004) and TARDBP (NES +
2.5, p =0.01) but decreased activity in SOD1 (NES −3.0, p < 0.001)
whilst sporadic (NES −0.31, p =0.25) was non-significantly changed
(Fig. 3g). Observing the other TF activity changes between genetic
backgrounds revealed 5 TFs that were significantly changed in the
same direction across 4 of 5 genetic backgrounds, of which ZNF274
was increased whilst GATA3, MAZ, TAL1 and TEAD4 were decreased in
the ALS subgroups (Supplementary Fig. 13b). Taken together, despite
transcriptome-wide heterogeneity between genetic backgrounds,
these data suggest that p53 signalling activation is observed across the
ALS spectrum in iPSMNs.

ALS post-mortem tissue shows p53 activation
To identify whether iPSMN ALS gene expression signatures are also
found in post-mortem tissue, we compared our findings with post-
mortem spinal cord RNA-seq from the NYGC ALS cohort, consisting of
tissue from 214 ALS patients and 57 controls12,37. We found 14,064
differentially expressed genes in post-mortem ALS versus control
spinal cord samples, with 6575 upregulated and 7489 downregulated
in ALS (FDR <0.05; Fig. 4a). CHIT1, GPNMB and LYZ were the most
strongly upregulated genes in ALS spinal cord, consistentwith a recent
report12. Functional over-representation analysis revealed that upre-
gulated genes were enriched inmitochondria (FDR = 5.0 × 10−74), stress
response (FDR = 3.9 × 10−42), programmed cell death (FDR = 1.8 × 1027),
and the p53 DNA damage response (FDR = 1.0 × 10−5), whilst down-
regulated genes were enriched in neuronal functions (Fig. 4b). GSEA of
the p53 signal transduction gene set in ALS post-mortem spinal cord
confirmed significant up-regulation (NES + 1.58, p = 9.0 × 10−6; Fig. 4c).
As with iPSMNs, in ALS post-mortem spinal cord, the most strongly

−
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Fig. 3 | Gene expression changes in each ALS genetic background. a–e Volcano
plots comparing ALS iPSMNs to controls in each ALS genetic background. Genes
coloured red are significantly increased in the ALS subgroup and genes coloured
blue are decreased in the ALS subgroup using theWald test. fHeatmap showing the
Pearson’s correlation coefficient for transcriptome-wide changes between each

genetic background. g PROGENy p53 signalling pathway (left) and Dorothea TP53
transcription factor regulon (right) activities amongst each of the genetic back-
grounds independently using the weighted mean method. **** represents
P <0.0001, ***P <0.001, **P <0.01, *P <0.05.
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upregulated PROGENy signalling pathway was p53 (NES + 5.0,
p <0.001; Fig. 4d). The top individual genes driving p53 pathway
activity in ALS post-mortem included FAS, RRM2B, CSTA, ZMAT3,
TP53I3, and CDKN1A (p21; Fig. 4e). Other signalling pathway activities
that were also significantly increased in ALS post-mortem spinal cord
were TNFα, androgen, hypoxia, and NFκB whereas EGFR and VEGF
pathways were significantly decreased. Assessing the 429 TF activities
revealed that TP53 was amongst the top TFs increased in ALS post-
mortem tissue (NES + 3.2, p = 0.03; Fig. 4f).

Correlating transcriptome-wide ALS gene expression changes
between iPSMNs and post-mortem spinal cord revealed a weak positive
correlation (Pearson R=+0.12, p< 2.2 × 10−16; Fig. 4g). Of the 43 differ-
entially expressed genes changed in ALS iPSMNs, 17 (39.5%) were also

changed in ALS post-mortem spinal cord, with 7 co-upregulated and 10
co-downregulated. These included the DNA damage response and p53
pathway genes CDKN1A, SESN1, FBXO22, and RRM2B as well as the
endoribonuclease RNase L (RNASEL), lipid droplet coating Perlipin5, and
oxidative stress responder ISCU. Meanwhile, overlapping down-
regulated genes included the mitochondrial genes MTCO1P12 and
MTCO2P12 and motor neuron progenitor markers, OLIG1 and OLIG2
(Supplementary Data 7). These results not only confirm p53-dependent
DNA damage response upregulation in ALS but the overlap between
iPSMNs and post-mortem provides insight into motor neuron-specific
changes that begin early and persist into the later stages of the disease.

In contrast to iPSMNs, comparing genetic subgroups from post-
mortem spinal cord tissue revealed strongly correlated gene
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Fig. 4 | Post-mortem spinal cord shows p53 activation. a Volcano plot of dif-
ferential gene expression in ALS versus control post-mortem spinal cord using the
Wald test. b Functionally enriched terms in up-regulated (red) and down-regulated
(blue) differentially expressed genes using the hypergeometric test. c GSEA for
signal transduction by p53 in ALS versus control post-mortem spinal cord using the
permutation test. NES, normalized enrichment score. d PROGENy signalling path-
way activities in ALS versus control post-mortem tissue using the weighted mean
method. Pathways increased in ALS are red and pathways decreased are blue.
e Expression changes of p53 signalling pathway genes in ALS versus control
according to their PROGENy weights. Genes in ALS increasing p53 activity are red

and genes decreasing p53 activity are blue. f Activities of 429 transcription factors
in DoRothEA inferred from their regulon expression changes in ALS versus control
post-mortem tissue using the enrichment test. g Scatterplot of ALS vs control gene
expression changes in iPSMNs (x-axis) against post-mortem tissue (y-axis) using the
Wald test statistic. h Heatmap showing the Pearson’s correlation coefficient for
transcriptome-wide changes between each genetic background in post-mortem
tissue. i PROGENy p53 signalling pathway (left) and DoRothEA TP53 transcription
factor regulon activity (right) amongst each of the genetic backgrounds in post-
mortem tissue using the weighted mean method. *** represents P <0.0001
and *P <0.05.
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expression changes (R range +0.68 to +0.9) with 1750 overlapping
differentially expressed genes between sporadic, C9orf72, SOD1, and
FUS subgroups (Fig. 4h, Supplementary Fig. 14a–f). In each subgroup,
upregulated differentially expressed genes were consistently over-
represented by the stress response, cell death, and protein metabo-
lism,while downregulated genes were enriched in protein binding and
neuronal terms (Supplementary Fig. 14g–j). Examining signalling
pathways and transcription factors in each genetic subgroup revealed
that p53 signalling and TP53 TF activity were significantly increased
in both in sporadic (n = 161; p53: NES + 5.0, p <0.001; TP53 NES + 2.9,
p =0.05) and C9orf72 (n = 36; NES + 5.3, p < 0.001; TP53 NES + 4.7,
p <0.001) and non-significantly increased in SOD1 (n = 5; NES + 3.3,
p =0.05; TP53 NES + 1.2, p =0.1) and FUS (n = 2; NES + 2.9, p =0.28;
TP53 NES + 2.9, p =0.29; Fig. 4i, Supplementary Fig. 14k, l).

TDP-43 pathology contributes to the DNA damage response
Although TDP-43 pathology (characterised by neuronal TDP-43
nuclear depletion and cytoplasmic accumulation) is observed in 97%
of ALS, it is absent in SOD1 and FUSmutant cases (termed “non-TDP-43
ALS” hereafter)38,39. To identify the degree to which genotypes linked
to TDP-43 pathology contribute to p53 upregulation in the pan-ALS
analyses, we classified ALS samples based on whether their genetic
background is associated with TDP-43 pathology. In iPSMNs, whilst
non-TDP-43 ALS (SOD1 and FUS mutant) iPSMNs showed only a
modest, non-significant increase in p53 (NES = + 2.0, p = 0.25), TDP-43
ALS iPSMNs exhibited strong and significant p53 upregulation (p53
NES = + 14.2, p <0.001). Likewise, in non-TDP-43 ALS iPSMNs, the TP53
TF was mildly decreased in activity (NES = −1.6, p = 0.12), whereas in
TDP-43 ALS iPSMNs TP53 was the most strongly upregulated TF
(NES + 7.4, p <0.001; Supplementary Fig. 15a, b). We found a similar
pattern in post-mortem samples, with non-TDP-43 ALS showing
smaller less-significant increases in p53 signaling and TP53 TF activity
(p53: NES + 3.6, p =0.03; TP53: NES + 3.3, p =0.01) as compared to
TDP-43 ALS (p53: NES + 5.2, p <0.001; TP53: NES + 2.0, p = 0.5; Sup-
plementary Fig. 15c, d). These findings suggest that the p53 signature
from the pan-ALS analyses is largely driven by genetic backgrounds
associated with TDP-43 proteinopathy.

To discover whether p53 signalling changes are regulated by TDP-
43, we next examined RNA-seq from FACS-sorted neuronal nuclei into
those with and without TDP-43 pathology from FTD-ALS post-mortem
brain tissue40. We found that neuronal nuclei depleted of TDP-43
showed upregulation of p53 signalling and TP53 TF activity as com-
pared to neuronal nuclei retaining TDP-43 (p53: NES + 0.4, p =0.02;
TP53: NES +0.7, p =0.26; Supplementary Fig. 15e, f).

Todeterminewhether TDP-43 nuclear depletion directly promotes
p53 activation, we integrated seven RNA-seq datasets from human cells
that have undergoneTDP-43 knockdownwith shRNA, siRNAorCRISPR/
Cas9 (Supplementary Data 8)31,41–46. We discovered significant upregu-
lation of both p53 signalling (NES + 5.5, p =0.02) and TP53 TF activity
(NES + 3.5, p =0.02) upon TDP-43 knockdown, supporting a direct role
of TDP-43 in regulating p53 signalling (Supplementary Fig. 15e, f). To
identify whether TDP-43 cytoplasmic aggregation also contributes to
p53 activation, we next examined RNA-seq from mouse primary neu-
rons overexpressing TDP-4347. Compared to controls, neurons over-
expressing TDP-43 showed significant upregulation of the p53 pathway
(NES + 4.1,p =0.002) andTP53 transcription factor (NES + 4.1, p=0.002
Supplementary Fig. 15g, h). Together, these results indicate that both
depletion andaccumulationofTDP-43augmentp53 activity, suggesting
that tight regulation of TDP-43 levels is required to ensure an appro-
priate DNA damage response.

ALS iPSMNs and post-mortem tissue exhibit extensive altera-
tions in splicing
An increasingly proposedmechanismof disease in ALS is dysregulated
alternative splicing,whichmay also contribute to genomic instability48.

To identify alternative splicing changes in ALS iPSMNs, we utilised the
splice graph tool MAJIQ49,50, which quantifies local splicing variations
from large heterogeneous RNA-seq datasets and corrects for dataset
batch effects (Fig. 5a)51. Since total Ribo-Zero RNA libraries pre-
dominantly capture unprocessed nascent pre-mRNAs, we restricted
iPSMN splicing analyses to poly(A) selected libraries, which captures
mature mRNAs (10 datasets composed of 48 ALS and 43 control
iPSMNs). Comparing ALS versus control iPSMNs identified 264 local
splice variation events in 161 unique genes that were significantly dif-
ferent between ALS and control (TNOM p < 0.05, Δ PSI > 0.1; Fig. 5b,
Supplementary Data 9). Amongst the genes exhibiting differential
splicing in ALS were a significant number of genes involved with p53
and DNA repair (including POLM, METTL22, HUWE1, HDAC1, MTA1,
PMS1, ZSWIM7; Fisher exact test p = 2.3 × 10−8). Likewise, there was a
greater number of RBPs amongst differentially spliced genes than
expected by chance (e.g. YTHDC2, THOC1, PRR3, STAU2, PTBP3, SREK1,
POLDIP3; p = 6.8 × 10−18; Fig. 5e). Functional over-representation ana-
lysis of the 161 genes containing differential splicing showed enrich-
ment in protein binding (FDR =0.02), synaptic (FDR =0.03) and
neuronal functions (FDR =0.04, Fig. 5c), which are central to ALS
motor neuron pathophysiology.

By examining splicing changes in neuronal nuclei depleted of
TDP-4340, we found 12 overlapping differentially spliced genes
(encompassing 17 splicing events) with ALS iPSMNs (including POL-
DIP3, PPP6R3, CAMK2B, CEP290; Supplementary Data 9)40. Similarly,
comparing splicing changes upon TDP-43 knockdown with ALS
iPSMNs revealed 4 overlapping genes containing 6 splicing
events (POLDIP3, CAMK2B, HERC2P3, CEP290; Supplementary Data 9).
Interestingly, the multi-exon skipping splicing event in POLDIP3 was
precisely the same event that occurs in both TDP-43 neuronal nuclei
depletion and TDP-43 knockdown (Supplementary Fig. 16a–c)43,52.
This indicates that TDP-43 nuclear loss of function may contribute to
splicing changes in ALS iPSMNs.

The local splice variations identified by MAJIQ were pre-
dominantly complex, composed of combinations of various 3’ and 5’
splice sites rather than simple binary events (e.g. exon skipping or
intron retention [IR]). Furthermore, splice events are not restricted to
annotated reference transcriptome splice sites and of the 264 differ-
ential splicing events, 28 (10.6%) involved de novo splice junctions. Of
these, 7 were found to be cryptic exons (RELCH, HOXC4, RBM26,
SLC35B3, TENM3, TPTEP2-CSNK1E, ZSCAN29) although none of these
overlapped with TDP-43 depletion43. 50 out of 264 (18.9%) differential
splice events harboured IR within the local splice variation. Breaking
down each local splice variation into its component splice types and
categorising these into basic splicing modules revealed that exon
skipping was the most common splicing type (182, 45.4%) followed by
IR (54, 13.5%; Fig. 5d).

We next investigated alternative splicing in each ALS genetic
subgroup separately. Whilst there were no sporadic ALS iPSMNs that
had undergone poly(A) selection, there were 23 C9orf72, 9 FUS, 9
TARDBP and 4 SOD1 mutant poly(A) samples. Compared to controls,
TARDBP mutants showed the greatest number of differential splicing
events (1435), followed by FUS (1099), C9orf72 (429) and SOD1 (256;
Supplementary Fig. 17a–d). Functional over-representation analysis in
eachmutant group revealed that genes exhibiting differential splicing
were involved with protein binding, neuronal structures, and RNA
processing (Supplementary Fig. 17e–h). Exon skipping was the most
common splicing type in TARDBP, FUS and C9orf72 subgroups, how-
ever, in SOD1 mutants, intron retention was the most frequent (Sup-
plementary Fig. 17i). Correlation of alternative splicing changes
between genetic subgroups revealed weak associations with the
strongest correlation between FUS and C9orf72mutations (R = + 0.09)
and the weakest correlation between SOD1 and TARDBP (R = −0.1;
Supplementary Fig. 17j). Intersecting significant splicing changes
between genetic backgrounds revealed that none were common to
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each genetic group, but that 33 were shared amongst two mutant
groups (Supplementary Fig. 17k-l; Supplementary Data 10). Amongst
these were the p53 signalling and RBP gene CNOT3 as well as other
RBPs including SRSF10, DNAJC17, SRRM1, SIDT2, and SREK1.

We next sought to identify the splicing changes in the ALS post-
mortem spinal cord from the NYGC cohort (214 ALS patients and 57
controls). Because of RNAdegradation in post-mortem tissue, theNYGC
samples were generated using ribosomal depletion instead of poly(A)
library selection53. Comparing splicing in post-mortem ALS versus con-
trol samples revealed 842 significant local splice events in 445 unique
genes (Δ PSI >0.1, tnom p <0.05; Fig. 5f; Supplementary Data 11).
Amongst the differential splicing events in ALS post-mortem were 4

establishedALS genes (CAMTA1,NEK1, ATXN1, andGRIN1), 19 geneswith
altered splicing in neuronal nuclei depletedofTDP-43 (includingKALRN,
PRUNE2, DNM1) and 11 genes with altered splicing in TDP-43 knockdown
(e.g. KALRN, DNM1, NEK1; Fig. 5i, Supplementary Data 11). We also found
a significant number of genes that encode DNA damage repair factors
(e.g. APTX, CENPX, RIF1, CNOT3; Fisher p=6.7 × 10−16) and RBPs (e.g.
EIF4E3, HNRNPUL1, ATXN1, SRSF5; Fisher p = 1.3 × 10−26).

Functional enrichment analysis confirmed that the 445 genes with
altered splicing were involved in protein binding (FDR= 2.5 × 10−10) and
neuron compartments (FDR= 1.6 × 10−6, Fig. 5g). Of the 842 differential
splicing events, 178 (21.1%) involved de novo splice junctions and of
these, 21 were cryptic exons of which EP400, PLEKHA1, BMP2K, and
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Fig. 5 | Alternative splicing alterations in ALS iPSMNs. a Splicing analysis of ALS
and control iPSMNs with MAJIQ50. b, f Differential splicing in ALS versus control
iPSMNsandpost-mortemusing theTNOMtest. EventswithP <0.05andΔPSI (ALS -
CTRL) > 0.1 are coloured red and < −0.1 blue. c, g Functionally enriched terms
amongst genes with differential alternative splicing in iPSMNs and post-mortem

using the hypergeometric test. d, h Categorisation of differential local splice var-
iants into basic splicing types using MAJIQ modulizer in iPSMNs and post-mortem.
e, i Violin plots showing PSI values (y-axis) for ALS (red) and control samples (blue)
for splice events in iPSMNs and post-mortem with p-values from the TNOM test. **
represents P <0.01 and *P <0.05.
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KMT2CoverlappedwithTDP-43depletion43. Themajority of differential
splice events harboured IR (462 / 842, 55%) and IR was the secondmost
common splicing type, accounting for 27.7%of all post-mortem splicing
events, behind skipped exons (28.2%; Fig. 5h). Intersecting genes exhi-
biting altered splicing in post-mortem tissue with iPSMNs revealed 12
overlapping genes including synaptojanin 1 (SYNJ1), kinesin 1B (KIF1B),
dynamin 2 (DNM2), and polyA ribonuclease 3 (PAN3) as well as others
involved with cytoskeletal functions (e.g. AGAP1, Cytohesin 1; Fisher
exact test p = 3.3 × 10−9; Supplementary Data 11).

Somatic mutation burden in ALS iPSMNs and post-mortem
tissue
Genome instability triggers the DNA damage response and
p53 signalling54. To explore somatic mutation burden in ALS iPSMNs
we ran the GATK variant discovery pipeline, which detects single-
nucleotide variants (SNVs), insertions and deletions (indels). Variant
detection is sensitive to coverage and sequencing chemistries and so
we restricted variant detection to the Answer ALS dataset (ALS n = 238,
CTRLn = 42 iPSMNs). To increase the likelihood that identified variants
were somatic mutations, we excluded common variants and known
RNA editing sites. After adjusting for sequencing depth and donor age,
across all filtered variant types we found significantly greater numbers
of somaticmutations per iPSMN inALS compared to control (Wald test
p < 2 × 10−16; Fig. 6a). Examining each variant type revealed significantly
greater numbers per iPSMN of SNVs (p < 2 × 10−16), insertions
(p = 1.5 × 10−12) and deletions (p = 1.1 × 10−14) inALS compared to control
(Supplementary Data 12). Assessing the relative contributions of each
base substitution type revealed largely similar SNV spectrum profiles
in ALS and CTRL iPSMNs, predominantly composed of T >C followed
by C> T substitutions (Supplementary Fig. 18a). Examining each
genetic background separately revealed that sporadic iPSMNs showed
significant increases in SNVs (p < 2 × 10−16), insertions (p = 5.7 × 10−15),
and deletions (p < 2 × 10−16), C9orf72 mutants showed significant
increases in SNVs (p < 2 × 10−16) and insertions (p = 4.3 × 10−10), whilst
SOD1 mutants showed significant increases in insertions only
(p = 7.3 × 10−10; Fig. 6b).

As iPSMNs are derived from peripheral cell types and the repro-
gramming process itself can induce somatic mutations55, genome
instability in iPSMNs may not be representative of cell types in the
central nervous system. To address this, we next examined ALS post-
mortem spinal cord tissue for genome instability using the GATK
variant discovery pipeline. After filtering common variants and RNA
editing sites as well as adjusting for sequencing depth, sequencing
instrument, and age at death, we found a significantly greater number
of somatic mutations in ALS compared to control post-mortem spinal
cord (p < 2 × 10−16; Fig. 6c). Examining the variant types revealed that
there were significantly greater numbers of SNVs (p < 2×10−16), inser-
tions (p < 2 × 10−16) and deletions (p = 4.6 × 10−6) in ALS compared to
control post-mortem (Supplementary Data 13). As with iPSMNs, base
substitutions in post-mortem tissue were largely composed of T > C
substitutions with similar SNV spectrum profiles between ALS and
CTRL post-mortem tissue (Supplementary Fig. 18b). By assessing each
genetic background independently, we found significantly greater
numbers of somatic mutations in sporadic (p < 2 × 10−16), C9orf72
(p < 2 × 10−16) and SOD1 (p = 1.8 × 10−4) subgroups compared to control
post-mortem tissue.With exceptionof SNVs in SOD1 cases (p =0.6), we
found significant increases for SNVs, insertions, and deletions in
sporadic, C9orf72, and SOD1 subgroups (Fig. 6d). This greater burden
of somatic mutations in ALS may contribute to the heightened DNA
damage response and implicates defective DNA damage repair in ALS.

Landscape of gene fusions across ALS
Gene fusions are another important classof genomealteration that can
arise from the repair of damaged DNA. Fusions involve two genes
becoming juxtaposed due to genomic structural rearrangements,

including inversions and translocations. To explore whether ALS
iPSMNs exhibit increased numbers of gene fusions, we ran the STAR
Fusion pipeline on 11 paired-end RNA-seq iPSMNdatasets (306 ALS, 90
CTRL iPSMNs, Table 1)56. We identified a total of 292 unique gene
fusions in ALS iPSMNs and 152 unique gene fusions in control iPSMNs,
with 91 shared in both conditions (Supplementary Fig. 18c). Among the
201 gene fusions identified in ALS iPSMNs but not in controls, were
fusions affecting genes implicated in ALS including VAPB–APCDD1L-
DT, ATXN1–ZFYVE27, TUBA1A–NEFM and OSTF1–APP. Furthermore,
of the 292 gene fusions identified inALS iPSMNs, 14 affected genes also
exhibited altered splicing, supporting the possibility of trans-splicing,
that post-transcriptionally joins exons from separate pre-mRNAs57. By
comparing the proportion of each unique gene fusion in ALS with
CTRL iPSMNs, we identified 9 gene fusions with a significantly greater
burden in ALS iPSMNs (Supplementary Data 14). Interestingly, these
mostly involved long noncoding RNAs (lncRNAs), for example, the
gene fusion with the greatest burden in ALS was a neighbour fusion
between the lncRNA LINC01572 and PMFBP1 (OR 3.3, 95% CI 1.6-Inf,
Fisher’s exact test p 0.001).

Examining the read-depth and age-adjusted frequency of gene
fusions per iPSMN, revealed significantly greater numbers of gene
fusions in ALS compared to control samples (Wald test p =0.006;
Fig. 6e). Comparing the frequencies of each type of gene fusion
between ALS with control iPSMNs, revealed trends towards increased
numbers in ALS iPSMNs for each of gene neighbours (p =0.2), over-
lapping neighbours (p =0.86), distant intra-chromosomal (p = 0.90),
although this was significant only for inter-chromosomal fusions
(p = 0.0002; Supplementary Fig. 18d). Comparing the number of gene
fusions per iPSMN in each ALS genetic group with their respective
dataset controls, revealed significantly greater numbers of gene
fusions in C9orf72 (p =0.002) and SOD1 mutant groups (p = 0.0003)
as well as nonsignificant increases in sporadic (p =0.26), TARDBP
(p = 0.17) and FUS mutants (p = 0.54; Fig. 6f).

To identify whether ALS post-mortem tissue also displays
increased gene fusions, we performed fusion discovery on post-
mortem spinal cord. There were a total of 177 unique gene fusions in
ALS and 96 in control post-mortem, with 71 shared. Comparing unique
gene fusions between iPSMNs and post-mortem revealed 55 in ALS
iPSMNs and post-mortem, of which 27 were also present in CTRLs
(Supplementary Fig. 18c). Burden analysis identified 13 gene fusions
with a significantly greater burden in ALS post-mortem tissue (Sup-
plementary Data 14). As with iPSMNs, these mostly involved lncRNAs
and the fusionwith thegreatestburden inALSpost-mortemwasa gene
neighbour fusion between the lncRNA AL353138.1 and PTCHD4 (OR
4.2, 95% CI 2.3-Inf, Fisher’s p 1.1 × 10−5).

After adjusting for read coverage, sequencing instrument, and age
at death in a generalised linearmodel, we identified significantly greater
numbers of gene fusions in ALS compared to controls (p = 7.2 × 10−6;
Fig. 6g). Comparing the frequencies of each type of gene fusion
betweenALSwith control post-mortem, revealed significantly increased
numbers in ALS of gene neighbours (p = 1.4 × 10−4) and local rearran-
gements (p =0.02), as well as nonsignificant increases in overlapping
neighbours (p =0.6), distant intra-chromosomal (p =0.12), and inter-
chromosomal fusions (p =0.8; Supplementary Fig. 18e). Comparing the
number of gene fusions per post-mortem sample in each ALS genetic
group with controls, revealed significantly greater numbers of gene
fusions in sporadic ALS (p =8.2 × 10−6), C9orf72 (p =0.03) and SOD1
mutant subgroups (p =0.0009; Fig. 6h). Taken together, these findings
reveal enrichment of SNVs, indels and gene fusions in ALS iPSMNs and
post-mortem tissue, which we propose is a genomic signature arising
from elevated DNA damage and/or impaired DNA repair.

Discussion
Here, we present a comprehensive catalogue of transcriptome chan-
ges in ALS, comprising 429 iPSMNs and 271 post-mortem spinal cord

Article https://doi.org/10.1038/s41467-023-37630-6

Nature Communications |         (2023) 14:2176 9



samples, spanning 10 different ALS mutations and sporadic ALS. Sys-
tematically integrating these data provides a harmonized resource
with substantially improved statistical power to detect perturbations
across ALS. We identified that ALS iPSMNs and post-mortem tissue
display an augmented DNA damage response, most notably in cases
with TDP-43 proteinopathy. This was combined with the accumulation
of somatic mutations and gene fusions, which may contribute to the
elevated DNA damage response. Our findings add to the growing body
of evidence implicating defective DNA damage repair and induction of
the DNA damage response in ALS58.

Our findings support previous smaller-scale studies showing p53
activation in ALS, particularly with C9orf72 repeat expansions47,59–66.

However, we also found that p53 activation was accompanied by
increased somatic mutations and gene fusions across diverse ALS
subgroups. This finding in both iPSMNs and post-mortem spinal cord
tissue indicates that the DNA damage response in ALS begins early and
persists in the later stages of the disease. We identified the greatest
increase inp53 activity inC9orf72mutants, consistentwith reports that
C9orf72 repeat expansion induces DNA damage, likely mediated by
dipeptide repeat proteins and the formation of R loops and G
quadruplexes47,59–62. However, we also found that p53 was strongly and
significantly activated in TARDBP and sporadic subgroups. This finding
in sporadic cases is particularly important since they represent ~80%of
ALS cases, but have the least prior evidence for p53 activation67,68.

Fig. 6 | ALS iPSMNs andpost-mortemtissueaccumulate somaticmutations and
gene fusions. a Violin plots showing the partial residuals of somatic mutations,
controlling for age and read depth, identified in Answer ALS iPSMNs in ALS (red,
n = 238) and CTRL (blue, n = 42) samples, for all mutation types, insertions, dele-
tions, and single-nucleotide variants (SNV). Statistics are from the generalised lin-
ear model Wald test using a Poisson distribution. b Forest plot showing the
generalised linear model point estimate and 95% confidence interval of changes in
mutation types (SNV,blue; insertion, red;deletion, green) inALS genetic subgroups
versus controls. The vertical dashed line indicates no difference, to the right of the
dashed line indicates an increase in ALS. c, d As for (a, b) except in NYGC post-
mortem spinal cord samples (n = 214 ALS, n = 57 controls). In addition to age and

read depth, the sequencing instrument is also controlled for. e Violin plots showing
the partial residuals of gene fusions in CTRL (blue, n = 90) and ALS (red, n = 306) in
paired-end sequenced iPSMNs, controlling for age, read depth and dataset. Sta-
tistics are from the generalised linearmodelWald test using a Poisson distribution.
f Forest plot showing the generalised linear model point estimate and 95% con-
fidence interval changes in each genetic subtype versus controls. g, h As for (e, f)
except in post-mortem (n = 214 ALS, n = 57 controls), controlling for age, read
depth, dataset and sequencing instrument. In the boxplots, whiskers (error bars)
represent 1.5 times the interquartile range, the hinges correspond to the first and
third quartiles, and the centre represents the median. **** represents P <0.0001, ***

P <0.001, **P <0.01, *P <0.05.
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Although we found p53 activation in ALS cases that lack TDP-43
pathology (FUS and SOD1 mutants), the magnitude of activation was
substantially weaker than that in TDP-43 ALS cases, raising the possi-
bility that TDP-43 contributes to the DNA damage response. In support
of this, we found significant p53 upregulation in neuronal nuclei
depleted of TDP-43, TDP-43 knockdown, and overexpression models,
which is consistent with the established role of TDP-43 in DNA repair
and p53 activation40,47,65,69–71. TDP-43 depletion results in the accumu-
lation of DNA damage, whereas TDP-43 overexpression leads to a pro-
apoptotic phenotype, which can be partially rescued by p53
inhibition47,65,69–71. Together, these results suggest that TDP-43 pathol-
ogy exacerbates the DNA damage response, and subsequent p53 acti-
vation may promote motor neuron death in ALS.

Whether somatic mutations and p53 activation cause motor
neuron degeneration in ALS remains to be established. It has been
shown that the acquisition of DNA damage in post-mitotic neurons
promotes cell cycle re-entry, attempting to activate cell cycle-
associated DNA repair pathway; however, this triggers an apoptotic
outcome72. Furthermore, studies of p53 ablation and inhibition in
C9orf72 and TDP-43 mutant iPSMNs, mouse and fly models have
demonstrated phenotypic rescue, supporting a pathogenic role of the
DNA damage response47,71,73. Another possibility is that the DNA
damage response indirectly causes neuronal dysfunction through
overproduction of reactive oxygen species, mitochondrial dysfunc-
tion, accumulation of toxic proteins, or invoking the neuroin-
flammatory cGAS-STING pathway74,75. Thus, DNA damage may directly
contribute to neuronal death, or perturb other mechanisms that
maintain healthy neuronal function.

The observed relative hypermutation rate in ALS iPSMNs and post-
mortem tissue supports the possibility that p53 activation is a reactive
change in genomic instability. This begs thequestionofwhichupstream
mechanisms drive DNA damage in ALS. Although many genetic causes
of ALS are linked to defective DNA damage repair (FUS, TARDBP, SOD1,
C9orf72, NEK1, SETX, VCP), the mechanism in sporadic patients remains
enigmatic75. A post-mortem study of 16 sporadic ALS patients reported
elevated levels and function of the base-excision repair enzyme APEX1,
which may represent an appropriate reactive activation of DNA repair
pathways toDNAdamage68. Thus, p53 activation in sporadicALSmaybe
secondary to acceleratedDNAdamage rather thandefectiveDNA repair
and is possibly a consequence of other ALS pathogenic mechanisms
such as mitochondrial dysfunction perturbed, autophagy, accelerated
ageing and TDP-43 mislocalisation76.

Despite the large sample size, we found relatively few differen-
tially expressed genes across the ALS spectrum in iPSMNs, consistent
with reports that the iPSMN model shows only mild differential gene
expression signatures77. However, this likely reflects the heterogeneity
between ALS genetic backgrounds and the conservative strategy uti-
lised. Even within genetic subgroups, there is substantial hetero-
geneity, no more so than in the sporadic subgroup. Indeed, despite
being the most well-powered, representing two-thirds of all ALS
iPSMNs, sporadic iPSMNs displayed only four differentially expressed
genes, reminiscent of what we previously reported in sporadic ALS
iPSC-derived astrocytes78. Sporadic ALS encompasses patients with
diverse genetic susceptibilities and likely includes patients carrying
unknown pathogenic gene mutations79. Additionally, environmental
risk factors play an important role in ALS aetiology, and while the iPSC
model is an elegant approach to model sporadic ALS, a notable lim-
itation is that it does not reproduce patients’ environmental exposures
or aging signatures80. In contrast to iPSMNs, the post-mortem spinal
cord exhibited thousands of ALS differentially expressed genes, and
ALS subgroups showed strongly correlated gene expression changes.
This presumably reflects the extensive changes at the end-stage of ALS
and supports previous ALS post-mortem studies reportingwidespread
reactive gliosis and neuroinflammation9,12,41,81. Thus, it is unlikely that
these dramatic gene expression changes in post-mortem samples are

motor neuron-specific, which is supported by single-cell tran-
scriptomics and cell-type deconvolution analyses that revealed that
the motor neuron signal is largely masked by glial cell types11,12,82–85.

In our compendium of iPSMNs, we highlight how the expression
of rostro-caudal and dorso-ventral spinal cord markers vary between
differentiation protocols (Supplementary Data 1, Supplementary
Fig. 4–7). While there are no clear links between differentiation pro-
tocols and the expression of MN domain markers, these findings
should guide the field in optimising in vitro culturing strategies to
promote the maturation of iPSMNs15. Although we safeguard against
dataset batch effects by using a generalised linear model that com-
prehensively adjusts for known confounding variables, an inherent
limitation of integrative studies is that confounders may remain
unknown or masked. We minimised these risks by utilising extensive
quality control and validation subgroup analysis.

In summary, our findings show diverse mechanisms of motor
neuron dysfunction in ALS at the RNA level, demonstrating that large-
scale analyses can uncover ALS-associated pathway abnormalities.
Thesefindings illustrate the utility of integrated transcriptome analysis
for ALS research.

Methods
Search strategy
We systematically reviewed RNA-seq databases, including Gene
Expression Omnibus (GEO), NCBI sequence read archive (SRA), EBI
arrayExpress, European Nucleotide Archive (ENA), synapse.org and
manually searched reference lists aswell asALSdata portals of relevant
studies. The search strategy included keywords relating to ALS and
motor neurons: “amyotrophic lateral sclerosis”, “ALS”, “motor neu-
ron*”, and “MND”. Sequencing datasets matching human species and
date range [inception − 2022] were selected, yielding a total of 503
unique datasets. The final search was conducted on 30th June 2022
(Supplementary Fig. 1).

Eligibility criteria
We evaluated all datasets that had undergone short-read bulk RNA-
sequencing (RNA-seq) from human iPSMN samples derived from
individuals with ALS and non-ALS controls (healthy individuals or
isogenic correction), regardless of the RNA extraction kit (e.g. Qiagen
RNeasy mini kit, Invitrogen TRIZol), library preparation (poly-adeyn-
lated or total ribosomal-depleted), short-read lengths (range 50-300
base pairs), read sequencing (single or paired-end), sequencing
instrument (e.g. Illumina NovoSeq 6000, HiSeq 2500), or sequencing
depth (SupplementaryData 1). All ALS subtypeswere included, and the
definition of ALS used by each dataset was accepted. In datasets with
multiple time points through iPSMNdifferentiation only the finalmost
terminally differentiated time point was utilised17.

We excluded datasets that (i) had not undergone an accepted
spinal motor neuron differentiation protocol using the steps detailed
in Sances et al. 15, (ii) failed RNA-seq quality control measures (Sup-
plementary Data 2), (iii) failed spinal motor neuron identity based on
the expression of established spinal cord dorso-ventral and rostro-
caudal markers (Supplementary Fig. 4–7), or (iv) exhibited unadjus-
table batch effects between ALS and control samples (e.g. different
RNA library strategies or sequencing platforms). Long-read sequen-
cing as well as single-cell and single-nuclear RNA-seq datasets were
excluded.

RNA-seq processing, integration and quality control
The iPSMN differentiation protocol method (including induction,
specification and terminal differentiation) as well as RNA-seq library
strategy (RNA extraction, library preparation, sequencing instrument
and readmetrics) for each dataset are noted in Supplementary Data 1.
Raw RNA-seq reads (fastq files) and accompanying metadata were
downloaded using nfcore/fetchngs v1.9 pipeline86 and pysradb v1.3
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using the sample SRA accession number. Reads were processed using
the nfcore/rnaseq v3.9 pipeline86. Raw reads underwent adaptor
trimming with Trim Galore, removal of ribosomal RNA with Sort-
MeRNA, alignment to Ensembl GRCh38.99 human reference genome
using splice-aware aligner, STAR v2.7.1 and BAM-level quantification
with Salmon. Samples were subjected to extensive RNA-seq quality
control utilising FastQC, RSeQC, Qualimap, dupRadar, Preseq, and
SAMtools and results were collatedwithMultiQC. Samples that passed
the nfcore/rnaseq quality control status checks were included in the
integrated analysis (Supplementary Data 2). The median read depth
was 115 (range 6 − 164) million reads per sample.

We used principal component analysis (PCA) and unsupervised
clustering to interrogate the batch effects of clinical variables, iPSMN
protocols and RNA-seq strategies between samples and datasets. Gene
countswere normalised for library size and transformedon a log2 scale
using the variance stabilizing transformation function in DESeq2.
Principal components were calculated based on the 500 highest var-
iance genes using the plotPCA function and individual PC gene load-
ings were extracted with the prcomp function. Samples clustered into
two groups based on library preparation (poly-adenylated or total
ribosomal depletion). We examined the motor neuron transcriptomic
identities of iPSMNsby clusteringusing theComplexHeatmappackage
based on the expression of canonical neuronal and glial cell type
markers as well as dorsoventral87 and rostrocaudal (HOX) gene mar-
kers. The Lee et al. dataset was excluded due to unadjustable RNA
library batch effects between ALS (total ribosomal-depletion) and
control (poly-adenylated) samples as well as inadequate neuronal
marker expression when assessing iPSMN identity24. We excluded
three control samples in AnswerALS that whole-genome sequencing
revealed to have pathogenic ALS mutations. Additionally, 4 Answer
ALS iPSMNs from patients with non-ALS motor neuron diseases were
excluded. NeuroLINCS consists of 3 distinct iPSC protocols (iMNs,
diMNs and undifferentiated iPSCs; Supplementary Data 1), of which
only the iMN and diMN batches were included. Sex was confirmed by
examining the expression of the X chromosome gene XIST (female)
and Y chromosome genes KDM5D, DDX37, RP54Y1 and EIFAY (male).

Modelling differential expression
STAR aligned and Salmon quantified transcript abundance
were summarised at the gene-level using tximport in R v4.1.3. Differ-
ential gene expression analysis was then fitted using DESeq288. The
integrated analysis results of ALS iPSMNs were generated by com-
paring the ALS versus control groups using the Wald test, controlling
for sex differences and dataset variation with the design formula
∼ sex +dataset + condition. This design controls for technical varia-
tion due to library preparation (nested within the dataset variable),
which was the main factor driving PCA structure (Supplementary
Fig. 2-3), thereby increasing the sensitivity for identifying differences
due to ALS. We orthogonally estimated technical variation using the
RUVgmethod that takes empirically defined negative control genes to
estimate low-rank technical variation in the data, specifying
5 RUV factors89. To examine the effect of each ALS genetic
background on gene expression a similar approach was used, com-
paring the ALS versus control samples using the design formula
∼ sex +dataset + genetic subgroup. For these subgroup analyses,
control samples from each dataset were only utilised if the dataset also
exhibited the relevant ALS genetic background. Non-TDP-43 ALS (TDP-
43 pathology negative) samples were defined as SOD1 or FUSmutants.

Results for each genetic background were correlated by matching
theWald test statistic for each gene followed by Pearson correlation. In
all analyses, genes were considered differentially expressed at FDR<
0.05. Significantly up- and down-regulated differentially expressed
genes were used as input to functional over-representation analyses to
identify enriched pathways using g:Profiler2. g:Profiler2 searches the
following data sources: Gene Ontology (GO; molecular functions,

biological processes and cellular components), KEGG, REAC, Wiki-
Pathways, CORUMandHuman PhenotypeOntology. g:Profiler2 reports
the hypergeometric test p-valuewith an adjustment formultiple testing
using the Bonferroni correction. Over-represented function categories
are plotted in bar charts, where the top significant terms weremanually
curated by removing redundant terms. Gene Set Enrichment Analysis
(GSEA) was performed using FGSEA on GO:0072331 (signal transduc-
tion by p53 class mediator) gene set. The decoupleR package was used
to estimate PROGENy signalling pathway activities and DoRothEA TF
regulon activities inferred from gene expression changes34. PROGENy
and DoRothEA weights are based on perturbation experiments that are
not specific to motor neurons. Their signalling pathways may activate
diverse downstream gene expression programmes depending on the
cell type and perturbing agent utilised90.

For analysis of protein changes in iPSMNs, processed proteomic
data (.csv matrix of peptide intensities) were downloaded from the
AnswerALS data portal. Mass spectrometry was performed and pro-
cessed as reported in AnswerALS23. Peptide intensities were processed
following the LIMMA Peptide tutorial instructions using log2 trans-
formation and specifying a contrast of ALS versus control iPSMNs91.
Quality control of peptide intensities across samples before and after
log2 transformation was performed. Outlier samples were identified
using sample-sample distances with theMDS plot and outlier peptides
were detected using the mean-variance relationship. As no differen-
tially expressed proteins in ALS versus control were identified using
FDR <0.05, a more lenient threshold of p-value <0.05 was utilised.

Post-mortem tissue
Post-mortem spinal cord ALS RNA-seq samples were derived from
samples from the New York Genome Centre (NYGC) ALS consortium.
Samples from non-spinal cord sites were excluded. Raw reads were
acquired from accession GSE137810 and processed using the same
pipeline described above. In cases where multiple spinal cord sam-
ples were available from donors, only the cervical cord sample was
included. Differential expression results for post-mortem spinal cord
ALS were calculated by comparing ALS versus control samples,
accounting in the design for the RNA library preparationmethod, sex
and the site of the spinal cord tissue (cervical, thoracic or lumbar)
with the formula ∼ library pep+ sex + sample source+ condition:
Post-mortem genetic subgroup analyses were performed using
the design ∼ library prep+ sex + sample source+ genetic subgroup:
Post-mortem subgroup analyses were limited by the sample size for
FUS (n = 2) and there were no TARDBP mutants available.

TDP-43 depletion and overexpression
The post-mortem brain TDP-43 FACS sorted neuronal nuclei RNA-seq
dataset was acquired from accession GSE126543 and processed using
the same pipeline described above. Only NeuN-positive samples were
utilised. Differential expression results were calculated by comparing
TDP-43 negative versus TDP-43 positive samples.

For analysis of artificially TDP-43 depleted human cells, we
searched RNA-seq databases for TDP-43 knockdown datasets. We
found 8 datasets20,31,41–46, of which one had low TARDBP expression in
controls and did not achieve >60% TARDBP reduction with depletion
and was excluded (Supplementary Data 8)20. Differential expression
results were calculated by comparing TDP-43 depleted versus con-
trol samples, accounting for dataset batch effects in the design with
the formula ∼dataset + sex + condition: Primary mouse neurons
overexpressing TDP-43 were utilised from GSE162048. Neurons
transduced with lentivirus overexpressing TDP-43 for 20 h were uti-
lised and compared to control neurons.

Alternative splicing analyses
All modes of alternative splicing were analysed using MAJIQ
v2.449,50 on poly(A) selected RNA library iPSMNs samples. For
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post-mortem NYGC samples only total ribosomal-depleted
libraries were available. STAR aligned BAMs were used as input
to the MAJIQ splice graph builder using Ensembl GRCh38.99
transcript annotation. The same batch effects from the differ-
ential gene expression analyses were controlled for using
MOCCASIN51. Differential splicing was calculated using the MAJIQ
heterogen function, which is designed for examining splicing
across large and heterogeneous datasets. A threshold of 10% ΔΨ
and TNOM p-value <0.05 was used to call significant splicing
changes between groups. Changes in each specific class of spli-
cing were examined using the Voila modulize function that breaks
down the complex local splice variants into the classic binary
splicing events (e.g. exon skipping or intron retention [IR]). For
comparison of ALS iPSMN splicing events with TDP-43 deletion,
RNAseq fastq files from iNeurons were downloaded from ENA
PRJEB42763. These were processed using nfcore/rnaseq followed
by MAJIQ v2.4 using the MAJIQ deltapsi function, which is more
appropriate than heterogen for a small single batch homogenous
experimental replicate dataset.

Somatic mutation and gene fusion detection
Somatic mutations were detected in iPSMNs and post-mortem tissue
using the nfcore/rnavar pipeline v1.0.086, which is based on GATK
v4.2.6 short variant discovery workflow. Variant discovery is highly
sensitive to coverage and sequencing chemistries and so for iPSMNs
only the Answer ALS dataset was used for variant detection thus
avoiding confounding batch effects between multiple datasets. For
post-mortem tissue, the spinal cord samples from the NYGC dataset
were included, although within NYGC there exist two sequencing
batches (NovoSeq 6000 with 200 bp read lengths [n = 186]; HiSeq
2500 with 250bp reads [n = 85]). Raw RNA-seq reads were mapped
using STAR in two-pass mode. SplitNCigarReads tool was used to
reformat alignments that span introns for the HaplotypeCaller. Base-
Recalibrator and ApplyBQSR were used for base quality recalibration.
Single-nucleotide variants (SNVs) and indels were called using the
HaplotypeCaller and variants were filtered using VariantFiltration
specifying a minimum phred-scaled confidence threshold of 20 and
minimum quality depth of 2.0. Variants overlapping with the dbSNP
database and RNA editing variants from the REDIportal v2.0 were fil-
tered out using VCFtools. Variants were annotated using snpEff and
Ensembl VEP whilst VCFtools vcf-annotate –fill-type module was used
on the filtered output to classify variants into SNVs, insertions or
deletions. The characteristics of mutations were assessed using the
MutationalPatterns package v3.6.0, which summarises the number
and proportions of each type of base substitution92. To compare the
number of somaticmutations per sample inALS versus CTRL groups, a
generalised linear model was fit specifying a Poisson distribution
adjusting for differences in read coverage per sample and donor age
using a spline: variant count ∼ condition+ rcsðread depth,3Þ+
rcsðage,3Þ. For post-mortem tissue we included an additional
term to adjust for the sequencing batch: variant count ∼ condition+
batch+ rcsðread depth,3Þ+ rcsðage,3Þ.

Gene fusions were identified in iPSMNs and post-mortem tissue
using the nfcore/rnafusion pipeline v2.0.086, utilising the STAR-Fusion
v1.10.156 workflowon paired-end RNA-seq datasets. Raw RNA-seq reads
were aligned using STAR to identify chimeric transcripts, which are
defined as a part of a read aligning to one gene and another part of the
same read to a different gene (split) or when each end of a paired read
set aligns to different genes (spanning). STAR Fusion applies numer-
ous filters to avoid spurious fusion detection including removing chi-
meric reads overlapping with sequence-similar regions and removing
duplicate paired-end alignments. Fusion events were filtered using the
FusionFilter module default settings for spanning and split reads.
Fusion events with fusion fragments per million (FFPM) < 0.1 were
removed. Gene fusion events are classified using FusionAnnotator

module into inter-chromosomal and intra-chromosomal. Intra-
chromosomal is subclassified into local gene orientation rearrange-
ments, neighbours (<100 kb apart), overlapping neighbours (genes
span overlap by at least 1 base pair) and distant (>100 kb apart). To
compare the number of fusions per sample in ALS versusCTRL groups,
a generalised linear model was fit specifying a Poisson distribution
adjusting for differences in read coverage per sample and donor age
and batch effects between datasets: f usion count ∼ condition+
dataset + rcsðread depth,3Þ+ rcsðage,3Þ. For post-mortem tissue we
included an additional term to adjust for the sequencing batch:
f usion count ∼ condition+batch+ rcsðread depth,3Þ+ rcsðage,3Þ. To
detect burden differences of individual gene fusions in ALS compared
to CTRL samples, the Fisher test was used to calculate the Odds Ratio,
95% confidence interval and p-value. To examine the effect of eachALS
genetic group, controls were only utilised if the dataset also included
ALS samples from the relevant genetic group. In the violin plots, the
observed number of variants and fusions were controlled for read
depth and donor age by using the partial residuals from the linear
regression model, which was performed using the partialize function
from the tools package. For genetic subgroups, forest plots were
generated using the plot_summs function, which depicts the regres-
sion coefficient from the linear regression model showing the point
estimate and 95% confidence interval.

No statistical method was used to predetermine the sample size.
The experiments were not randomised. The Investigators were not
blinded to allocation during experiments and outcome assessment.
Schematics were created with BioRender.com. The tidyverse suite of
packages was used for tidying data in R (e.g. tidyr 1.2.0, tibble 3.1.7,
ggplot2 3.3.6). In the boxplots, whiskers (error bars) represent 1.5 times
the interquartile range, the hinges correspond to the first and third
quartiles, and the centre represents the median. An interactive web
resource for browsing the processed sequencing data is available for
exploration at https://oliverziff.shinyapps.io/als_genome_instability/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
iPSMN raw sequencing data used in this study are available in public
repositories under accession numbers shown in Table 1. Post-mortem
raw sequencing data is accessible at GSE137810 and https://
collaborators.nygenome.org/. The accession numbers for the TDP-43
depletion raw sequencing data used are in Supplementary Data 8.
Some raw data have restricted access (NeuroLINCS dbGaP Accession
number: phs0001231.v2.p1; AnswerALS database). Granting access to
these is beyond the control of the authors. Access can be obtained by
applying to the relevant Data Access Committees. AnswerALS requires
a signed DUA to have full access. An interactive web resource for
browsing the integrated analysis results can be viewed at https://
oliverziff.shinyapps.io/als_genome_instability/. Source data are pro-
vided with this paper.

Code availability
Full code to reproduce analyses and figures is available through
GitHub at https://github.com/ojziff/als_genome_instability.
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