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Direct correction of haemoglobin E β-
thalassaemia using base editors
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Lance D. Hentges 1,3,4, Christopher A. Fisher1, Nicholas Denny 1,
Ron Schwessinger1, Nirmani Yasara 5, Noemi B. A. Roy1, Fadi Issa 6,
Andi Roy 1,7, Paul Telfer2, Jim Hughes 1,3, Sachith Mettananda5,
Douglas R. Higgs 8 & James O. J. Davies 1,2,9

Haemoglobin E (HbE) β-thalassaemia causes approximately 50% of all severe
thalassaemia worldwide; equating to around 30,000 births per year. HbE β-
thalassaemia is due to a pointmutation in codon 26 of the humanHBB gene on
one allele (GAG; glutamatic acid → AAG; lysine, E26K), and any mutation
causing severe β-thalassaemia on the other. When inherited together in
compound heterozygosity these mutations can cause a severe thalassaemic
phenotype. However, if only one allele is mutated individuals are carriers for
the respective mutation and have an asymptomatic phenotype (β-thalassae-
mia trait). Here we describe a base editing strategy which corrects the HbE
mutation either to wildtype (WT) or a normal variant haemoglobin (E26G)
known as Hb Aubenas and thereby recreates the asymptomatic trait pheno-
type. We have achieved editing efficiencies in excess of 90% in primary human
CD34 + cells. We demonstrate editing of long-term repopulating haemato-
poietic stem cells (LT-HSCs) using serial xenotransplantation in NSGmice. We
have profiled the off-target effects using a combination of circularization for
in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) and deep
targeted capture and have developed machine-learning based methods to
predict functional effects of candidate off-target mutations.

HbE has a particularly high prevalence in parts of the Indian sub-
continent, China andSoutheastAsiawhereup to 70%of thepopulation
are carriers due to the protection conferred against severe infec-
tion with malaria1. The HbE variant reduces production of β-globin
chains and it may also form an unstable haemoglobin2. Co-inheritance
of a severeβ-thalassaemiamutation of theHBBgeneon the other allele

(HbEβ-thalassaemia), can result in the need for blood transfusions every
2-3 weeks to sustain life2. Individuals with a severe β-thalassaemia
mutation on one allele without the HbE mutation on the other have an
asymptomatic carrier condition, known as β-thalassaemia trait. Gene
therapy approaches have beendeveloped for haemoglobinopathies, but
these have significant safety concerns because an additional copy of the
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HBB gene is integrated randomly into the genome at thousands of dif-
ferent sites, carrying the potential for insertional mutagenesis and
malignancy3. This is of particular concern as it would be deployed in
children and haematopoiesis is a highly active process that requires a
lowmutational burden to developmalignancy compared tomany other
cell types4. Severalmethods have been described for genome editing for
the treatment of β-thalassaemia. The approach that is closest to routine
clinical implementation involves reactivation of fetal haemoglobin
expression (HbF) either through mutagenesis of the promoters of the
HBG genes or the erythroid enhancer of BCL11A5–9. Although these
approaches are likely to lead to transfusion independence, theymay not
lead to an entirely normal phenotype due to the levels of HbF required
to fully correct the pathophysiology of β-thalassaemia10. Furthermore,
creation of a double-strand break carries risks due to deleterious on-
and off-target repair outcomes and p53 inactivation11. We therefore
aimed to develop a strategy for correcting the HbE mutation using
direct editing of the affected codon with base editors. Here we show
that it is possible to correct the HbE mutation directly using adenine
base editors (ABEs) with high efficiency in patient derived CD34+
haemopoietic stem cells (HSCs) with minimal off target effects.

Results
Development of a base editing approach for HbE β-thalassaemia
The haemoglobin E codon (AAG) can be corrected to WT (GAG) or a
variant haemoglobin, haemoglobin Aubenas (GGG) (Fig. 1a). The Hb

Aubenas variant has previously been reported to have a normal phe-
notype in a single family in heterozygosity although homozygous
cases havenot been reported (Supplementary Fig. 1a)12. HbE results in a
mildly unstable haemoglobin and the mutation activates a cryptic
splice site that causes abnormal mRNA processing13. The Aubenas
variant is likely to be non-pathogenic because it introduces a glycine
into an alpha helix on the external surface of themolecule and analysis
with the machine learning model Splice AI14 predicts that the cryptic
splice site is removed (Supplementary Fig. 1b).

Near complete editing of HbE in patient derived HSCs
Optimisation using different variants of base editors was undertaken
initially in HUDEP-2 cells, WT CD34 + cells and patient CD34 + cells
(Supplementary Fig. 2). Using ABE8-V106Wwewere able to achieve up
to 98.8% correction (mean 90.2% SD 8.2%) of the HbE allele in
CD34+HSPCs from patients with HbE β-thalassaemia (Fig. 1b)15. The
majority of edits converted the allele to Hb Aubenas (mean 78.0%) or
to theWT sequence (mean 12%) (Fig. 1c). A potential editing outcome is
an AGG codon, which has never been described in patient studies.
Edited alleles including this codonwere observed but at extremely low
levels (mean 0.74% SD 0.64%) and are thus unlikely to be clinically
significant.

Patients with the common IVS 1-5 β-thalassaemia mutation
showed minimal editing (0.67%) of the thalassaemic allele due to dis-
ruption of the protospacer adjacent motif (PAM) by this variant. In

Fig. 1 | Base editingof theHaemoglobin E. aABEediting strategy to repair theHbE
mutation. The target adenine inHbE (A5) lies at position 5 of the protospacer,with a
bystander adenine (A6) at position 6. The HbE codon (AAG) can be edited with one
of three outcomes depending on which adenine has been deaminated: editing A5

alone reverts the codon toWT (GAG), both A5 and A6 converts it to a normal variant
that codes for βAubenas (GGG) and A6 alone converts it to a previously undescribed
codon (AGG). b Adenine base editing using ABE8e V106W highly efficiently con-
verts the HbE codon to normal or a normal variant (n = 6 biologically independent
samples). c Codon editing outcomes on the HbE allele and the non-target tha-
lassaemic allele (where the thalassaemic allele was not sequenced editing at HBD

was used as a surrogate) (n = 6 biologically independent samples). d Increase in β-
globin expression as assessed by the β/α ratio in edited erythroid cells from
patientswith HbE β-thalassaemia compared to unedited controls (n = 4 biologically
independent samples). e, f Haemoglobin variants in control and edited erythroid
cells measured by CE-HPLC. HbE and HbA2, and HbA and Hb Aubenas are given
together as they run in the same window and cannot be resolved using CE-HPLC
(n = 3 biologically independent samples; n = 2 for unedited controls).g IEF showing
haemoglobin variants in control and edited cells. Hb Aubenas is clearly detected
but no other novel haemoglobins are observed. All error bars represent the stan-
dard error of the mean. Source data are provided as a Source Data file.
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three donors with β-thalassaemia mutations that do not disrupt the
PAM, the WT sequence (GAG) was converted to the Hb Aubenas
sequence (GGG) with a mean 74% efficiency. This is not predicted to
result in any further deleterious effects as this allele has no or very low
β-globin expression due to the pre-existing β-thalassaemia mutation.
Indels at theon-target siteweredetected atminimal levels (mean0.15%
SD 0.06%).

CD34 + cells were differentiated into mature erythroid cells with
no morphological or immunophenotypic perturbations in differ-
entiation detected (Supplementary Fig. 3). Globin gene expression
profiling by RT-qPCR showed that there was a significant increase in
β-globin mRNA, with a mean 57.8% rise in expression (Fig. 1d). As the
pathophysiology of HbE β-thalassaemia is driven by disordered
protein production in erythroblasts, cation-exchange reverse-phase
high performance liquid chromatography (CE-HPLC) was performed
on control and edited patient cells. There was a significant reduction
in the level of HbE when comparing control to edited cells (mean
59.1% SD 13.2% to 17.2% SD 5.4%), with a concurrent increase in HbA
and Aubenas (7.0% SD 3.9% vs 57.6% SD 12.1%). This represented a
13.7-fold increase in normal or normal variant haemoglobins and a
3.1-fold decrease in HbE (Fig. 1f). As expected for patients with HbE β-
thalassaemia, the level of HbF is increased and does not change in
edited cells (Fig. 1e). In case editing produced variant haemoglobins
not detected by HPLC, isoelectric focusing (IEF) was performed.
There was no evidence of new haemoglobins being produced except
for Hb Aubenas (Fig. 1g). Sequencing of poly A negative RNA from
erythroid cells that have undergone correction of the codon results
in reduced aberrant splicing of the transcript and persistent

off-target RNA editing was not detected in these cells (Supplemen-
tary Fig. 2g).

To show editing of LT-HSCs, serial murine xenograft transplan-
tation assays were performed using the well characterised NSGmouse
model16. Edited CD34 + human cells were detected following both
primary and secondary transplants (Fig. 2a). No fall in mean editing
efficiency was detected between primary and secondary trans-
plants (Fig. 2b).

Profiling of off-target effects
Extensive profiling of off-target editing events was undertaken. The
specificity of our sgRNA was profiled by combining in-silico methods
with CIRCLE-seq (Fig. 2c)17–19. This combination of approaches identi-
fied 2829 potential / theoretical off-target sites genome-wide, of which
1399 had an adenine in the target window (Supplementary Data 1).

Wewent on toperformtargetedoligonucleotide capture from the
top 250 candidate sites identified, using targeted oligonucleotide
capture followed by high throughput sequencing of patient samples
that had undergone genome editing (Fig. 2d, Supplementary Data 2
and 3). This approach allowed highly sensitive profiling of the real off-
target effects because each site was sequenced to an average read
depth of 53,922. 3 base editors were used (ABE8.13, ABE8e-V106W, NG-
ABE8e) with two technical replicates for each editor. Off-target editing
was found at 70 sites but generally at very low levels (median 0.038%).
The site with the highest editing was expected, at the highly homo-
logousHBD gene,whichhas an identical sequence to theon-target site,
and so had 52.9% deamination frequencies. HBD is expressed at a low
level and forms HbA2 (α2δ2), which comprises 2-3% of total adult
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Fig. 2 | Editing of long term haemopoietic stem cells and off target effects.
a Engraftment of edited human cord blood HSCs in NSG mice in primary and
secondary transplants (n = 3 biologically independent samples). b Editing effi-
ciencies for the cells prior to transplantation and following the primary and sec-
ondary transplants (n = 3 biologically independent samples). These cells were
edited with ABEmax, due to the lag time on these experiments and this has lower
editing efficiencies than the ABE8 editors, which are also reflected in the in vitro
(Supplementary Fig. 2d). c Location of all potential off-target effects identified by

CIRCLE-seq combined with two in silico approaches (Cas-OFFinder and CRISPOR).
d Targeted sequencing through oligonucleotide capture at the top 250 sites
identified, which confirmed likely low level off target editing at 70 sites.
e Predictions from DeepHaem of the effects of all possible off-target edits in the
non-coding genomeon chromatin accessibility. fMAplots based onATAC-seqdata
comparing WT vs base edited cells, showing that there were no significant differ-
entially accessible peaks detected (DESeq2, alpha 0.05). Source data are provided
as a Source Data file.
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haemoglobin and has no significant physiological function. All of the
other off-target effects were located either in introns or intergenic
regions. Off-target editing was detected at a maximum frequency of
over 1% at two intergenic sites, each with 2 base pair changes in the
editing window (hg19 chr18:76699400/76699402 & chr11 28480163/
28480163). Both of these were located in intergenic regions (nearest
gene 40.8 kb and 18.9 kb respectively) and neither of these sites were
located in hypersensitive sites.

Little, if any, work has been done to look at the genomic con-
sequences of these mutations. To address this, we combined analysis
of functional genomics data with machine learning approaches, which
we have previously used to successfully identify the effects of non-
coding variants20. The deep learning model, DeepHaem is trained on
over 600datasets, including 49 different blood cell type datasets21 and
it is able to identify the effects of mutations in regulatory elements,
particularly gain of function variants which would be missed by con-
ventional approaches such as intersection with known hypersensitive
sites (Supplementary Data 4 and 5).

At the two intergenic sites mentioned above (hg19
chr18:76699400/76699402& chr11 28480163/28480163) with >1%OT-
editing the machine learning model predicted that these changes
would not alter chromatin activity.

Low level editing (0.07%) was seen in the promoter of OGFOD2
but this was alsonot predicted by themachine learningmodel to cause
damage and the gene is most highly expressed in sperm. In addition,
variants in the gene are not associated with disease on ClinVar. Two
lncRNAs (ACTN1-AS1 exon 9 and LINC01569 promoter) were potential
off-targets but neither of these have any association with haematolo-
gical disease22. The remaining intronic and intergenic sites at which
editing had been identified were also predicted to be inert.

We went on to use the approach to analyse all 2829 sites where
potential off-target editing might occur and only 17 sites were identi-
fied that were predicted to alter the chromatin state (Fig. 2e). None of
these sites were near any genes that are recurrently mutated or dys-
regulated in haematological malignancy. In addition, we undertook
ATAC-seq in both WT and edited HSPCs and found no differences in
normalised peak counts (Fig. 2f, Supplementary Fig 4).

Discussion
Here we show that Haemoglobin E, which causes 50% of all severe
transfusion dependent thalassaemia worldwide, can be corrected to a
non-pathogenic variant Hb Aubenas, using adenine base editors. A
similar approach has been used to edit themutation that causes Sickle
Cell Disease, which can be deaminated to form Hb Makassar23, 24. This
approach is advantageous to previous methods as it does not involve
random integration of a highly active construct or involve generating
potentially genotoxic double strand breaks. Using established and
novel machine learning based methods, we have shown that base
editing has a favourable off-target editing profile. We have not asses-
sed the potential for sporadic off-target editing but this has previously
been carefully characterised and found not to be a major problem
albeit with lower activity earlier generation editors25. Base editing will
therefore potentially prove to be the optimal way to cure the majority
of patients with haemoglobinopathies.

Methods
Preparation of cells
Patients peripheral blood collection was performed at the Churchill
Hospital, Oxford or Department of Paediatrics, University of Kelaniya,
Sri Lanka using standard procedures, following written informed
consent for collection for research. The study complies with all rele-
vant ethical regulations and has approval from the Oxford South
Central C Research Ethics Board; WIMM R&D committee (ref. 17/SC/
0111) and the Sri Lanka College of Paediatricians. Human umbilical
cord blood (UCB) was collected from the John Radcliffe Hospital,

Oxford, UK or provided via the NHS Cord Blood Bank, London, and
used with informed, written pre-consent and ethical approval (REC
Ref. no. 15/SC/0027) from the South Central Oxford and Berkshire
Ethical Committees and approval of the NHSBT R&D committee. The
patients had a variety of genotypes (Supplementary Data 6).

Isolation and CD34+ culture
Mononuclear cells (MNCs; density <1.077 g/ml) were isolated by
density gradient centrifugation. Human CD34 + hematopoietic stem
and progenitor cells (HSPC) were enriched by MACS using the CD34
direct microbead kits (Miltenyi Biotec GmbH). After isolation or
thawing, HSPCs were placed in HSPC media comprised of StemSpan
SFEM II (Stemcell technologies) supplemented with 100ng/ml stem
cell factor (SCF) (PeproTech), 100 ng/ml hrombopoietin (TPO)
(PeproTech), 100 ng/ml fms-like tyrosine kinase ligand 3 (FLT3L)
(PeproTech) and 1 IU/ml penicillin/streptomycin (Gibco). HSPCs
were seeded at a density of 0.25×106 cells/ml and cultured for 36-
48 hours at 37 °C and 5% CO2.

Erythroid culture
CD34+ cells were differentiated down the erythroid lineage using a
modification of a published differentiation protocol26. All phases used
a prepared basemedia containing Iscove’s modified Dulbecco’s media
(Bioscience UK), 200 µg/ml human holo-transferrin (HT) (R&D sys-
tems), 10 µg/ml recombinant human insulin (Sigma Aldrich), 3 IU/ml
heparin sodium (Sigma Aldrich), 3% inactivated group AB Plasma
(Department of Haematology, OxfordUniversity Hospitals Trust), 3IU/
ml erythropoietin (Janssen-Cilag) and 2% foetal bovine serum.

Phase 1 (Day 0 to 7) – Freshly isolated or thawed HSPCs were
seeded at a density of 2 × 105 cells/ml inbasemedia supplementedwith
10 ng/ml SCF and 1 ng/ml Interleukin-3 (Peprotech). Cells were coun-
ted every 48 hours fromDay 3 onwards andmedia was added to dilute
the cells to a concentration of 2 × 105 cells/ml.

Phase 2 (Day 7 to 10) – Cells were counted and the media was
changed by centrifuging the cells for 5minutes at 300 g. The cellswere
seeded at 2 × 105 cells/ml in base media supplemented with 10 ng/ml
SCF. Cell density was maintained at 2 × 105 cells/ml.

HUDEP-2 culture
HUDEP-2 cells kindly by Dr Kurita and Dr Nakamura from the RIKEN
Tsukuba Branch were maintained at a concentration of 2.5 × 105 cells/
ml – 1.5 × 106 cells/ml in StemSpan SFEM (Stemcell technologies)
supplemented with 2mM glutamax (ThermoFisher), 1IU/ml penicillin/
streptomycin (Gibco), 50ng/ml human stem cell factor (PeproTech),
3IU/ml erythropoietin (Janssen-Cilag), 840 nM dexamethasone
(Hameln) and 2 µg/mL Doxycycline (Sigma Aldrich). Cells were coun-
ted every 48hours, centrifuged at 300 g for 5minutes and resus-
pended in fresh media at a concentration of 2.5 × 105 cells/ml.

Production of ABE mRNA
Base editor plasmids were linearised using AgeI (NEB) at the 3’ end of
the editor sequence. Base editor mRNA transcription was performed
using the mMESSAGE mMACHINE T7 Ultra Kit (Thermofisher) follow-
ing the manufacturer’s protocol. As the transcripts were longer than
5 kb 1 µl GTPwasadded to the reaction. Clean-upof the polyadenylated
product was carried out with MegaclearTM Transcription clear kit
(Invitrogen) according to the manufacturer’s instructions and the
mRNA was resuspended in 20 µl nuclease free water.

Genome editing—CD34+ cells
After 48 h of culture in HSPC media, CD34 + cells were transfected
using the P3 Primary Cell 4D-Nucleofector TM X kit (Lonza). An ABE
mRNA-sgRNA solution was formed by mixing 50 pmol chemically
modified synthetic targeting or scrambled control sgRNAs (Syn-
thego) with 2.5 μg ABE8e mRNA at a molar ratio of 1:2.5 for
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10minutes at 23 °C. 1 × 105 HSPCs were resuspended in 20 μl
P3 solution and were thoroughly mixed with the formed mRNA-
sgRNA complex. The mixture was added to a 20μl cuvette and
electroporated using the DZ-100 program on the Lonza 4D Nucleo-
fector. Immediately post-electroporation cells were placed in HSPC
maintenance media for 24 h to recover and then transferred to ery-
throid differentiation culture media. Cells were harvested on Day 10
for downstream analysis.

High-throughput sequencing of the HBB locus using NGS
Locus specific primers including adaptor sequences targeting exon 1of
HBB were used to quantify editing efficiencies using a modified 2-PCR
version of the NEBnext Ultra II (NEB) library preparation protocol.
Amplification was performed using the Herculase II (Agilent).
See Supplementary Information for Primer sequences. In the first PCR,
primer pairs NEB adaptors 5’ to the locus-specific primer sequence
were used for amplification, ensuring the products had the adaptor
sequences added by the end of the PCR. 5 µl of this was used directly
without clean-up for the second PCR. This indexing PCR added dual
end indices taken from the NEBNext Multiplex Oligos for Illumina kit
(NEB). Material was sequenced using the Illumina platform and
sequences were extracted using the standard software (e.g. MiSeq
Control Software v4.0).

Globin gene expression quantification
RNA was extracted using the Rneasy mini kit (Qiagen) according to
the manufacturer’s instructions. Complementary DNA (cDNA)
was produced from RNA using the SuperScript III First-Strand synth-
esis Supermix for qRT-PCR (ThermoFisher) according to the
manufacturer’s instructions. Predesigned and validated Taqman
probes (Applied Biosystems) and Taqman Universal PCR mastermix
(ThermoFisher) were used in all qPCR assays (TaqMan IDs: HBA2/
HBA1-Hs00361191_g1, HBB-Hs00747223_g1, HBG-Hs00361131_g1 and
RPL13A-Hs03043885_g1). All Taqman probes spanned exon junctions.
Reactions were setup in 20 µl in technical triplicate and run on the
Quantstudio 3 Real Time PCR System (Applied Biosystems). Gene
expression was calculated using the delta delta CT method.

RNA sequencing
RNA was extracted from edited CD34 cells differentiated in erythroid
culture using the RNeasy Mini Kit (Qiagen), following the manu-
facturer’s protocol. RNA quality was assessed by tape station, using
RNA screentape (Agilent). Ribosomal RNA was depleted using the
NEBNext rRNA Depletion Kit. Poly-A positive and negative fractions
were separated using the NEBNext Poly(A) mRNA Magnetic Isolation
Module. Poly-A positive and negative RNA-seq was then performed
using the NEBNext Ultra II Directional RNA Library Prep Kit for
Illumina (New England BioLabs). Sequencing was done using NovaSeq
(Illumina) at 150bp paired end.

Protein quantification
For CE-HPLC 7 × 106 cells were used per replicate. The Bio-Rad variant
haemoglobin testing systemwas used according to themanufacturer’s
instructions with the Variant II β-thalassaemia short program pack. IEF
was performed as per the manufacturer’s instructions (Resolve; Per-
kinElmer), running for 45minutes at 300V; 15 °C. 0.5 × 106 cells were
used per sample.

CIRCLE-seq
CIRCLE-seq was carried out comparing WT and edited cells using the
previously described protocol27 except that the NEBNext reagents
(E7370L) were used to ligate the adaptor sequences. Off-target
editing using the HbE targeting sgRNA was assessed in triplicate,
using the HUDEP-2 HbE line and DNA from two patients with HbE
β-thalassaemia.

Oligonucleotide hybridization, capture and sequencing
Briefly, sequencing adaptors were added using the NEB Ultra II kit and
the libraries were amplified by PCR (Herculase II, Agilent) to add
indexing sequences. In total 10μg of libraries was pooled for each
hybridization reaction. The Roche SeqCap hybridization reagents and
protocol were followed protocol. The hybridization reactions and
bead washes were scaled such that for each 1–2μg of library used, 5μg
human COT DNA and 1000 pM Nimblegen HE index-specific blocking
oligonucleotides were used. This mixture was denatured by heating to
95 °C for 10min before being hybridized for 72 h with 120-bp bioti-
nylated oligonucleotides at a concentration of 130 fmol per sample.
The samples were captured with streptavidin beads (Thermo Fisher,
M270), washed and amplified as per protocol. A second round of oli-
gonucleotide capture was performed with the same oligonucleotides
and reagents with only a 24-h hybridization reaction. Thematerial was
sequenced on the Illumina NovaSeqwith 300-bp reads (150-bp paired-
end reads).

Mouse xenograft assays
Experiments were performed under the project license P8869535A
approved by the UK Home Office under the Animal (Scientific Pro-
cedures) Act 1986 and in accordance with the principles of 3Rs
(replacement, reduction and refinement) in animal research and
mice were euthanised by a schedule 1 approved method (dislocation
of the neck under terminal anaesthesia). 100,000 cord blood
CD34 + cells from three different biological donors were electro-
porated and kept in culture medium for 24 hours. Cells were then
washed and resuspended in PBS + 1% FBS and injected via the tail vein
into sub-lethally irradiated female NSG (NOD.Cg-Prkdcsci-
dIl2rgtmlWjl/SzJ; Jackson laboratories) mice. Mice were monitored
daily. 16 weeks post transplantation, mice were euthanised and
human grafts were analysed by flow cytometry (detailed in Supple-
mentary Information).

Assay for transposase-accessible chromatin (ATAC)–sequencing
The protocol was adapted for small cell numbers from Buenrostro
et al28. Cells were harvested into 50μL of cold lysis buffer (10mM Tris-
HCl, pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630) and spin
down at 4 °C for 10minutes at 500 g. Nuclei were then resuspended in
50μl transposition reactionmix (25μl TD buffer, 2.5 μl Tn5 and 22.5μl
water). Post incubation for 30min at 37 °C, Transposed fragments
were purified using a Qiagen MinElute Kit into 23μl elution buffer.
Purified fragments were then amplified by PCR as previously
described.

Statistics and reproducibility
Editing experiments were performed on 6 biological replicates to
demonstrate that consistently high editing efficiencies are possible.
Randomisation and blinding was not undertaken for these experi-
ments. Staff in the animal facility were blinded to the experimental
conditions.

No statistical method was used to predetermine sample size. No
data were excluded from analyses. Experiments were not randomised
and the investigators were not blinded to allocation during experi-
ments and outcome assessment.

Data analysis
CasOFFfinder v2.4 (http://www.rgenome.net/cas-offinder/)17 and
CRISPOR18 were used to define potential gRNA related off target sites
in silico. CIRCLE-seq sequencing data was analysed using the circleseq
Python package (https://github.com/tsailabSJ/circleseq). Capture oli-
gonucleotide design: 120-bp oliogonucleotides were designed to
capture the off-target sequence using CapSequm (https://github.com/
jbkerry/capsequm). Off-target capture data were analysed using Trim
Galore (Babraham Institiute, v0.3.1) and FLASH (v1.2.11)29 and mapped
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to the genome (hg19) using Bowtie 2 (v2.3.5)30. Samtools mpileup was
used to call variant bases and a customscriptwas used to identify likely
off-target editing (https://github.com/jojdavies/Base_editing_off-
targets).

RNA-seq data was aligned using STAR (2.7.3a) to hg1931. Aberrant
splicing of Poly-A negative RNA was detected using PySam (https://
github.com/pysam-developers/pysam) find_introns method, con-
sidering position 5,248,159 of chromosome 11 (hg19) as the canonical
splice site for exon 1 of the HBB gene. An RNA variant calling pipeline
was established using GATK best practices32. In keeping with the Broad
Institutes recommendation for this tool, these data were realigned to
hg38 using STAR two-pass alignment, followed by PCR duplicate
removal andbase score recalibration. GATKHaplotypeCaller (4.0.11.0)
was then used to call variants. ATAC-seq data was aligned using Bow-
tie2 and Peak Called with MACS2. DEseq2 was run using default para-
meters to assess whether any peaks were significantly different
between edited and control samples. The false discovery rate/alpha-
value was set at 0.05.

The DeepHaem Machine learning model was adapted for
determining the effects of non-coding off-targets20. Themodel was
trained on chromatin accessibility andChIP-seq datasets generated
from haematological cell types (see Supplementary Data for
details)33. All potential off-target sites identified by CIRCLE-seq and
in silico methods were analysed. Initially sites were removed which
did not contain an adenine in the editing window. All remaining
potential base editing off-target effects within the targeting win-
dows were then analysed using the model, which only requires the
DNA sequence as an input. A P(accessible) score of 0.2 denotes a
site likely to be in an accessible chromatin site in-vivo. All sites with
a P(accessible) > 0.2 were selected. For every site a damage score
was calculated (P(accessible)control – P(accessible)edited). Damage
scores greater than 0.1 are likely to be significant, and so all sites
with a P(accessible)control > 0.2 and damage score of >0.1 were used
for further assessment. Data were visualised using Prism (9.5.0) and
Rstudio (1.2.5033).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data has been submitted to the NCBI Gene Expression
Omnibus (GSE206098). All data generated or analysed during this
study are included in this published article (and its supplementary
information files). Source data are provided with this paper.

Code availability
All custom scripts are available on GitHub (https://github.com/
jojdavies/Base_editing_off-targets). The code for the machine learn-
ing models to predict the effects of off-target mutations in the non-
coding genome is also available on GitHub (https://github.com/
rschwess/deepHaem).
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