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Heavy tails and pruning in programmable
photonic circuits for universal unitaries

Sunkyu Yu 1 & Namkyoo Park 2

Developing hardware for high-dimensional unitary operators plays a vital role
in implementing quantum computations and deep learning accelerations.
Programmable photonic circuits are singularly promising candidates for uni-
versal unitaries owing to intrinsic unitarity, ultrafast tunability and energy
efficiency of photonic platforms. Nonetheless, when the scale of a photonic
circuit increases, the effects of noise on the fidelity of quantum operators and
deep learning weight matrices become more severe. Here we demonstrate a
nontrivial stochastic nature of large-scale programmable photonic circuits—
heavy-taileddistributionsof rotationoperators—that enables thedevelopment
of high-fidelity universal unitaries through designed pruning of superfluous
rotations. The power law and the Pareto principle for the conventional archi-
tecture of programmable photonic circuits are revealed with the presence of
hub phase shifters, allowing for the application of network pruning to the
design of photonic hardware. For the Clements design of programmable
photonic circuits, we extract a universal architecture for pruning random
unitary matrices and prove that “the bad is sometimes better to be removed”
to achieve high fidelity and energy efficiency. This result lowers the hurdle for
high fidelity in large-scale quantum computing and photonic deep learning
accelerators.

A unitary operation is an essential building block of quantum1–3 and
classical4,5 linear systems because any linear operator can be decom-
posed into a set of unitary and diagonal operators6. With advances in
quantum computations3 and deep learning accelerators7, develop-
ment of reconfigurable hardware for universal unitary operations has
become a topic of intense study. A programmable photonic circuit is
one of the most widely used platforms8,9 for unitary operations in
optical neural networks4,10, modal decoding5 and quantum
computations1–3.

The fundamental strategy to realize universal unitary operators is
to factorize the target operator of the n-degree unitary groupU(n) into
the diagonal operators and unitary operators of the lower-degree
group, such as SU(2)11. These subsystems can be realized with con-
ventional optical elements, such as beam splitters, Mach‒Zehnder

interferometers (MZIs) and phase shifters, which constitute a pro-
grammable photonic circuit with reconfigurable modulation.
Although the mesh composed of these unit elements can perform
universal unitary operations, the connectivity inside the mesh is non-
unique and involves an optimal design issue for more compact and
robust platforms12–15. To improve the original proposal—the Reck
design11—for the mesh topology, recent approaches have successfully
demonstrated advanced arrangements of two-channel subsystems—
the Clements design12—and the advantages of utilizing multichannel
building blocks—the Saygin design13.

When each channel of the mesh is assigned as a node, a photonic
circuit can be interpreted as a graph network16 regardless of design
strategy. Accordingly, it is logical to seek inspiration from network
science17 to understand and improve the large-scale mesh topology of
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high-degree unitary groups,which should inherit intriguing features of
complex networks. In this context, one promising issue is the degree
distribution describing the differentiated importance of network
nodes,whichhas been ahot topic through the concepts of heavy-tailed
distributions, hub nodes and scale-freeness17–21. When the multiple
decomposition processes are applied to U(n)11,12, a natural question
arises: Do every decomposition and corresponding optical element
contribute equally to the designed unitary operation? The answer to
this question is of fundamental and practical importance in quantum
physics and photonics for devising more advanced hardware archi-
tecture applicable to universal quantum evolutions and deep learning
accelerators, especially with large-scale photonic circuits. Very
recently, the first step toward this answer was achieved in the Reck
designwith asymmetric architecture to devise a stable algorithm in the
self-configuration for large-scale multiport interferometers22.

In this paper, we reveal that some subsystems aremore important
than others, even in the highly symmetric architecture of large-scale
programmable photonic circuits. By applying various statistical mod-
els to programmable photonic circuits targetinguniversal unitaries, we
verify that a type of unit rotation operator has a heavy-tailed dis-
tribution. This finding shows the presence of hub optical elements and
the Pareto principle in photonic circuits, which enables the develop-
ment of the pruning technique23 for linear quantum or classical hard-
ware. We demonstrate that the suggested hardware pruning for
random unitaries allows for improved fidelity when the elements with
noise above a specific threshold are removed. This result provides a
design strategy for high fidelity and energy efficiency in large-scale
quantum computations and photonic deep learning accelerators.

Results
Rotation operators in programmable photonic circuits
Before applying the statistical analysis to large-scale programmable
photonic circuits, we revisit the Clements design12, which is one of the
most widely used architectures for universal unitaries. Figure 1 shows a
schematic of the photonic circuit for the n × n unitarymatrixUn∈U(n)
obtained from the Clements design. Both the Reck and Clements

designs employ nulling the off-diagonal elements ofUn by sequentially
multiplying theprogrammable unit operationsTml∈U(n) (1 ≤m ≤ n – 1,
1 ≤ l ≤ n, m and l are integers). Tml leads to the SU(2) operation on the
Bloch sphere defined for themth and (m + 1)th channels to set the off-
diagonal element (l, m) or (m + 1, l) to be zero.

To maximally cover the SU(2) group with Tm
l, reconfigurable and

independent control of the amplitude and phase differences between
themth and (m + 1)th channels is necessary8. One of the most popular
platforms forTml is to utilize twopairsof a stationaryMZI and a tunable
phase shifter in one arm8,9,12, which involves two adjustable parameters
of θ ∈ [0, π/2] and φ ∈ [0, 2π) (Fig. 1a). While the phase shifts θ and φ
correspond to tunable z-axis rotations on the Bloch sphere, the sta-
tionary MZIs constitute the –π/2 x-axis rotations (Fig. 1b, c). The unit
operator then becomes Tml(θ,φ) =Rx

m(–π/2)Rz
m(–2θ)Rx

m(–π/2)Rz
m(–φ),

where Ram(ξ) is the ξ-rotation to the a-axis on the m-(m + 1) Bloch
sphere, and θ and φ are determined to satisfy nulling of the (l, m) or
(m + 1, l) element. The target unitary operator Un is reproduced with
multiple Tml operators and the remaining diagonal matrix Dn after
nulling, as follows:

Un =Dn

Y
fm,lg2Sn

Tm
lðθm,l ,φm,lÞ

2
4

3
5 ð1Þ

where Sn is the ordered sequence of {m, l} pairs determined by the
nulling process12 and Dn is realized with phase shifters (Fig. 1d). By
newly defining Sn, the Clements design employs the highly symmetric
arrangementof theMZIs (Fig. 1e),whichdecreases thedevice footprint
by half and enhances robustness to optical losses compared to the
Reck design (see Supplementary Note S1 for the detailed processes).

The reconfigurability for universal unitary operators is thus rea-
lized with the z-axis rotation Rz obtained from tunable phase shifts θ
andφ. As programmable devices, the noise and power consumption of
photonic circuits are determined by the performance of modulating
optical refractive indices Δn in the phase shifters and the following
changes of θ and φ, as ~LΔn, where L is the modulation length.
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Fig. 1 | Programmable photonic circuits for universal unitary operators.
a Programmable photonic building block of Tml composed of MZIs and phase
shifters for the SU(2) operation between the mth and (m + 1)th channels. Red and
blue boxes represent the phase shifters for θ and φ, respectively. b, c The rotation
operators of Rx

m(–π/2)Rz
m(–φ) (b) and Rx

m(–π/2)Rz
m(–2θ) (c), described in Bloch

spheres. Black and colored solid lines indicate x-axis and z-axis rotations, respec-
tively. b and c correspond to the parts indicated by blue and red arrows in (a),
respectively. d Phase shifters for the diagonal components of Dn. e Schematic
diagram of the programmable photonic circuit for U16. The tunability of θ and φ

allows for the programming of U16.
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Therefore, the statistical analysis of the two adjustable phases θ and φ
is critical in examining the performance of large-scale programmable
photonic circuits.

Heavy tails in rotations
Due to the highly symmetric form of the photonic circuit (Fig. 1e), at
first glance, it may appear to be reasonable to predict that the building
blocks Tml in the circuit have equal importance. Under this presump-
tion, the distributions of θ and φ should be statistically uniform for an
ensemble of photonic circuits that generate random unitary opera-
tions uniformly distributed in U(n)24. Furthermore, it may also seem
reasonable to expect similar distributions for θ and φ, both of which
perform z-axis rotations.

However, upon closer inspection, we reveal that those presump-
tions are invalid. Instead, there are differences in the contributions of
individual building blocks as well as the rotation operators of θ and φ.
First, revisiting the nulling process of the Clements design12, we note
that each off-diagonal element of Un undergoes differentiated trans-
formations. For example, in nulling the 5 × 5 unitary matrices (Fig. 2a),
nulling the (5,1) and (4,1) components results in the (T15)†-transformed
1st and 2nd columns and the T31-transformed 3rd and 4th rows,
respectively. Because the nulled off-diagonal elements no longer
change, each building block treats a matrix element that undergoes a
different number of SU(2) transformations; matrix elements that are
nulled earlier get fewer transformations (see extended discussion in
Supplementary Note S1).

These disparate transformations of each matrix element do not
guaranteenontrivial distributions of thephase shiftsθ andφ. However,
the decomposed form of the building block operation Tml(θ,
φ) = Rxm(–π/2)Rzm(–2θ)Rx

m(–π/2)Rz
m(–φ) results in the nontrivial dis-

tribution of θ, which is clearly distinct from that of φ. Figure 2b and c
shows the transformations of the initial states uniformly distributed in
the polar (ξ) and azimuthal (η) axes of the Bloch sphere bymultiplying
Tml(θ, φ =0) = Rxm(–π/2)Rzm(–2θ)Rx

m(–π/2) and Tml(θ =0, φ) = Rx
m(–π)

Rz
m(–φ), respectively, where nonzero θ and φ also have uniformly

distributed values in their ranges. Notably, the transformed states by
Tml(θ, φ =0) become nonuniform (Fig. 2b), in sharp contrast to the
uniform distribution from Tml(θ =0, φ) (Fig. 2c). Such a discrepancy
originates from thedifferencebetween thepure z-axis rotationRzm(–φ)
and the transformed rotation Rxm(–π/2)Rzm(–2θ)Rx

m(–π/2) and even-
tually leads to nonuniformity on theBloch sphere forTm(θ,φ) (Fig. 2d).
We emphasize that the unequal contributions of each nulling (Fig. 2a)
will accumulate the nonuniform distribution from the θ rotations,
which leads to nontrivial statistics in the phase shift design.

To confirm this prediction, we investigate the statistics of θ andφ
in realizing programmable photonic circuits that reproduce random
unitary operations achieved by uniformly sampling the U(n) group
with theHaarmeasure24.We calculate the probability density functions
(PDFs) p(θ) and p(φ) and the complementary cumulative distribution
functions (CCDFs) P(θ) and P(φ) for an ensemble of 100Un realizations
at each n. As expected from the uniform distribution with Tml(θ =0, φ)
(Fig. 2c), the distribution of p(φ) is trivially uniform (Supplementary
Note S2).

Oneof the key findings of thiswork is the nonuniformdistribution
of θ. Figure 2e shows an example of the θ distribution for U128, which
includes 8128 values. As shown in the linearized plots of the CCDF and
PDF on the log-log scale, θ possesses a heavy-tailed distribution17,19,21,
indicating a smaller decrease in p(θ) for increasing θ than that of the
exponential distribution. For the quantitative analysis, we employ
three representative heavy-tailed distribution models19—power-law,
power-law with an exponential cutoff and log-normal distributions—
and the exponential distribution model. The models are fitted
with the θ dataset of each realization of photonic circuits by utilizing
analytical or numerical maximization of the model likelihoods19,25

and the Kolmogorov‒Smirnov test26 for themodels with lower bounds
(see Methods for details). This standard procedure determines the
range and shape of the tail of eachmodel for the optimized fitting of a
given dataset.
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Fig. 2 | Heavy-tailed distributions in unitary photonic circuits. a, b Two origins
of the heavy-tailed distributions of the rotationoperators: unequal transformations
in the nulling process (a) and nonuniform SU(2) rotations (b–d). a An example of
the nulling process for U5. Orange and green arrows denote the nulling of the off-
diagonal elements with UT† and TU, respectively. Red and blue boxes indicate the
rotating components for the nulling of the (5,1) and (4,1) components, respectively.
Rotated states with T(θ, 0) (b), T(0,φ) (c), and T(θ, φ) (d). Each point in (b) and (c)
denotes the transformed state through the corresponding T applied to the uni-
formly random initial states on the Bloch sphere. The colors in the map in d depict
the nonuniform density of the transformed states on the Bloch sphere. The initial
states in (b) and (c) are obtained with 10 polar grids and 20 azimuthal grids (200

points), while 200 polar grids and 400 azimuthal grids (80,000 points) are used in
(d). e Heavy-tailed distributions of θ described by the CCDF. The inset shows the
PDF and its fitting. The body and tail are separated with P(θ) = 0.20, referring to the
Paretoprinciple. Red, orangeandbluedashed lines showfittingwith thepower-law,
power-law with an exponential cutoff (or truncated power-law) and log-normal
distributions, respectively. Red and orange circles indicate the lower limit of the θ-
fitting for the power law and power law with an exponential cutoff, respectively.
f, g The variations of the power-law estimators for different n: α (f) and θmin (g).
Each blue point represents a realization, and orange markers and error bars show
the average and root-mean-square error (RMSE) of 100 random realizations at each
n, respectively.
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Notably, all the heavy-tailed models provide good fits for large n,
showing the consistent behaviors of their estimators for each realiza-
tion, which is a critical condition formodel consistency21. For example,
the exponent α (Fig. 2f) and the lower bound θmin (Fig. 2g) in the
power-law model P(θ) = (θ/θmin)

–α+1 converge with increasing n, which
demonstrates that the heavy-tailed distribution becomes more
apparent in larger-scale programmable photonic circuits. The average
of the power-law exponents at n = 128 is αavg = 3.18 for 100 realizations

(or 812,800 values of θ), while lower and upper limits are αmin = 2.75
and αmax = 3.78. Such consistency clearly proves the validity of the
power-law model20,21 for describing the distribution of the θ-rotation
operators (SupplementaryNotes S3–S5 for the results of the crossover
heavy-tailed distributions and exponential distribution). We note that
the averaged lower bound θmin = 0.08π with P(θmin) = 0.24 shows that
most of the significant rotations 0.08π ≤ θ ≤0.50π come from ~24% of
the building blocks, which illustrates the Pareto principle for large-
scale programmable photonic circuits.

Hub units and pruning
Theobservedheavy-tailed distribution of θ rotation operators signifies
that some building blocks Tmlwith θ in the ‘Tail’ part in Fig. 1e aremore
critical than other building blocks (‘Body’ part in Fig. 1e). In realizing
programmable photonic circuits for universal unitary operations
(Fig. 1a), many phase shifters in the “body” of the distribution may be
unnecessary because θ ~ 0. On the other hand, the “tail” phase shifters
with large θ values operate ashubunits. Because suchhubunits deliver
most of the necessary θ-rotations for realizing Un, we can envisage the
application of the pruning technique in computer science23 to photo-
nic hardware.

Figure 3a shows the concept of pruning for programmable pho-
tonic circuits. The entire photonic circuit for Un includes n(n – 1)/2
number of SU(2) building blocks and the same number of θ values.We
define the set of sorted θ values for a given photonic circuit asΘn = {θr|
1 ≤ r ≤ n(n – 1)/2 for the integer r that denotes the index of each build-
ing block according to an order of θ, as θp ≤ θq for p ≤ q}, where θrwith
larger r represents a more important building block. The pruning of
less important ones—body elements—for the photonic circuit is then
defined by imposing θr = 0 for 1 ≤ r ≤ σ, where the integer σ determines
the degree of pruning: σ = 0 for preserving the original circuit and
σ = n(n – 1)/2 for entirely removing θ rotations in the circuit. In the
hardware implementation, pruning corresponds to leaving out the
phase shifters for θ and preserving the symmetry in the MZI arms.

The refractive index modulation in the phase shifters is respon-
sible for much of the energy consumption and noise generation in
programmable photonic circuits8,9. For example, consider a typical
thermo-optic phase shifter with a device length of 100μm27, which
operates at the telecomwavelength of 1550 nm and is based on silicon
photonics technology. The amount of thermal noise present in the
phase evolution is determined by the thermo-optic coefficient of
silicon28 dn/dT = 1.8 × 10–4 K–1, which can approach 0.02π per kelvin.
This noise may be further exacerbated in larger-scale devices due to
increasing thermal crosstalk. Therefore, pruning of superfluous phase
shifters allows for more energy-efficient and noise-tolerant photonic
circuits for reconfigurable unitary operations, provided that the circuit
after the pruning accurately reproduces unitary operations. To
examine the performance of pruning in a practical situation, we pre-
pare three control groups: one group with the pruning of more
important building blocks—tail elements—with θr = 0 for n(n − 1)/
2 − σ + 1 ≤ r ≤ n(n – 1)/2, and two groups with noisy elements. For the
noisy elements, we assume random noise from the phase shifter by
assigning the noise δk to the kth original rotation as θk + δk, where
δk = u[0,δ0] represents the uniform random distribution between 0
and δ0. For a fair comparison, we construct the groups of noisy ele-
ments by replacing the body- or tail-pruned elements in the pruning
groups with noisy elements.

To characterize the precision of the operation of the circuits with
pruning or noises, we define the fidelity that quantifies the metric
between the original and defective operators29 as follows (seeMethods
for the derivation):

FðUn
D,Un

OÞ= 2ReðTr½ðUn
DÞyUn

O�Þ
n+TrððUn

DÞyUn
DÞ

, ð2Þ
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2θ = 0φ 2(θ + δ)φ

a b
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Pruning Body
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Fig. 3 | Pruning is often better than noise. a The concept of pruning in pro-
grammable photonic circuits. The phase shifter 2θ of the building block is replaced
with an ordinary waveguide, which preserves the symmetry in the MZI arms. b The
noisy building block. The phase shifter 2θ is perturbed as 2(θ + δ). c Comparison of
the fidelities of the U128 photonic circuits in different groups: pruning body (red
line), pruning tail (blue line), noisy body (orange line) and noisy tail (green error
bars). The thicknesses of the colored lines and the error bars present the range of
the fidelities between their maxima and minima. The red arrows indicate the
pruning thresholds for each case. Two pairs of groups with noisy bodies and noisy
tails are shown for δ0 = 0.04π and 0.08π, which correspond to about 2K–4K tem-
perature changes in silicon infrared thermo-optical phase shifters27. d Pruning
threshold as a function of the noise level δ0 for different degrees of unitary
operators. In (c) and (d), 100 randomUn realizations are analyzedper value ofn and
defect ratio.
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where Un
O and Un

D represent the original unitary matrix and its
defective (pruned or noisy) one, respectively, and Tr(A) is the trace of
the square matrix A. Figure 3c shows the fidelities of each photonic
circuit with the pruning or noise as a function of the ratio of defective
elements: 2σ/n(n – 1) in the pruning groups. As expected, the fidelity is
preserved much better when the body is pruned instead of the tail.
More critical results are shown in comparison with the noisy circuits.
When the noise amplitude increases, removing a specific ratio of the
“body” phase shifters can be better for higher fidelity than the noisy
ones, whether the noise is imposed on body or tail elements. Such a
ratio, called the pruning threshold, increases with the noise level and
scale of photonic circuits (Fig. 3d). This result states that there is a
substantial restriction on the noise level in a large-scale programmable
photonic circuit. If a phase shifter cannot meet this restriction, then it
is better to remove the phase shifter to increase accuracy anddecrease
energy consumption for reconfigurability.

Universal architecture for pruning
Although the result shown in Fig. 3 demonstrates hub functionality and
the advantage of pruning in realizing an individual unitary operator, it is
insufficient to apply pruning to programmable photonic circuits for
universal unitary operators. This is because the sorted set Θn for
pruning varieswith the formof a unitary operator. To apply the pruning
method for universal unitaries with reconfigurability, it is necessary to
construct an adaptable architecture for the pruning process.

Because the position of each building block for nulling a specific
off-diagonal element is fixed in an n-degree photonic circuit, the
averages of the phase rotations <θm,l> and <φm,l> are well-defined in
hardware for random unitary operations that are uniformly sampled
from U(n). Figure 4a and b describes the universal architectures
defined by <θm,l> and <φm,l>, respectively, for 100 Un realizations of

n = 16 and n = 32 (see Supplementary Note S6 for n = 64). As expected
from the distinct SU(2) operations from θ andφ (Fig. 2b, c), we observe
a spatially inhomogeneous distribution of <θm,l> in contrast to that of
<φm,l>. More specifically, the universal architectures show significant
θ-rotation contributions from thebuildingblocks near theboundaryof
the programmable photonic circuits. Such a consistent distribution
allows for a universal sorted set <Θ>n = {<θm,l>r|1 ≤ r ≤ n(n – 1)/2 for the
integer r that denotes the index of each building block according to an
order of <θm,l>, as <θm,l>p ≤ <θm,l>q for p ≤ q} to develop a pruning
process applicable to any unitary operations.

From this guideline, we again employ pruning and add noise to the
body and tail elements to the set <Θ>n. As shown in Fig. 4c and 4d, the
general tendencies in Fig. 3c and 3d are preserved; the tail is more
important than the body, the bad is better to be removed andpruning is
more efficient for larger-scale photonic circuits. Although theminimum
noise level increases, there is still a pruning threshold that guarantees
the advantage of removing θ phase shifters, and this tendency is much
more apparent in larger-scale programmable photonic circuits. Notably,
the importanceof protectinghub elements fromnoisebecomes evident
at the strong noise level (δ0 =0.20π cases in Fig. 4c). Furthermore, let us
consider one of the state-of-the-art realizations of experimentally
demonstrated programmable photonic circuits, which allows for n = 64
matrix multiplications30,31. The realization then requires 2016 (=n(n – 1)/
2) unit cells composedof 4032MZIs and2016θ- andφ-phase shifters for
unitary operations. When we consider thermal noise from about 5K
temperature change, Fig. 4d shows that it is more advantageous to
remove 50% (or 1008) θ-phase shifters in realizing U(64) circuits.

Pruning in photonic deep neural networks
The importance of achieving high-fidelity photonic U(n) operations
demonstrated in Fig. 4 has been widely recognized in quantum
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Fig. 4 | Universal architecture for pruning in reconfigurable unitaries. a, b The
averages of <θm,l> (a) and <φm,l> (b) for the photonic circuits of 100Un realizations
with n = 16 and n = 32.We set the upper bound of the colormap in (a) to be 0.3π for
better visibility. c Comparison of the fidelities of the U128 photonic circuits in dif-
ferent groups: pruning body (red line), pruning tail (blue line), noisy body (orange
line) and noisy tail (green error bars). The thicknesses of the colored lines and the

error bars present the range of thefidelities between theirmaximaandminima. The
red arrow indicates the pruning threshold. Two pairs of groups with noisy bodies
and noisy tails are shown for δ0 = 0.10π and 0.20π, which correspond to about
5K~10K temperature changes in silicon infrared thermo-optical phase shifters27.
d Pruning threshold as a function of the noise level δ0 for different degrees of
unitary operators.
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computing, such as boson sampling1 or quantum Fourier transform32

in linear-optical quantum computing33. On the other hand, the validity
of pruning in deep learning requires further clarification because
unitary operations are part of an entire neural network composed of
weight matrices and activation functions4,34. Therefore, we analyze
how the pruning and adding noise in the unitary subparts of weight
matrices impact the performance of photonic deep neural networks4.

To focus on the effect of pruning and adding noise, we consider a
traditional feedforward neural network34,35 (Fig. 5a) with conventional
training36 and evaluation methods. The target problem is the regres-
sion of the relationship between the input and output datasets, which
are connected through the neural network of Fig. 5a with a specific set
of weightmatrices {Wp|p = 1, 2, and 3}. The goal of the network training
starting from initially random weight matrices is the inference of the
test output dataset from the test input, which corresponds to finding a
specific form of a deep neural network from random deep neural
networks (see Methods for details of the neural network model:
architecture, datasets, training, hyperparameters and loss function).

When employing programmable photonic circuits to deep
neural networks, the weight matrix W = Wp is realized through the
singular value decomposition6 W = UDV †, where U and V † are unitary
matrices and D is a diagonal matrix4,8. The unitary- and diagonal-
matrix operations can be implemented with the structures in Fig. 1e
and Fig. 1d, respectively8, while gain or loss may be necessary for
diagonal operations. Among those sub-operations of W, we apply
pruning or adding noise to the unitary matrices U and V † through the
procedure in Fig. 4. Each weight matrix is then replaced with the
defective one: W D =U DDV D†, where U D and V D† are the pruned or
noisy unitary matrices.

Figure 5b and c demonstrates the impact of pruning in the
regression problem. The learning curves estimated with the test

dataset (Fig. 5b) show that the pruning body (red solid and dashed
lines) allows for muchmore robust network learning than all the other
cases of defective unitaries. Noisy cases present relatively unstable
learning, especially when the ratio of defective elements increases
(solid lines for 5% and dashed lines for 10% defective elements).
Notably, the pruning tail—removing the operations of hub elements—
results in the complete failure of learning. Such a discrepancy between
pruning and adding noise is also apparent in the R-squared regression
accuracy (R2) estimated after 300 epochs of training (Fig. 5c), which
shows that only the pruning body case provides an accuracy close to
the ideal case without any defects (black solid line). Although the case
examined in Fig. 5b, c is a specific regression problem of a deep neural
network model, the result shown in the same vein as Fig. 4 demon-
strates the validity of the pruning method in photonic deep neural
networks, serving as proof-of-concept at least. To ensure reproduci-
bility, we include the codes for Figs. 2–5 in Supplementary Code 1.

Discussion
Due to the mathematical generality of our study, the presented
results should be universal for programmable photonic8,9 or
superconducting37 processors for reconfigurable unitary opera-
tions when the unit SU(2) operation is nonuniform on the Bloch
sphere and the target degree n is finite. Notably, we observed the
excellent fitting with the power-law model, the crossover behaviors
from exponential to heavy tails in the truncated power-law and log-
normal models, and the evident failure of the exponential model,
nearly above the degree n ≥ 80. It is worthmentioning that the state-
of-the-art realization of programmable photonic circuits usingMZIs
and phase shifters allows the n = 64 matrix multiplication30,31, which
is close to the heavy-tailed regime. Therefore, the heavy-tailed
features are evident at the scale near and beyond the present

a b

c
2W1W 3W

1�

1�

2� 3�

4�

2� 3�

4�

1M

2M 3M

4M

Pruning Tail

Pruning Body

Noised Body

Noised Tail

Ideal

Pruning Tail

Pruning Body

Noised Body

Noised Tail

Ideal

Fig. 5 | Pruning in photonic deep neural networks for regression. a The archi-
tecture of the deep neural network for analyzing the effect of pruning.Mp (p = 1, 2,
3, 4) is the number of neurons in the pth layer, whereM1 =M4 = 16 andM2 =M3 = 32.
Ψp = ½a1

p,a2
p, . . . ,aMp

p�T and Δp = ½δ1
p,δ2

p, . . . ,δMp
p�T are the signal and error col-

umn vectors at the pth layer, respectively, where akp and δk
p are the signal and error

at the kth neuron of each layer (k = 1, 2,…,Mp), respectively.Wp is theweightmatrix
between the pth and (p + 1)th layers. b, c Learning curves (b) and R-squared
accuracies (c) of themodel, which are estimatedwith the test dataset. The colors of
the lines denote the unitary photonic circuits in different groups: pruning body

(red), pruning tail (blue), noisy body (orange) andnoisy tail (green). Noisy bodyand
noisy tail are shown for δ0 = 0.001π. In (b), solid and dashed lines denote 5%
(2σ/n(n – 1) = 0.05) and 10% (2σ/n(n – 1) = 0.10) defect ratios, respectively. In
c, dashed lines and error bars represent the mean value and half of the standard
deviation of the test dataset accuracies of 1000 realizations. The disconnection of
the blue dashed line in (c) denotes the failure of the training due to the divergence
of network parameters. All the other parameters for training and calculating loss
functions are shown in Methods.
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state-of-the-art degrees (n~102) in deep learning accelerators4,38,39

and noisy intermediate-scale quantum computers3,40,41. The suitable
application of the demonstrated pruning method, which allows for
leaving out a significant portion of electro-optic modulations in
programmable photonic circuits, will become particularly bene-
ficial for the next era of quantum computing and deep learning
hardware.

Althoughwe studied the performance of pruning in photonic deep
neural networks, various issues still remain for practical realizations.
First, although we focused on unwanted phase shifts thatmay originate
from thermal crosstalk, optical absorption from material loss or
imperfect device fabrication may be worse in large-scale photonic
neural networks, especiallywhenusing gain or lossmedia42. Second, the
effect of other forms of nonlinear activation functions43 and network
architectures44 on pruning performance should be studied. Finally, the
statistical properties of weight matrices depend on problems, model
architectures, learningmethods andhyperparameters45,46. The resulting
unitary matrices can have some biased distributions distinct from ran-
dom Haar matrices, which will impose the problem- or model-specific
properties in pruning performance.

The presence of heavy-tailed distributions in programmable
photonic circuits inspires the extension of seminal achievements
in probability theory and network science to wave physics. As
shown in our study, the intriguing features related to heavy-tailed
distributions are demonstrated in wave platforms, such as the
observed Pareto principle in wave physics and the critical role of
hub elements in pruning and noise immunity. Regarding the
emergence of heavy-tailed distributions in network science18,
the phase shift θ, or the rotation Rz

m(–2θ), may correspond to the
number or weight degree of links that network nodes possess. In
this analogy, each SU(2) unit corresponds to a network node, and
different design methodologies of the U(n) decomposition11–13

imply a set of distinct network architectures for the same signal
behavior U(n). To complete this analogy between wave physics
and network science, we can envisage a network metric that
quantifies the connectivity between SU(2) units, which should
consider the interference effect, as demonstrated in the network
modeling of wave scattering systems47. When the connectivity of
integrated wave systems becomes more extensive and complex48,
the concepts of complex networks will provide a foundation for
design strategies in wave physics.

In conclusion, we demonstrated that some of the unit elements in
a large-scale programmable photonic circuit are more important than
others, exhibiting the heavy-tailed feature verified with conventional
statistical models, i.e., the power-law, power-law with an exponential
cutoff and log-normal distributions, and the exponential distribution
as a counterexample. The observed heavy-tailed distribution origi-
nates from nonuniform rotations on the Bloch sphere, which are ubi-
quitous in conventional SU(2) units for programmable photonic
circuits. The result allows for the design strategy—pruning—for high
fidelity and energy efficiency, which offers intriguing insight into the
design of large-scale photonic structures for classical and quantum
devices, as demonstrated in the application to photonic deep neural
networks. Further research on devising other forms of SU(2) units or
theunitswith higherdegree forUn factorization is desirable to alter the
observed heavy-tailed distributions.

Methods
Model fitting process
To analyze the θ distributions in an ensemble of programmable
photonic circuit realizations, we employ multiple statistical
models: power-law, power-law with an exponential cutoff, log-
normal and exponential distributions. Each model is defined by a
set of model parameters {qs}. To calculate the model parameters
for the fitting of a given dataset {θ1, θ2, …, θM}, we employ an

analytical or numerical calculation of the maximum likelihood
estimators (MLEs)25 from the PDF p(θm;{qs}), which defines the
probability of finding θm with the model having the parameters
{qs}. First, the probability of obtaining the dataset from the sta-
tistical model with the given model parameters {qs} and the PDF
p(θm;{qs}) is

pðfθmg; fqsgÞ=
YM
m= 1

pðθm; fqsgÞ, ð3Þ

which is called the likelihood for the data and model. The model with
the higher likelihood then provides the better fit to the dataset {θm}

19.
Because the employed statistical models have exponential forms, it is
conventional to utilize the log-likelihood L:

L=
XM
m= 1

logðpðθm; fqsgÞÞ: ð4Þ

The fitting of the model to a given set of data, which requires the
calculation of {qs}, then corresponds to the maximization of L with
respect to {qs}. Therefore, the MLE is defined as

∇fqsgL=∇fqsg
XM
m= 1

logðpðθm; fqsgÞÞ=O: ð5Þ

Power-law distribution model
In analyzing the heavy-tailed statistics of the θ-rotations, we mainly
employ the power-law distribution model17–19, which supports the PDF
and CCDF, as follows:

pðθÞ= α � 1
θmin

θ
θmin

� ��α

, ð6Þ

PðθÞ= θ
θmin

� ��α + 1

, ð7Þ

where α and θmin are the exponent and lower bound of the power-law
model, respectively. The model is defined in the range α > 1, and the
model parameter set is {qs} = {α}. For a given dataset, the log-likelihood
becomes

L=M logðα � 1Þ+Mðα � 1Þ logθmin � α
XM
m= 1

logθm: ð8Þ

The MLE then leads to α, as

α = 1 +M
XM
m= 1

log
θm

θmin

� �" #�1

: ð9Þ

We calculate an array of α values using Eq. (9) for all the possible
values of θmin, where each pair of α and θmin comprises a candidate
power-law model.

Power-law model with an exponential cutoff
To obtain a thorough confirmation of the heavy-tailed statistics, we
test crossover distributions between a power-law and an exponential
distribution. First, we apply the power-law model with an exponential
cutoff, which is the truncated version of the original power-lawmodel.
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The PDF and CCDF of the model are17,19:

pðθÞ= λc
1�αc

Γð1� αc,λcθc,minÞ
θ�αce�λcθ, ð10Þ

PðθÞ= Γð1� αc,λcθÞ
Γð1� αc,λcθc,minÞ

, ð11Þ

where αc, λc, and θc,min are the power-law exponent, cutoff exponent
and the lower bound of themodel, respectively, and Γ(s,x) is the upper
incomplete gamma function. The model is defined in the range of
αc ≥0 and λc ≥0. The log-likelihood for the dataset {θ1, θ2, …, θM} is

L=Mð1� αcÞ logλc �M logΓð1� αc,λcθc,minÞ � αc

XM
m = 1

logθm � λc
XM
m = 1

θm:

ð12Þ

Although the MLE with the model parameters {qs} = {αc, λc} leads
to the following relations:

log λc +
∂αc

Γð1� αc,λcθc,minÞ
Γð1� αc,λcθc,minÞ

= � 1
M

XM
m= 1

log θm,

1� αc

λc
+
θc,minðλcθc,minÞ�αce�λcθc,min

Γð1� αc,λcθc,minÞ
=

1
M

XM
m= 1

θm,

ð13Þ

we instead employ the numerical minimization of –L with the con-
straints αc ≥0 and λc ≥0 due to the difficulty in handling the analytical
derivative of the upper incomplete gamma function. We calculate the
pairs of αc and λc for all the possible values of θc,min, where a set of αc,
λc, and θc,min comprises a candidate for the model.

Log-normal distribution model
To cover the intermediate regime between the power-law and expo-
nential distributions17, we employ another crossover distribution: the
log-normal distributionmodel. The PDF andCCDFof themodel are17,19:

pðθÞ= 1

σθ
ffiffiffiffiffiffi
2π

p exp �ðlogθ� μÞ2
2σ2

 !
, ð14Þ

PðθÞ= 1
2

1� erf
logθ� μ

σ
ffiffiffi
2

p
� �� �

, ð15Þ

where μ and σ are the mean and standard deviation of log(θ), respec-
tively, and erf is the error function. With the model parameters {qs} =
{μ, σ}, the log-likelihood and theMLE relation are shown in Eqs. (16) and
(17), respectively, as follows:

L= �
XM
m= 1

logθm �M log σ �M
2

log 2π �
XM
m= 1

ðlogθm � μÞ2
2σ2 : ð16Þ

XM
m= 1

logθm � μ

σ2 =0,
M
σ

=
XM
m= 1

ðlogθm � μÞ2
σ3 : ð17Þ

Instead of utilizing the analytical MLE, we employ numerical
minimization of –L with the constraint σ ≥0.

Exponential distribution model
For the comparison withmodels other than heavy-tailed distributions,
we test the exponential distribution model17,19,21, which has the

following PDF and CCDF:

pðθÞ= λeeλeθe,mine�λeθ, ð18Þ

PðθÞ= eλeθe,mine�λeθ, ð19Þ

where the model parameter is {qs} = {λe}. The log-likelihood and the
MLE relation are

L= log λe +Mλeθe,min � λe
XM
m= 1

θm, ð20Þ

λe =
XM
m= 1

θm �Mθe,min

" #�1

: ð21Þ

We calculate an array of λe values using Eq. (21) for all the possible
values of θe,min, where each pair of λe and θe,min comprises a candidate
for the model.

Kolmogorov‒Smirnov test
In the power-law, power-law with an exponential cutoff and expo-
nential distribution models, we obtain multiple candidates for
themodelswith different values of lower bounds θmin, θc,min and θe,min,
respectively. Each candidate of a model supports a distinct range
of data for model validity and possesses different values of model
parameters {qs}. To extract the optimum model among the
candidates, we apply the Kolmogorov‒Smirnov (KS) test19,26. When the
CDFsof the dataset and the statisticalmodel are S(θ) and P(θ; θmin, {qs})
for the lower bound parameter θmin, we define the maximum
distance D between the data and model distributions as:

D = max
θ≥θmin

∣SðθÞ � Pðθ;θmin,fqsgÞ∣: ð22Þ

We select θmin and the corresponding {qs} to minimize D, deter-
mining the optimum statistical model for each case of the power-law,
power-law with an exponential cutoff and exponential distribution
models. This optimummodel has the tail for the best fitting of a given
dataset within the definition of each distribution.

Fidelity for unitary matrices
We consider the n × n unitary matrix Un

O and its defective one Un
D,

which could be nonunitary in general. The cost function or the square
of the metric between the matrices is defined by29:

JU =
1
n2

X
i,j

∣Un
O
ði,jÞ � Un

D
ði,jÞ∣

2

=
1
n
+

1
n2 TrððUn

DÞyUn
D � 2Re½ðUn

DÞyUn
O�Þ,

ð23Þ

where A(i,j) is the (i,j) matrix component and Tr(A) is the trace of the
square matrix A. Because JU ≥0, we obtain the relationship:

n+TrððUn
DÞyUn

DÞ≥ 2TrðRe½ðUn
DÞyUn

O�Þ, ð24Þ

where equality is achieved with the minimum defect, as Un
O =Un

D.
Because the left side of Eq. (24) is positive, the definition of fidelity is
F(Un

D, Un
O) in Eq. (2) in the main text.

Photonic deep neural networks
To analyze the effect of defective unitaries on deep learning, we
examine traditional supervised feed-forward neural networks with the
error backpropagation method34,35. In the forward propagation, the
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signal column vector of each layer Ψp is updated with:

Ψp+ 1 =WphpðΨpÞ, ð25Þ

wherehp(Ψp) denotes the application of the activation function to each
component of Ψp through the computer-assisted simulation using
electro-optic conversion4. We apply the tangent hyperbolic activation
function49 in hidden layers (p = 2 and 3) and the linear activation
function in the input (p = 1) and output (p = 4) layers.

The training and test datasets are obtained with the forward
propagation of the neural network using the predefined weight
matrices Wp. The elements of Wp are obtained with the uniform ran-
dom distribution u[–1/Mp

2, 1/Mp
2]. The datasets are then achieved with

a set of the input vectorsΨ1 obtained from u[0,1] and its application to
the predefined neural network. The training and test datasets consist
of 4000 and 1000 pairs of input and output realizations, respectively.

The error backpropagation for network training is defined with
the following equation35:

Δp =h0ðΨpÞ � ½ðWpÞTΔp+ 1�, ð26Þ

where h'(Ψp) denotes the derivative of the activation function and ∘ is
the Hadamard product. We utilize the mean square error (MSE) as
the loss function for updating the weight parameters with the output-
layer error vector Δ4. The weight matrices are updated with the mini-
batch gradient descent (MGD) method50 by dividing the training
dataset into four mini-batches. The MGD leads to the following
updating rules:

WpðτB + 1,τEÞ=WpðτB,τEÞ � ηhðh0ðΨpÞ � ½ðWpÞTΔp+ 1�Þ½hðΨpÞ�Ti, ð27Þ

Wpð0,τE + 1Þ=Wpð4,τEÞ, ð28Þ

where Wp(τB, τE) is the weight matrix between the pth and (p + 1)th
layers at the (τE)th epoch with applying τB mini-batches, η = 2 × 106 is
the learning rate and h� � �i is the average of the loss-function gradient
for each mini-batch of the training dataset. After conducting Eq. (27)
for a mini-batch, we apply Eq. (25) and recalculate the MSE
loss function to employ the next mini-batch or epoch to Eq. (27).
Starting from the initially randomWpwith u[–1/Mp

2, 1/Mp
2], we train the

neural network for 300 epochs. At each epoch, the loss function of the
MSE for complex numbers is estimated with the test dataset to obtain
the learning curves in Fig. 5b. The regression estimator of the
R-squared is calculated with the test dataset after 300 epochs of
training to obtain the accuracy curves in Fig. 5c.

Data availability
Data used in the current study are available from the corresponding
authors upon request and can also be obtained by running the shared
codes at https://doi.org/10.24435/materialscloud:gj-y4 in theMaterials
Cloud Archive51.

Code availability
Codes used in this work are available at https://doi.org/10.24435/
materialscloud:gj-y4 in the Materials Cloud Archive51. Supplementary
Code 1 for Figs. 2–5 are available with this paper.
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