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Towards the ground state of molecules via
diffusion Monte Carlo on neural networks

Weiluo Ren 1,4 , Weizhong Fu 1,2,4, Xiaojie Wu1 & Ji Chen 2,3

DiffusionMonte Carlo (DMC) based on fixed-node approximation has enjoyed
significant developments in the past decades and become one of the go-to
methods when accurate ground state energy of molecules and materials is
needed. However, the inaccurate nodal structure hinders the application of
DMC for more challenging electronic correlation problems. In this work, we
apply the neural-network based trial wavefunction in fixed-node DMC, which
allows accurate calculations of a broad range of atomic andmolecular systems
of different electronic characteristics. Ourmethod is superior in both accuracy
and efficiency compared to state-of-the-art neural network methods using
variational Monte Carlo (VMC). We also introduce an extrapolation scheme
based on the empirical linearity between VMC and DMC energies, and sig-
nificantly improve our binding energy calculation. Overall, this computational
framework provides a benchmark for accurate solutions of correlated elec-
tronic wavefunction and also sheds light on the chemical understanding of
molecules.

Since the establishment of quantum wavefunction theory by Erwin
Schrödinger, ab initio electronic structure calculation has become one
of the holy grails in chemistry1,2. Molecules generally consist of a set of
nuclei bonded together via electrons through electrostatic interac-
tions. Therefore, the ground state electronic structure, i.e., the many-
body electronic wavefunction, is very much the most fundamental
property, based on which we form the basic understanding of mole-
cules. On top of the ground state wavefunction solution, one may
further study electronic excitation, calculate nuclear forces and
vibrations, optimize molecular structures, model dynamics and reac-
tions, etc.3. Approximated methods, such as density functional theory
and post Hartree-Fock methods have been widely employed for these
purposes, but challenges still existwhenhigh accuracy is needed4,5. For
instance, the sub-chemical-accuracy is often desired to predict
adsorption of molecules on surfaces, the packing order of organic
chemicals, and the hydrogen bonding of water and biological
molecules6,7. Therefore, pushing the limit towards the exact ground
state wavefunction of molecules is of both fundamental importance
and practical relevance.

Stochastic approaches, i.e., quantumMonte Carlo (QMC)methods,
have been a competitive rival of the deterministic methods in chasing
the ground truth ofmany-body electronicwavefunction ofmolecules8–11.
In particular, diffusion Monte Carlo (DMC), an approach based on
ground state projection, is capable of treating dynamic correlations and
reaching sub-chemical-accuracy for molecules12,13. However, effective
DMC algorithms usually work together with the so-called fixed-node
approximation14,15, and the accuracy is only assured when a good trial
wavefunction containing the correct nodal structure is provided in
advance16. Despitemany progresses have beenmade to improve the trial
wavefunction, e.g., using physically more meaningful ansatz or com-
bined with multi-determinant post Hartree-Fock wavefunctions13,17,18, the
fixed-node approximation remains as the Achilles’ heel of DMC.

Recently, it has been shown that machine learning techniques
such as neural networks can lend strong support to describe the
electronic structure of molecular systems and provide a powerful way
to reconstruct themany-bodywavefunction19–26. FermiNet is one of the
notable examples, which has already shownpromising results for small
molecules consisting of typically less than 30 electrons20,21,27. In these
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neural networkwavefunctionmethods, variational Monte Carlo (VMC)
is often employed to train the network on the fly. Despite its effec-
tiveness on small molecules, it remains to be challenging to apply
neural network-based VMC on larger systems, due to required large
computation resources and long converging time.

In this work, we integrate the FermiNet neural network wave-
function intoDMC. This approach takes advantage of the accurate trial
wavefunction of FermiNet and the efficient ground state projection of
DMC, which allows calculations of a range of systems to unprece-
dented accuracy. We refer to the vanilla FermiNet approach as Fer-
miNet-VMC, and refer to our FermiNet-based DMC approach as
FermiNet-DMC. Compared to FermiNet-VMC, FermiNet-DMC is able to
achieve lower variational ground state energy at reduced computa-
tional cost. We carry out tests on atoms as well as molecules including
N2, cyclobutadiene, water dimer, benzene and benzene dimer. We also
present the empirical linear relation between VMC and DMC energies
in our calculations and introduce an extrapolation scheme accord-
ingly. Insights to the electronic structure of these systems obtained
from our calculations are also discussed.

Results
Computational framework
As illustrated in Fig. 1a, in the traditional electronic structure
approach, diffusion Monte Carlo is often used after optimization
of trial wavefunction using VMC, which approaches the limit of a
given wavefunction ansatz. DMC further purifies the true ground
state out of other contaminating eigenstates, and it often allows
the breaking through of the ansatz limit. However, to overcome

the notorious sign problem, nodal points where the wavefunction
is zero have to be fixed in DMC, and walkers are only allowed to
evolve in each fixed nodal pocket. Here, the idea is to implement
the recently developed neural network as an accurate wavefunc-
tion ansatz (Fig. 1b). On one hand, the wavefunction learned by
the neural network automatically reproduces an accurate repre-
sentation of the mysterious nodal structure of many electrons of
molecules. The accurate nodal structure ensures that the sub-
sequent DMC simulation with fixed nodes does not yield bias to
the ground state. On the other hand, compared with neural
networks-based VMC, our scheme only requires the information
of the nodal structure instead of the full wavefunction. It is rea-
sonable to expect the nodal structure to be simpler characterized
than the full wavefunction.

Our multi-walker DMC algorithm is implemented in a fully
parallel manner, in which each walker independently simulates
the stochastic dynamics of electrons (Fig. 1c). The three key steps
in our DMC algorithm are diffusion, branching, and merging
(Fig. 1d), and they ensure that the equilibrium is reached for each
walker after simulation in terms of the probability distribution of
different electronic configurations. The diffusion step changes
the configuration of electrons from one to another, while the
cross-node movement is forbidden. Branching and merging con-
trol the total population of walkers during the simulation. In this
work, we have implemented a GPU and neural network friendly
DMC algorithm, which can be easily scaled out to multiple com-
puting nodes. The runtime for one step in FermiNet-DMC is
almost identical to that in FermiNet-VMC. Therefore, to compare
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Fig. 1 | Computational framework. a A sketch of a brief overview on variational
Monte Carlo (VMC) and diffusion Monte Carlo (DMC) from the perspective of
eigenstates composition. Atomic orbitals represent different eigenstates, and
histograms indicate the weight of each eigenstate in the state decomposition. Top:
A randomly initialized state with no dominant eigenstate. Middle: The output state
of VMC where the ground state dominates, but other eigenstates are still non-
negligible due to ansatz limitations. Bottom: The output state of DMC, which
surpasses ansatz limitations and reaches the ground state. b Left: a neural network
ansatz of wavefunction; right: one dimensional projection of a many-electron
wavefunction and its nodal surface. c Left: parallelized diffusion Monte Carlo

processes on GPU; right: zoom in to the stochastic dynamics of each walker con-
taining configurations of all electrons in the system, while the nodal structure is
fixed. This panel is inspired by and adapted with permission from the website of
Quantum Monte Carlo for Chemistry @ Toulouse (http://qmcchem.ups-tlse.fr/
index.php/Quantum_Monte_Carlo_for_Chemistry_@_Toulouse)56. d Three key
steps indiffusionMonteCarlo. Eachwalker is assignedwith aweight,whichevolves
every iteration. Diffuse: The stochasticpropagationofwalkerswithout crossing the
nodal surface. Branch: Split one walker when its weight becomes too large. Merge:
Merge two walkers when their weights become too small.

Article https://doi.org/10.1038/s41467-023-37609-3

Nature Communications |         (2023) 14:1860 2

http://qmcchem.ups-tlse.fr/index.php/Quantum_Monte_Carlo_for_Chemistry_@_Toulouse
http://qmcchem.ups-tlse.fr/index.php/Quantum_Monte_Carlo_for_Chemistry_@_Toulouse


the efficiency or total runtime between FermiNet-DMC and Fer-
miNet-VMC, we only need to compare the number of steps in
those processes. More methodological and technical details are
provided in the “Methods” section and the Supplementary
Notes 1–5.

Single atoms
Neural network models are faced with the trade-off between
model expressiveness and computational intensiveness. For
powerful models like FermiNet, it may take hundreds of thou-
sands iterations to converge in the training process even for small
benchmark systems with just a few electrons. Figure 2 shows
calculations for single atoms with a shallow and narrow FermiNet
ansatz with only 2 layers of rather small number of neurons (see
Supplementary Table S3 for details). The network is designed to
be restricted so that we can study FermiNet’s performance when
it is not expressive enough for the considered systems. This
situation is of practical importance especially when we are
interested in applying neural network-based QMC methods to
large systems of one hundred electrons or more. As shown in
Fig. 2a, a common pattern of FermiNet’s training progress is that
the energy curve drops to a fairly low level in a short amount of
time and then slowly converges to its limit. Figure 2a is a calcu-
lation on the Be atom with the mentioned small network, and
after 5 × 105 steps of training, which ensures complete con-
vergence, the systematic error still can not be reduced to within
the chemical accuracy. In addition, the computational cost could
scale up quickly for larger systems even on the most advanced
modern computation platforms such as NVIDIA’s Tesla A100 GPU.
This issue prevents accurate calculations for more than 30 cor-
related electrons20,21.

The combination of the FermiNet neural network wavefunc-
tion ansatz and DMC achieves a substantial improvement in both
accuracy and efficiency. For Be atom and the same simple neural
network, FermiNet-DMC energy drops to within 1 mHa with
respect to the reference value of the total energy. The DMC data
is obtained with 105 steps of simulation, and the variance of DMC
is also significantly reduced. It is also encouraging to see that
even when we start from the trial wavefunction after 104 steps of
training, the DMC energy obtained subsequently is also con-
verged within 1 mHa to the exact value. At the 105 step when the
training has not yet completely converged, the DMC energy is
already consistent with the result obtained at the 5 × 105 step. The
good performance of DMC based on undertrained trial wave-
functions suggests the nodal structure is well characterized
before the wavefunction is fully trained in the neural network
ansatz. In Fig. 2b–d, we present the three-dimensional cuts of the
full 11-dimensional (11D) nodal structure of the FermiNet wave-
function at the initial, 104, and 105 step. The 105 step nodal
structure is very well converged to the correct one obtained from
CI calculations28, and the nodal structure at 104 step is also qua-
litatively same, explaining the high accuracy obtained subse-
quently using DMC. For comparison, the nodal structure of the
initial wavefunction is also shown. Because of the fact that only
the nodal structure determines the accuracy of DMC, the training
process of neural network functions can be significantly shor-
tened. Overall, to reach chemical accuracy for Be atom, the cost
of FermiNet-DMC is only a fraction of the cost of FermiNet-VMC.

Figure 2e further shows the energy of FermiNet-based VMC
and DMC for different atoms in order of the number of electrons
under the same 2-layer network. We try different learning rates
and train enough iterations (106 for S, Cl, Ar and 5 × 105 for the

Fig. 2 | Accuracy and efficiency of FermiNet-DMC on single atoms. a The blue
line shows the energy of a 2-layer FermiNet as a function of training iteration for a
Be atom. The orange symbols show the DMC energy obtained with the trial
wavefunction at the 104th, 105th and 5 × 105th training iteration, respectively. The
red dashed line shows the final convergence of VMC energy. b–d The three iso-
surfaces show the three-dimensional cuts of the full 11D nodal structureobtained at
different training iterations (see Methods, section “Nodal structure and

wavefunction visualization for plotting details”). eThe calculated energies of atoms
with respect to the reference ground state energy as the number of electrons
increases with a 2-layer network. The dashed lines are linear fittings on the second
and the third period elements, respectively. f The energy error with different set-
tings of FermiNet for a Ne atom. Three variables are respectively the number of
layers (L), the number of determinants (D) and the width (W) of each layer. All the
energy reference values are from Chakravorty et al.57.
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other atoms) to ensure that we make full use of the expressive
power of the network. As expected the error of VMC increases
when the number of electrons in the system increases and the
complexity of the system gradually exceeds the expressive limits
of the neural network. With DMC the errors are reduced by more
than half. The dashed lines are linear fittings of the VMC and DMC
energy. And the deviation of the data points from the fitting
curves indicates that there is a correlation between the DMC and
the VMC energy: when the VMC energy is comparably better, the
DMC error is also smaller. The linear rising of DMC error shows
that the training of nodal structure also becomes increasingly
difficult when system size increases, and the correlation between
the VMC and the DMC error indicates the information of the
nodal structure is closely entangled with the full wavefunction.
Note that we use a 2-layer network here in order to examine the
behavior of FermiNet VMC and DMC in the regime where the
network ansatz is relatively restricted for the considered systems,
while FermiNet-VMC can be more expressive to achieve high
accuracy for those atoms with more layers and neurons, as shown
in Pfau et al.20.

Moreover, the improvement of DMC suggests that it may
take a smaller and hence more efficient network to represent the
nodal surface, without affecting the DMC accuracy. In Fig. 2f, we
present a set of such tests on Ne atom, where the complexity of
the neural network is labeled as (L,D,W) to indicate the number of
layers, the number of determinants, and the width of each layer in
the network, respectively. Overall, when the expressiveness of the
network is reduced both VMC and DMC are affected in terms of
their accuracy. Therefore, all the calculations suggest that the
VMC energy is a good indicator of not only how well the wave-
function is optimized but also the quality of its nodal structure.
The behavior is also expected for other neural network wave-
function ansatz. Combined with the typical first-steep-then-flat
optimization curve in neural networks, we can automate the
switching-on of DMC and minimize the total cost of calculations
at targeted accuracy.

Building upon the successful treatments of FermiNet-DMC on
atoms, we now extend the approach to larger molecules.

Nitrogen molecule
The first example is the dissociation curve of N2 molecule. At
equilibrium N2 forms a strong triple covalent bond at 2.1 a.u., and
the dissociation is accompanied by a severe bond breaking pro-
cess, which is strongly correlated in nature. Therefore, the dis-
sociation curve of N2 is often used to benchmark electronic
structure methods’ description of strong correlation. In DMC, this
is also highly relevant because the nodal structure is directly
affected by electron correlation. Figure 3a plots the relative
energy of N2 with respect to the experimental reference 29 as a
function of the bond length. The results from FermiNet-VMC and
r12-MR-ACPF, a state-of-the-art traditional multi-reference
approach30, are also shown. We can see that our DMC calcula-
tions are consistently better than those references, with an error
of less than 1 mHa in a wide range of bond length. The largest
error comes, not surprisingly, around the dissociation point near
4 a.u., and yet the error is only 3 mHa. In fact, our results can be
considered as the most accurate ab initio one of N2 dissociation
curve reported so far. It is worth noting that the FermiNet-VMC
results here have been remarkably accurate, whose deviation
from experiment curve is within 2mHa near equilibrium and
4mHa in dissociation region. Yet our FermiNet-DMC results can
improve averagely about 1 mHa. For comparison, CCSD(T) calcu-
lation (not plotted), which is known as the “golden standard” in
quantum chemistry, have an error of 25 mHa around 4 a.u.20. In
terms of relative energy, the non-parallelity error (NPE) of

FermiNet-DMC (3.28mHa) is only slightly better than that of
FermiNet-VMC (3.53 mHa), consistent with mild improvement on
small systems reported in Wilson et al.31, and both are comparable
to the state-of-the-art r12-MR-ACPF result (2.14 mHa).

The remaining error source of DMC is the nodal structure
error produced in the training of neural network using VMC,
which is fully reflected on the shape of the FermiNet VMC and
DMC curves. The results of FermiNet-DMC are close to the
experimental fitting curve within 1 mHa outside the dissociation
region and cannot go any lower due to the variational property.
So, when combined with a more expressive or better trained
neural network that can handle the dissociation region, it is very
likely that the full dissociation curve of N2 can be reproduced by
DMC within an error of 1 mHa, meaning that DMC can also solve
strongly correlated systems within chemical accuracy.

Cyclobutadiene
A similar example is the structural transition of cyclobutadiene, which
is also well-known for its multi-referential nature. The neural network-
based VMC models21,22 have already shown promising results on
cyclobutadiene. FermiNet-DMC can handle this system with higher
accuracy and reduced computational cost.

In our experiments, VMC process takes around 3 × 105 steps
to converge, though the converged result is still around 7 mHa
higher than the reported value in Spencer et al.21, which con-
verges in 2 × 105 steps. This is probably because we use different
training hyperparamters, or simply because our optimization
process gets trapped in a bad local minimum. However, our final
DMC result is around 4mHa lower than the reference data21. This
demonstrates the effectiveness of our DMC implementation as a
seamless extension to VMC. Namely even if the optimization in
VMC does not work well, the following DMC process can still
bring the energy calculation to a highly accurate level. This is
especially important for neural network-based VMC, because its
optimization is significantly trickier to tune and requires a longer
time to completely converge, compared to conventional VMC.
Here, the DMC finite time-step error is negligible as illustrated in
Supplementary Fig. 1, which guarantees the variational property
of our FermiNet-DMC results,

With 105 VMCand 105 DMC steps, FermiNet-DMC’s energy result is
2mHa lower than the reference data in Spencer et al.21 produced from
a training phase with 2 × 105 VMC steps. Note that in this case our
number of totalQMCsteps is still slightly less than the ref. 21 due to the
required inference phase in FermiNet-VMC. Therefore, FermiNet-DMC
should be preferred for its lower variational energy at the same or less
computational cost.

The automerization energy difference of cyclobutadiene is shown
in the inset panel of Fig. 3c. Neural network-based VMC gives an
accurate automerization energy difference of cyclobutadiene21,22. It is
consistent with the high-end of the experimental data. The results of
FermiNet-DMC are also in the same region. See Supplementary Note 9
for more details, including the training curve for transition config-
uration and the DMC energy data for both equilibrium and transition
configurations.

Water dimer
In addition to the strong covalent bonding, where static correlation is
more essential, molecular systemswith weaker hydrogen bonding and
non-covalent interactions can also be challenging because of dynamic
correlations. To this end, we have carried out FermiNet-DMC calcula-
tions on the 10 Smith stationary point of water dimer32. The 10 struc-
tures, as illustrated in Fig. 3d and Supplementary Fig. 4, have different
hydrogen bonding configurations and their relative energies are used
to benchmark the performance of electronic structure methods and
force field models on hydrogen bonding systems33. With 10 total
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energy results (plotted in Supplementary Fig. 5) and 9 relative energy
results (plotted in Supplementary Fig. 6), we can thus have a rather
credible investigation on the error cancellation performance of
FermiNet-VMC and FermiNet-DMC. We compare the energy results of
FermiNet-DMC with an undertrained network and a well-trained net-
work as trial wavefunctions respectively. The undertrained network is
trained by VMC in 105 steps, while the well-trained network is trained
by VMC in 3 × 105 steps. CCSD(T) results34 are displayed as benchmarks
for their high accuracy for such type of systems.

As shown in Fig. 3d, the undertrained FermiNet-VMC performs
badly on SP3 and SP5, and so does the well-trained FermiNet-VMC on
SP4, though some of the FermiNet-VMC results are quite close to the
benchmark results (e.g., SP7 and SP8 in Supplementary Fig. 6). On the
other hand, FermiNet-DMC performs consistently well no matter
which network is used as trial wavefunction, undertrained or well-
trained. Overall, the mean absolute deviations from the benchmark
CCSD(T) results are also given in Fig. 3d, fromwhich we can clearly tell
the improvement of FermiNet-DMC on relative energy calculations.

For comparison purpose, we also show DMC results with traditional
Slater-Jastrow wavefunction ansatz35, whose accuracy is at the same
level with FermiNet-DMC as the difference is negligible compared to
the statistical error. The inferior performance of FermiNet-VMC may
be due to the different degree of convergence in different systems,
while FermiNet-DMC provides a more efficient and practical solution
than fully converged FermiNet-VMC.

Benzene
To further illustrate the power of our approach, we have examined the
benzene molecule and a benzene dimer. Benzene is one of the most
fundamental organicmolecules with a hexagonal ring of C–H (Fig. 4a).
There have been challenges in understanding its electronic config-
uration, bonding order and obtaining the ground state energy. To
understand the electronic structure of benzene molecule, we per-
formed FermiNet-based VMC and DMC simulations with 3-layer and
4-layer networks separately. Our best FermiNet-DMC result calculated
with the 4-layer network coincides with the CCSD(T) result

Fig. 3 | Calculations on N2, cyclobutadiene, and water dimer. a Main panel:
calculated energy of N2 at different bond length, plotted as the difference to the
experimental data29. For comparison, the green line is the highly accurate r12-MR-
ACPF results under a modified basis set based on aug-cc-pV5Z30. Inset: the dis-
sociation curves from experimental data (black line) and FermiNet-DMC (orange
squares). The negligible error bars (less than 0.1mHa) are not plotted. The pink
backgrounds highlight the dissociation region where correlations are strong.
b Molecular structures of cyclobutadiene’s equilibrium state (bottom) and transi-
tion state (top). c Main panel: the ground state energy of cyclobutadiene’s equili-
brium state as a function of the VMC training step. FermiNet-DMC energy is
calculated using the trial wavefunction at the corresponding training steps.
FermiNet-VMC* indicates the result fromSpencer et al.21. Inset: the transitionbarrier
of cyclobutadiene calculated with different methods. Pink background indicates
the range of experimental estimates between 2.5 and 15.9mHa, while we show only

the part above 9mHa to highlight differences between QMC results. Gray dashed
lines indicate results from five multi-reference coupled cluster (MRCC) methods
(top to bottom):MR-DI-EOMCCSD, RMRCCSD(T), Mk-MRCCSD(T), MRCISD+Q and
BW-MRCCSD(T)58. d Left: three of the relative energies of the 10 Smith stationary
points SPn(n = 1, 2,…, 10)32. For the other results, see Supplementary Fig. 6. The
SP1 structure is the global minimum and is taken as the reference. The geometries
of SP1 and SP3 are shown as insets while the others are included in Supplementary
Fig. 4. Two neural networks have been trained for 105 steps and 3 × 105 steps, which
are dubbed as “undertrained” and “well-trained''. All the geometries are optimized
by CCSD(T)34. The CCSD(T) energies and the DMC results with the conventional
Slater-Jastrow ansatz35 are also plotted for comparison. The error bar of the energy
difference is calculated as the square root of the sum of the squares of each energy
estimator’s standard error. Right: mean absolute deviation from CCSD(T) results
over all the relative energies.
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extrapolated to complete-basis-set (CBS) limit. The comparison is
shown in Fig. 4d. The CCSD(T) result is carried out with Psi436 and the
CBS result is extrapolated using cc-pCVXZ (X=3,4,5) basis, which is
much larger than the ones reported in Johnson III.37 and used byothers
as the state-of-the-art electronic structure methods in Eriksen et al.38.
The energy from our CCSD(T)/CBS calculation is alsomuch lower than
those references. See Supplementary Note 14 for more details on the
CCSD(T) calculation and CBS extrapolation.

The 3-layer FermiNet here is much smaller than the 4-layer one.
Besides being one layer shallower, the number of neurons on each
layer is also significantly less. See Supplementary Tables 8–10 for the
related hyperparameters. Figure 4d shows that the 3-layer FermiNet-
DMC’s energy is lower than the 4-layer VMC result by around 10mHa,
which demonstrates one of the main benefits of FermiNet-DMC that it
can achieve better accuracy with smaller network. This is especially
important when we are dealing with large systems.

In our calculations, FermiNet-DMC is able to achieve lower varia-
tional energy resultswith anorder ofmagnitude better efficiency.With
a total of 4 × 105QMCsteps (2 × 105 VMCtraining steps and 2 × 105 DMC
steps), the 3-layer FermiNet-DMC’s energy result (–232.225Ha) is
slightly better than the 4-layer FermiNet-VMC’s energy result
(–232.223Ha) at 106 VMC training step. Moreover, the runtime of a
single VMC step for the 4-layer network is approximately 4 times that
of a single VMC or DMC step for the 3-layer network under the same
computation resources. Therefore, in this case, the 3-layer FermiNet-
DMC can achieve a better energy result at only a tenth of the total
computation cost compared to the 4-layer FermiNet-VMC. Similarly,
compared to the 3-layer FermiNet-VMC at 2 × 106 VMC training step,

the 3-layer FermiNet-DMC with 4 × 105 QMC steps can achieve more
than 10mHa better energy result at only a fifth of the total
computation cost.

Furthermore, the energy difference between the FermiNet-
DMC results in Fig. 4d is only around 3 to 4mHa, suggesting the
closeness between the node structure of the two trial wavefunc-
tions. To confirm this statement, we visualized 2-dimensional slices
of those trial wavefunctions in Fig. 4b, c. The slices are generated by
moving a single spin-up electron inside a two dimensional box while
fixing all other electrons at representative positions suggested by
Liu et al.39 and illustrated in Fig. 4a. See section “Nodal structure and
wavefunction visualization” and Supplementary Note 11 for more
visualization details. Comparing Fig. 4b (4-layer FermiNet VMC) and
Fig. 4c (3-layer FermiNet), we find that the nodes, represented by
the dark pixels, do share the same pattern. Moreover, the parts of
nodal surface in lighter areas, namely with larger wavefunction
value, are very close to each other in Fig. 4b, c, and they are themost
important parts of nodal surface in the DMC process since walkers
are more likely to visit its neighborhood. The closeness of those
parts is consistent with the fact that the FermiNet-DMC energies
are close.

To track hownodal surface evolves along the training process, we
propose a divergence D(S, T) measuring the difference between two
nodal surfaces S and T. The definition and algorithmic details are
described in section “Divergence measuring nodal surface difference”
and Supplementary Note 15, and the definition is also related to the
intuitionmentioned above that nodes in the neighborhoodwith larger
wavefunction value are more important in the QMC calculation. For

Fig. 4 | Calculations on benzene. a Atomic structure of the benzenemolecule and
representative electron positions39. Small balls represent electrons, with spin
indicated by their colors, and larger balls represent nuclei. The electron pointed by
the blue arrow is an arbitrarily chosen one for nodal set visualization in b and c.
Rods are drawn to connect the nucleus with electrons nearby. b and c The log-
scaled magnitude of unnormalized FermiNet wavefunctions for a benzene mole-
cule. Each slice is generated by moving a single spin-up electron in the square
[−5 a.u., 5 a.u.]2 on X–Y plane while fixing all other electrons in the representative
positions shown in a. The dark curves are the nodes and the orange points are the
fixed spin-up electrons projected onto X–Y plane. The moving electron for b and

c corresponds to the one pointed by the blue arrow on the bottom C–H bond in a.
b shows a slice for a 4-layer FermiNet while c is for a 3-layer FermiNet. d Ground
state energy of benzene molecule. “L3” and “L4” stand for neural networks with 3
and 4 layers, respectively. The CCSD(T) result coincides with our best DMC result
with the 4-layer network. eThe trend of nodedifference to final state in the training
process together with the ones for VMC and DMC energy for a benzene molecule
using a 3-layer FermiNet. f The linear trend between the node difference and the
DMC energy difference to final state. The points correspond to different inter-
mediate training steps and the dashed line is fitted using least square.
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the 3-layer FermiNet, we calculated

DðSfinal, SkÞ,

whereSfinal and Sk are the nodal surfacecorresponding to thefinalVMC
training step and the intermediate training steps k, respectively. The
result is shown in Fig. 4e together with the VMC and DMC energy,
where the trend of the divergence correlates well with energies. As a
matter of fact, there is a linear relation between the divergence and
DMC energy, as shown in Fig. 4f, indicating that the proposed diver-
gence successfully captures the essential information of the difference
between nodal surfaces. Here the divergence converges to around
0.005 instead of 0 because of the large learning rate used when
training the 3-layer FermiNet for benzene.

We have also trained a neural network for a benzene dimer, which
is a prototypical system to further test non-covalent interactions.
Benzenedimer,whichhas84 electrons in total, is amuch larger system
than the ones considered in previous neural network-based VMC
works19–26. We elaborate the challenges and tricks dealing with large
systems using FermiNet-based QMC methods in Supplementary
Note 5. We consider a T-shaped structure with an edge-to-face
arrangement, as illustrated in Fig. 5a, specifically the equilibrium
configuration with a center-to-center distance of 4.95Å40. Figure 5a
also shows the VMC and DMC energies as functions of the VMC
training step, which are both over 200mHa lower than the CCSD(T)
result with cc-pCVTZ basis. The converged FermiNet-DMC energy is
over 50mHa lower than both FermiNet-VMC result and the CCSD(T)

result with cc-pCVQZ basis. It echos statements made in above sec-
tions that FermiNet-DMC can achieve significantly higher accuracy for
larger systems or cases where the neural network ansatz is not pow-
erful enough to characterize the ground state wavefunction well. For
comparison, the FermiNet-VMC energy has not fully converged even
after four million training steps. Schätzle et al.41 shows that neural
network-based VMC, in particular, PauliNet, can achieve variational
energies at the fixed-node limit in certain circumstances, while in our
calculations, one can clearly see that it is not the case for FermiNet
especially when its expressive power is limited compared to the size of
the system. On the other hand, our DMC result is 15mHa higher than
theCCSD(T)/CBS result. Note thatCCSD(T) is not a variationalmethod,
hence the relatively lower CCSD(T)/CBS result may indicate similar
accuracy compared to our DMC result. To achieve more accurate
FermiNet-DMC result, we can use a better neural network trial wave-
function with a larger network or a better network architecture.

In addition to the total energy at the equilibrium configuration,
binding energy is also of great interest when studying a benzene
dimer40,42–45, and classical methods, such as CCSD(T) and MP2, can
produce results agreeing with experimental data well. However, for
neural network-based QMC, the binding energy calculation is more
subtle and challenging due to the lack of systematic error cancellation.
Using the same network structure handling both monomer and dimer
would introduce additional size-inconsistency-like bias because of the
more severe expressiveness limitation on benzene dimer than mono-
mer. For the benzene dimer, we find such an estimate would predict a
severe underbinding with both VMC and DMC. Another way to

Fig. 5 | Benzene dimer calculated energy and the extrapolation based on VMC-
DMC linear relation. aThe energy of the T-shaped benzene dimerwith a center-to-
center distance of 4.95Å as well as the CCSD(T) results as baselines. The CCSD(T)/
CBS* result is calculated using binding energy and monomer energy. See Supple-
mentary Note 14 for details. b The fitted distribution of binding energy from VMC,
DMC, and extrapolation results, where the solid lines inside each violin represent
the actual data points. The energy for two separated benzene molecules is calcu-
lated using a benzene dimer separated by 10Å43. The equilibrium configuration is a
T-shaped structure with center-to-center distance of 4.95Å40. The experimental
range is from Grover et al.46. The extrapolation scheme is based on the empirical

linear relation between VMC energy (EVMC) and DMC energy (EDMC) in the training
process, indicated by the blue and yellow points in c. c Linear fitting of EVMC − EDMC

with respect to EDMC − Efinal on various molecular systems, where Efinal represents
the DMC energy at final VMC training step. The number within the parenthesis in
the legend is the fitted slope for each system. d Linear fitting of EVMC− EDMC with
respect to EDMC− Eexact on atoms, where the energy data are the same as Fig. 2e.
Note that the data in d is fundamentally different from c in the sense that the
linearity in c is about different training steps for the same system while in d the
linearity is measured across different systems.
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estimate the binding energy is to take the difference between a sepa-
rated dimer configuration (10Å)43 and the equilibrium configuration,
shown in Fig. 5b, which turns out to be systematically overbinding.
With an empirical linear relation between VMC and DMC energy in the
training process, we developed a simple VMC-DMC hybrid extrapola-
tion scheme, which leads to an accurate estimate of the binding
energy, well-agreed with the experimental measurements46, also dis-
played in Fig. 5b. We will elaborate more on this extrapolation scheme
in section “Linear relation between VMC-DMC energy”. In order to
systematically improve the binding energy calculation, the most
straightforward way is to adopt better neural network ansatz as the
trial wavefunction for better accuracy. Adding regularization
mechanism in theoptimizationprocesses is another possible option so
that the model variance can be reduced for better error cancellation.
Note that in the case of DMC with pseudopotential, binding energy
calculation can be also improved with certain deterministic
approximation47. We will leave it as a future study apply those ideas to
improve the binding energy calculation.

Linear relation between VMC-DMC energy
Quite consistently, we find linear relation between VMC and DMC
energies in our calculation. We have encountered two types of linear
relation. One is about intermediate energies calculated along the
training process for a given system, while another one is about the
converged energies from different systems. We take advantage of the
first type of linearity and develop a simple but effective extrapolation
scheme accordingly.

We find that, for molecular systems, such as cyclobutadiene,
benzenemonomer and dimers, there’s a linear trend between the VMC
and DMCenergies calculated at different steps along the VMC training
process. Equivalently, there’s a linear relation between quantities

EðkÞ
DMC � Efinal v.s. E

ðkÞ
VMC � EðkÞ

DMC

whereEðkÞ
VMC and EðkÞ

DMC represent theVMCandDMCenergy calculated at
VMC training step k, and Efinal is the DMC energy at the final VMC
training step, namely a constant for one training process. Such relation
is shown in Fig. 5c. Based on this empirical linear relation, we propose
an extrapolation scheme

EðkÞ
DMC � Eex =w � EðkÞ

VMC � EðkÞ
DMC

� �
+b ð1Þ

where Eex is the extrapolated energy, and w and b are two parameters
to be determined. Here slope w can be fitted using EðkÞ

VMC and EðkÞ
DMC

along the training process, but the intercept b cannot be inferred from
those data. Therefore, it is difficult to use this scheme to extrapolate
absolute energy unless we have extra information on intercept b. On
the other hand, when calculating relative energy, we may simply
assume the intercept b between different configurations are the same
so that it can be canceled out in the calculation. Namely for relative
energy, we have

ΔEex = ð1 +wÞ � ΔEDMC �w � ΔEVMC ð2Þ

Note that the calculation of relative energy is especially trou-
blesome for neural network-based QMC methods, due to the strong
dependence on the number of training steps and the long conver-
ging period. See Supplementary Fig. 8b for how binding energies
calculated with FermiNet VMC and DMC change along the optimi-
zation process. With our scheme, the binding energy results calcu-
lated from different VMC training steps would be the same, modulo
the fitting error of the linear relation, which means we can circum-
vent the dependence of the binding energy result on the number of
training steps. In practice, the extrapolated binding energies form a
well concentrated distribution, and doing an extra average using

different VMC training steps can eliminate the linear fitting error and
provide an accurate estimate. Moreover, it also suggests that we can
calculate the extrapolated binding energy with data collected in the
early phase of the training process, avoiding the long converging
period of VMC optimization.

Applying this scheme to binding energy calculation of a benzene
dimer, the result is significantly improved and the distribution fitted
from energy differenceof different VMC training steps is concentrated
around the experimental range, as shown in Fig. 5b. The estimate of
extrapolated binding energy by averaging the energy difference is
3.60mHa, within the experimental range. See Supplementary Note 13
for more extrapolation-related details for benzene dimer.

We have discussed the relation of VMC and DMC energy for ele-
ments on the second and third rows in section “Single atoms”. For each
atom, we have a reference energy data Eexact to be compared with
converged VMC energy (EVMC) and DMC energy (EDMC). As shown in
Fig. 2e, both EDMC − Eexact and EVMC − Eexact grow linearly as the atomic
number increases, though the slope changes when switching from the
second row elements to the third row.However, if we instead compare

EDMC � Eexact v.s. EVMC � EDMC,

thenwehave a single linear relation across all elements onboth second
and third rows, as shown in Fig. 5d.

Interestingly, the slope of fitted lines in both Fig. 5c and d are all
quite close. We will leave further study on those two types of linearity
as future work.

Discussion
FermiNet-DMC is able to achieve accurate ab initio calculations
for various systems, obtaining ground state of 16 atoms, N2 along
the bonding curve, 2 cyclobutadiene configurations, 10 hydrogen
bonded water dimers, benzene monomer and dimer. These sys-
tems include bond breaking structures where strong static cor-
relation exists and weakly bonded dimers where dynamic
correlation dominates, and FermiNet-DMC performs consistently
well. FermiNet-DMC leverages the expressive power of neural
network to provide well-behaved trial wavefunctions. Neural
network-based VMC has claimed success in small systems when
the network can be sufficiently trained. However, it is not able to
provide satisfactory ground state wavefunction and energy when
the expressiveness of the neural network is limited. Compared to
VMC, the combination of neural network with DMC provides a
powerful solution, in the sense that it can achieve more accurate
result with simpler network and better efficiency. The improve-
ment of FermiNet-DMC in efficiency can be up to 1 or 2 orders of
magnitude in the large systems tested in order to reach the same
accuracy level as FermiNet-VMC, which can become increasingly
more important when dealing with even larger molecules.

There is an interesting linear relation between VMC and DMC
energy observed during the training process as well as across
different systems. We develop an extrapolation scheme accord-
ingly, which greatly improves the accuracy of relative energy
calculation as shown in the benzene dimer case and overcome the
issue that the relative energy calculation greatly depends on the
different training steps in the QMC process. We also design a
divergence measuring the difference between nodal surfaces of
two wavefunctions, which correlates well with the corresponding
DMC energies in numerical experiments. Namely the proposed
divergence successfully captures the essence of nodal surface
differences.

It is worth pointing out that a similar idea to this work was pro-
posed in a preprint by Wilson et al., where they have performed pre-
liminary tests on the second row elements31. However, only minor
improvements in accuracy were observed accompanied by an

Article https://doi.org/10.1038/s41467-023-37609-3

Nature Communications |         (2023) 14:1860 8



increased cost of DMC, since the FermiNet used there was powerful
enough to achievehigh accuracy for the tested small systems and leave
little room for further improvement. By comparison, our approach,
being more sophisticated and efficient, achieves significant accuracy
boost when dealing with more challenging molecular systems, which
FermiNet alone cannot handle well. We have also shown that even for
small systems, FermiNet-DMC should still be preferred for the fact that
it can achieve comparable or even better accuracy with a smaller
network and much less computation resources compared with
FermiNet-VMC. Our work, therefore, eliminates the negative concerns
of going from VMC to DMC with neural network wavefunction ansatz.
Moreover, the DMC method can be further integrated with other
powerful molecular neural networks22,25, periodic neural network for
solids48, neural networks with effective core potential49, which has the
potential to catalyze a paradigm shift in the application of stochastic
electronic structure methods.

Methods
Basic theory
To study amany-body system from first principles, we always consider
solving the well-known Schrödinger equation for electrons and nuclei.
Whenwework in the Born-Oppenheimer approximation50, and further
consider a fixed set of nuclear positions, the problem is simplified to
the solution of the ground state many-electron wavefunction.

Ĥψðx1, � � � ,xnÞ= Eψðx1, � � � ,xnÞ,

Ĥ = � 1
2

X
i

∇2
i �

X
I

X
i

Z I

∣ri � RI ∣

+
X
i<j

1
∣ri � rj ∣

+
X
I<J

Z IZ J

∣RI � RJ ∣
,

ð3Þ

where xi = (ri, σi) denotes the spatial and spin coordinates of electron i,
and RI, ZI, respectively, denote the spatial coordinates and the charge
of nucleus I. Thewavefunctionof electrons obeys Fermi-Dirac statistics
thus should be antisymmetric with respect to the interchange of both
the spatial coordinates and the spins of any two electrons, namely the
following equality of wavefunction should hold:
ψ(⋯ , xi,⋯ , xj,⋯ ) = −ψ(⋯ , xj,⋯ , xi,⋯ ).

Unlike most methods that use variational principle to approach
the ground state wavefunction, DMC is a stochastic projection
method. A given antisymmetric wavefunction ψT can always be
represented as a linear combination of a set of eigenfunctionsψkof the
corresponding Hamiltonian operator,

ψT ðx1, � � � ,xnÞ=
X1
k =0

ckψkðx1, � � � ,xnÞ,

Ĥψkðx1, � � � ,xnÞ= Ekψkðx1, � � � ,xnÞ,
ð4Þ

When an imaginary-time evolution operator acts on ψT,

e�τðĤ�ET ÞψT =
X1
k =0

cke
�τðEk�ET Þψk , ð5Þ

where ET is the trial energy as anoffset, therewill be a decay coefficient
added to each expansion term, and the decay rate is proportional to
state energy Ek. After a long enough imaginary-time evolution, ψT can
reach the ground state ψ0, whereas contributions from all other
eigenfuntions vanish. If we define a time-dependent wavefunction and
look at the imaginary-time Schrödinger equation:

ψðx1, � � � ,xn,τÞ= e�τðĤ�ET ÞψT ðx1, � � � ,xnÞ,
�∂τψðx1, � � � ,xn,τÞ= ðĤ � ET Þψðx1, � � � ,xn,τÞ:

ð6Þ

Without the potential energy terms, it resembles a standard diffusion
equation,

∂τψðx1, � � � ,xn,τÞ=
1
2

X
i

∇2
i ψðx1, � � � ,xn,τÞ: ð7Þ

The diffusion equation defines the master equation of stochastic
processes, hence we can solve the diffusion equation of wavefunction
by simulating the stochastic processes51. With potential terms, addi-
tional processes are required to bind the diffusion equation in simu-
lation (see, e.g., refs. 16,52,53 for more details).

Trial wavefunction
In this work, we use FermiNet neural network ansatz as our trial
wavefunction. Due to the huge number of parameters, it is challenging
to converge the training process of FermiNet unless the system is small
enough. After many tests, we identified a common training pattern of
FermiNet, which consists of two stages: a relatively short sharp-
adjustment stage and a lengthy fine-tuning one.We propose to use the
FermiNet wavefunction right after the sharp-adjustment stage as the
trial wavefunction inDMC,whichmaximizes the efficiencyof the entire
simulation protocol. In this way we can also achieve more accurate
results than a better converged FermiNet model after the lengthy fine-
tuning stage. Comparing to the gain, the cost of performing DMC on
the long-trained FermiNet is rather minor in most of the systems
tested.

DMC implementation
We have developed a GPU-friendly DMC software in JAX54, which
can be seamlessly integrated with FermiNet27, developed in the
same programming framework. Our DMC software can also be
integrated with other trial wavefunctions implemented in JAX and
it has been open sourced in order to accelerate further combi-
nation of QMC methods with neural networks. See Algorithm 1 for
a brief workflow of one DMC iteration, beyond which various of
modifications are implemented, including those proposed by
Umrigar et al. to reduce time-step error52 and by Zen et al. to keep
size consistency55.

Randomwalkers’branching andmerging change the total number
of walkers, which cause efficiency issue for JAX programand is also not
friendly to distributed computing especially when load balancing is
involved. We devised a new branching-merging strategy to overcome
these issues. Whenever we need to branch certain random walker due
to its overly large weight, we also merge two walkers on the same
computingnodewith the smallestweight. Nomerging is executed if no
branching happens. In this way, we keep the number of walkers on
each computing node unchanged. We did thorough numerical ver-
ification of this strategy and found that the introduced bias is
negligible.

Themost time-consumingmodule in our DMC implementation is
to calculate the local energy. In our optimized program, the compu-
tational cost for each local energy estimation is almost same as a VMC
inference step of the original FermiNet. Therefore, the total cost
depends solely on the number of iterations performed in DMC
and VMC.

Energy calculation
For FermiNet-VMC, we always perform a separate inference simulation
for energy estimate, where we fix all the parameters of FermiNet after
training and do a number of Markov ChainMonte Carlo (MCMC) steps
to sample batches of random walkers accordingly. We calculate the
average local energy for each batch, and use reblock analysis to
determine the mean value of the set of averaged energy as well as the
standard deviation. For FermiNet-DMC, we use themixed estimator of
energy52 and treat the first 10% of MC steps as the equilibrating phase
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and only use the steps afterwards for energy production. See Supple-
mentary Tables 6–12 for the hyperparameters of all our calculations.
We also use reblock analysis to determine the mean of the averaged
energy and its standard error. In our plots, error bars represent one
standard error for energy estimates, unless otherwise specified.

Algorithm 1. Simplified Diffusion Monte Carlo algorithm pseudocode.

Note that walkers in DMC are more auto-correlated than the ones
in VMC inference phase especially when the time-step used in DMC is
set to be small to avoid bias. Therefore, more batches of random
walkers are needed to reduce the statistical error to a given level in
DMC than in VMC. However in practice, we found that the number of
the required extra batches of walkers in DMC is usually much fewer
than the number of steps in VMC training phase for full convergence.

Nodal structure and wavefunction visualization
The three-dimensional cuts of the full 11D nodal structure of Be in
Fig. 2b–d is plotted according to the rules of Bressanini et al.28. The
four electrons’ spherical coordinates are respectively

r1 2 ½0:1,2:1� a:u:, ϕ1 = 0, θ1 2 ½�1, 1�,
r2 = 1:1 a:u:, ϕ2 =0, θ2 =π=2,

r3 2 ½0:1,2:1� a:u:, ϕ3 =π=2, θ3 =π=2,

r4 = 1:1 a:u:, ϕ4 = 3π=2, θ4 =π=2,

8>>><
>>>:

fixing all the degrees of freedomexcept r1, θ1 and r3. The green surfaces
in the plots show the nodal surfaces, i.e., the places where the value of
wavefunction is zero.

To visualize the nodal surface of benzene, we calculated the
wavefunction value on 2-dimensional slices of the 126-dimensional

space. We first fixed a 126-dimensional electron configuration at the
representative position of benzene electronic structure from Liu
et al.39, and perturb it slightly for the visualization purpose. To con-
struct one slice of the 126-dimensional space, wemove a single spin-up
electron in a 2-dimensional square with all other 41 electrons fixed.
Then we apply FermiNet to points on each slice and display the log-
scaled magnitude of the evaluated wavefunction value, where the
points with small value stand for the nodes on each slice. Since the
FermiNet output is unnormalized, diagrams for different FermiNet
may have drastically different range of displayed value.

Divergence measuring nodal surface difference
We define a divergence measuring the difference between two sets S1
and S2 in any metric space as follows

DðS1,S2Þ= EY ∼ P1
dðY ,S2Þ≈

XK
i

dðY i,S2Þ ð8Þ

where P1 is a probability measure on S1, and fY igi= 1,...,K are sampled
from P1. The distance d(Y, S) between a single point Y and a set S is
defined as the smallest distance between Y and any point in S, namely

dðY ,SÞ= min
Z2S

dðY ,Z Þ ð9Þ

For a nodal surface S corresponding to an unnormalized wave-
function Ψ, we would like to define a measure on S such that a small
area on S is assigned larger weight if its neighborhood has larger Ψ2

value, namely larger probability to be visited by walkers in DMC.
Therefore, we consider a neighborhood

Sϵ = fx∣dðx, SÞ< ϵg ð10Þ

around S and a mapping

ϕ : Sϵ ! S,

then “push forward" the probability densitymΨ2 (corresponding toΨ2)
from Sϵ to S via ϕ, namely

ϕ �mΨ2 ðnÞ : = mΨ2 ðϕ�1ðsÞÞ=
R
ϕ�1ðsÞΨ

2

R
Sϵ
Ψ2 , 8 set s � S ð11Þ

Intuitively, for any point y in Sϵ we may simply choose ϕ(y) to be the
point on N that is closest to y.

However, it’s quite difficult to determine both Sϵ andϕmentioned
above algorithmically, and thus, in practice, we use some approximate
alternatives that are much easier to compute. See Supplementary
Note 15 for the algorithmic detail.

Data availability
All data supporting the findings of this study are provided in Supple-
mentary Information.

Code availability
We have released our DMC software at https://github.com/
bytedance/jaqmc.
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