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A two-dimensional mid-infrared optoelec-
tronic retina enabling simultaneous
perception and encoding

Fakun Wang1,6, Fangchen Hu1,2,6, Mingjin Dai1, Song Zhu1, Fangyuan Sun1,
Ruihuan Duan 3, ChongwuWang1, Jiayue Han 1, Wenjie Deng1, Wenduo Chen1,
Ming Ye1, Song Han1, Bo Qiang1, Yuhao Jin1, Yunda Chua1, Nan Chi2, Shaohua Yu4,
Donguk Nam1, Sang Hoon Chae 1, Zheng Liu 3 & Qi Jie Wang 1,5

Infrared machine vision system for object perception and recognition is
becoming increasingly important in the Internet of Things era. However, the
current system suffers from bulkiness and inefficiency as compared to the
human retina with the intelligent and compact neural architecture. Here, we
present a retina-inspired mid-infrared (MIR) optoelectronic device based on a
two-dimensional (2D) heterostructure for simultaneous data perception and
encoding. A single device can perceive the illumination intensity of a MIR
stimulus signal, while encoding the intensity into a spike train based on a rate
encoding algorithm for subsequent neuromorphic computing with the assis-
tance of an all-optical excitation mechanism, a stochastic near-infrared (NIR)
sampling terminal. The device features wide dynamic working range, high
encoding precision, and flexible adaption ability to the MIR intensity. More-
over, an inference accuracymore than 96% toMIRMNIST data set encoded by
the device is achieved using a trained spiking neural network (SNN).

Infrared (IR) machine vision that can efficiently perceive, convert, and
process the massive amount of IR optical information of the observed
objects has become an important technology for various scenarios
requiring crucial decisions, which include autonomous driving, intelli-
gent night vision, military defense andmedical diagnosis1,2. The current
IR machine vision systems usually rely on physically separated IR ima-
ging devices and von-Neumann computing architectures to perform
the real-time information perception and processing, respectively1,2.
This system generates large amounts of redundant data being
exchangedbetween sensory terminals andprocessingunits, resulting in
high data latency, large computing load and low energy efficiency3–5.
The lackof compactness and computingefficiency is rapidlymaking the
existing systemobsolete in the era of big data and the internet of things.

In contrast to the inefficient machine vision system, the human
visual sensory system consists of a very compact retina that can per-
ceive, encode and process a huge visual data set by harnessing dis-
tributed and parallel neural networks. In the real world, continuous
light stimuli are first received by the sensory neurons in the human
retina and then encoded as discrete spike trains generated via a set of
neural algorithms6,7. These encoded spike trains are subsequently
transmitted to the visual cortex of the brain for information
processing8,9. The discretization and stochasticity of spike-encoded
information allow long-distance communication and efficient neural
computation8. Following the infrastructure and operation mechanism
of human visual sensory system, it is highly desired to have the per-
ception and encoding of external optical stimuli integrated in one
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neuromorphic device for realizing a compact, efficient, and intelligent
IR machine vision system.

2D van der Waals (vdWs) heterostructures become the promising
candidates for achieving such a goal due to their superior optical
functionalities such as strong light-matter interaction, tunable band-
gap and the potential compatibility with CMOS platform10,11. Recently,
notable progress has been made with 2D vdWs heterostructures in
developing neuromorphic sensors, encoders and processors12–18, pre-
senting a development trend towards all-in-one devices with func-
tionalities integration19,20. However, these studies focus only on the
visible and near-infrared (NIR) spectral ranges, while such integrated
neuromorphic devices operating in the MIR range would greatly
advance IRmachine vision systems for autonomous driving, intelligent
night visions, defense, and medical applications, and improve the
versatility of neuromorphic systems. In addition, the demonstrations
of encoding functionality in previous studies are limited in electronic
approaches with electrical bias8,17,19–22. An integrated MIR neuro-
morphic device with the perception and encoding functionalities dri-
ven by an all-optical approach is expected to shed light on the
technological development of high-speed and zero-bias information
coding of IR machine vision.

In this work, we report an all-optical driving 2D MIR optoelec-
tronic retina with simultaneous perception and encoding functional-
ities without inducing electrical bias. The neuromorphic 2D vdWs
heterostructure composed of b-AsP andMoTe2 is designed such that it
can perceive external light in theMIR spectral range (at∼4.6μm)while
simultaneously encode the received MIR information into spike trains
by harnessing a stochastic NIR sampling terminal (at ∼730 nm excita-
tion). Featuring highMIRdetectivity (9.6 × 108 cmHz0.5/W) and fastNIR
photoresponse rate (∼600 ns), the device successfully demonstrates a
typical neural encoding algorithm of rate-based encoding with wide
dynamic working range and high encoding precision for MIR

illumination intensities. Our device demonstrates the adaption ability
to intensity variation of MIR signal, which is analog to the human eye’s
visual adaption to the change in ambient light intensity in the visible
range. Furthermore, a trained SNN achieves an inference accuracy of
more than96% to theMIRMNIST data setwhich is encoded into spikes
by the device. The retina-inspired 2D MIR optoelectronic device inte-
grating perception and encoding functionalities has the potential to
perform MIR machine vision in a highly compact and efficient way.

Results
Human visual system and the 2D MIR optoelectronic retina
The visual system is one of the important sensory organs for humans
to perceive the external world as more than 80% of the environment
information is captured in human eyes10,22. Figure 1 shows the imple-
mentation of perception, encoding and processing of stimulus signals
from external objects in the human visual system (top) and presents
the proposed 2D MIR optoelectronic device that can mimic the key
functionalities (bottom). For the human visual system, the external
stimulation signals are perceived by photoreceptors and converted
into electrical impulses (spikes) by ganglion cells following neural
encoding algorithms, and eventually transmitted to the visual cortex in
the brain for processing8. Notably, the encoding process exhibits the
inherent stochasticity which is involved in the spike generation and
enhances the noise tolerance of spikes. Inspired by the human visual
system, in this work, a 2D optoelectronic retina capable of simulta-
neously perceiving and encoding MIR optical stimuli is proposed and
demonstratedby using a 2Db-AsP/MoTe2 vdWsheterostructure. Upon
the stimulation ofMIR signals, the photo-excited current (IDS) of the 2D
optoelectronic device is measured from source/drain electrodes at
zero bias, whichmimics the optical signal collection and conversion of
the photoreceptors in the human retina. Meanwhile, programmable
NIR optical pulses with stochastic intensity cause corresponding

Fig. 1 | Schematic of human visual system and the proposed 2D MIR optoe-
lectronic retina. In the human visual system, the stimulus signal from external
object entering the eye is first converted into corresponding graded potentials by
the photoreceptors (rod and cone cells) in the retina. The potentials are then
encoded into spikes by ganglion cells with the participation of inherent stochas-
ticity (random signal) exhibited in sensory transduction. Finally, the spikes with
coded stimulus information are transferred to the visual cortex in brain for further

information processing. In the proposed optoelectronic retina (lower), the 2D b-
AsP/MoTe2 vdWs heterostructure mimics the retina to realize integrated percep-
tion and encoding functionality forMIR objects with the help of a randomNIR-light
terminal. The encoded spike signal can be obtained from source-drain current (IDS)
under the threshold current (ITC) serving for the input of spiking neural network for
information processing.
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fluctuation of IDS, where a spike is generated when the IDS exceeds the
threshold line (ITC), emulating the encoding scheme of ganglion cells.
The as-generated spike trains with coded MIR information are finally
processed by a trained SNN for intelligent tasks, such as classification
and decision8,16,17.

Perception and encoding characteristics of the 2D MIR optoe-
lectronic retina
In the proposed 2DMIR optoelectronic retina, the b-AsP is used as the
MIR photosensitive layer owing to its narrow bandgap of ∼0.15 eV and
high MIR optical absorption efficiency of ∼10%23,24, and MoTe2 with an
appropriate bandgap of ∼1.0 eV serves as the NIR sensitizer25,26. Both
b-AsP and MoTe2 exhibit high hole mobility of ∼145 and ∼15 cm2/Vs
(Supplementary Figs. 1–4), respectively, allowing for fast photo-
response of the b-AsP/MoTe2 devices. TheNIR andMIRphotoresponse
characteristics are discussed in the Supplementary Information (see
Supplementary Figs. 1–12 and Note 1 and 2), where the photovoltaic
(PV) and photothermoelectric (PTE) effects are identified as the
dominant mechanisms for perceiving NIR and MIR illumination,
respectively. The schematic diagramof the photocurrent generation in
the b-AsP/MoTe2 device under MIR and NIR global illumination are
depicted in Fig. 2a, b, respectively. UnderMIR laser global illumination,
an unbalanced lattice temperature distribution is generated in b-AsP
layer due to the asymmetric contacts of b-AsP with MoTe2 and Au
electrode. The lattice temperature of b-AsP at the MoTe2 contact side
is higher than that at Au electrode contact side because the Seebeck
coefficient of b-AsP (723.66μV/K, see Supplementary Fig. 9) is higher

than that of MoTe2 (142.59μV/K, see Supplementary Fig. 10) and the
thermal conductivity ofMoTe2 (∼40W/mK)27,28 is lower than that of Au
(∼200W/mK)29. Such lattice temperature distribution promotes the
diffusion of holes in the b-AsP from the MoTe2 contact side to Au
electrode contact side, thus forming a positive PTE photocurrent
under zero bias with b-AsP as the source terminal. Under NIR laser
global illumination, both b-AsP and MoTe2 layers generate electron-
hole pairs which are separated by the built-in electrical field with
direction pointing from b-AsP to MoTe2 side at the junction. The
photo-generated electrons and holes move toward b-AsP and MoTe2,
respectively, which contributes to the negative photovoltaic photo-
current. As shown in Fig. 2c, d, the NIR andMIR photoresponse rate of
the heterostructure are as fast as 600 ns/3.7μs and 2.3μs/20μs,
respectively. The asymmetric response time may be caused by the
trapping of photo-excited charge carriers by the defect state in the
junction interface or by phosphorus oxide on the b-AsP surface30–32.
Moreover, the detectivity of the device to MIR illumination can reach
up to ∼9.6 × 108 cmHz0.5/W. More details and discussions on the
photoresponse performance under MIR and NIR illumination are
provided in Supplementary Figs. 13–19 and Note 3.

For encoding operations, the MIR stimulus signals and NIR sam-
pling terminal are simultaneously input onto the device. We first
demonstrate the photoresponse of the device under simultaneous
illuminations of both MIR and NIR laser. As shown in Fig. 2e, f, distinct
output photocurrents (IDS) can be observed when the device is
simultaneously illuminated by MIR with a certain power density and
NIR with various power densities. The photoresponse under the

0 130 260
0

10
20
30
40

C
ou

nt

PNIR (mW/cm2)

-80

0

80

-80

0

80

-80

0

80

0.0 0.1 1.0
-80

0

80

I D
S 

(n
A)

Time (ms)

ITC = 0 nA

0.0 0.1 1.0

Sp
ik

e

Time (ms)Time (ms)
0 1

P
M

IR
(W

/c
m

2 )

9.23

21.01

31.57

43.80
u = 130 mW/cm2

= 75 mW/cm2

ITC = 0 nA

PNIR N (u, )
u = 130

=75

0 20 40 60 80

0

20

40

60

80

100

Sp
ik

e 
ra

te
 (k

H
z)

PMIR (W/cm2)

a

NIR illumination

DS

VDS = 0 V

+ +

-

+ + +

--
--

PV

Ebi

MIR illumination

DS

VDS = 0 V

+ +
PTE

T+ TT ETE

0 10 20 30 40 50 60 70 80
-90

-60

-30

0

30

60

90

I D
S 

(n
A)

PMIR (W/cm2)

PNIR

(mW/cm2)

28.01

57.30

85.31

113.32

140.06

169.34

198.63

226.64

VDS = 0 V

0 5 10 15 20 25 30 35

-1

0

d  3.7 s

r  600 ns

C
ur

re
nt

 (a
.u

.)

Time ( s)

100 150 200 250 300 350

0

1

d  20 s

r  2.3 s

C
ur

re
nt

 (a
.u

.)

Time ( s)

MIR

NIR

MIR (4.6 m, 43.80 W/cm2)

off
226.64

28.01
off

In
pu

t

0 50 100 150 200 250
-40

-20

0

20

40

60

VDS = 0 V

I D
S 

(n
A)

Time ( s)

dark

b

c

d

e

f

g

h

i

j k l m

0.0 0.1 1.0
0

100

200

300

P
N

IR
 (m

W
/c

m
2 )

Time (ms)

TS = 10 s

Fig. 2 | Perception and encoding characteristics of the 2D MIR optoelectronic
retina. a, b Photoresponsemechanisms of the b-AsP/MoTe2 heterostructure under
MIR and NIR global illumination at VDS = 0 V. c, d Photoresponse rate of the het-
erostructure at VDS = 0V. The NIR (730 nm) and MIR (4.6μm) photoresponse rate
of the heterostructure are as fast as 600 ns/3.7μs and 2.3μs/20 μs, respectively.
e, f Output photocurrents (IDS) of the heterostructure under an input of simulta-
neousMIR and NIR illuminations. The power densities of MIR and NIR are shown in
(e).g The dependence of output photocurrent on theMIR power density under the
modulation of NIR light with various power densities. h One train of NIR optical
pulses (100 time-steps (pulses) for one train) that are randomly sampled from a

Gaussian distribution for spike rate-based encoding. i The Gaussian distribution of
NIR power densities with mean of u = 130mW/cm2 and a standard deviation of
σ = 75mW/cm2. jAnalog value ofMIRpower density.kCorresponding time-domain
transduction current (IDS)waveformoutput fromthe source electrode for eachMIR
power density in (j). The sampling rate for NIR light is 100 kHz. l Corresponding
spike train for each IDS waveform in (g) when the spike threshold current (ITC) is set
to 0 nA. The IDS higher than ITC could stimulate one spike.m Mean spike rate as a
function of PMIR when u, σ, ITC are 130mW/cm2, 75mW/cm2, 0 nA, respectively.
Error bars in (m) represent the variation (standard deviation) of spike rate.
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simultaneous illuminations shows high repeatability and stability,
evidenced by multiple and reproducible switching (Supplementary
Fig. 20). Figure 2g depicts the dependence of IDS on the MIR illumi-
nation intensity at different NIR power densities, which is an important
reference to obtain dynamic encoding range for MIR power density
(PMIR) once the ITC and NIR power density (PNIR) distribution are given.
More important, the stable photoresponse can be still maintained
under NIR illumination with a frequency of 100 kHz (Supplementary
Fig. 21). Such a fast and stable response makes it possible to generate
higher spiking rates and provides a guarantee for high-precision MIR
intensity coding.

Next, we experimentally demonstrate the function of simulta-
neous perception and spike rate-based encoding for PMIR. The NIR
laser is applied as sampling pulseswith amplitude following aGaussian
distribution with a sampling period (TS) of 10μs (on/off = 5/5μs),
which is analogous to inherent stochasticity8. This sampling period is
determined by taking into account the NIR response rate. Figure 2h
shows a train of NIR optical pulse that is randomly sampled from a
Gaussian distribution with the mean, u = 130mW/cm2, and standard
deviation, σ = 75mW/cm2 for spike rate-based encoding (Fig. 2i). When
the NIR sampling pulse and MIR light with a specific intensity are
simultaneously illuminated on the device, the response corresponding
to eachPMIR (Fig. 2j) is recordedby IDS. ThePMIR is encodedbyone train
of NIR optical pulses (100 time-steps for one train) and therefore
results in a train of IDS with 100 sampling points. As-recorded IDS trains
with ITC = 0 nA and corresponding spike trains are shown in Fig. 2k, l,
respectively. The delineation rule of ITC is discussed in Supplementary
Fig. 24. The IDS value higher than ITC = 0 nA stimulates one spike.
Average spike rate for each PMIR is calculated according to the gener-
ated spike train (spike rate = 1

T s
� n
Time�steps (Hz), where n is the number

of spikes in the output spike train), as shown in Fig. 2m. It can be clearly
observed that the device is capable of simultaneously perceiving and
encoding the PMIRwithin∼80.21W/cm2. The error in spike rate is about
0.9% due to the fluctuation of IDS waveform. Notably, a fast response
speed toNIR light for our device is helpful to increase time-steps over a
fixed encoding time which equals the multiplication of time-steps and
TS. Insufficient time-steps for oneMIR intensity cannot guarantee high
encoding accuracy (analyzed in Supplementary Fig. 25).

Visual adaption ability of the 2D MIR optoelectronic retina
Adaption occurs in all sensory systems to help them efficiently encode
external stimuli as the stimuli distribution changes33. For example, the
human eyes can identify objects both in starlight and in sunlight by
changing neural encoding strategy during the adaption process34. For
intelligent MIR vision tasks, a high-performance MIR optoelectronic
retina should also have such visual adaption ability to satisfy various
application scenarios. Two related aspects of the visual adaption
ability, namely, dynamic working range and encoding precision are
discussed here. A high dynamic working range allows the device to
respond to the MIR targets with distinct PMIR difference. For example,
the temperature of pig iron and steel strips in industrial process is
427 K and 1457.85 K, respectively35. Their PMIR differs over a dynamic
range of ~24 dB if they are regarded as two ideal blackbodies according
to Plank’s radiation law36. To identify them at the same time, a dynamic
working range of PMIR over 24 dB is required. However, the wide
dynamic working range sacrifices the encoding precision defined as
the resolution of spike rate for unit PMIR in encoded images. The
dynamic working range is hence required of compression to attain
high encoding precision for some cases that the details of PMIR dis-
tribution inside targets need to be accurately identified, such as MIR
imaging of human body for medical diagnosis37.

To demonstrate the adaption ability of our MIR optoelectronic
retina, we establish a testing setup shown in Fig. 3a. A metal mask with
nine hollow figures “3” illuminated by MIR laser is used to imitate the
realMIR targets. Themask canmove along the x and y axis to allowMIR

light topass each target in order. By adjusting theoutput opticalpower
of MIR laser, the PMIR distribution of each target “3” is different. The
real PMIR distribution of nine targets “3” is measured by photocurrent
mappingmethod (seen in “Methods” section) and presented in Fig. 3b.
For convenience, nine targets “3” are named as (i) to (x) in the incre-
mental order of PMIR. To encode the PMIR distribution of targets into
corresponding spike trains, another NIR light whose PNIR is sampled
from aGaussian distribution with u and σ of 130 and 75mW/cm2 is also
incident into the device at the same time. The recognized image after
rate encoding by our device is shown in Fig. 3c. The correlation coef-
ficient (CC) which refers to the similarity of the encoded target and
original one, all exceed 97% for targets (i–x) (Bottom curve of Fig. 3f),
validating that our device has an excellent encoding precision. This is
attributed to the fast response reaching 100 kHz that provides suffi-
cient rate encoding resources for high PMIR resolution.

The adjustment of u and σ for sampling the PNIR can conveniently
tune the dynamic working range. The increase of σ extends the
dynamic working range, while the increase of u shifts the dynamic
working range to a high PMIR range. The experimental and simulation
results are presented in Fig. 3d and Supplementary Fig. 26a–c,
respectively. Suchdependence can also beobserved from the encoded
images in Fig. 3e and CCs in Fig. 3f in different cases of (u, σ). For
example, when the (u, σ) changes from (70, 35) to (130, 35), the
dynamic working range shifts to the high PMIR range, which results in
the correct encoding of the high-power target (ix) with CC improving
from 83% to 98% but failed encoding of the low-power target (ii) with
CC=0. When the σ is increased from 35 to 75 at u = 130, the CCs of
targets (ii) and (ix) both reach 98%without any encoding failure, which
verifies the function of σ used to extend dynamicworking range. The u
should keep a high power when σ is relatively high (like σ = 75 here).
Otherwise, the background noise of the encoded image will be mag-
nified due to the no-zero spike rate at PMIR = 0, such as the results at (u,
σ) = (70, 75), causing an extra interference for identifying targets. To
magnify the details ofPMIR distribution inside one certain target, a high
encoding precision is required and can be achieved by decreasing σ
under a suitable u. For example, the target (ii) at (u, σ) = (70, 35) has a
higher contrast than the case at (u, σ) = (70, 75). Therefore, optimizing
the u and σ values is critical in achieving a suitable dynamic working
range and high encoding precision and help exhibit the eye’s visual
adaption ability to different MIR targets in our device.

Encoding a perceived image for classification using spiking
neural network
Lastly, we utilize the device to encode the MIR MNIST data set into
spike trains, which enables the successful realization of SNN-based
digit classification tasks with inference accuracy ofmore than 96% (see
the “Methods” section for the details about preparing the MIR MNIST
data set). Compared to traditional artificial neural network (ANN)38,
SNN is believed to be a more efficient neural network that rarely
requires high-precise multiplication. Also, the density of binary spikes
required for SNN is much sparser than that for ANN, mitigating the
storagememory and energy requirements38. The energy-delay product
of SNN running on a spike-based neuromorphic hardware has been
proved by four-orders magnitude lower than that of the traditional
DNN running on a CPU over one batch size39. We use the snnTorch
platform introduced by Eshraghian38 to establish a fully-connected
three-layers SNN that consists of the input layer, hidden layer and
output layer with 784, 200 and 10 neurons, respectively, as shown in
Fig. 4a. Each image in the MIR MNIST data set with a size of 28 × 28
pixels is perceived andencodedbyourdevice into 784 spike trains that
concurrently enter into the input layer of a trained SNN. The training
and parameters optimization methods for SNN are described in the
Methods section. The 10 spiking neurons in the output layer shown in
Fig. 4a represent digits from 0 to 9. The spiking neuron producing the
spike train with the highest spike rate corresponds to the digit that
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SNNpredicts. Each spiking neuron in every layer is describedbya leaky
integrated-and-fire (LIF) neuronmodel40, as shown in Fig. 4b. The input
pre-neuronal spikes Xi(t) of the ith spiking neuron are modulated by
synaptic weights Wi to produce a resultant current

Pk
i= 1W

T
i X i tð Þ,

which affects the membrane potential Vmem of the post-neuron in the
next neuron layer, given as:

Vmemðt + 1Þ=βVmemðtÞ+
Xk

i = 1

WT
i XiðtÞ � R βVmemðtÞ+

Xk

i = 1

WT
i X iðtÞ

" #

ð1Þ

R=
�

1, if Vmem>VTH

0, otherwise
ð2Þ

where β and k are membrane potential decay rate and the number of
neurons in this layer, respectively. TheT is the transposition operation.
The Vmem of the post-neuron will integrates incoming spikes until it
reaches membrane threshold VTH where the Vmem is reset to zero.
Meanwhile, the post-neuron generates an output spike which acts as
the input spike of next neuron layer. In our device, ITC is equivalent to
the VTH.

The classification performance of SNN significantly depends on
the dynamic working range and encoding precision of the device. As
mentioned in Fig. 3, the u and σ values of Gaussian distribution for
sampling NIR light control the dynamic working range and encod-
ing precision. If the dynamic working range mismatches the PMIR

range of the target within [0, Pmax] or the encoding precision is
insufficient, the inaccurate translation of the target by encoded
spikes will cause inference error of SNN. Figure 4c, d shows the

classification accuracy of SNN when the Pmax of MIR MNIST test set
varies from 0 to 80.21 W/cm2 at different values of u and σ. A rela-
tively low σ of 35 makes the dynamic working range too narrow to
encode the digits with Pmax lower than 10W/cm2, resulting in 9.8%
classification accuracy. When σ increases to 55, the enlarged
dynamic working range can cover both low and high Pmax and allows
the classification accuracy to become higher than 96%. However,
the further increase of σ to 75 decreases the encoding precision. The
spike rate resolution is not sufficient to support accurate classifi-
cation for the low-Pmax case. Additionally, the background noise is a
little magnified, hampering the inference of SNN. The u value con-
trols the position of the dynamic working range, and it therefore
controls the position of high-accuracy working range of SNN. For
example, the working range with classification accuracy higher than
96% gradually moves to higher PMIR range when u increases from
100 to 130with σ = 15, shown in Fig. 4d. The time-steps, representing
the number of sampling points for NIR light to encode one MIR
intensity, also influences the classification accuracy of SNN. As
shown in Fig. 4e, classification accuracy increases as the increase of
time-steps, and reaches 96% at the time-steps of 100 at an optimal
(u, σ) = (70, 25) to encode the target with Pmax of 21 W/cm2. The
performance of our device is already comparable to an ideal linear
encoder. However, insufficient time-steps result in inadequate
representation of targets, and therefore significantly decline the
classification accuracy. The encoded images of target “3” using
time-steps of 1, 5 and 100 are given in Fig. 4e (i–iii), respectively,
which highlights the significance of sufficient time-steps for accu-
rate encoding and inference of SNN. The results of the accuracy vs.
time-steps for other Pmax are also provided in Supplementary
Fig. 28, which suggests low-power MIR objects require more time-
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Fig. 3 | Visual adaptionof the 2DMIRoptoelectronic retina forMIR targetswith
different optical power. a Schematic diagram of test setup for the optoelectronic
retina to perceive and encode theMIR targets. A 2D-moveablemetalmask provides
nine “3”-shapedMIR targets whose average optical power density (PMIR) are linearly
distributed within 0 to 80.21W/cm2 by adjusting the output optical power of
4.6μm laser. b The directly detected images of nine MIR targets “3”, namely (i) to
(x) inorder. The color distribution is linearlymapped toPMIR. cThe encoded images
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with 100 time-steps under u, σ, ITC of 130mW/cm2, 75mW/cm2, 0 nA, respectively.
dExperimental resultof spike rate as a functionofPMIR fordifferentu and σused for
sampling 730 nm light. e Results of encoding images under different u and σ. Such
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correlation coefficient indicates higher encoding precision. Four encoding cases
with different (u, σ) are discussed.
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steps to achieve accurate classification compared to high-power
MIR objects. These facts indicate a fast response speed to NIR light
in our device is critical to help SNN realize accurate MIR objects
classification using short encoding time. Besides, the impact of
device thicknesses, different wavelengths and distribution of the
sampled stochastic light on encoding precision and classification
accuracy of SNN are also discussed in Supplementary Figs. 29–31.
Overall, by optimizing the encoding parameters, our device can
ensure the fast and accurate encoding ability onMIR objects, as well
as help SNN realize MIR objects classification tasks with the infer-
ence accuracy up to 96%.

Discussion
Inspired by the human vision systemwith the function of perceiving,
transmitting and processing the external environment information,
we demonstrate a compact retina-inspired MIR optoelectronic
device using a 2D b-AsP/MoTe2 vdWs heterostructure. The device
features a high MIR (∼4.6μm) detectivity of 9.6 × 108 cmHz0.5/W and
a fast NIR (730 nm) response rate of ∼600 ns without inducing
electrical bias. Impressively, the proposed device could not only
perceive the MIR illumination stimuli, but also encode it into rate-
based spike trains with the assistance of a stochastic NIR sampling
terminal. Moreover, device’s encoding range and precision can be
flexibly adjusted for differentMIR illumination intensities. Thedevice
encodes the MIRMNIST data set into spike trains which enables SNN

to achieve digit classification with an accuracy higher than 96%. Our
work provides a promising routine for constructing compact and
efficient MIR neuromorphic devices for night machine vision, mili-
tary, defense, and medical diagnosis. We anticipate that the optical
approaches of realizing neuromorphic functions based on 2D vdWs
heterostructures have the potential of wide bandwidth up to tens
of gigahertz when combined with integrated guided-wave
nanophotonics25,41, bringing in the advantages of low data latency
and high energy efficiency.

Methods
Device fabrication and characterization
Because 2D b-AsP and MoTe2 flakes are sensitive to the water and
oxygen in the surrounding environment, a dry transfer method was
applied to fabricate the 2D b-AsP/MoTe2 vdWs heterostructure. The
contact electrodes (5/50nm Cr/Au) were first patterned on a SiO2/Si
substrate by standard photolithography and electron beam evapora-
tion. The exfoliated 2D b-AsP andMoTe2 flakes frombulk crystals were
then dry transferred onto the electrodes. Finally, h-BN encapsulation
wasused toprotect the device fromdegradation. Themorphology and
thickness of as-fabricated device were characterized by optical
microscope (Nikon), atomic force microscope (Bruker Dimension
Icon). Scanning photocurrent mapping was performed by using con-
focal micro-Raman spectroscopy (WITec alpha300) equipped with a
focused 532 nm laser.
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Detection and encoding measurements
The measurements of electrical and photoelectric properties were
performed at room temperature and under ambient air conditions. A
digital sourcemeter (Keysight, B2912A)wasused to apply voltage to the
device and record the generated current. AMIR quantum cascade laser
(QCL) (Daylight Solution, MIRCat) with tunable wavelength from 3.5 to
11.0μm was employed as the external stimuli. The power of MIR laser
was recordedby a thermal powermeter (OPHIR, Nova display-ROHS). A
power adjustable 730nm laser (HÜBNER Photonics, Cobolt 06-MLD)
was applied as the stochastic terminal and its power density was mea-
sured using a power meter (Thorlabs, PM100D). The laser spots of MIR
laser and 730nm laser are about 100μm, which is larger than the size
scaling of the as-fabricated 2D b-AsP/MoTe2 vdWs heterostructure. For
the encoding measurements, the device is simultaneously illuminated
by 4.6μmMIR laser with a fixed power density and pulsed 730nm laser
with Gaussian distribution power densities. The sampling period (TS) of
730nm laser is set to 10μs and its amplitude is determined by the
desired encoding algorithm. The fast current samplingwas collectedby
means of an oscilloscope (Keysight, DSOX3054T).

Photocurrent mapping method to recognize PMIR distribu-
tion image
To recognize the PMIR distribution image of figure “3” targets in mask,
the responding photocurrent of device to every pixel of mask is col-
lected by oscilloscope. The mask has 300× 300 pixels in which each
“3” target occupies 100 × 100pixels. The PMIR of 4.6μmlaser fromQCL
on every “3” region (100 × 100 pixels) is different. When the mask is
scanned by pixels, the responding photocurrent of eachpixel depends
on the optical flux of 4.6μm laser passing through this pixel region.
According to the mapping relation of photocurrent and PMIR given in
Supplementary Fig. 16b, the corresponding PMIR for every pixel can be
estimated from the photocurrent obtained by experiment, and finally
constitutes the PMIR distribution image shown in Fig. 3b.

Preparation of MIR MNIST data set
The MIR MNIST data set is obtained by mapping pixel values of tra-
ditional MNIST data set ranging in [0, 255] to optical power density of
4.6μm laser ranging in [0, Pmax]. Once the Pmax is set, every image in
the prepared MIR MINST data set with a size of 28 × 28 pixels is first
flatten to obtain 784 analog optical power density of MIR laser. The
MIR laser with a certain optical power density can be detected and
encoded by our device into spike trains as the input of SNN.

Training and parameters optimization of SNN
For training of SNN, a surrogate gradient descent algorithm is used to
update synaptic weights38 in order to avoid dead neuron problem. The
loss function andoptimizer usedhere are cross-entropy loss andAdam
optimizer. There are 60,000 and 10,000 MIR MNIST images used for
training and test, respectively. The number of hidden neurons and
membrane potential decay rate are two super-parameters affecting
classification ability of SNN. More hidden neurons and higher β can
enhance the classification accuracy (seen in Supplementary Fig. 27a,
b). The β of real synaptic devices hardly reaches 100%, and therefore
the β in our work is set to 0.95. The number of hidden neurons is set to
200 considering the trade-off between performance and complexity.
After training around 450 iterations in one epochwith the batch size of
128, the loss of train and test sets all converge to a steady level, ver-
ifying SNN is well trained without under-fitting and over-fitting pro-
blems (seen in Supplementary Fig. 27c).

Data availability
The data that support the findings of this study are available within the
main text and Supplementary Information. Any other relevant data are
available from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The code can be available from the corresponding author upon rea-
sonable request.
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