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Chance promoter activities illuminate
the origins of eukaryotic intergenic
transcriptions

Haiqing Xu 1,2, Chuan Li 1,3, Chuan Xu 1,4 & Jianzhi Zhang 1

It is debated whether the pervasive intergenic transcription from eukaryotic
genomes has functional significance or simply reflects the promiscuity of RNA
polymerases. We approach this question by comparing chance promoter
activities with the expression levels of intergenic regions in the model eukar-
yote Saccharomyces cerevisiae. We build a library of over 105 strains, each
carrying a 120-nucleotide, chromosomally integrated, completely random
sequencedriving thepotential transcriptionof a barcode.Quantifying theRNA
concentration of each barcode in two environments reveals that 41–63% of
random sequences have significant, albeit usually low, promoter activities.
Therefore, even in eukaryotes, where the presence of chromatin is thought to
repress transcription, chance transcription is prevalent.We find that only 1–5%
of yeast intergenic transcriptions are unattributable to chance promoter
activities or neighboring gene expressions, and these transcriptions exhibit
higher-than-expected environment-specificity. These findings suggest that
only a minute fraction of intergenic transcription is functional in yeast.

Many eukaryotes show pervasive transcriptions of intergenic
regions1–4. For example, althoughprotein-coding regionsmake uponly
~1.5% of the human genome and genic regions constitute about one-
third of the genome, RNA transcripts are detected from >75% of the
genome4. The biological significance of intergenic transcription,
however, remains controversial5,6. The functional hypothesis asserts
that intergenic transcripts largely result from the transcriptions of
uncharacterized protein-coding genes or functional noncoding
genes3,7,8. Indeed, some long intergenic noncoding RNAs (lincRNAs)
are functional9, although the functionality of the vast majority of
annotated lincRNAs is unclear10. Furthermore, it has been suggested
that, even if the transcript of a noncoding gene is functionless, the act
of transcription may regulate the expressions of other genes11–13. By
contrast, the nonfunctional hypothesis14,15 posits that most intergenic
transcripts excluding those resulting from the expressions of neigh-
boring genes16,17 are nonfunctional products of chance promoter
activities of intergenic sequences18. It is notable that, in the prokaryotic
model organism Escherichia coli, ~10% of random sequences of ~100

nucleotides possess promoter activities comparable to that of a
functional promoter and another ~60% can become such a promoter
with just one mutation19. In the eukaryotic model organism Sacchar-
omyces cerevisiae, noncoding RNAs can arise from nucleosome-
depleted genomic regions by the promiscuous binding of RNA poly-
merase II16–18,20, but neither the probability with which a random
intergenic sequence drives transcription nor the resulting transcrip-
tional level is known, especially in the presence of chromatin that
substantially represses transcription21. Most lincRNAs are not evolu-
tionarily conserved22,23, which couldmean a lack of function6 or a rapid
turnover of lineage/species-specific function22. Intraspecific analysis
yielded mixed results on the selective constraints on lincRNAs24.

In this study, we test the nonfunctional hypothesis by character-
izing the frequency distribution of promoter activities of 120-
nucleotide random sequences in yeast and comparing it with the fre-
quency distribution of yeast intergenic expressions; the functionality
of intergenic expression is invoked if the expression exceeds the
chance expectation. Although themedian length of yeast promoters is
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455 nucleotides25, a promoter as short as 69 nucleotides can be twice
as strong as the CYC1 promoter26 and a 116-nucleotide synthetic pro-
moter is similarly strong as the TDH3 promoter27. CYC1 and TDH3 are
among 30% and 0.1% of the most highly expressed yeast genes,
respectively. Hence, sequences of 120 nucleotides have ample
opportunities to possess promoter activities yet are not too long to
lower the experimental efficiency or increase the length variation of
the synthesized oligonucleotides (because of the relatively high rates
of insertion/deletion errors in oligonucleotide synthesis).

Our experiment differs from past studies of eukaryotic mutant
promoters in both design and purpose. We investigate the promoter
activities of completely random sequences, while past studies exam-
ined activities of promoters that were created by mutating a native
promoter28,29 or were built on a core promoter scaffold27,30–33. We aim
to estimate the probability distribution of promoter activities of ran-
dom sequences, while past studies aimed to identify crucial elements
of a particular functional promoter or sequence features of active
promoters with a canonical scaffold.

Results
Estimating the promoter activities of random sequences
We began by synthesizing oligonucleotides each comprising a 120-
nucleotide completely random sequence (the random promoter) and
a 20-nucleotide completely random sequence (the barcode) inter-
leaved with invariant sequences (primer sites) (Figs. 1a, S1a). Because
the genomic location has a much smaller influence than the promoter
strength on the gene expression level34, we integrated the above oli-
gonucleotides to an intergenic position in the yeast genome that
permits sensitive quantification of promoter activities (Fig. S2,
Table S1), using CRISPR/Cas9 in a large-scale transformation (see
Methods). A CYC1 terminator was placed upstream of the random
promoter to minimize the influence of any upstream transcriptional
activity (Fig. 1a). We respectively created a negative control where the
randompromoterwas absent and a positive control where the random
promoter was replaced with the promoter of the yeast PSP2 gene. We
constructed eight versions of each of the negative and positive con-
trols using different barcodes to confirm the reliability of barcode
expression measurements.

The library, along with the controls, was cultured in three repli-
cates in a rich medium (YPD) or a minimal medium (SCD) to the
exponential growth phase. We extracted and amplified DNAs from
barcodes (Fig. S1b) and sequenced them using 150-nucleotide paired-
end Illumina sequencing. From the same samples, we extracted total
RNAs, reverse-transcribed mRNAs from the barcodes, and sequenced
the corresponding cDNAs using the same platform. The number of
cDNA reads divided by the number of DNA reads for each barcode,
upon normalization, is an estimate of the barcode expression level and
the activity of the corresponding random promoter (Fig. 1a). From the
library, we also Illumina-sequenced the insert to determine the
sequence of the random promoter linked with each barcode (Fig. 1a).

We focused on barcodes with at least 100 DNA reads in each
replicate to allow relatively precise estimation of their expression
levels; 49,169 and 146,291 barcodes passed this criterion in YPD and
SCD, respectively. In YPD, the barcode DNA read number is highly
correlated between replicates (Figs. 1b, S3a, b), while the cDNA read
number is lesswell correlated (Figs. 1c, S3c, d), and the expression level
correlation is even weaker (Figs. 1d, S3e, f). The reduced correlation in
expression level is due to the existence of many lowly expressed bar-
codes; the correlation is substantially higher when the 1% of the bar-
codes with themost cDNA reads are examined (insets in Figs. 1d, S3ef).
The same is true in SCD (Fig. S4a–i). When culturing the yeast library,
we included high fractions of controls, resulting in a high expression
correlation across replicates for the controls (Fig. S5). To verify the
bulk sequencing-based promoter activity estimation, we selected
several promoters with a wide range of activities but low across-

replicate variations, reconstructed them, and measured their expres-
sions individually by reverse transcription-quantitative polymerase
chain reaction (RT-qPCR; seeMethods). Expression estimates fromRT-
qPCR agreed well with those from bulk sequencing (Figs. 1e, S4j).

A large proportion of random sequences have promoter
activities
By comparingwith thenegative control, we found that 63.2% and41.4%
of the random sequences have significant promoter activities in YPD
(Figs. 2a, S6a, b) and SCD (Figs. 2b, S6a, b), respectively. Because our
positive control—PSP2—may not have the same expression level in
different environments, hereinafter we use the median expression
level of all yeast native genes in the relevant medium as the reference
(by comparing the PSP2 expression level with the reference in pub-
lished RNA-seq data; see Methods). About 0.024% and 0.029% of the
random sequences have significantly higher promoter activities than
the reference in YPD and SCD, respectively (Figs. 2a, b, S6c). Similar
results were obtained when different cutoffs higher than 100 DNA
reads per barcode were used in analyzing barcode expressions
(Fig. S6). Most (90%) random promoters have activities below the 21st
(or 12th) percentile of yeast native promoter activities in YPD (or SCD),
while the strongest random promoter observed is comparable in
activity to the 85th percentile of the native promoters in both growth
conditions (Fig. 2c, d, Table S2).

Features associated with the random promoter strength
Identifying sequence features associated with the promoter strength is
important for understanding the mechanistic basis of the promoter
activity and for synthetic biology27,30–33,35. In both YPD (Fig. 3a) and SCD
(Fig. S7a), a positive correlation exists between random promoter
strength and promoter GC content (see Methods). Interestingly, for
yeast native promoters, such a positive correlation exists only for rela-
tively strong promoters; for relatively weak promoters, the correlation
is negative (Figs. S8a, b, S9a, b). About 20% of yeast native promoters
contain TATA boxes36. We found that, for both random (Figs. 3b, S7b)
andnative (Figs. S8c, d, S9c, d) promoters, there is a positive correlation
between promoter strength and TATA-box presence.

Due to their short and degenerate sequences, transcription factor
(TF) binding sites (TFBSs) can easily arise in a random sequence31.
Based on 196 known yeast TFs and their TFBSs37, we found on average
21 forward and 24 reverse TFBSs (Fig. 3c) per random promoter (see
Methods). For each TF, we statistically tested if random promoters
with and without its TFBSs have significantly different activities. At the
false discovery rate (FDR) of 0.05, the promoter activity is significantly
influencedby the forwardTFBSsof 111 TFs and reverseTFBSs of 114TFs
in YPD. The corresponding numbers are 64 and 75, respectively, in
SCD. For eachmedium and orientation, the distribution of the P values
from the above tests is highly left skewed for real data but is
approximately uniform upon the shuffling of promoter strengths
among promoters (Figs. 3d, S10), confirming the genuine impacts of
TFBSs. Previous work showed that some TFBSs have orientation-
specific effects in promoters with canonical scaffolds31,33. We assessed
the expression effect of each TF by the median activity of random
promoters with corresponding TFBSs, relative to that without them.
Overall, the effects of a TF in the forward and reverse orientations are
only weakly positively correlated (Figs. 3e, S11), with many TFs sho-
wing orientation-specific effects and many showing orientation-
independent effects (Figs. 3e, S11). Gene expression is often
environment-dependent because of environment-dependent TF
expressions or actions.Whenwe focused on the 92 TFswith significant
effects in both YPD and SCD (regardless of orientation), only three TFs
showed opposite effects in the two media (Fig. S12), suggesting that
opposite actions of the same TF between two environments are rare.
Fig. S13 shows three examples of strong random promoters, with
perfectly matching TFBSs indicated.

Article https://doi.org/10.1038/s41467-023-37610-w

Nature Communications |         (2023) 14:1826 2



Most yeast intergenic expressions are explainable by chance
promoter activities or neighboring gene expressions
To understand yeast intergenic expressions in the light of chance
promoter activities, we first examined two existing RNA sequencing
datasets38,39 of the sameyeast strain and similar growth conditions as in
our randompromoter experiments. Toallow fair comparisonswith the
expressions of 20-nucleotide barcodes, we divided each genic or

intergenic region into 20-nucleotide contiguous windows, estimated
the expression level of each window (Fig. S14a), and validated this
measurement by benchmarking with the canonical estimates of genic
expressions (Fig. S14b; see Methods). Genic as well as intergenic
expressions are highly correlated across replicates (Fig. S14c, d). We
subsequently generated the expression distribution of intergenic
windows (Fig. 4a, b).Notably, only0.8% and 1.3%of intergenicwindows
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Fig. 1 | Estimating the promoter activities of random sequences in YPD.
a Experimental procedure.b, cDNA (b) and cDNA (c) counts of eachbarcode in two
experimental replicates. For clarity, 1000 randomly sampled barcodes are shown.
Pearson’s correlation (r) and its associated P value based on all barcodes are pre-
sented. d Estimated barcode expression levels in two replicates. Expression level is
measured by the cDNA count divided by the DNA count of the barcode. The same
1000 barcodes as in (b) and (c) are shown. Pearson’s r and associated P value based
on all barcodes are presented. The inset shows the expression levels of 1% of

genotypes with the highest cDNA counts and associated statistics. e Expression
levels measured by bulk sequencing is strongly correlated with those measured by
RT-qPCR in five reconstructed genotypes, a randomly picked negative control, and
a randomly picked positive control. Mean expressions and standard errors are
shown by dots and error bars, respectively. Pearson’s correlation (r) and the
associated P value between the two measurements are presented. All P values are
from two-tailed tests. Source data are provided as a Source Data file.
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are significantly more highly expressed than the reference in YPD and
SCD, respectively.

To directly compare the expression levels of intergenic windows
with those of the barcodes, we computed relative expression levels
(RELs) by dividing the raw expression levels by the reference. We then
compared the fraction of intergenic windows whose RELs significantly
exceed various cutoffs with the corresponding fraction of barcodes.
While both fractions decrease with the cutoff, the latter drops more
quickly than the former and becomes smaller than the former when
the REL cutoff is 0.3 in YPD (Fig. 4c) and 0.1 in SCD (Fig. S15a).We then
computed for each expression bin the proportion of intergenic win-
dows whose expressions can or cannot be explained by random pro-
moter activities. In YPD, all intergenic expressions with RELs not
significantly higher than 0.5 are explainable by chance promoter
activities. Starting from the REL bin of 0.5–0.6 (i.e., REL is significantly
higher than 0.5 but not significantly higher than 0.6), we observed
larger and larger proportions of intergenic windows whose expres-
sions cannot be explained by chance promoter activities (Fig. 4d).
Overall, 1.7% of intergenic windows could not have their YPD expres-
sions explained by chance promoter activities. The corresponding
value is 7.6% in SCD (Fig. S15b).

Althoughwehaveminimized thepotential influenceof neighboring
gene expressions on intergenic expressions by extending the 5′ and 3′
untranslated regions (UTRs) of neighboring genes (see Methods), it
remains possible that some intergenic expressions reflect the bi-
directional promoter activities or transcriptional readthroughs of
neighboring genes. Indeed, we observed a significant positive correla-
tion between the expression level of an intergenic region (i.e., the mean
expression level of all windows in the intergenic region) and the mean
expression level of its twoneighboring genes (Fig. S16; seeMethods).We
progressively excluded intergenic windows with the highest neighbor-
ing gene expressions till the potential influence of neighboring gene
expressions was no longer significant (Fig. S17; see Methods). After-
wards, only 1% and 5% of intergenic windows have expressions unex-
plained by chance promoter activities in YPD and SCD, respectively.

Another confounding factor is that we studied random promoter
sequences of 120 nucleotides while an intergenic region can be longer
than 120 nucleotides. More importantly, the expressions of different
windows in an intergenic region are likely interdependent. To cir-
cumvent these problems, instead of using each intergenic window as a
unit, we used each intergenic region as a unit and estimated that 2.9%
and 4.9% of intergenic regions have expressions unexplainable
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by chance promoter activities or neighboring gene expressions
(Tables S3, S4; see Methods).

Higher-than-expected environment-specificity of a minority of
intergenic expressions
The activities of a promoter in different environments could be cor-
related. For example, 36.3% of barcodes have RELs significantly

exceeding 0.1 in YPD (Fig. S18a). Among barcodes with RELs sig-
nificantly exceeding 0.1 in SCD, however, 64.8% have RELs significantly
exceeding 0.1 in YPD (Fig. S18c), indicating nonindependent (or
shared) barcode expressions in the two environments. Such non-
independence also exists for intergenic expressions (Fig. S19). If higher
intergenic expressions are more likely to be functional (Fig. 4d), we
might also expect them to show less sharing between environments as
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a result of environment-specific demand of function. Indeed, the
shared fraction of intergenic windows decreases with the REL cutoff,
while no such trend exists for barcodes, which have no functional
expressions (Figs. 4e, S15c).

Variation among replicates
Throughout the analysis, wemerged the data from the three biological
replicates whenmeasuring randompromoter activities (i.e., combined
analysis). To assess the variation among the replicates, we individually
analyzed the data from each replicate (i.e., individual analysis). The
results from the individual analysis are overall similar to those from the
combined analysis (Table S5). Furthermore, the active promoters (i.e.,
those driving significantly higher expressions than the negative con-
trol) discovered from each replicate largely overlap with those dis-
covered from the combined analysis (Fig. S20).

Discussion
In summary, we found that 41–63% of 120-nucleotide random
sequences have significant promoter activities in S. cerevisiae,
demonstrating the easiness for a random sequence to be transcribed
by chanceeven in eukaryotes. However, theprobability is ~0.025% for a
random promoter to be significantly stronger than the median pro-
moter activity of yeast native genes, contrasting the observation in
E. coliwhere 2.5%of randompromoters are as strong as the induced lac
promoter19,40, which ranks in the top 3%of all E. colinative promoters in
strength. This disparity could be due to the chromatin structure in
eukaryotes21 and/or the lack of consensus sequence in yeast that is
analogous to the short motifs bound by the canonical σ70-RNAP in
E. coli40. Indeed, although randompromoters with TATAboxes tend to
be stronger than those lacking TATA boxes, a sizable fraction of the
former (22.8% in YPD and 39.4% in SCD) do not have detectable
activities (Fig. S21).

We investigated the relationship between various sequence fea-
tures (nucleotide composition, TATA box, and TFBSs) and the pro-
moter strength in the absence of a corepromoter scaffold. Contrasting
the observation in native promoters35,41, we found theGC content to be
positively correlated with the promoter activity in random sequences,
suggesting that GC content and the core promoter scaffold might
interact in influencing the promoter activity. About 82% of all types of
TFBSs examined had a significant effect on the random promoter
activity in at least one condition, suggesting that the randompromoter
activitymay simply require theopening of the chromatin, which canbe
accomplished by the binding of TFBSs by TFs42. However, we also
observed pervasive orientation-specific effects of TFBSs on the pro-
moter activity (Figs. 3e, S11). Therefore, regulatory sequences by
themselves can influence expression independently of the core pro-
moters in both orientation-dependent and orientation-independent
manners.

We found that 1–5% of yeast intergenic transcriptions, especially
those exhibiting relatively high expressions, are attributable to neither
chance promoter activities nor neighboring gene expressions, so are
putatively functional. Consistent with this finding is the observation of
a higher-than-expected environment-specificity of the relatively high
intergenic expressions. Due to the drastic genome size variation across
eukaryotes, it is unclear whether our findings in yeast on intergenic
expression are directly applicable to other eukaryotes. But our
approach is likely adaptable for studying the functional significance of
intergenic transcriptions in a wide variety of eukaryotes.

Methods
Media used
YPD medium: 10 g/l of yeast extract, 20 g/l of peptone, and 20g/l of
glucose. YPAD medium: YPD medium plus 80mg/l of adenine hemi-
sulfate. SCD medium: 1.7 g/l of yeast nitrogen base (YNB), 5 g/l of
ammonium sulfate, 0.79 g/l of complete supplement mixture (CSM),

and 20g/l of glucose. SCD −Ura medium: 1.7 g/l of YNB, 5 g/l of
ammoniumsulfate, 0.77 g/l ofCSMwithout uracil, and 20g/l of glucose.

Random promoter library construction
The 120-nucleotide random promoter and 20-nucleotide random bar-
code were synthesized by IDT as part of 200-nucleotide oligos. In the
synthesis, equal amounts of A, T, G, and C were used for the promoter
andbarcode regions.Weused20-nucleotidebarcodes because the large
barcode space (420) relative to the number of barcodes in the library
means that sequencing or PCR errors are extremely unlikely to convert
one barcode in the library to another one in the library. The random
promoter and barcode were flanked by constant regions as primer
binding sites (Fig. S1a). The primer binding site downstream of the
barcode has no homologous sequence in the yeast genome, ensuring
that the cDNA generated is exclusively from the mRNA of the barcode.

Genomic integration location
We compiled several RNA-seq datasets (PRJNA392312, PRJNA315924,
PRJNA238899, andPRJNA239408 fromNCBI) to screen for an intergenic
region with a potentially high expression dynamic range. We found
several candidates based on the following criteria: (1) at least 50
nucleotides long, (2) not overlapping with genes, (3) far from telomeres
and centromeres, and (4)with a total of about 50–200 readsmapped to
the region in 20 RNA-seq datasets in the above NCBI BioProjects. Using
RT-qPCR, we quantified the expressions of the positive and negative
controls (see the following section) integrated into five candidate
locations (Table S1). To quantify the amount of genomic DNA con-
tamination in the RNA sample, we performed a control experimentwith
no reverse transcriptase; signals in this control would arise from
genomicDNA insteadofRNA.Due to extremely lowexpressions thatwe
are attempting tomeasure in this study, the above control is critical.We
picked the intergenic region between HSP31 and FIT1 on Chr. IV as the
site of integration of our library (Table S1). This site showed a relatively
large difference in expression level between the positive and negative
controls. Furthermore, virtually no signal was detected in the control
experiment without reverse transcriptase (Fig. S2).

Strain construction
To improve the efficiency of CRISPR/Cas9-based integration of our
library of random promoters, we first used CRISPR/Cas9 to integrate a
synthetic landing pad (SLP) into the aforementioned genomic inte-
gration site of the laboratory yeast strain BY4741. The SLP contains a
CYC1 terminator, used to prevent the transcription from the upstream
of the integration site, and three de novo CRISPR/Cas9 targeting sites
each with a 20-nucleotide Cas9 target sequence plus a three-
nucleotide protospacer adjacent motif (PAM) site. Next, we inte-
grated the random promoter library at the SLP by CRISPR/Cas9 in a
large-scale liquid transformationmodified from an existing protocol43.
Specifically, we followed the sameprocedure of a 100× transformation
until the plating step. Instead of plating cells onto the selective plate,
we grew all the transformants in liquid culture for selection. We
expected to obtain about 1000 transformants per 1× transformation,
equivalent to 100,000 transformants in a 100× transformation ideally.
In the end, with five parallel transformations, we acquired about
200,000 transformants (estimated from sequencing). Besides random
promoters, we also created a positive control (PSP2 promoter) and a
negative control (no promoter) by CRISPR/Cas9. The PSP2 promoter is
one of the weakest constitutive promoters used in yeast synthetic
biology44 so is suitable for comparison with random promoters, which
are expected to be weak.

Five randompromoters covering a large dynamic range (~50 fold)
were chosen based on their relatively high consistency in expression
level across replicates. Their promoter-barcode pairs were synthe-
sized, amplified, and integrated into SLP to create these genotypes
independently.
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Large-scale liquid transformation
YPAD medium (250ml) was inoculated by a single colony of the yeast
strain BY4741 picked from a fresh YPAD plate; the yeast culture was
incubated for 24 h at 200 rpm and 30 °C. About 1.25 × 1010 cells were
added to 2250ml pre-warmed 2× YPAD medium (initial density = 5 ×
106 cells/ml). The cells were allowed to grow for 4.5 h at 30 °C and
200 rpm until the density reached at least 2 × 107 cells/ml. Standard
transformation steps were then performed. 0.1% of the final transfor-
mants were plated onto SCD −URA plates to estimate the transfor-
mation efficiency, and the rest of the transformants were resuspended
in 2000ml of 2× SCD −URA liquid culture and redistributed to 250
14ml falcon tubes each containing 8ml of culture. The falcon tubes
were put on a large roller and incubated at 30 °C for 48 h. Afterwards,
1 × 109 cells were collected, washed, and resuspended into 200ml YPD
medium and cultured for 24 hrs. This step was to remove the Cas9
plasmid and to revive cells. About 5×109 cells were then collected and
diluted in 15% glycerol to a density of 5 × 107 cell/ml and were stored
at −80 °C.

Library preparation and Illumina sequencing
The glycerol stocks of the random promoter library and controls were
mixed in a 100:5:1 ratio of the randompromoter library to the negative
control to the positive control. The mixture was precultured in a
250ml flask with 50ml YPD at an initial density of 5 × 106 cells/ml for
24 h. The resulting culturewas diluted in 20ml YPD or SCDmedium to
an initial density of 5 × 106 cells/ml in a 100ml flask, with three repli-
cates per medium type. The cell cultures were always incubated at
30 °C with 250 rpm. After 8 hrs of culturing, genomic DNA was
extracted from 3 × 108 cells per replicate using MasterpureTM Yeast
DNA Purification Kit, whereas mRNA was extracted from 1.5 × 108 cells
per replicate using RNeasy Mini Kit.

To retrieve the linkage information between promoters and bar-
codes, we used pairs of primers containing Illumina sequencing
adapters to amplify the promoter-barcode cassette in the construction
of the sequencing library. Using 200 ng of genomic DNA as templates,
we conducted two parallel 18-cycle PCR reactions for each biological
replicate. The resulting amplicons were combined, purified, and
sequenced by 150-nucleotide paired-end Illumina sequencing
(HiSeq 4000).

To generateDNA reads for the barcode region,weused a two-step
PCR strategy. In the first step, primers with unique molecular identi-
fiers (UMIs) were used to amplify the barcode region in a PCR reaction
with only three cycles. The UMIs used were 6-nucleotide random
sequences to mark individual DNA molecules. We conducted four
parallel PCR reactions per biological replicate. The resulting PCR
products for each biological replicate were purified and concentrated.
In the second step, we used pairs of primers containing both the
sample index and Illumina sequencing adapters to amply the previous
products in an 18-cycle PCR reaction. The resulting amplicons were
combined, purified, and sequenced by 150-nucleotide paired-end
Illumina sequencing (HiSeq 4000).

To generate cDNA reads for the barcode region, we first reverse-
transcribed the mRNA into cDNA from 2.4 µg mRNA per reaction
(SuperScript® III First-Strand Synthesis System for RT-PCR). The cDNA
was then amplified using the aforementioned two-step PCR strategy
with UMIs. The resulting amplicons were combined, purified, and
sequenced by 150-nucleotide paired-end Illumina sequencing
(HiSeq 4000).

Notably, the number of genotypes obtained in YPD is only about
one-third of that in SCD. This difference may be due to the higher
growth rate of yeast in YPD than in SCD. Specifically, some cells may
have a longer lag time by chance during the preculture stage, ren-
dering their frequencies lower than those with a shorter lag time. This
effect is intensified in YPD because of the higher growth rate in YPD
than in SCD, reducing the number of genotypes obtained in YPD.

The total sequence space for a 120-nucleotide random promoter
is as large as 4120.Whether our random library could accurately capture
the distribution of chance promoter activities depends onwhether our
library is randomly distributed in the large sequence space. In
theory, the expected Hamming distance between two random 120-
nucleotide sequences is 120½ 1 � f A

� �
f A + 1 � f T

� �
f T + 1 � f G

� �
f G +

1 � f C
� �

f C �, where fX is the frequency of nucleotide X. Under equal
frequencies for the four nucleotides, two random promoters should
differ at 90 sites on average. However, we found that our random
promoter library does not have equal frequencies for the four
nucleotides, probably because of the variation introduced in the oli-
gonucleotide synthesis. Instead, we found fA = 24.3%, fT = 32.4%,
fG = 25.7%, and fC = 17.6%. So, the GC content of the randompromoters
in our library is 43.3%, which incidentally is closer than the GC content
in our design (50%) to yeast’s genomic GC content (38%). The mean
Hamming distance expected from the above nucleotide frequencies is
88.78. We observed an average Hamming distance of 88.71 in our
library, suggesting that the promoters in our library are randomly
distributed in the large sequence space given the nucleotide
frequencies.

Influences of potential errors in library construction and
sequencing
Potential PCR and sequencing errors have no impact on identifying
random promoters or random barcodes because the expected
sequence difference between two different barcodes or promoters
(see the next section) is much greater than typical PCR/sequencing
errors. One drawback of the HiSeq 4000 platform is a relatively high
probability of index hopping. However, index hopping is unlikely in
our experiments for the following reasons. First, we used two PCRs
(Fig. S1b): the first PCR added sample indices while the second PCR
added Illumina adapters. The mixing of amplicons from different
samples tookplaceafter two steps of PCR right before sequencing. The
free adapters in the sequencing pool would not have both adapters
and index sequences. Second, we performed PCR purification after
each PCR, which should have removed the remaining primers.

Sequencing-based expression level estimation
For the promoter-barcode pair sequencing, we first filtered the
sequencing reads to ensure that the barcodes were 20-nucleotide long
and promoters were 120-nucleotide long.We clustered promoters and
barcodes separately. We used Bartender45 to cluster the barcodes with
a tolerance of two mismatches, and used CD-HIT46 to cluster the pro-
moters with a tolerance of six mismatches. We allowed relatively high
numbers of mismatches because the promoters (or barcodes) are
completely random such that two distinct promoters (or barcodes)
have an exceedingly low probability to be different by fewer than 7 (or
3) nucleotides. We discarded any barcode cluster connected with dif-
ferent promoter clusters. For any promoter cluster connected with
multiple barcode clusters, all of these barcodes were counted toward
the promoter cluster.

For cDNA and DNA sequencing of the barcodes, we counted only
one of the reads when these reads shared the same UMI. Afterwards,
we divided the read count of each barcode by the total read count in
each sample to obtain the normalized read count (NRC) for the bar-
code. The expression level of barcode i is measured by NRCi

cDNA/
NRCi

DNA.

Promoter GC content and activity
Given that the GC content is positively correlated with nucleosome
occupancy41 and that nucleosomes are depleted in yeast promoters47,
random promoters with higher GC contents are expected to have
lower activities. However, a trend opposite to this expectation was
found. This trend cannot arise from the potential impact of the GC
content on the efficiency of expression measurement because it was
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the barcode not the promoter sequence that was amplified in
expression quantification.

TFBS identification and analysis
Based on the positionweightmatrices (PWMs) of 196 yeast TFs and the
suggested cutoffs in the ScerTF database37, we identified the TFBSs of
all these TFs on the forward and reverse strands of the random pro-
moters, respectively. The forward strand is the strand with the same
orientation as the barcode transcription that we intended to measure.
For each TF and each strand, we separated promoters into two groups
based on whether there is at least one binding site in the promoter
sequence. We then tested whether the promoter activity differs
between the two groups by a Wilcoxon rank-sum test.

Promoter sequences of S. cerevisiae native genes
The promoter sequences of native genes were defined by from −500
nucleotides to either the translation start site (Fig. S8) or the tran-
scription start site (Fig. S9).

Expressions of yeast intergenic regions
We analyzed the RNA-seq data from the YPD medium generated by
Chou et al. 38. Specifically, the data from 10 wild-type samples were
used. The RNA-seq data from the SCDmediumwere generated by Berg
et al. 39, and only the data from three wild-type samples were used.

The reference genome of strain S288C was dissected into genic
and intergenic regions. Our genic regions are defined conventonally48

and include both protein-coding genes and RNA genes (rRNAs, tRNAs,
snRNAs, snoRNAs, and ncRNAs) based on the annotations from
Ensembl (http://useast.ensembl.org/Saccharomyces_cerevisiae/Info/
Index) and SGD (http://sgd-archive.yeastgenome.org/sequence/
S288C_reference/rna/). Intergenic regions are the entire genome sub-
tracting protein-coding genes with their UTRs, RNA genes, cen-
tromeres, telomeres, long terminal repeats (LTRs), and LTR
retrotransposons from the reference genome. We combined the
annotated UTRs from two previous studies49,50 and made additional
200-nucleotide outward extensions of both 5′ and 3′ UTRs. For
protein-coding genes without annotated UTRs, we allocated 200
nucleotides outward fromeach endof the coding sequence as 5′ and 3′
UTRs, respectively. For RNA genes, we also added 50 nucleotides to
each end of the gene. By doing the above, we aimed to minimize the
influence of transcription from nearby genes or special sequence
features on intergenic expression measures. We also varied the UTR
extension length but found the results similar (Fig. S14e).

To measure intergenic expressions, we used a sliding window
approach. For each intergenic region, we divided it into sliding win-
dows of 20nucleotideswith a step size of 20nucleotides, starting from
the site of the intergenic region with the smaller genomic coordinate.
We discarded the window at the end of an intergenic region if it is
shorter than 20 nucleotides. The expression level of a window is
measured by the number of reads mapped to the window in a strand-
specific manner normalized by the total number of reads (in millions)
of the RNA-seq data. For genic regions, a similar approach was used.
For all windows from the same gene, their expressions were averaged
to obtain the expression estimate for the gene. To estimate genic
expressions by a canonical method, we employed the software
StringTie51.

Comparing the expressions of intergenic windows or barcodes
with the median expression level of yeast native genes
We divided the expression level of each intergenic window by the
median expression level of all annotated genes (including RNA genes)
in S. cerevisiae to obtain the relative expression level (REL) in each
replicate. We then used a one-sample t-test to test if the REL is sig-
nificantly different from 1 at a false discovery rate (FDR) of 0.05 by
Benjamini–Hochberg’s procedure52. We similarly tested if the REL

differs significantly from0.1, 0.2, and so on. This allows computing the
fraction of intergenic windows with RELs significantly higher than any
REL cutoff (Fig. 4c), as well as identifying intergenic windows whose
RELs are significantly higher than an REL cutoff but not significantly
higher than the next (higher) cutoff (Fig. 4d).

For barcode i, wefirstmerged its NRC from the three replicates to
obtain the total NRC (TNRC) and estimated its expression level
Ei = TNRCi

cDNA/TNRCi
DNA. Because eight of the barcodes are associated

with the positive control, we also had eight Ei values for the positive
control. For each randompromoter-associated barcode i, we obtained
eight estimates of its expression relative to the positive control by Ei/Ej,
where j = 1 to 8 refers to the eight barcodes of the positive control.
Basedon theexpression level ofPSP2 relative to themedianexpression
level of all yeast genes in RNA-seq data, we obtained the eight esti-
mates of REL of each barcode, which is the expression level of the
barcode relative to themedian expression level of yeast genes. Finally,
we used a one-sample t-test to test if the REL of a barcode is sig-
nificantly different from 1 at FDR =0.05 by Benjamini–Hochberg’s
procedure. We similarly tested if the REL of a barcode differs sig-
nificantly from 0.1, 0.2, and so on. This allows computing the fraction
of barcodeswith RELs significantly higher than any REL cutoff (Fig. 4c),
as well as identifying barcodeswhoseRELs are significantly higher than
an REL cutoff but not significantly higher than the next (higher) cutoff
(Fig. 4d).We similarly used a one-sample t-test to test if the expression
level of barcode i (Ei) is significantly different from the negative control
(using the eight expression estimates of the negative control) at
FDR =0.05 by Benjamini–Hochberg’s procedure.

Environment-specific expressions
First, expression levels of barcodes or intergenic windows are mea-
sured relative to the reference, which is themedian expression level of
yeast native genes. Second, at each expression level cutoff (0.1, 0.2,
0.3,…), we calculated the fraction of barcodes or intergenic windows
with significantly higher expressions than the cutoff in YPD and SCD,
respectively. Third, for barcodes or intergenic windows with sig-
nificantly higher expressions than the cutoff in one environment (YPD
or SCD), we calculated the fraction of them with significantly higher
expressions than the same cutoff in the other environment; the frac-
tion is referred to as the shared fraction.

Correlation between the expression of an intergenic region and
that of their neighboring genes
For each intergenic region,we considered the transcriptions of the two
directions separately. For a given transcriptional direction, the mean
expression of all windows in an intergenic region was used as an esti-
mate of the expression level of the intergenic region for that direction.
To consider its neighboring gene expression, we used (1) the mean
expression level of bothof its neighboring genes (oneoneach side), (2)
the expression level of the upstream neighboring gene given the
transcriptional direction under consideration, or (3) the readthrough
level of the upstream neighbor, which is the expression level of the
upstream neighboring gene only when it has the same transcriptional
direction as the direction under consideration; otherwise, the
expression of the neighbor is set at 0. We then correlated the
expression level of an intergenic region with the expression of its
neighboring genes in each of the above three ways.

Intergenic transcriptions unattributable to neighboring gene
expressions
The highest REL bin where expressions of intergenic windows are fully
attributable to chance promoter activities is 0.3–0.4 in YPD (Fig. 4d)
and 0.0–0.1 in SCD (Fig. S15b), respectively. For intergenic windows
with REL >0.4 in YPD (or >0.1 in SCD), we ranked them based on their
neighboring gene expression level (following the first definition of
neighboring gene expression in the preceding section) and then
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separated them into 50 groups with equal numbers of intergenic
windows per group according to the ranking. We iteratively removed
the group with the highest neighboring gene expression. For the
remaining groups, we calculated the median expression level of their
neighboring genes (ME1). From all intergenic windows (regardless of
REL), we sampled the same number of windows as that in the
remaining groups and calculated the median expression level of their
neighboring genes (ME2); this sampling was repeated 1000 times to
allow the estimation of the fraction of timeswhenME2 ≥ME1.When this
fraction exceeds the cutoff of 0.05, the remaining intergenic windows
should be minimally influenced by the expressions of neighboring
genes. We varied the cutoff and found the result similar (Fig. S17).

Fraction of intergenic regions whose expressions are explain-
able by chance promoter activities
For each intergenic region, we used the maximal (or the 95th per-
centile) expression level of its windows as a proxy for its expression
level Eobs. Given the length (L) of the intergenic region, we calculated
the number of nonoverlapping 120-nucleotide segments within the
intergenic region byN = L

120

� �
, where [x] is the smallest integer equal to

or greater than x. We then randomly chose N promoters from the
random promoter library and compared the maximal expression of
them (Esampled) with Eobs. We repeated the random sampling 100,000
times andused the fraction of timeswhen Esampled > Eobs as the nominal
P value for the null hypothesis that the expression of an intergenic
region can be explained by chance promoter activities. The number of
intergenic regions with expressions that cannot be explained by
chance promoter activities is calculated by counting the number of
intergenic regions with a P value <0.05 upon a Benjamini–Hochberg
multiple-testing correction. The expressions of neighboring genes of
the intergenic regions whose expressions cannot be explained by
chance promoter activities are not significantly higher than the cor-
responding values for the rest of the intergenic regions (Table S4).
Hence, there is no need to correct the potential influence of neigh-
boring gene expressions on intergenic expressions in this analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data have been submitted to NCBI under accession code
PRJNA876017. The RNA-seq datasets used for intergenic expression
analysis are available under the accession number PRJNA728585 and
PRJNA392312. Additionally, data files for active promoters are avail-
able at https://github.com/JasperXuEvolution/Random_promoter/
tree/main/Data. Intermediate data files are available at
https://figshare.com/articles/dataset/Intermediate_data_for_Chance_
promoter_activities_illuminate_the_origins_of_eukaryotic_intergenic_
transcriptions_/22231603. Source data are provided with this paper.

Code availability
Computer code is available at https://github.com/JasperXuEvolution/
Random_promoter.
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