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Imaging-based intelligent spectrometer on
a plasmonic rainbow chip

Dylan Tua1,3, Ruiying Liu1,3, Wenhong Yang2,3, Lyu Zhou1, Haomin Song2,
Leslie Ying 1 & Qiaoqiang Gan 1,2

Compact, lightweight, and on-chip spectrometers are required to develop
portable and handheld sensing and analysis applications. However, the per-
formance of these miniaturized systems is usually much lower than their
benchtop laboratory counterparts due to oversimplified optical architectures.
Here, we develop a compact plasmonic “rainbow” chip for rapid, accurate
dual-functional spectroscopic sensing that can surpass conventional portable
spectrometers under selected conditions. The nanostructure consists of one-
dimensional or two-dimensional graded metallic gratings. By using a single
image obtained by an ordinary camera, this compact system can accurately
andprecisely determine the spectroscopic andpolarimetric informationof the
illumination spectrum. Assisted by suitably trained deep learning algorithms,
we demonstrate the characterization of optical rotatory dispersion of glucose
solutions at two-peak and three-peak narrowband illumination across the
visible spectrum using just a single image. This system holds the potential for
integration with smartphones and lab-on-a-chip systems to develop applica-
tions for in situ analysis.

Optical spectroscopy is one of the most widely used techniques for
fundamental research as well as industrial processes. However,
benchtop systems are usually bulky, expensive, and mainly designed
for laboratory and industrial spectroscopic analysis. In recent years,
researchers and major industrial players have shifted focus toward
developing miniaturized, portable, and inexpensive spectrometer
systems, which can enable many emerging applications for on-site,
real-time, and in situ spectroscopic analysis in our daily lives1. For
instance, 195 colloidal quantum dot filters with different optical
transmission properties were placed on top of a smartphone camera
chip2. By processing the large set of sensor readings, this chip-scale
system can reconstruct the spectral features of incident light in the
visible to near-infrared (IR) spectral range. Another pioneering work
employed a single compositionally engineered nanowire as the key
active element of an ultra-compact spectrometer chip3. Combined
with extended post-data processing algorithms, the spectral response
of the compact chip can be used to reconstruct the incident spectral

information. Over the past decade, various photonic crystal slabfilters,
plasmonic andmetasurface filters were also proposed to be integrated
withCMOScamera chips (e.g., refs. 4–6). Itwasbelieved that these thin
film optical filters can be integrated with each pixel of the camera chip
and enable various spectroscopy analysis functionalities, including
miniaturized spectrometers (e.g., ref. 7), polarimetric sensing/imaging
(e.g., ref. 8) and compressing spectroscopic sensing9. However, due to
the oversimplified optical design and mechanical limit of compact
architectures, the actual spectral identification performance of min-
iaturized spectrometer systems is usually much lower than their
benchtop counterparts.

A strategy to address these limitations is to implement deep
learning (DL) in the data processing steps in photonic
methodology10–13. DL offers much potential to the miniaturization of
modern technologies for several reasons. First, it has the ability to
exploit information from data that may be indiscernible by traditional
methods. Second, its flexibility in design makes it compatible with
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nanophotonic platforms, such as metasurfaces and plasmonic
nanostructures14. Third, DL algorithms can be applicable to various
functions, such as spectral reconstruction15,16, high-resolution
imaging15,17, classification18,19, noise suppression20, and inverse design
of photonic structures15,21–24. However, DL algorithms in these pio-
neering efforts are often limited to a single function (e.g.,
refs. 16,18–20). This is attributed to the data that are available to train
and test these models, which are actually limited by the information
contained by the data collected from optical systems. For example, in
ref. 16, a spectral encoding chip composed of 252 plasmonic nanohole
arrays was used to train a DL reconstruction algorithm. Due to the
simplistic design of the plasmonic arrays, the encoding chip was only
able to extract information about the spectral peaks of incident light.
Thus, other features like polarization were rendered as lost informa-
tion, limiting the feasibility of the system in spectroscopic applica-
tions. This presents an underlying challenge in expanding the
capabilities of compact systems enabled byDL. Under these pretenses,
physical data with multi-dimensional features is the key to enable the
development of more powerful DL-based systems. Consequently,
engineering the physical layer (i.e., optical systems25 and plasmonic/
metamaterial nanostructures26) to provide more distinguishable
training and testing data forDL algorithms has become anexciting and
emerging topic to create applications for future artificial intelligence
(AI) sensing systems that were impossible for conventional systems27.

Herewe report an intelligent on-chip spectrometer by integrating
an on-chip rainbow trapping phenomenon with a compact optical
imaging system. Our results show that the plasmonic chip can distin-
guish between different illumination peaks across the visible spectrum
(470–740 nm). Making full use of its wavelength-sensitive structure,
the chip can illustrate varying plasmon resonance patterns based on
the peaks of the illumination spectrum.By expanding the chip to its 2D
structure, the increased complexity of the resonance patterns offer an
added level of information in terms of the incident light polarization.
By training the DL algorithms with images of the spatial and intensity
distributions of the on-chip resonance patterns, spectroscopic and
polarimetric analysis is achieved within the same system, respectively.
Using a chiral substance (i.e., glucose), which introduces optical

rotation to transmitting light, we demonstrate the feasibility of the
proposed spectrometer in the sensing of optical rotatory dispersion
(ORD), a polarization-specific feature that is useful for detection and
quantification of chiral substances. Analysis performed by the DL
model shows that the algorithm is capable of accurately predicting the
optical rotation introduced by glucose based on the resonancepattern
of the plasmonic chip. This performance is preserved even when
analyzing resonance patterns under illumination of multiple peaks.
This image-based spectrometer enabled by DL is capable of perform-
ing both spectroscopic and polarimetric analysis by utilizing a single
image of the nanophotonic platform. As such, our proposed system is
empoweredwith a far-reaching impact on spectropolarimetric sensing
applications.

Results
1D rainbow chip
Herewe will first employ the rainbow trapping effect28–31 to develop an
on-chip spectrometer system (e.g., refs. 32–34). As proof of concept,
Fig. 1 illustrates the proposed system and the design of the 1D rainbow
chip. Wavelength splitting functionality can be realized by the plas-
monic chirped grating (Fig. 1a). The geometry of this surface grating
changes gradually, resulting in the spatial tuning of the local plasmonic
resonances (i.e., so-called trapped “rainbow” storage of light28,33). As
shown in Fig. 1b, we employed focus-ion milling to fabricate a chirped
grating on a 300nm thick Ag film. We intentionally assembled graded
6-groove units with varying period changing from 244 to 764 nm. The
width of the grooves are 200nm (see Note S1 for more details on the
fabrication). Under the normal incidence of a white light, one can
employ a simple reflection microscope system (Fig. 1c) to observe
obvious “rainbow” color images (top panel in Fig. 1d) due to the plas-
monic resonances supported by these gratings (Note S2 in the Sup-
plementary Information). By introducing narrowband incident light to
illuminate the sample (see Fig. 1e for the spectral lineshapes of varying
wavelengths), one can distinguish these different wavelengths from
their spatial patterns (lower panels in Fig. 1d). Based on these spatial
pattern images, a one-to-one correspondence of the resonant pattern
can be established with the incident wavelength, indicating the

Fig. 1 | Plasmonic chirped gratings for on-chip spectrometer. a Illustration of the
plasmonic chirped grating being used as an on-chip spectrometer.b SEM images of
the plasmonic grating fabricated on a thin Ag film via focus-ion beam milling. The
grating is composed froman assembly ofmultiple 6-groove units. The period of the
units increases from 244 to 764 nm along the length of the chip. This allows for a
spatial distribution of plasmon resonances, i.e., a “rainbow trapping” effect. The
scale bar for the top image is 50 µm; the scale bars for the bottom two images are

both 10 µm. c Schematic of a simple reflectionmodemicroscope system to observe
“rainbow trapping”patterns on the plasmonic chip.d Images of the “rainbow” color
pattern produced by the chirped grating (top panel) and spatial patterns of the
plasmonic resonances for narrowband illumination at several center wavelengths
(lower panels). e Spectral lineshapes for the spatial patterns of the corresponding
center wavelengths in (d).
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foundation of an on-chip spectrometer (e.g., ref. 32). As such, we
investigate the capabilities of the proposed system in observing a
spatial correspondence for arbitrary spectral features. Using DL-
assisted data processing and reconstructionmethods, this wavelength
splitting functionality can enable an intelligent and miniaturized
spectrometer platform for optical integration.

DL-based reconstruction
Accurate spectrum reconstruction is one of the most important pro-
cedures required by miniaturized spectrometer systems, which, how-
ever, contains major challenges in previously reported works. For
instance, in the recently reported single nanowire spectrometer3, the
spectral patternwasmeasured for each of then photodetector units. A
linear equation is formed and solved based on the spectral pattern and
the pre-determined spectral response function, whose solution gives
the reconstructed spectrum (see Note S3 for details of how to recon-
struct the spectrum)3,35,36. However, as with all linear methods, the
reconstructed target spectrum can be largely distorted when there is
measurement noise and/or errors in the pattern image. Despite a
number of methods to address the issue of ill-posedness, such as
adaptive Tikhonov regularization and iterative algorithms such as

compressed sensing37, these methods heavily rely on the accuracy of
the estimated spectral response function, which is typically not guar-
anteed. In addition, the regularization, which involves tedious para-
meter tuning, can introduce bias to the reconstructed spectrum. The
computational complexity can be highwhen solving a large number of
equations. Due to the above limitations of the existing spectra
reconstruction methods, there are visible deviations from the actual
spectrum for the existing miniaturized spectrometers (e.g., see
Note S3 for examples of this deviation). Here we employ a DL-based
method to address all of the above-mentioned challenges. Specifically,
we propose the concept of an intelligent rainbow plasmonic spectro-
meter driven by DL and build an example of such a spectrometer with
plasmonic chirped gratings (Fig. 2). The spectrometer predicts the
unknown incident light spectrum from the measured resonance pat-
tern image using a deep neural network, bypassing the traditional
linear model using response functions.

The architecture of the experimental system is shown in Fig. 2a.
The intelligent spectrometer contains threemainparts: spatial pattern,
pretrained neural network, and correspondingwavelength. The spatial
pattern which is the reflection image of miniaturized rainbow spec-
trometer (Fig. 1a) captured by reflectionmicroscope system (Fig. 1c), is

Fig. 2 | DL-based reconstruction. a The architecture of the deep-learning network.
For the case of b two-peak and c three-peakwavelength combinations, comparison
of deep-learning-reconstructed spectrum (solid blue line), spectrum calculated
using conventional method (dashed green line), and the gold standard spectrum

measured by a conventional spectrometer (dotted red line). d Reconstruction of
broadband spectra introduced by three LEDs with their respecitve spectra over-
lapped with each other. Red dots are measured spectra. Solid blue lines are
reconstructed spectra.
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a unique fingerprint of the incident light, and thus is used as the input
to the neural network (Fig. 2a). By using DL, we aim to exploit and
generalize the intricate relationship from the spatial pattern to the
incident wave for a specific plasmonic chirped grating, such that the
pretrained neural network is able to predict the intensity, wavelength,
and polarization of incident light accurately. As shown in Fig. 2a, our
deep neural network consists of a set of input neurons that are inter-
connected to a number of neurons in hidden layers. Information
propagates forward via a linear operation such as convolutions with an
activation functionoften seen as a rectified linearunit (ReLU), followed
by a nonlinear pooling operation in a pooling layer. Several convolu-
tional layers and pooling layers are stacked and the final output is
obtained by flattening the output of the last pooling layer via dense
(fully connected) layers. In other words, each reflection image as
neural network input would get a light spectrum as a prediction out-
put. Before putting the neural network into use, the synaptic strengths
between each layer (i.e., theweights of the linear operation) need to be
adequately trained via a back-propagation algorithm such as gradient
descent or adaptive optimizer.

During training, a fiber-coupled LED light (cool LED, PE-4000)was
employed as the incident light with the option to combine different
wavelengths, as shown in Fig. 2b. Here we first combined pairs of
two and three arbitrary wavelengths (e.g., 525 + 660nm and
435 + 460 + 595 nm) with arbitrary intensities as the incident light to
illuminate the chirped plasmonic grating. Reflection images of reso-
nance patterns were captured by the ×4microscope system. A total of
500 spectra with different peaks and intensities and images of their
corresponding resonance patterns were obtained. The spectra were
used as the targeted outputs (i.e., desired reconstructions) of the
training data, while the images were used as the inputs. This was not
only used to train the neural network, but also to calibrate the spectral
response function for the conventional method used in ref. 3. We
obtained another 100 spectra with different peaks and intensities
beyond the scope of the training data for testing the proposedmethod
and conventional method in ref. 3. Mean square error was used to
represent a loss function between the normalized and desired output,
and the loss of the training set was used to generate gradients (pure
learning). The hyperparameters (for example, number of hidden lay-
ers, neurons, and learning rates) were set according to the perfor-
mance on the validation set. A convolutional neural network with four
convolutional layers and two fully connected layers with a total of 600
neurons was selected (see Note S4). Figure 2b and c shows the results
using two sets of testing data (peak wavelengths at 460 + 635 nm and
470 + 595 + 770 nm, respectively) not included in the training process.
The dotted red lines show the gold standard spectrum of the incident
light measured by the conventional grating-based spectrometer. The
solid blue curves are the reconstructed spectra, agreeing verywellwith
the actual spectrum. In contrast, we also calculated the spectrumusing
conventional methods3 based on the same 500 sets of training data
and plotted the spectrum by the dashed green line. One can see that
the spectral features near 460 and 470nm were obviously mis-
interpreted. The result demonstrates the proposed intelligent
imaging-based spectrometer ona chip is credible and applicable in this
scenario (see Note S4 for comparison of the AI and conventional
processing methods).

Reconstruction of arbitrary spectra will require sufficient training
data to cover various spectral features of different spectral samples. In
particular, one needs to collect combinations of different narrowband
and broadband spectra. As a preliminary proof-of concept, we
employed the LED light source to demonstrate a broadband spectrum
reconstruction. This LED light source allows for a combination of
multiple LEDs to construct more complicated spectra. As a result, the
spectral feature is different from individual LEDs, especially at the
overlapped regions among different LED spectra. For the training
dataset, we collected individual, double-wavelength and triple-

wavelength combinations (see Note S5, Table S1). After that, we col-
lected four different sets of three-wavelength combinations with dif-
ferent intensities for testing, which were not included in the training
datasets (see parameters in Table S2). Figure 2d shows four repre-
sentative reconstructed spectra (blue solid lines). Compared with the
measured spectra (red dots), one can see that the spectral features
(especially the feature at the overlapped regime) were well predicted.
In principle, the procedure for arbitrary spectrum reconstruction will
follow the same practice but will need more training to include pos-
sible features in the target spectra, which is still under investigation.

On the other hand, spectral resolution is one of the most impor-
tant parameters to evaluate the performance for conventional spec-
trometers. Here we employed a broadband halogen lamp through a
liquid crystal filter to reveal its resolution in wavelength shift. We first
captured 10,000 images of the rainbow chip under the illumination of
narrowband incidence from600 to 650 nmwith the step size of 0.1 nm
tuned by the liquid crystal filter. Their actual spectra were character-
ized using the fiber-based spectrometer. 8000 (and 9000) images
have been selected randomly as training data. After training, we tested
the remaining 2000 (and 1000) images which were not included in the
training data. As shown in Fig. 3a and b, single peaks can be recon-
structed and well resolved with the peak shift of 0.5 nm (Fig. 3a) and
0.2 nm (Fig. 3b). The accuracy of the reconstructed peak position is
87–95% for the peak shift of 0.5 nm, and 81–90% for the peak shift of
0.2 nm (see Table S3). More technical details to resolve wavelength
shifts with different step sizes are listed in Note S6.

To further reveal the spectral analysis capability, we then intro-
duced two narrow peaks controlled by a programmable acoustic
optical filter to illuminate the grating simultaneously. Seven repre-
sentative spectra of the incident narrowband light are plotted in
Fig. 3c: One peak was fixed at the wavelength of 596.8 nm. The other
narrow peak was tuned from 596.8 to 646.8 nm with the step size of
0.1 nm. As shown by spheres in Fig. 3d, these two adjacent incident
peaks produced a combined spectrum, showing that the two peaks
gradually separate apart with each other and therefore canbe resolved
by the conventional spectrometer. In this experiment, we collected
901 images as the training set and 100 images for testing (see Table S4,
check Note S7 formore details). The reconstructed spectra are plotted
by solid curves in Fig. 3d, agreeing perfectly with the measured spec-
tra. One can see that the two-peak identification is similar to deter-
mining the optical resolution in imaging applications using the
Rayleigh criterion38. According to our reconstructed and measured
spectra, the two-peak feature was clearly resolved when the wave-
length difference is beyond 2 nm (see detailed analysis in Note S8).
Thesepreliminarydata indicated thepotential using the smart rainbow
chip system to perform high-resolution spectral analysis with the
equivalent performance compared with conventional spectrometers.
Next, we will extend the 1D grating into 2D to enable polarimetric
spectroscopy using the compact smart system, which is superior over
conventional optical spectrometer systems.

Polarimetric spectroscopy using a 2D rainbow chip
Polarization is one of the most fundamental properties describing the
path traversed by the electric field vector of an optical beam.
Polarization-sensitive coloration phenomenon has been observed in
many animals’ skin (e.g., ref. 39), indicating the potential application in
biomimetic optical communication. In addition, polarimetric sensing
and imaging techniques are widely used in material characterization,
remote sensing and imaging, and security and defense applications.
For instance, a compact polarimetric imaging system was reported
using a large-scale dielectric metasurface component (i.e., 1.5mm in
diameter used in ref. 40) in the regular imaging system. Multiple
polarizer elements and optical coupling elements can therefore be
simplified, compactifying the footprint of entire optical systems rely-
ing on conventional polarization optics. Miniaturization and
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simplification of conventional, bulky, and time-consuming optical
characterization represent an emerging and important research topic1.
Here we demonstrate that the plasmonic rainbow chip spectrometer
can introduce a simplified, compact, and intelligent spectro-
polarimetric system with accurate and rapid spectral analysis cap-
abilities. Figure 4a shows a 2D grating with graded geometric
parameters (see Note S9 for fabrication details and Note S10 for
numerical modeling results in Fig. S9). The period of the grating varies
from 439 nm (Fig. 4b) to 739 nm (Fig. 4c) in two directions. By cap-
turing the reflection image of this 2D chirped grating, one can see a
“cross” bar with two arms representing two polarization states (see
reflection images at four different wavelengths in Fig. 4d and more
images in Fig. S10 in Note S11 to determine the spectral range of this
chip). Intriguingly, the intersection position (indicated by the white
cross marks) corresponds to the peak position of the incident wave-
length, and the intensities of the two arms represent the component
intensities of the two polarization states along the horizontal and
vertical directions, respectively. Following a similar data training pro-
cess using different combined LED lights, an intelligent polarimetric
spectrometer is demonstrated (see Note S12 for details on the recon-
struction method, Note S13 for explanation of the training and testing
procedure, and Table S5 for the parameters of both datasets). Figure 4e
and f shows the reconstructed spectra using two sets of testing data
(two different polarized light with peak wavelengths at 490, 595, and

635 nm, respectively) not included in the training process. One can see
the reconstructed spectra (dark blue curves) agree very well with the
measured spectra (red curves). Intriguingly, this unique intelligent
spectrometer chip can enable rapid polarimetric spectroscopy sensing
applications. Next, we will demonstrate simple and intelligent char-
acterization of ORD using this 2D polarimetric spectrometer chip.

ORD characterization using the 2D rainbow spectrometer
ConventionalORDsystemsmeasure theoptical rotation introducedby
a substance as a function of the incident wavelength (as illustrated in
Fig. 5a). To perform accurate characterization, special facilities are
usually required with multiple polarization generators and analyzers
(i.e., so-called polarimetry systems41). By scanning the illumination
spectrum and comparing its output polarization state to its initial
polarization state, one can obtain theORDof the sample. The accuracy
in determining the ORD depends on the polarizer tuning resolution.
Manually tuned polarizers require fine rotation to get the complete
spatial distribution for a single wavelength, which is tedious and time-
consuming in experiment. They are also inaccurate due to errors
introduced duringmeasurement (e.g., parallax error). Faster andmore
accurate measurement is achievable using electronically tuned polar-
izers. However, these polarizers are costly and require periodic reca-
libration to maintain optimal performance. In contrast, the proposed
imager-based system can provide broadband spectral information and

Fig. 3 | The resolution of the smart system. a, b DL-reconstructed spectra (solid
lines) with a step size of 0.5 nm (a) and 0.2 nm (b), respectively, and the measured
spectra using a conventional spectrometer (spheres). The peak positions are indi-
cated by vertical dashed lines [i.e., 605.0 nm (purple line), 605.5 nm (green line),

and 606.0 nm (red line) in (a), and 605.2 nm (purple line), 605.4 nm (green line),
and 605.6 nm (red line) in Fig. 3b]. cThe spectra of the two incident lightmeasured
independently. d DL-reconstructed spectrum (solid lines) and the measured
spectra of the two combined peaks using a conventional spectrometer (spheres).
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polarization distribution from a single image. Therefore, the time-
consuming spatial rotation and wavelength scanning processes can be
reduced significantly in our 2D imaging characterization.

As a proof-of-concept, here we demonstrate how the 2D grating
can be used as a spectropolarimetric system for glucose sensing
applications. For conventional spectropolarimetric characterization, it
is important that the system be able to accuratelymeasure the ORD of
a sample across a broad spectral range. In addition to the issues stated
above, conventional systems (Fig. 5b) require tunable narrowband
illumination sources to measure the optical rotation for one spectral
peak at a time. However, this method is time-consuming and adds to
the large amount of tuning already required by the polarizers. More-
over, this approach adds further constraints to the system, as its
spectral resolution and operating range become dependent on the
tunability of the narrowband illumination source. Our imager-based
system enables the optical rotation measurement under the illumina-
tion of multiple spectral peaks at once by training the DL algorithm
with images of the graded grating under illumination with multiple
peaks (see Note S14 for more details). Such capability would allow for
more thorough and efficient analysis as well as the use of broadband
illumination sources.

In our imager-based setup (Fig. 5c), we kept the first polarizer for
fixing the polarization state of the incident light. Conversely, we
replaced the analyzer with a beam splitter located between the plas-
monic grating and camera to observe the reflection mode of the chip.
For the light source, we continued to use the fiber-coupled cool LED. A
grayscale camera attached to an optical microscope was used to
observe the cross-bar patterns on the chip. For the DL reconstruction,
our training data consisted of 26,100 images of the graded grating
under various illumination conditions (see Table S6 in Note S15). As
shown by examples in Fig. 5d, we captured a wide variety of cross-bar
resonance patterns. Air and deionized (DI) water were the samples
used for capturing these training data. The trained DLmodel was then

tested using 540 images of the chip under similar illumination condi-
tions (Table S6). Testing images were captured using aqueous glucose
solutions of 2, 10, and 30%.Under the same incident polarization, light-
matter interactions with glucose will result in a different output
polarization of the illumination spectrum than those with air or water.
Due to the wavelength-dependent spatial distribution of the cross-bar
patterns on the grating,multiple patterns can be created for each peak
in the illumination spectra at once. The DL network can then predict
the spectral peaks and their respective polarization states, corre-
sponding to each pattern (see Note S15 for more details on the data
training and testing procedure).

To demonstrate the multi-spectral sensing capabilities of our
imager-based system, we collected an additional set of training and
testing data under double-peak and triple-peak illumination (see
Table S7 and Table S8 for parameters of these datasets, respectively).
Figure 5e illustrates images of the chip under both of these conditions.
To make the spectral peaks as individually noticeable as possible, we
selected 525 and 660nm for the double-peak illumination and 470,
595, and 740nm for the triple-peak illumination (indicated by red
arrows in the left panel). Figure 5f and g plots the double-peak
and triple-peak predictions, respectively, of theDLmodel for 2, 10, and
30% aqueous glucose solutions. The deviations of reconstructed
polarization angles (50 data at each wavelength) range from 0.07° to
0.45° (see details in Table S9). For direct comparison, we plotted solid
(2–30%) and dashed (0%) curves representing experimental measure-
ments of theORD, derived through conventionalmethods (Fig. 5b), for
eachof these solutions (seeNote S16).One can see that the predictions
made for both illumination conditions agree well with their respective
ORD curves, indicating that the DL algorithm was able to predict
the optical rotation introduced by each of the glucose solutions.
Moreover, not only did the algorithm identify the peaks of the illumi-
nation spectrum, it also isolated them to analyze their unique polar-
ization states despite them all being fixed to the same incident

Fig. 4 | 2D chirped grating for polarimetric spectroscopy. a SEM image of a
preliminary sample with the period varying from 439 to 739nm along two direc-
tions. Scale bar is 10 µm. b, c Zoom-in images at two corners of the chirped grating.
Zoom-in regions correspond to squared off areas of matching color in (a). Scale
bars are 2 µm.dReflection images of the grating under the illumination of 490, 595,

635, and 660nm light. e, f Reconstructed spectra of vertically polarized (e) and
horizontally polarized (f) lightwith peakwavelengths at 490, 595, and 635 nm.Dark
blue lines are reconstructions from the proposed intelligent spectrometer, while
red lines resemble reconstruction from a conventional benchtop spectrometer.
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polarization. In contrast, pure water solution (i.e., 0%) did not intro-
duce any rotation (i.e., the black dashed line). As such, our imager-
based system can perform rapid spectroscopic and polarimetric ana-
lysis of chiral samples,which is essential for on-site real-time andpoint-
of-care applications. It should be noted that in this proof-of-principle
study, only 29 different angles with a step size of 1.0° were collected as
the training data using a manually tuned polarizer (see Table S6–S8).
Due to this limited training dataset, the reconstructed ORD shows
inconsistency with the measured curves. This limitation is a technical
issue which can be improved using finely tuned electronic-driven
polarizers to produce training datasets for future studies.

Discussion
In conclusion, an intelligent, image-based, on-chip spectrometer is
proposed and experimentally demonstrated. Gratings with graded
1D and 2D structures were fabricated and investigated for their
resonance patterns caused by the surface plasmon coupling of light.
Due to the nonuniform spatial and intensity distributions of the
grating patterns, different resonance patterns could be observed
depending on the spectral peaks and polarization state of incident
light (i.e., the dark bar and dark cross-bar patterns on the 1D and 2D
gratings, respectively). By exploiting these features of the graded
gratings, information about the illumination spectrum can be
extracted from simple observation of the on-chip resonance pattern.
Intriguingly, a DL algorithm was integrated into the proposed spec-
trometer system. By training the algorithm with images of various
resonance patterns and the lineshapes of their corresponding illu-
mination spectra, spectroscopic analysis was realized. Meanwhile,

polarimetric analysis was achieved by training the algorithm with
images of resonance patterns under a broad range of polarization
states. Our results show that spectral reconstructions performed by
the proposed spectrometer agree well with the spectra measured by
a conventional benchtop spectrometer, demonstrating the capability
of the proposed system to perform accurate spectroscopic analysis
(see Table S10 in Note S17 for comparisons between the rainbow
spectrometer and previous works). Spectroscopic analysis was also
performed for horizontally and vertically polarized illumination,
demonstrating the capabilities of the proposed system in recon-
structing the illumination spectra and distinguishing them between
both polarization states. Analysis performed by the DL algorithm
show that the proposed system is further capable of accurate and
timely polarimetric analysis based on the intensities of the cross bars
of the 2D grating resonance patterns. Most notably, both spectro-
scopic and polarimetric analyses are made possible by the proposed
system using a single image of the plasmonic platform.Moreover, DL
predictions of the ORD introduced by various glucose solutions
indicate the capabilities of the proposed system to perform accurate
detection and quantification of chiral substances. The image-based
design of the proposed spectrometer system removes the need for
optical elements, as well as wavelength scanning and rotating pro-
cesses. Our proposed image-based spectrometer marks the realiza-
tion of high-performance spectropolarimetric analysis in a single
compact and lightweight design, giving it much potential for use of
deep optics and photonics10 in healthcare monitoring, food safety
sensing, environmental pollution detection, drug abuse sensing and
forensic analysis.

Fig. 5 | Simpler, accurate, and intelligent spectropolarimetric analysis.
a Illustration of optical rotatory dispersion when light passes through a chiral
substance such as glucose. b, c Setups for spectropolarimetric analysis using b a
traditional system and c our proposed image-based graded grating system. Our
proposed system replaces the second polarizer (analyzer) from the conventional
system with a beam splitter and our plasmonic grating. A CCD camera captures
images of the plasmonic grating reflection mode, in which the cross-bar patterns
appear as a set of dark bars formed from the coupling of light with the grating.
d Images of the dark bar patterns under single-peak illumination, for 490, 595, and
660nm illumination with 0% (DI water), 10%, and 30% glucose solutions. Although

difficult for the human eye, the deep-learning algorithm can detect differences in
the intensities of the horizontal and vertical dark bars based on the concentration
of the sample. e Images of the dark bar patterns produced under double-peak (top
row) and triple-peak (bottom row) illumination. When multiple peaks are used in
the illumination spectrum, multiple patterns can be produced at once. f, g Pre-
dictions of the optical rotation, represented as data points (error bars indicate the
standard deviation of measureddatasets), introduced by various glucose solutions
for f double-peak and g triple-peak illumination. The solid curves represent the
ORD derived from the experiment using conventional methods. Data were col-
lected for 2% (red), 10% (blue), and 30% (purple) glucose concentrations.
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Methods
The optical microscope system
Our setup for collecting the training and testing data for all experi-
ments is composed as a simple reflection mode microscope system
(refer to Fig. 1c for the general schematic). We use an Olympus IX81
optical microscope as the centerpiece for our setup. The optical
microscope features multiple ports and attachments, including an
input reflection mode optical chamber to attach a light source to, and
two output chambers that are connected to an attachable camera and
optical fiber, respectively. The software and hardware setup allow the
optical output of the microscope to be controlled between three
paths: the first to the eyepiece for direct visualization, the second to
the attached output camera chamber, and the third to the output
optical fiber connected to a benchtop spectrometer. In our setup, we
used a Hamamatsu ORCA-03G grayscale camera and an Ocean Optics
Jaz visual spectrometer at the mentioned output ports. For the inci-
dent light, we use a pE-4000 cool LED for selective narrowband illu-
mination, and a halogen lamp (OlympusU-LH100L) coupled to a liquid
crystal tunable filter for broadband illumination. Chips with the 1D and
2D grating structures were placed on the microscope stage, with their
orientation facing downward for analyzing their reflection mode. A ×4
objective lens (NA =0.13) was used to analyze the structures and their
resonance patterns.

ORD measurement settings
A sample cuvette with an optical path depth of 5 cm was placed
between the incident light source and input chamber of the micro-
scope. The cuvette allowed for the placement of water and various
glucose solutions in the optical path of the incident light. Finally, a
linear polarizer (Thorlabs PRM1) was placed after the cuvette. The
polarizer has a rotational scale engraved along the lens with a micro-
meter attachment for fine-tune adjustment and precise measurement.
The polarizer served the dual purpose of controlling the incident light
polarization for spectrum reconstruction, while allowing us to analyze
the optical rotatory dispersion (ORD) introduced by various aqueous
solutions for polarimetric sensing.

Image collection settings
Slidebook 5.0 softwarewas used to control the opticalmicroscope and
grayscale camera. Images of the grating structures were captured
while they were placed on the microscope stage. All images were
captured at full size (1024 × 1344pixels) and then cropped down to the
smallest size that can capture the entire pattern before being used for
training and testing. This resulted in image sizes of 54 × 54 pixels for
the 2D grating images (e.g., Figs. 4d, 5d, 5e), and 187 × 34 pixels for the
1D grating images (e.g., Fig. 1d), corresponding to the actual sample
size of ~87 × 87 µm and 302 × 55 µm, respectively.

Data availability
The data that support the findings of this study are available from QG
upon request.

Code availability
The code for the deep-learning model designed for this study is
available from L.Y. upon request.
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