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Evaluating the evidence for exponential
quantum advantage in ground-state
quantum chemistry

Seunghoon Lee 1, Joonho Lee 2, Huanchen Zhai1, Yu Tong 3,
Alexander M. Dalzell4, Ashutosh Kumar5,6, Phillip Helms1, Johnnie Gray1,
Zhi-Hao Cui 1, Wenyuan Liu1, Michael Kastoryano4,7, Ryan Babbush8,
John Preskill4,9, David R. Reichman2, Earl T. Campbell10, Edward F. Valeev5,
Lin Lin3,11 & Garnet Kin-Lic Chan 1

Due to intense interest in the potential applications of quantum computing, it
is critical to understand the basis for potential exponential quantum advan-
tage in quantum chemistry. Here we gather the evidence for this case in the
most common task in quantum chemistry, namely, ground-state energy esti-
mation, for generic chemical problems where heuristic quantum state pre-
paration might be assumed to be efficient. The availability of exponential
quantum advantage then centers on whether features of the physical problem
that enable efficient heuristic quantum state preparation also enable efficient
solution by classical heuristics. Through numerical studies of quantum state
preparation and empirical complexity analysis (including the error scaling) of
classical heuristics, in both ab initio and model Hamiltonian settings, we
conclude that evidence for such an exponential advantage across chemical
space has yet to be found.While quantum computersmay still prove useful for
ground-state quantum chemistry through polynomial speedups, it may be
prudent to assume exponential speedups are not generically available for this
problem.

Themost common task in quantumchemistry is computing the ground
electronic energy. The exponential quantum advantage (EQA) hypoth-
esis for this task is that for a large set of relevant ("generic”) chemical
problems, this may be completed exponentially more quickly (as a
function of system size) on a quantum versus classical computer (for a
representative sample of papers that refer to EQA, see ref. 1). Rigor-
ously, computing the ground-state of even simple Hamiltonians can be
exponentially hard on a quantum computer2. However, such Hamilto-
nians might not be relevant to generic chemistry. Thus, the specific

exponential quantum advantage (EQA) hypothesis considered here, is
that generic chemistry involves Hamiltonians which are polynomially
easy for quantumalgorithms (with respect toground-statepreparation)
and simultaneously still exponentially hard classically, even using the
best classical heuristics.

In this work, we examine the evidence for this EQA hypothesis,
within the fault-tolerant quantum setting—the most advantageous
setting for quantum computing. We do not attempt a rigorous proof
(or disproof) as such proofs cannot be obtained, not least because
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what is “generic” chemistry is not precisely defined. Instead, we pro-
ceed using numerical experiments supported by theoretical analysis,
and study whether heuristic quantum state preparation is exponen-
tially easier than classical heuristic solution in typical problems; and
whether the cost of classical heuristics in such problems, for a given
error, scales exponentially with system size.

Results
Statement of the problem
We compute the ground-state eigenvalue E of the electronic Schrö-
dinger operator (Hamiltonian) of a chemical system discretized with a
basis set, and the problem size is the basis size L. We consider the case
where increasing L corresponds to increasing physical system size (i.e.,
number of atoms) with basis size proportional to system size (other
scenarios are discussed in Supplementary Note 2.1). The absolute
ground-state energy E increases with L, and in physical problems we
expect extensivity (i.e. lim

L!1
EðLÞ / L for a chemically uniform system);

in this limit, the energy density �E = E=Lmay be the quantity of interest.
Thus depending on the setting, the relevant error can be ϵ (error in E)
or �ϵ (error in �E).

Fault-tolerant algorithms for ground-state quantum chemistry
Fault-tolerant quantum algorithms are ones which employ deep cir-
cuits (e.g., depth is a function of 1/ϵ). Themost famous one in quantum
chemistry is quantum phase estimation (QPE)3,4. We focus on QPE
for simplicity; qualitative features of the complexity remain similar in
“post-QPE” algorithms5. Phase estimation approximately measures
the energy with approximate projection onto an eigenstate. The cost
has 3 components (i) preparing an initial state Φ, (ii) the phase esti-
mation circuit, and (iii) the number of repetitions (to produce the
ground-state Ψ0 rather than any eigenstate). The cost to obtain E to
precision ϵ is

poly ð1=SÞ½polyðLÞpoly ð1=ϵÞ+C� ð1Þ

where C corresponds to (i), poly(L)poly(1/ϵ) corresponds to (ii), and
poly(1/S) ( = 1/S2 forQPE)with S = ∣〈Φ∣Ψ0〉∣ corresponds to (iii).We term
S overlap and S2 weight.

Motivated by the poly(L) cost of (ii), and assuming an expðLÞ cost
for classical solution, it is often informally stated that QPE yields EQA
for the ground-state quantumchemistry task1. However, the number of
repetitions (poly(1/S)) may also depend on L: this stems from the
quality of state preparation. The restriction to generic chemistry
effectively means we assume that good state preparation is not
exponentially hard due to unspecified additional structure. But such
additional structure could also aid classical heuristics, and for EQA, the
state preparation cost must be exponentially less than the classical
solution cost.

State preparation and EQA
As a first state preparation heuristic, we can prepare a state specified
by an approximate classical ansatz (ansatz state preparation). (We
assumeonce an ansatz solution is specified, it is easy to prepare on the
quantum device.) Often, simple states, such as the Hartree-Fock or
Kohn-Sham ground-state (single Slater determinants) are considered
in ansatz state preparation, as they are hoped to have good overlap
with Ψ0

6,7; the poly(1/S) cost is then not further quantitatively con-
sidered. But while good overlap with such simple states can be
observed in small molecules, EQA is an asymptotic statement, thus we
should consider the limit of large L.

The orthogonality catastrophe8,9 has previously been discussed in
the context of state preparation in the large L limit10. For a set of O(L)
non-interacting subsystems, the global ground-state is the product of
the subsystem ground-states, thus if the local overlap between the
approximate classical ansatz and ground-state for each subsystem

is ~ s < 1, then the global overlap is sO(L) i.e., it decreases exponentially.
This is sometimes viewed as an obstacle to ansatz state preparation,
but in fact it does not rule it out; the issue is more subtle, because
the above analysis assumes that both the ansatz and the actual ground-
state have some product structure. But one need not consider a
classical ansatz with (approximate) product structure; and, at least in
principle, ground-state correlations could mean that the global over-
lap is not guaranteed to be well approximated by a product of local
overlaps. Also, even if one uses a product-like ansatz to approximate a
ground-state of near-product form, one can improve the local overlap
as a function of L, such that the global overlap is 1/poly(L) or better.

The relevant consideration for EQA, however, is that if classical
heuristics can efficiently prepare states with such good overlap for
large L (for some systems), theymay also efficiently obtain the ground-
state energy to the desired precision.

As an alternative to ansatz state preparation, we can prepare the
state adiabatically (adiabatic state preparation (ASP)). This means, we
evolve slowly from the ground-state of a solvable initial Hamiltonian to
that of the desired Hamiltonian4,11–13. This requires that the ground-
state gap along the path be not too small; for paths where the smallest
minimum gap Δmin ≥ 1=poly ðLÞ (which we will term “protected”), ASP
plus QPE provides a polynomial cost quantum algorithm. Since a
protected gap is not guaranteed using an arbitrary initial Hamiltonian
and path, ASP is a heuristic quantum algorithm. An extreme problem
that expresses the difficulty of finding a good path is unstructured
search, where Δmin acquires a strong dependence on the ground-state
ϒ0 of the initial Hamiltonian, Δmin ∼ ∣hϒ0∣Ψ0i∣14, yielding exponential
cost when using adiabatic algorithms.

The above raises several issues. First, in correlated quantum sys-
tems with competing ground-states, different phases could be sepa-
rated by first-order phase transitions (where the gap is not protected)
requiring ASP to start in the correct phase. Assuming one uses classical
heuristics to prepare such a starting point and choice of path, one
encounters similar questions to those raised in the discussion of ansatz
state preparation. Second, one might ask how common the above
situation is in generic chemistry, i.e., whether interesting chemical
problems allow for initial Hamiltonians and paths with a protected gap
to be trivially found.

The power of classical heuristics
"Exact” classical methods for ground-state determination, such as
exact diagonalization, are exponentially expensive on a classical
computer (see Supplementary Note 2.3). Thus the typical methods
used in quantum chemistry are classical heuristics, which come in a
wide variety for different problems (see Supplementary Note 2.2).
The critical questions for EQA are (i) do these heuristics require expðLÞ
cost for given ϵor �ϵ in their applicationdomain, (ii) does thepatchwork
of heuristics cover chemical space, and (iii) if there are gaps in cov-
erage in practice, do we require classical methods of expðLÞ cost to
cover them?

EQA assumes exponential-scaling cost of classical heuristic algo-
rithms for given ϵ (or �ϵ) across generic problems. We will examine this
assumption in our numerical experiments. However, as actually
employed in calculations, classical heuristics are often executed with
poly(L) cost without necessarily achieving a specific accuracy, com-
plicating the comparison with rigorous quantum algorithms. In parti-
cular, the error dependence can impact the EQA comparison, for
example, a poly ðLÞ expð�ϵ�1Þ classical algorithm implies expðLÞ cost for
given ϵ. Thus wewill also examine the empirical precision dependence
of classical heuristics with respect to ϵ or �ϵ.

Analysis of state preparation in Fe-S clusters of nitrogenase
Iron-sulfur (Fe-S) clusters are amongst themost common bioinorganic
motifs in Nature15, and the Fe-S clusters of nitrogenase have become a
poster child problem for quantum chemistry on quantum devices16,17.
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In the current context, they provide a concrete setting to assess the
EQA hypothesis, in particular, the behavior of quantum state pre-
paration strategies.

Specifically, we consider iron-sulfur clusters containing 2, 4, 8
transitionmetal atoms (the latter includes the famousFeMo-cofactor) in
Fig. 1. The 2, 4 metal clusters will be referred to as [2Fe-2S], [4Fe-4S]
clusters, while the 8 metal clusters include the P-cluster (8Fe) and the
FeMo-cofactor (7Fe, 1Mo).Wenote that theP-cluster andFeMo-cofactor
are the largest Fe-S clusters found inNature.We represent theelectronic
structure in active spaces with Fe 3d/S 3p character constructed from
Kohn–Sham orbitals. Within the occupation number to qubit mapping,
this corresponds to up to 40 qubits ([2Fe-2S]), up to 72 qubits ([4Fe-
4S]), and up to 154 qubits (P-cluster and FeMo-co) (see Supplementary
Note 4.1). For [2Fe-2S], exact solutions can be obtained using exact full
configuration interaction (FCI). For all clusters, we obtain a range of

approximate solutions using the quantum chemistry density matrix
renormalization group (DMRG)18–22 with a matrix product state (MPS)
bond dimension D; increasing D improves the approximation, allowing
extrapolation to the exact result (see Supplementary Note 4.3). Note
that the classical calculations in this section are of interest mainly to
provide data to understand quantum state preparation.

We first examine the nature of the ground-stateΨ0 and the cost of
ansatz state preparation. For this, we compute the weight of a Slater
determinant S2 = ∣〈ΦD∣Ψ0〉∣2, shown in Fig. 1B.ΦD is parametrized by its
orbitals {ϕ}, and we choose a priori, or optimize, {ϕ} to maximize this
weight (for a best-case scenario that uses information from the solu-
tion Ψ0, see Supplementary Note 4.4). The weights decrease expo-
nentially over a small number of metal centers, and are already very
small in FeMo-co (~10−7). The number of QPE repetitions is poly(1/S),
yielding a large prefactor even for an “optimized” Slater determinant.
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Fig. 1 | Ansatz state preparation and ansatz weights for model Fe-S clusters.
A Structural models of [2Fe-2S], [4Fe-4S], P-cluster, and FeMo-co. BWeight of two
different types of ansatz state: largest weight determinant (ΦD) (purple) and largest
weight configuration state function (ΦCSF) (orange) as a function of the number of
metal centers in each cluster (using split-localizedorbitals). PN, Psyn, Pox here refer to

different oxidation states of the metal ions in the P-cluster. Both types of ansatz
state show anexponential decrease inweightwith the number ofmetal centers. For
the [2Fe-2S] clusters, we also show results for the largest weight determinant using
natural orbitals (empty symbols).
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full electron interaction amongst nact orbitals. Additional discussion in Supple-
mentary Notes 3.3 and 5.
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Wenext preparemore complex states with better overlap.We use
a single configuration state function (a linear combination of Slater
determinants that is an eigenfunction of total spin23). The weights
improve but still show exponential decay to small values.

These results indicate that the magnitude of the ansatz overlap
can become a relevant concern even in systems of modest size when
using ansatz state preparation, thus we should consider improved
state preparation. Assuming the ground-state is of approximately
product form, we can obtain some rough insight into improved global
ansatz state preparation (e.g., for eight metal clusters) from the
behavior of improving the state locally (i.e., for the twometal clusters);
we require poly(1/I) cost for the [2Fe-2S] fragment (I is the infidelity
1 − S2) for efficient global state preparation. In Supplementary Note 3.1
we show that this cost is indeed poly(1/I), but also that the energy error
is poly(I). Thus under these assumptions, improving the local overlap
sufficiently also implies efficient classical solution for the global
energy. For any finite system, it may be possible to engineer a practical
quantum advantage for some target precision from a sufficiently good
ansatz overlap and a favorable ratio of classical and quantum costs.
But the problem of finding a classical heuristic that efficiently yields
1/poly(L) overlap but which cannot also efficiently reach the target
precision remains.

We next compute the ASP cost for a simplified nact = 12 active
space (24 qubit) [2Fe-2S] model (see Supplementary Note 5.1). The
path is a heuristic input, and we use one which linearly interpolates
the Hamiltonian H(s) (with ground-state ϒ0(s)) between an initial
Hamiltonian (s = 0, with ground-state ϒ0(0)) and the true Hamiltonian
(s = 1, with ground-state ϒ0(1) ≡Ψ0); the path preserves spin symmetry.
We consider two families of H(0); a set of mean-field Hamiltonians
(with different Slater determinant ground-states) and a set of inter-
acting Hamiltonians (these retain interactions among q active spin-
orbitals (qubits), definitions in Supplementary Note 5.2).

Tight bounds on the ASP time (TASP) are difficult to obtain (see
Supplementary Note 2.5). However, we have verified that the adiabatic
estimate Test

ASP ∼ max
s

τðsÞ, with τ(s) = ∣〈ϒ0(s)∣dH(s)/ds∣ϒ1(s)〉∣/Δ2(s) with
Δ(s) the ground-state gap and ϒ1(s) the first excited state of H(s), is a
reasonable estimate for the desired preparation fidelity (here assumed
75% final weight) by carrying out time-dependent simulations of ASP
for simple instances to compute TASP=T

est
ASP (Fig. 2B); for a range of

examples, this ratio is O(1). Thus we use Test
ASP as the ASP time below.

Figure 2C shows TASP across the sets of H(0); it varies over eight
orders of magnitude depending on the choice of H(0). We see a
trend 1=ðmin

s
ΔðsÞÞ∼ poly ð1=∣hϒ0∣Ψ0i∣Þ and thus TASP ~ poly(1/∣〈ϒ0∣Ψ0〉∣)

reminiscent of unstructured search. The practical consequence is that
an a priori good choice of initial Hamiltonian is non-trivial; the mean-
field Hamiltonian with the lowest ground-state energy gives a large
TASP > TQPE (an estimate of the total coherent QPE evolution time for
90% confidence, ϵ = 10−3Eh, see analysis in Supplementary Note 3.5),
while out of the interacting H(0)’s, we need to include almost all the
interactions when diagonalizing H(0) for the initial state (20 out of 24
qubits) before TASP < TQPE. Although these results are for the smallest
FeS cluster, the dependence ofTASP on S is problematic for EQA should
it scale to larger interesting problems, and it illustrates the importance
of heuristics to find a good initial starting point for ASP in relevant
chemical problems. As discussed above, if classical heuristics are used
for this task, this raises the question of whether they are exponentially
advantageous over the classical heuristics for solution.

Empirical complexity analysis of classical heuristics
The Fe-S cluster simulations raise questions as to whether high quality
quantum state preparation can be assumed to be exponentially easier
than classical heuristic solution. We now consider if classical heuristics
in fact display expðLÞ cost for fixed ϵ or �ϵ, as is required to establish
EQA.We do so by considering examples that arguably represent much
of chemical space, which are evidence of classical heuristics scaling to
large problems and high accuracy at polynomial cost for fixed �ϵ. (If the
error scaling is poly ð1=�ϵÞ independent of L, this further implies poly(L)
cost overhead to achieve fixed ϵ). We note that the calculations below
represent only a small slice of relevant evidence from classical calcu-
lations; related calculations can be found in the literature, although
our focus here is on characterizing the calculations e.g. with respect to
cost and precision in a way useful for understanding EQA. Some fur-
ther discussion of these systems and other calculations relevant to
EQA is in Supplementary Note 3.6.

For “single-reference” chemical problems (see Supplementary
Note 6) coupled-cluster (CC) wavefunctions are often described as
the gold-standard. The heuristic assumes that correlations of many
excitations can be factorized into clusters of fewer excitations; if
the maximal cluster excitation level is independent of L, the cost is
poly(L) (assuming a non-exponential number of iterations for solution)
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A Energy error of a nitrogen molecule (equilibrium geometry) as a function of the
level of CC approximation, against a computational time metric. Data taken from
ref. 37, timemetric defined in SupplementaryNote 3.7. The observedprecision cost
is like poly(1/ϵ). B Cost of a state-of-the-art reduced-scaling coupled-cluster
(CCSD(T)) implementation scales nearly-linearly with the system size in gapped
systems, as demonstrated here for n-alkanes (CmH2m+2) with m = [20…120]. Size-

extensivity of the coupled-cluster ansatz ensures constant error per system sub-
unit, as illustrated in the subfigure for the error of explicitly-correlated reduced-
scaling CCSD(T)34 (see Supplementary Note 6.1 for details) with respect to the
available experimental gas-phase enthalpy of formation in the standard state for n-
alkanes with m = [2…20]. C Reduced-scaling CCSD(T) implementations can be
routinely applied to systems with thousands of electrons on a few computer cores,
as demonstrated here for a small fragment of photosystem II38.
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without guaranteed error. To establish the error dependence, Fig. 3A
shows the empirical convergence of error as a function of cost,
consistent with poly(1/ϵ) scaling, for a small molecule (N2). By the
extensivity of the coupled-cluster wavefunction, this translates to
polyðLÞpoly ð1=�ϵÞ cost for a gas of non-interacting N2 molecules, and
thus poly(L)poly(1/ϵ) given the error convergence above. We can take
this as a conjectured complexity of coupled cluster in single-reference
problems. To practically test this scaling form on larger systems, we
introduce another heuristic. CCmethods can be formulated to exploit
locality, a commonly observed and widely conjectured feature of
physical ground-states (including gapless systems, see Supplementary
Note 2.4). This yields the local CC heuristic that has cost linear in L in
gapped systems24,25. Figure 3B illustrates the application of local CC to
n-alkanes, a set of organic molecules, with the associated computa-
tional timing. This suggests the cost is O(L), while the computed
enthalpy of formation per carbon achieves constant error versus
experimental data, reflecting constant �ϵ as a function of L, consistent
with the conjectured complexity. Many biomolecules are single-
reference problems, allowing local coupled-cluster methods to be
applied to protein-fragment-scale simulations (Fig. 3C).

Strongly correlated materials (e.g., bulk analogs of the Fe-S clus-
ters) remain challenging to treat with ab initio quantum chemistry
(although there has been considerable progress in recent years26,27). To
obtain insight into the computational complexity, it is more practical
to study simpler models of correlated materials (e.g., the Heisenberg
and Hubbard models, often used to study quantummagnets and high
temperature superconductors28,29). Many methods can now access
large parts of these model phase diagrams to reasonable accuracy
without expðLÞ cost. The useof locality is common to several heuristics
for strongly correlated problems; tensor networks are an example of
such a class of heuristics and we examine illustrative applications
below. (Note that this is not an exhaustive study of tensor networks,
nor of other heuristics (such as quantum embedding); for additional
discussion see Supplementary Note 3.6).

Figure 4 shows results from a tensor network ansatz30, where the
expressiveness of the ansatz is controlled by the bond dimension
D. The contraction here is explicitly performed with poly(D)
(typically a high polynomial) cost, thus for given D (assuming the
number of iterations is not exponential in D or L (see Supplementary
Note 7)), the algorithm cost is poly(L)poly(D), without guaranteed
error. �ϵ and computational cost are shown as a function of L in the 3D
cubic Heisenberg model, and �ϵ as a function of D and L in the 2D
Hubbard model. (Note: these examples were chosen for ease of
generating exact data, rather than representing the limits of classical
methods in size, accuracy, or complexity of physics; see Supple-
mentary Note 3.6 for other examples). Figure 4A shows that the cost
is close toO(L) in the 3DHeisenbergmodel for up to 1000 sites, while
achieving close to constant �ϵ. Less data is available for the error
scaling as accessible D remain small; in particular it is currently
too expensive to reach large enough D to meaningfully study the �ϵ
scaling in 3D. However in the 2D Hubbard model (Fig. 4B) we see
�ϵ∼ 1=poly ðDÞ (or slightly better) across a range of studied D, (with a
weak dependence on L) even at the challenging 1/8 doped point of
the model. Assuming this error form holds asymptotically, the
observed empirical cost is polyðLÞpolyðDÞpoly ð1=�ϵÞ, which corre-
sponds to poly(L)poly(D)poly(1/ϵ) for the assumed error scaling, and
we can conjecture that this holds also in 3D.

Although the Hubbard and Heisenberg models are believed to
contain the basic physics of many strongly correlated materials,
moving from such simplified models to more detailed quantum
chemistry models (i.e., ab initio Hamiltonians) will certainly increase
complexity. But establishing EQA requires evidence that adding the
polynomial number of terms in the Hamiltonian causes the classical
heuristic to fail or become exponentially expensive. The history of
development of classical heuristics does not support this, as methods
originally developed on simpler models routinely graduate to ab initio
simulations. For example, the coupled-cluster methods described
above were first developed for use in model simulations, as were
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simpler tensor networks such as the density matrix renormalization
group and tree tensor networks nowused in ab initio calculations18,31,32;
Supplementary Note 3.6 providesmore discussion of this point as well
as shows the performance of a quantum embedding heuristic for the
2D and 3D hydrogen lattices, ab initio analogs of the 2D Hubbard and
3D Heisenberg systems in Fig. 4. Further examples in the literature
consider the application of many different classical heuristics to ab
initio or model chemical ground-states of complex systems including
strongly correlated materials22,25–27,29,33–36. Although the computational
complexity is not formally analyzed, the success of such studies of
large and complex problems is compatible with the view that the
ground-state quantum chemistry problem is often soluble with clas-
sical heuristics, to an energy density error �ϵ relevant to physical pro-
blems, with poly(L) cost. Thus, while there are many chemistry
problems that cannot currently be addressed by classicalmethods and
further study can be expected, the barrier to solution may be of
polynomial (even if impractically large) rather than exponential cost.

Discussion
We have examined the case for the exponential quantum advantage
(EQA) hypothesis for the central task of ground-state determination in
quantum chemistry. The specific version of EQA that we examined
required quantum state preparation to be exponentially easy com-
pared to classical heuristics, and for classical heuristics to be expo-
nentially hard. Our numerical simulations highlight that heuristics are
necessary to achieve efficient quantum ground-state preparation. At
the same time, we do not find evidence for the exponential scaling of
classical heuristics in a set of relevant problems. The latter suggests
that quantum state preparation can be made efficient for the same
problems. However, as EQA is based on the ratio of costs, this does not
lead to EQA.

Numerical calculations are neither mathematical proof of
asymptotics with respect to size and error, nor can we exclude EQA in
specific problems. However, our results suggest that without new and
fundamental insights, there may be a lack of generic EQA in this task.
Identifying a relevant quantum chemical system with strong evidence
of EQA remains an open question.

We neither consider tasks other than ground-state determination,
nor do we rule out polynomial speedups. Depending on the precise
form, polynomial quantum speedups could be associated with useful
quantum advantage, as even a polynomial classical algorithm does not
mean that solutions can be obtained in a practical time. Both aspects
may prove important in the further development of quantum algo-
rithms in quantum chemistry. For further discussion, we refer to the
FAQ (see Supplementary Note 1).

Data availability
The FCI/DMRG data for state preparation in Fe-S clusters of nitro-
genase are available in Supplementary Notes 3.1, 3.2 and 4.1–4.6. The
ASP data are available in Supplementary Notes 3.3, 5.1, and 5.2. The CC
data are available in Supplementary Notes 6.1 and 6.2 The PEPSDMRG/
VMC data are available in Supplementary Notes 7.1–7.3.

Code availability
Source codes are available from the authors on request.
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