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Evolution of cortical geometry and its link to
function, behaviour and ecology

Ernst Schwartz 1, Karl-Heinz Nenning1,2, Katja Heuer 3, Nathan Jeffery4,
Ornella C. Bertrand 5,6, Roberto Toro3, Gregor Kasprian1, Daniela Prayer 1 &
Georg Langs 1,7

Studies in comparative neuroanatomy and of the fossil record demonstrate
the influence of socio-ecological niches on the morphology of the cerebral
cortex, but have led to oftentimes conflicting theories about its evolution.
Here, we study the relationship between the shape of the cerebral cortex and
the topography of its function. We establish a joint geometric representation
of the cerebral cortices of ninety species of extant Euarchontoglires, including
commonly used experimental model organisms. We show that variability in
surface geometry relates to species’ ecology and behaviour, independent of
overall brain size. Notably, ancestral shape reconstruction of the cortical sur-
face and its change during evolution enables us to trace the evolutionary
history of localised cortical expansions, modal segregation of brain function,
and their association to behaviour and cognition. We find that individual
cortical regions follow different sequences of area increase during evolu-
tionary adaptations to dynamic socio-ecological niches. Anatomical correlates
of this sequence of events are still observable in extant species, and relate to
their current behaviour and ecology. We decompose the deep evolutionary
history of the shape of the human cortical surface into spatially and temporally
conscribed components with highly interpretable functional associations,
highlighting the importance of considering the evolutionary history of cortical
regions when studying their anatomy and function.

In mammals, the cerebral cortex represents the most important ana-
tomical structure for cognition1. As such, it is the focal point of a large
body of neuroscientific research, investigating its numerous beha-
vioural correlates as well as its exceptional evolutionary expansion
and progressively extended ontogeny in humans2,3. Despite dramatic
evolutionary changes and diversification in the mammalian
lineage4, the organisation of the cerebral cortex retains a range of
common underlying attributes. For example, folding wavelength5,

myeloarchitecture6, as well as structural7 and functional connectivity8

are sufficiently similar to establish correspondences across species.
These commonalities coincide with a remarkably stable macroscale
topography of the mammalian cerebral cortex9–11 characterised by
anatomically and functionally defined cortical areas that evolved and
developed under strong genetic12 and ecological13 constraints.

However, the relationships between these organisational princi-
ples of cortical structure and function are yet poorly understood14.
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Aside from insights into evolution, understanding the nature and
causes of the brains’ phenotypic variability is relevant when translating
neuroscientific results inmodel animals to humans. Here, studying the
evolutionary history of the brain poses a promising avenue of
research15,16.

The heterogeneous change of the extent and number of indivi-
dual cortical areas during evolution17 has spurred a debate on whether
these changes of function and topography occurred in a concerted
manner18 or are better described as a mosaic of dynamically changing
areas19. Comparative studies of both extinct and extant species have
been used to study the evolutionary history of the cerebral cortex. Due
to taphonomic processes, the estimation of this history with reference
to extinct taxa has come to heavily rely on measures derived from
cranial endocasts. Such measures of endocranial volume3, shape20, or
osteological landmarks21 all represent the outermeningeal surface and
thus lack fidelity regarding the true cortical surface. This loss in ana-
tomic precision limits the translation across both extant and extinct
taxa and has led to conflicting theories and continued controversy
regarding, for example, primate brain evolution22–24.

The recent availability of large open image datasets of rodents25,
non-human primates26,27, human subjects28,29 and fossil taxa30 has
facilitated comparative analyses of brain organisation and function31,32.
However, studies are either limited to phylogenetically closely related
species33,34, a-priori defined spatial homologies6,35, or avoid establish-
ing correspondences between morphologically and functionally
divergent domains altogether by focusing on global descriptions of
brain organisation5,36–38.

Addressing these shortcomings and adequately studying the dis-
tributed patterns and sources of cortical variability and evolution
requires a common analytical framework31 that bridges the gaps
between the analysis of humans, extantmammals and the fossil record.

Here, we link phylogenetic and geometric methods to establish a
common reference frame for the cerebral cortex of Euarchontoglires,
the supra-order containing both humans as well as commonly used
neuroscientific model animals such as mice, rats, macaques and mar-
mosets. By establishing group-wise correspondences between all
cortical surfaces in a dataset of ninety different species, we show how
ecological adaptations are reflected in the shape of the surfaces of
cerebral cortices of livingmembersof Euarchontoglires.Weuse spatial
statistics to quantify the process of modal segregation of brain func-
tion. Finally, we combine ancestral state reconstruction with statistical
decoding of brain activation to derive a historical time-line ofmodules
of evolutionary adaptations of the cortical shape in the deep ancestral
human lineage since the last common ancestor of rodents and pri-
mates. The resulting aligned surfacemeshes for all extant species, their
coordinates for commonly used template spaces and tools for map-
ping between them as well as their estimated ancestral shapes are
available at https://github.com/cirmuw/EvolutionOfCorticalShape.

Results
An evolutionary common reference frame of cortical geometry
for comparative neuroscience
We established a common reference frame to map correspondences
between densely sampled cortical surface models of ninety extant
species of Primates (58), Rodentia (28), Lagomorpha (2), Dermoptera
(1) and Scandentia (1) (Fig. 1; Supplementary Data 1a). For this, we first
performed manual segmentations of the cortical surfaces on available
MRI (75), DiceCT (7) and serial histology (8) data. We computed the
convex hull of these segmentations as the simplest covering of the
outer surface without any folds or creases. The surface areas of the
resulting as well as the original model serve as global features of the
cortical geometry.We furthermorecollected simplifieddescriptions of
species behavioural ecology in terms of sociality, activity pattern and
preferred habitat (Fig. 1; Supplementary Data 2). We obtained a cali-
brated phylogeny for the analysis from the consensus tree of 100

realisations of a tip-dated Bayesian model of divergence times39 on
which we estimated the ancestral states of the area of the cortical
surfaces and their convex hulls40 as proxies for cortical morphology
(Supplementary Figs. 1 and 2). We then performed pairwise matching
between the cortical surfaces of sister species, and approximated their
ancestral state by interpolating in the spaceof smooth shells41,42. There,
we used the relative differences in the global shape features to
determine the interpolation factor. The relative position of the esti-
mated ancestral and observed daughter species in the nonlinear space
of smooth shells thus corresponds to the euclidean distance between
the corresponding global shape features (Fig. 2). We iterated these
steps, progressing backwards in the phylogenetic tree. Upon reaching
its root node, we resampled all surfaces to a common topology by
placing surface vertices at geometrically corresponding locations43.
Details of the modelling and analytic workflow are provided in
the Supplementary Methods.We evaluated the appropriateness of the
resulting common reference frame by relating measurements
obtained from the inherent group correspondences to established
knowledge from evolutionary neuroscience.

Neuroecology of cortical morphology
The relationship between the morphology of a-priori defined cortical
areas and sensory specialisation has been studied extensively in a
variety of species, both in their natural state as well as bymanipulation
such as post-natal enucleation44. Using the common cortical reference
space, we performed a data-driven analysis to study if the relationship
between the morphology of cortical areas and sensory specialisation
can be observed at the whole-brain level.

First, we performed phylogenetic principal component analysis
(pPCA)45 to reduce the dimensionality of our dataset and tested for the
association between the extracted modes of variation describing the
shape of the cerebral cortex and ecological and behavioural niches. We
found5pPCAcomponentsout of 21 (Supplementary Fig. 2) that showed
significant (q <0.05, Wilcoxon-Rank-Sum/Mann-Whitney U-Test, FDR
corrected) association for any of the observed ecological and beha-
vioural variables of arboreality, terrestriality, fossoriality or large group
size. Despite the strong overlap with group size, no component was
associated with diurnality. We then aggregated the information con-
tained in the pPCA modes that showed a significant relationship to
individual ecological factors (Supplementary Fig. 2). Based on these
factors, we estimated the areal differences corresponding to each
ecological variable and decoded the resulting expansion maps into
neuroscientific concepts (Fig. 3; Supplementary Data 3).

By mapping the relative expansion patterns into a functionally
defined parcellation of the human cerebral cortex46, we found sig-
nificant differences (Kruskall-Wallis, p < 0.001, Supplementary Data 5)
in the cortical expansion patterns associated with every investigated
ecological and behavioural variable except diurnality. The largest
effects were observed for ecological variables of habitat (fossorial:
p < 1e-6, η2 = 0.21, terrestrial: p < 1e-6, η2 = 0.14, arboreal: p < 1e-6,
η2 = 0.18) whereas large group size showed lower effect (p < 1e-
6, η2 = 0.1).

Post-hoc tests revealed significantly differing expansion patterns
associated with both ecological and behavioural variables. Visual and
dorsal attention areas are most strongly affected by habitat, where
they are reduced in fossorial and expanded in arboreal species. Their
relative expansion is also positively associated with sociality (i.e., large
social groups), while limbic areas show a negative relationship (Sup-
plementary Fig. 5). We found a significant correlation between the
pairwise effect measures for all variables related to habitat (fossor-
ial:terrestrial: r(19) = 0.592, p = 7.74e-3, 95% CI = [0.145, 0.839], fossor-
ial:arboreal: r(19) = 0.635, p = 4.33e-3, 95% CI = [0.206, 0.859],
terrestrial:arboreal: r(19) = 0.933, p < =1e-6, 95% CI = [0.797, 0.979],
Supplementary Data 4a) that implied an ordering in terms of habitat
complexity (Figs. 4a and 6b). We performed a joint analysis of the
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habitats ordered from arboreal to terrestrial to fossorial species
(Fig. 4c; SupplementaryData 4b) that revealed a sequential decrease in
relative cortical expansion in visual, motor, frontal parietal as well as
default mode related areas. We quantified the consistency of these
effects using repeated measurements correlation47 (Supplementary
Data 4c), which were significant in all but the ventral attention areas
(rrm(241) = −0.048, p =0.45, 95% CI [−0.174, 0.078]), whereas visual
(rrm(323) = −0.802, p < 0.0001, 95% CI [−0.837, −0.759]) and dorsal
attention regions (rrm(243) = −0.762, p <0.0001, 95% CI [−0.810,
−0.704]) were most strongly affected by differences in habitat com-
plexity. Together, these results show that the morphology of the cer-
ebral cortex reflects ecological and behavioural factors that pose
specific cognitive demands to individual species48.

Evolution of the topography of modality-specific functional
areas in the cerebral cortex
Evolutionary adaptation to specific environmental niches and neuro-
plasticity of the cerebral cortex cause individual cortical areas to

become more attuned to specific types of sensory processing49,50. In
extant species, this adaptationwas successful and resulted in increases
in overall body and brain size. The combination of these effects leads
to an expansion of cross-modal processing regions and a segregation
of sensory processing regions51.

In order to test if the proposed common reference frame
reflects this cortical organising principle, we projected a map of
cortical sensory specialisation for auditory, visual and somatosen-
sory processing of individual brain regions52 onto the common
space to estimate the functional modal specialisation of cortical
areas in the rodent-primate ancestor (Fig. 5). Using the cosine dis-
tance between sensory specialisation measures we then performed
semivariogram modelling with respect to geodesic distance on
all cortical surfaces. In spatial statistics, the largest distance at
which two measurements are spatially autocorrelated is called the
range of the model. A decreasing range value corresponds to
increasing segregation into modality specific areas (Supplemen-
tary Fig. 9).

Fig. 1 | Phylogenetic tree of the dataset used in this study. The dataset covers
90 species (58 primates, 28 rodents, 2 lagomorphs, 1 scandentia, 1 dermoptera), for
which 5 binary ecological and behavioural categorical indicator variables were
collected (Large group size, diurnality, arboreality, terrestriality and fossoriality,
see Supplementary Datas 1a, 2a and 2b). Estimates of the morphology of potential
ancestral shapeswere computed after iterative pairwise alignment of sister species.

The resulting surface models are compared with endocasts (Supplementary
Data 1b) obtained from phylogenetically closely related fossil endocasts at the
branching points indicated by the letters A-I, highlighting the morphological
plausibility of the results and consequently the underlying surface
correspondences.
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Fig. 2 | Reconstructing the cortical shape of a common ancestor. Overview of
the steps required to perform shape alignment and ancestral state reconstruction
between the surfacemodels of the cerebral cortices of two sister species. a For two
species, anatomy and geometric features are assigned to each point on their cor-
tical mesh; (b) after spectral embedding of both surfaces, alignment establishes

dense correspondencebetween the cortices of the two species; (c) the shapeof the
common ancestors is reconstructed based on these correspondences by inter-
polating in the spaceof smooth shells; (d) finally, cortical features are estimated for
the common ancestor, and the reconstruction is iterated until the root of the
phylogenetic tree is reached.

Fig. 3 | Relative expansion along ecological dimensions reveals functionally
associated areal patterns across the cortex. The changes in surface area between
the extremes of synthetically generated linear combinations of pPCA modes
associated with individual ecological variables are subjected to decoding via the
NeuroSynth database. Correlation of the expansion maps and individual terms are

colour-coded for each socio-ecological variable. Retaining the 99th percentile of
most strongly correlated terms (Supplementary Data 3) indicate that these
expansion maps encode related, semantically meaningful concepts, thus high-
lighting the association of evolutionary adaptive processes in both behavioural and
ecological variables and cortical morphology.
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In extant species, the range parameter is consistently higher in
primates (0.567–0.998) than in rodents (0.273–0.545, Fig. 6c; Sup-
plementary Fig. 6; Supplementary Data 6a), indicating an increase in
surface area attributable tomulti-modal association cortex. In termsof
socio-ecological parameters, the joint analysis of rodents and primates
is dominated by the inter-order differences and showed significant
difference in range for arboreality (r(88) = 0.397, q <0.001, Δ =0.338,
95% CI [0.094, 0.342]), fossoriality (r(88) = 0.488, q <0.001,
Δ = −0.375, 95% CI [−0.449, −0.291]) and group size (r(88) = 0.368,
q <0.001, Δ =0.157, 95% CI [0.054, 0.233]) as well as diurnality
(r(88) = 0.62,q <0.001,Δ = 0.392, 95%CI [0.170, 0.385]). The valueofΔ
is positive if the range value is higher for the present compared to the
absent socio-ecological parameter. Thus, arboreality, group size and

diurnality are relatedwith less segregation, while fossoriality coincides
with higher segregation of modality specific areas. In rodents, analysis
of the relationship between ecological variables and spatial statisticsof
modal integration revealed significant negative effect for fossorial
habitat (r(21.881) = 0.599, q =0.011,Δ = −0.052 95%CI [−0.083, −0.021)
indicating higher segregation, whereas in primates, we observed
increasedmodal integration inmore gregarious species (r(56) = 0.374,
q =0.01, Δ =0.088, 95% CI [0.029, 0.146]) as well as in diurnal com-
pared to nocturnal species (r(41.206) = 0.57, q < 0.001, Δ = 0.0.096,
95% CI [0.053, 0.1460]).

Finally, we estimated the evolution of spatial dependence of
modal specificity by fitting semivariogram models on the ancestral
state reconstructions of the cortical surfaces in the deep ancestral

Fig. 4 | The correlation structure between expansion patterns associated with
ecological and behavioural variables reveals a putative ordering of cortical
adaptation to habitat complexity. a We used two-sided Pearson correlation
(n = 21, the number of pPCA dimensions used in the analysis) between the matrices
of pairwise effect measures of each observed ecological and behavioural variable to
highlight the ordered nature of the effect of habitat complexity on the differential
expansion of cortical areas. Significant correlation are indicated by *p <0.05,
**p <0.01, ***p <0.001. Statistical information is provided in SupplementaryData 4a.
b Computation of relative measurement correlation requires a metric for the
explanatory variables of the individual groups. A measure for the relative habitat
complexity of fossorial species (−0.278) is computed from a tentative ordering of
habitat complexity and by fixing the two more complex habitats that contain
“arboreal” (1) and “terrestrial” (0) species. This scaling is applied globally to all
relative expansionmaps and does thus not bias the analysis of relative expansion of
specific cortical regions with respect to each other amongst habitats. c Analysis of

the effects of habitat on the surface area of functionally defined regions in the
cerebral cortex revealed a putative ordering related to habitat complexity. Violin
plots of the distribution of local expansion values in each region for each map
associated with a specific habitat are shown together with median values and first
and last quartile + /− 1.5 interquartile range (IQR), as well as 95% percentiles of the
output of the repeated measurements correlation model of the same values. The
dorsal attention areas for terrestrial and fossorial and the ventral attention regions
for arboreal and terrestrial species were the only regions showing no significant
(two-tailed Friedman test) effects in terms of relative expansion, while the limbic
areas where the only ones to show significant relative expansion in association to
fossoriality (r = 0.628, p < 1e-6, 95%CI = [0.584, 0.671], FDR-corrected). All statistical
information is available in Supplementary Data 4b). Repeated measurement corre-
lation analysis (shown as predicted correlation for each functionally defined region
together with 95% confidence intervals) corroborated this result by indicating non-
significant effects only for the ventral attention network (Supplementary Data 4c).
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human lineage. We observed a strong positive relationship
(r(8) = 0.714; p = 0.002; Fig. 6b; Supplementary Data 6b) between
estimated divergence times and the spatial correlation range.

Localised evolutionary cortical expansion in Homo
The fossil record does not allow for the precise reconstruction of the
cortical shape, butmuch information about the behaviour and ecology
of ancestral species can be gathered from skeletal and artifactual
remains53. Mapping cortical surfacemodels of all species to a common
reference frame enables approximating the progression of local mor-
phological changes in individual lineages during evolution. Provided
the proposed alignment is correct, we expect the sequence of ances-
tral states of the cerebral cortex shape in the evolutionary history of
humans to reflect adaptations to ecological niches and to therefore
agree with established paleontological knowledge. At the same time,
the reconstructed sequence enables a deeper investigation beyond the
detail level of prior evidence.

In order to test this hypothesis, we calculated the expansion of
brain regions between estimates of ancestral cortical shapes at
branchingpoints of theunderlyingdeepphylogeny anddecoded these
maps by correlating them with human cortical activation patterns
associatedwith neuroscientific terms54. At each time-point, we kept the
1% most strongly correlated terms, resulting in a description of the
functional association to evolutionary changes in the cerebral cortex
morphology (Fig. 7; Supplementary Data 7).

Hierarchical clustering (Supplementary Fig. 3) of the resulting
expansion trajectories revealed 7 distinct evolutionary components

(silhouette coefficient 0.574) that summarise the functional correlates
of the morphological evolution of the human cerebrum. The maxima
of association between expansion and functional categories of the
components revealed a sequence of neuromorphological stages,
starting with the expansion of visual areas, followed by para-
hippocampal regions in the late Cretaceous, auditory and sensory-
motor areas in the early Oligocene until the mid-Miocene and finally
expansion of association areas in the late Miocene and Pliocene up
until the present day.

We then compared the evolutionary expansion patterns in the two
distinct lineages of mice and humans (Supplementary Fig. 4) as they
represent the twomost commonly studied species of Euarchontoglires.
We calculated the relative area of each element in the cortical surface
models in each lineage, interpolated these values at consistent time-
points and computed the pairwise correlation between each resulting
vector. The resultingmeasure of progressive divergence betweenmice
and humans during the evolution of their cortical shapes showed
strong correlation with estimates of atmospheric oxygen levels55

(r(84) = 0.915, p <0.001, 95% CI [−0.944, −0.873], Supplementary
Data 8a). That is, we observed accelerateddivergenceduringperiods of
rapid decline in atmospheric oxygen levels. In order to quantify the
origin of this divergence, we aggregated the areas of eachmodel using
a functional parcellation of the human cortex46 (Supplementary
Data 8b). This revealed both a significant increase in relative cortical
surface area (β(105) = 0.15, p < 1e-6, 95% CI [0.1341, 0.1659]) as well as a
positive interaction with ancestral time (β(105) = 0.0017, p < 1e-6, 95%
CI [0.0014, 0.0020]) for the limbic areas of the cerebral cortex in mice

Fig. 5 | The ancestral state of regional functional modal specialisation of cor-
tical areas. Cortical surface shape alignment across species and to common
ancestors allows for the estimation of the spatial distribution of primary sensory
areas (vision: blue, auditory: green, somatosensory: red) in the ancestral state of
primates and rodents. The ancestral state can be mapped to all surfaces in the

dataset to estimate the distribution and evolution of the relationship between
modal specificity and surface shape. Renderings of the mapping of the ancestral
state estimate onto all surfaces of the dataset are provided in Supplementary
Data 11.

Article https://doi.org/10.1038/s41467-023-37574-x

Nature Communications |         (2023) 14:2252 6



relative to humans, whereas the human lineage showed an increase of
motor (β(105) = 0.0011, p < 1e-6, 95% CI [0.0007, 0.0014]) but also to a
lesser degree default mode (β(105) = 4.3230e-04, p =0.011, 95% CI
(0.0001, 0.0008)) and frontoparietal (β(105) = 4.7530e-04, p =0.005,
95% CI (0.0001, 0.0008)) areas with time, indicating a possible evolu-
tionary sensory specialisation for olfaction in mice and for complex
motor and association capabilities in humans.

Discussion
In this study, we demonstrated how ecological and behavioural
adaptations during evolution aremirrored in the shape of the cerebral
cortex across extant species. Our analysis is based on a novel common
geometrical reference frame for the cortical geometry of 90 species of
Euarchontoglires. Using this common reference frame, we demon-
strated that cortical morphology contains information on the evolu-
tionary processes that produced its natural present diversity. The
phylogeny of cortical shapes can be decomposed into individual
components in both space and deep evolutionary time, both demon-
strating concise functional interpretations and relationships to ecol-
ogy. The spatial heterogeneity and inter-species variability of these
processes highlights the importance of considering the evolutionary
origins of the structures and functions studied in neuroscience, and
the resulting inherent intricacies in translating experimental results
between species.

By analysing the principal modes of variation of the dataset using
activation maps obtained from human functional neuroimaging stu-
dies, we showed how neuroanatomical correlates of specific socio-

ecological niches are associated with the shape of the cerebral cortex
in extant nonhuman species. Furthermore, we showed how the com-
plexity of both their ecological and social environments is associated
with the selective expansion of functionally specific cortical regions.
Using spatial statistics, we demonstrated a gradual evolutionary
decrease in the spatial range at which the modal specificity of these
cortical areas becomes independent, suggesting the emergence of
areas with multiple co-located associations51.

By decoding the neurological function of the estimated cortical
expansion in the deep ancestral human lineage, we were able to pro-
pose, for the first time, a sequence of both temporally and spatially
circumscribed neuromorphological events that shaped the cerebral
cortex of our ancestors over the past 77million of years.Many of these
events align with established results from paleoneurology such as an
increase in the visual cortex in both primates and rodents56–58 as well as
the impact of arboreality48,59,60 and fossoriality on the complexity of
the cortex48,60,61.

Evolutionary neuroecology of group size and diurnality
In performing meta-analytic decoding of the cortical expansion asso-
ciatedwith large social group size, we recover different aspects ofwhat
has been termed the social interaction network62 (Fig. 3). We find that
group size correlates with the expansion of anatomical regions of the
prefrontal default mode network such as cuneus and precuneus, cin-
gulate,medial prefrontal cortex (mpfc), posterior and anterior cingulate
cortex (PCC, ACC) that areknown tobe related to social behaviour63,64 as
well as areas associated with functional terms such psychosis and

Fig. 6 | Segregation of primary sensory cortical areas during evolution. Map-
ping of species-specific cytoarchitectonic atlases allows for the determination of
the functional topography of cortical regions and the relationship of the relative
positioning of functional cortical areas and species ecology. a Spatial statistics
indicate an evolutionary segregation of primary sensory cortical areas in the deep
ancestral human lineage (green path), with a (b) significant positive relationship
between the integration of sensory areas and evolutionary time (r(8) = 0.714,
p =0.002, shaded area indicates the 95% confidence interval of the linear model.
See also Supplementary Data 6b). c Violin plots of the values for range parameters
of the spatial statistics model for fossorial and non-fossorial rodents as well as

social/non-social and diurnal/nocturnal primates, together with median values as
well as upper and lower quartile + /− 1.5 interquartile range. Significance of group
differences of the range parameter for primates (n = 58) and rodents (n = 28) was
assessed using two-tailed t-tests and FDR-corrected for multiple comparisons.
Results show that in primates, group size and diurnality are associated (q <0.001,
see Supplementary Data 6a) with a higher range parameter, indicating more wide-
spread spatial correlation of measurements of areal sensory specialisation. In
contrast, in rodents, fossoriality is associated with a lower range parameter
(q <0.05, Supplementary Data 6a), indicating more segregated sensory processing
areas in a subterranean habitat.
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emotional responses. Additionally, we observe a strong correlationwith
terms related to visual processing (lingual gyrus, primary visual) aswell
as the default mode network per se (default mode, deactivation).

While the ACC is considered integral in understanding the inten-
tions of others and in observational learning65, both PCC and dmPFC
are crucial elements of the default mode network66. The PCC has been
related to self-referential functions67, and the dmPFC is deeply involved
in processing observed social interactions68 and judgements69. Toge-
therwith the cuneus andprecuneus, these regions havebeenproposed
to form a “social-affective default network”70 with strong links to face
processing71.

Expansion maps derived from ancestral state reconstruction of
the cortical surfaces locate the time point of maximum correlation
between cortical expansion and terms associatedwith large group size
(ACC, cingulate, cingulate cortex) at the divergence between Homi-
ninae and Ponginae, some 12Mya. Compared to other great apes,
orangutans (Pongo) are more arboreal and less social72. These results
are indicative of an indirect influence of decreasing arboreality in
african apes on brain evolution. Possible explanations for this

relationship lie in evolutionary advantages in predator avoidance
posed by congregating in larger groups in a more terrestrial habitat73.
While more arboreal apes can rely on the safety of their habitat, more
terrestrial species have to more actively secure their environment by
forming large social groups74.

The association between social group size and activity pattern in
primates is reflected in the correlation between variation in cortical
morphology attributable to social group size and expansion of visual
areas. Partial correlation analysis of the relationship of functional
categories derived from cortical expansion with the evolution of
sociality, controlling for diurnality (Supplementary Figs. 7 and 8;
Supplementary Data 9 and 10a) revealed a significant positive corre-
lationwith area size associatedwith the termsamygdala, hippocampus
and neutral faces, and significant negative correlations with area size
associated with terms associated with motor function such as motor,
premotor, finger, force (Supplementary Data 10b), highlighting ele-
ments of emotional control75,76 as differentiating between effects of
social behaviour and diurnality.While diurnality facilitates foraging for
high-quality foodstuff, an actual increase in a species’dietary efficiency

Fig. 7 | Estimated sequence of local cortical expansion from the last common
ancestor of rodents and primates to Homo. a Consecutive expansion maps
between the cortical surfaces are obtained from ancestral state reconstruction of
all ancestors of Homo until the LCA with Glires. b Decoding these expansion maps
as correlations with statistical maps of human cortical function54 and retaining the
1% most highest correlated maps at each time-point allows to perform (c) hier-
archical clustering of the sequential correlation of expansion patterns in the deep
ancestral human lineage (Supplementary Data 7a). d This reveals a decomposition
of evolutionary cortical surface expansion that can be approximated as a sequence
of steps (Supplementary Data 7b), starting with the expansion of primary visual,
auditory and motor regions in the Cretaceous up until the Oligocene, followed by
the expansion of higher order association areas in the Miocene, Pliocene and

Pleistocene. The common x-axis of all subplots (a–c) denotes million years ago
(Mya). The colormap on the cortical surfaces (a) indicates relative area expansion
between estimated speciation points. Markers for correlations in subplot (b) are
jittered in horizontal direction to reduce overlap. Correlations are summarised for
each cluster using violin plots in subplot (d) and joined at their median values
through time. Statistical significance for differences between distributions was
assessed using repeated measurements ANOVA. Statistical information as well as
sample numbers for each cluster and time-point are omitted for space reasons and
can be found in Supplementary Data 7c, license information for artwork used in
Supplementary Data 7d. Abbreviations: P.I. Ptilocercus iowii. N.t. Notharctus
tenebrosus. A.a Archicebus achilles, C. Cercopithecoidea, O.b. Oreopithecus bam-
bolii, S.t. Sahelanthropus tchadensis, A.r. Ardipithecus ramidus, H.s. Homo sapiens.
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requires the integration of more complex cognitive and social
capabilities77. Contrary to social group size, we could find no sig-
nificant relationship between activity pattern and cortical morphol-
ogy. However, analysis of the variability of the functional topography
of the neocortex revealed a stronger multi-modal integration in both
group-living as well as diurnal primates, indicating a potential evolu-
tionary strategy for success in cognitively more demanding
environments.

Our results indicate cortical correlates of a strong evolutionary
interplay78 between this complexification of visual processing, social
cognition79 and ecology implicating the defaultmode network80,81. The
ability of discriminating red hues might82 be a crucial component in
diurnal predator avoidance83 and potentially foraging as well as for the
interpretation of facial features84. These adaptations might be at the
root of a positive feedback loop in encephalization whereby mod-
ifications to the functional topography of the cerebral cortex resulting
from evolutionary changes to cortical morphology allowed for the
integration of multimodal cues from complex ecological and social
environments. This potentially increasedour ancestors’ capabilities for
social behaviour and thus predator avoidance and effective foraging.
This in turn led to increases in energy85 available for supporting
expensive brain tissue86, enabling ever more complex social and cul-
tural faculties87,88.

Variability of cortical morphology and topography in relation-
ship to habitat complexity
Our findings revealed distinct patterns of cortical expansion asso-
ciatedwith individual habitats (Fig. 3; Supplementary Figs. 5b–d, 6a, c).
Arboreal species rely mostly on vision for perceiving their
environment89, which enables them to locate important objects such
as food sources or predators at a distance and has, alongside the
evolution of binocular colour vision and consequent depth percep-
tion, led to the complexification of cortical visual processing. This is
reflected in our data by a selective expansion of occipital and dorso-
lateral aspects of the cerebral cortex in association with arboreality.
Expansion of these regions of the dorsal pathway90 likely reflect the
fact that the functions it supports such as processing of object loca-
tion, motion and concordant planning of movements are more rele-
vant and also more elaborated in the complex 3D environment of the
trees compared to the less intricate settings in which terrestrial and
fossorial species live91.

In terrestrial and fossorial environments, proprioception is
algorithmically less challenging and perception at distance is, espe-
cially for small animals such as rodents, of lesser importance, as it is
inherently limited by grass cover or subterraneity. Concurrently, we
observed a graded reduction of the relative extent of visual areas in
association with both terrestriality and fossoriality, related to the
reduced relevance of visual information in these habitats (Supple-
mentary Figs. 5c–d, 6c). On the other hand, terrestrial and fossorial
species make stronger use of olfactory and gustatory cues for per-
ception. This is reflected in the selective expansion of cortical areas
associated with the processing of these chemical signals, in this case
particularly the insular cortex. We observed rather fine-grained dif-
ferences in the expansion of the insula in associationwith terrestriality
and fossoriality, the former correlated with higher extent of its pos-
terior, the latter with higher extent of its anterior aspect (Fig. 3). Ter-
restriality is additionally associated with selective expansion of the
cingulate cortex.Meta-analytic decodingmaps this pattern onto terms
such as nociceptive, noxius, or pain. The cingulate is deeply involved in
fear response92 and considered as a mediator of emotional states and
action selection93. This function might have increased relevance in
terrestrial animals that rely on olfaction for survival by channelling
otherwise functionally pervasive stress responses94.

A fossorial lifestyle poses physical constraints on cranial shape95

and limits the distance at which animals are able to perceive their

environment, and burrowing brings the animals’ gustatory system into
closer proximity with chemical cues. The association of fossoriality
with an increased expansion of the gustatory areas of the anterior
insula (Fig. 3), aswell as a relative expansionof the limbic regions of the
functional parcellation of the cortex we observed (Supplementary
Fig. 5d) can be explained by an adaptation to this environment. Fur-
thermore, fossorial rodents also exhibited less modal integration than
their arboreal and terrestrial counterparts (Fig. 6c), which might also
relate to the fact that perception and interpretation of a comparatively
impoverished ecological environment does not require the integration
of multiple sensory modalities.

In contrast to the processes of mapping the position and motion
of objects within the extrapersonal space, determination of object
identity, as enabled by the ventral pathway, is less dependent on one
individual sensory modality96. Studies in congenital blindness have
repeatedly demonstrated the recruitment of these areas of the cortex
for haptic processing96–99, underlining the integrative role of the
structures of ventral pathway100,101. This modal agnosticism is also
reflected in the independence of the extent of the ventral attention
areas on habitat observed in this study (Fig. 4c), which underlines the
cross-modal relevance of the ventral processing stream for cognition.

An alternative or possibly complementary explanation for a rela-
tionship between the expansionof areas of the dorsolateral cortex and
complexity of a species’ environment can be found in the affordance
competition theoryof cortical organisation102. Under this framework, a
selective expansion of areas of the dorsal stream in complex envir-
onments could lead to an increased complexity of proposed potential
modes of action such as action maps103. Since the complexity of
selecting amongst them however stays comparatively constant, no
expansion of the ventral stream is required.

The evolutionary adaptations in the deep ancestral human lineage
represent only one of many courses of cortical evolution. A common
reference frame for the cortical shape evolution of different lineages
enables the analysis of the rate of their divergence and its association
with ecological and environmental factors. This analysis (Supplemen-
tary Fig. 4) shows that periods of rapid oxygen level104,105 decline
coincide with accelerated divergence between the cortical morphol-
ogy in human and mice lineages, suggesting different adaptation
strategies being fostered by the corresponding evolutionary pressure.

Regional cortical expansion reflects sensory segregation and
behavioural evolution
Hypotheses about the evolutionary history of primates aremanifold106

but have remained elusive to quantitative evaluation22. Our analysis of
the joint morphological space of the neocortex of Euarchontoglires
enables for the first time to study both the conserved topographical
structure of cortical function as well as deriving a data-drivenmodular
decomposition of its evolution. Our resulting estimate of the sequence
of evolutionary steps of cortical development in the deep ancestral
human lineage can be interpreted within the frameworks of
neuroethology107, ecomorphology106, and phylogenetic refinement15.

The gradually decreasing range of functional specificity on the
cortex during the evolution of the deep ancestral human lineage
(Fig. 6b) indicates a relative reduction of the size of primary sensory
areas compared to emerging larger intermediate regions without
unimodal assignment. In support of the tethering hypothesis51, our
results show that the modular segregation of primary cortical areas
increased during human evolution. At the same time, the observed
strongermodal integration appears to be favourable or even necessary
in cognitively demanding tasks such as social interactions.

By splitting local cortical evolutionary expansion into clusters
related to vision (Fig. 7, cluster 1), orientation (Fig. 7, cluster 2), tem-
poral language areas (Fig. 7, cluster 6) andmemory and retrieval (Fig. 7,
cluster 7) on the one hand and auditory perception (Fig. 7, cluster 3),
sensorimotor (Fig. 7, cluster 4) and prefrontal/dorsolateral/parietal
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(Fig. 7, cluster 5) areas on the other hand, the observed topmost
hierarchy of evolutionary functional expansion patterns reflects the
dual stream hypothesis of cortical topography90,108. At the lowest
hierarchical level in the ventral super-cluster, hierarchical clustering
groups together patterns associated to parahippocampal areas (Fig. 7,
cluster 2), memory and retrieval (Fig. 7, cluster 7). In the dorsal
supercluster (Fig. 7, clusters 3-5), the grouping of expansion patterns
related to auditory processing (Fig. 7, cluster 3), and sensorimotor
function (Fig. 7, cluster 4) at the lowest level reflects the close rela-
tionship of these functions concerning proprioception.

From a historic perspective, our results indicate that the diver-
gence of rodents and primates started with the development of visual
processing areas (Fig. 7, cluster 1), likely adaptive to the increased
sensory complexity posed by living in the complex 3D arboreal
environment (Supplementary Fig. 5) as well as an increased visual
information content due to binocular and chromatic vision82. This shift
away from a previous ground-dwelling lifestyle led to an increase in
foraging range in early primates107, where the capability of forming and
storing mental images of scenes such as locations of temporally lim-
ited food sources proved evolutionary advantageous, leading to the
expansionof parahippocampal areas109 (Fig. 7, cluster 2) specialised for
spatial navigation and memory110–113. The increase in mobility resulted
in the necessity of communicating over larger distances and thus the
development of cortical areas related to vocalisation114 and auditory
processing115–117, (Fig. 7, cluster 3). These evolutionary adaptations to
arboreal locomotion and vocalisation occurred concordantly to the
adoption of increasingly diurnal activity pattern and social behaviour
(Supplementary Figure 5) and coincide with the development of
complex motoric capabilities103, which is reflected in the ongoing
expansion of somato-motor areas (Fig. 7, cluster 4).

Due to thedevelopmentofmodality-specific processing areas, the
primate brain around 21Mya may have been capable of performing
complex visual, auditory and somato-motor signal processing,
increasing the necessity for mechanisms for both selective attention
and action selection118 to maintain the ability to act. This may have
been achieved by the expansion of prefrontal and parietal control
areas in the cortex17,119–121, (Fig. 7, cluster 5). The resulting capacity of
selectively attending to specific stimuli entails the formation of com-
plex mental representations122,123. Importantly, previously established
executive control over complex motor systems enables the commu-
nication of these internal concepts in signed124 or vocalised form125,
which has important evolutionary advantages126 and leads to a com-
plexification of social behaviour via the establishment of primordial
forms of language125,127,128.

Based on our results, these developments were accompanied by
a shift back to a terrestrial lifestyle starting some 10Mya and ulti-
mately bipedalism. This in turn potentially led to a freeing of the
upper limbs from requirements of locomotion, and indirectly
allowed for the development of greater finemuscle control129 (Fig. 7,
cluster 4), thereby enabling tool building, primarily for hunting130.
The resulting shifts in nutritional efficiency would have reduced the
selection pressure for enlarged masticatory apparatus and led to
craniofacial changes which, together with the evolution of an
orthograde body plan and the consequent rostral shift of the fora-
menmagnum53, would have allowed for the expansion of medial and
lateral parietal regions of the cerebrum131,132(Fig. 7, cluster 7). These
de-novo available cortical territories assumed auto-analytic func-
tions of memory retrieval and episodic memory133 which form fun-
damental faculties for establishing shared semantic concepts134. This
establishment of social135 and cultural capabilities could have cre-
ated a positive feedback loop for increased encephalization136

whereby capacities of Theory of Mind, abstract thought and the
capability of externalising and transmitting this knowledge via
language137,138 and artefacts124,139 may have been amplified with each
generation of hominids, increasing the species’ adaptive capabilities

and thus evolutionary fitness in increasingly harsh environments140,
giving rise to the Homo sapiens of today.

Limitations
There remain numerous limitations to our work. For one, the breadth
of our sample requires us to rely on single and oftentimes post-
mortemexemplars of each studied species showing varying degrees of
degradation. This, together with the inherent geometric limitations in
mapping and averaging protruding features, might lead to an under-
estimation of the ancestral size of the olfactory bulb41,46. Furthermore,
excessive evolutionary expansion of the neocortex in all extant species
of Euarchontogliresmay lead to an overestimation of its size38,47, a bias
which is especially present in the reconstruction of Cretaceous
ancestors48,49. We also suspect that these data-dependent limitations,
together with a range of unobserved covariates as well as intra-species
variability lies at the root of the comparatively low part of extant
morphological cortical variability being explained by the factors stu-
died in this paper. Notably, the ecological categories used in the ana-
lyses represent stark simplifications of complex behaviours that
encompass specific modes of locomotion, perception and social
interactions. We don’t propose that the results reflect a complete
generative model of brain shape evolution. However, the recovery of
significant influence of socio-ecological factors on cortical shape, the
qualitative compatibility of its ancestral reconstructions with fossil
endocasts and results obtained from quantitative analysis of its evo-
lutionary development serve as evidence for the validity of the pro-
posed common reference frame and the estimates of common
ancestor cortices. We hope to see this tool being used and refined by
other researchers using different modalities and ecological variables.

We also acknowledge the inherent anthropocentrism in the
methods used for interpreting our results. Therefore, our description
of the neuroanatomical foundations of humanperceptive, interpretive
and communicative capabilities can only serve as a schematic repre-
sentation of processes that occur at multiple spatial and temporal
scales, from genetic regulation to social interactions, from axonal
depolarisation to evolutionary adaptation. Despite these limitations,
to our knowledge the data presented in this paper represents themost
diverse collection of Euarchontoglires brains analysed to date and
provides important insights into the origins and ramifications of cor-
tical functional topography.

Methods
We performed geometric cortical shape alignment across species, and
subsequently modelled the phylogeny of the cortical differences
among extant species. First, we extracted a mesh surface of each cer-
ebral hemisphere from available segmentations (Fig. 2a). Labels for
anatomical structures were projected onto the surface by volumetric
interpolation and converted to pseudo-probabilities using a gaussian
kernel on the geodesic distances on the mesh. Surface features
describing local mesh properties were computed from the surface
models. In parallel, the global geometry was encoded via the spectral
embedding of the Laplacian Matrix associated with the surface mesh.
These two sources - anatomy and geometry - of information were
combined on a per-vertex basis to encode the local cortical shape. We
established correspondence between the cortical surface meshes of
two species, by matching their cortical shape encodings in a high-
dimensional embedding space. Dense surface correspondences could
then be established from the resulting alignment between these two
aligned representations (Fig. 2b). To estimate the potential shape of
the cortical surface of an ancestor of two sister species in the dataset,
the ancestral state reconstruction was first performed on global shape
properties. This allowed the positioning of the ancestral shape along
the geodetic connection in the space of smooth shells between the
global shape properties of the two species. Since linear interpolation
does not reflect the geometric properties of the surfaces, shape
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interpolation was performed in the space of smooth shells to estimate
the ancestral shape (Fig. 2c). In order to iterate the procedure a-c and
estimate further ancestors, the label information of the two sister
species was mapped onto the estimated surface mesh of their com-
mon ancestor. If a label was present in both sister species, information
was combined for estimating its ancestral state. However, similarly to
the reconstruction of the ancestral surface model, computation in the
Euclidean space did not account for the properties of the domain of
the pseudo-probabilities and would have led to blurring and infor-
mation loss. Instead, optimal transport onmeshes was used to recover
an estimate of the extent and shape of the ancestral label pseudo-
probabilities (Fig. 2d). This procedure was then iterated by following
the phylogenetic tree to its root.

A more detailed description of the technical aspects of the
methods employed for phylogenetic modelling, surface reconstruc-
tion, surfacematching and estimation of spatial statistics can be found
in the Supplementary Methods.

Dataset description
Brain imaging. For the present study, we collected imaging data of 90
different species from various sources (Supplementary Data 1a), con-
sisting of 58 primates, 28 rodents, 2 lagomorphs, 1 scandentian and 1
dermopteran. In order to collect a maximum number of different
species, we combined imaging data from different modalities of both
in-vivo and ex-vivo specimens. In total, 75 specimens were imaged
using MRI, 7 using diffusible iodine-based contrast-enhanced Com-
puted Tomography (DiceCT) and 8 using serial histological sections.
For the serial histology section data, StackReg141 was used to correct
for rigid displacement between slices. Data for 10 species was available
in vivo, while 80 scans were obtained from ex vivo data. Of the 80 ex-
vivo specimens, 43 were fixated ex-situ, while 37 were imaged inside
the skull. The data for 7 species consist of atlas averages of multiple
individuals. For 7 specimens, previously published segmentations of
the cerebral structures were available. For 31 specimens, segmentation
of the cerebrum was available via the BrainCatalogue5. For the
remaining 52, we manually segmented the two cerebral hemispheres
using ITK Snap142. In cases where it remained intact after preparation,
the olfactory bulb was manually segmented as a separate label, as well
as the Corpus Callosum. We further included commonly used geo-
metric spaces for model animals (Mus musculus, Rattus norvegicus,
Macaca mulatta, Callithrix jacchus, Homo sapiens) in the dataset
(Supplementary Data 1a). Unfortunately, it was not possible to obtain
multiple individual scans for all species. We therefore limit our dataset
to one exemplary shape per species, as themorphological variability is
limited for the cerebral cortex in most species. For humans, where
anatomical variability is especially large, we use the “Colin” template
space143.

Surface model construction. We computed surface models indivi-
dually for each cerebral hemisphere in each specimen. In the case of
7 species (Supplementary Data 1a) where either only one hemi-
sphere was available or one showed defects that were too large for
manual correction, the model of the contralateral one was mirrored
along the midline to replace the missing hemisphere. Spherical
topology of the resulting surface model was ensured by respective
functionality provided by the CAT toolbox144 as well as FreeSurfer43.
Spherical mappings of the resulting surface models were
constructed145 to serve as parametric reference frames for geometry
processing.

Ecological and behavioural data. Ecological and behavioural data
were collected from literature sources (Supplementary Data 2). We
collected data for daytime activity pattern and social group size, which
we simplified into binary categories of“Diurnal” and “Large social
group”. We also collected data for preferred habitat, which are more

fragmented and harder to distil into viable categories. In order to
retain statistical power while capturing the essence of these com-
plexities, we abstracted species habitat in the following way: Arboreal -
spends most of its time in trees, in a cluttered environment, is able to
move in all directions; Terrestrial - spends most of its time on the
ground, in an open-environment, does not habitually move in vertical
direction; Fossorial-spends most of its time underground, affecting its
range of movement and perception. Individual species can belong to
multiple categories in cases where the literature is ambiguous. While
this classification does not do justice to the complexities of ecological
and behavioural diversity observed in the species under study, we
found this nomenclature to be themost consistent among such a large
diversity of rodent, lagomorph, primate, dermopteran and scanden-
tian species. Species that were reported as either diurnal, cathemeral
or arrhythmic in the literature were labelled as “diurnal”. Species that
are not reported to be solitary or pair-living were labelled as living in a
“large social group”.

Cortical shape encoding. We performed pairwise matching of the
cortical surfacemodelsof sister species in the underlyingphylogenetic
tree using methods from computational geometry. Specifically, we
exploit the fact that the eigenvectors of the cotangent graph
laplacian146 of a mesh representation of a shape are closely related for
isometric shapes. This property has been leveraged in numerous
geometric applications, most notably shape description147,matching148

and alignment149.
As we are however specifically interested in deviations from

isometric scaling due to localised expansion of individual cortical
areas, direct application of spectral matching would lead to erro-
neous alignment. Therefore, we augment the global intrinsic spec-
tral representation of the shapes by additional extrinsic features
representative of cortical morphology. Since the patterns of cortical
folding show strong evolutionary conservation, we use sulcal depth
maps, their surface derivatives, gyrification indices as well as the
Hamilton–Jacobi Skeleton of surface curvatures150 as descriptors of
the sulcal geometry. Furthermore, we include manual labels for the
olfactory bulb, the corpus callosum and the cerebral medial wall as
scalar values defined on each surface vertex of each surface model.
The label maps are generated by manually labelling the individual
structures in the volume, interpolating these binary maps onto the
surface using Nearest Neighbour interpolation and consecutively
computing the geodesic distance transform151 on the surface to
obtain a continuous function value for each surface vertex. The
geodesic distance is then subjected to an exponential kernel to
localise the label information.

Dense surface alignment. From the spectral decomposition of the
mesh Laplacian and the extrinsic surface features, we obtain a vector
representation of global and local shape information at each surface
vertex, which we consider elements of a combined spectral/euclidean
embedding space. Matching of elements of that space is performed
using Coherent Point Drift (CPD)152. CPD is a statistical formulation of
the problem of shape correspondence based on Gaussian Mixture
Models and solved using Expectation Maximisation. In this formula-
tion, the feature vectors corresponding to the vertices of one shape
represent the centers of Gaussian distributions in a high-dimensional
space, whose positions are optimised such that the feature vectors of
the other shape are realisations of the resulting mixture of Gaussians
under Maximum Likelihood. After convergence, correspondences
between points can simply be obtained by selecting the center of the
Gaussian with the highest weight for each surface point. This prob-
abilistic formulation relaxes the isometry assumption of the original
spectral matching and simultaneously serves as regularisation for the
ill-posed shape matching problem, effectively penalising strong local
stretching and bending149,153.
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Post-processing of surface alignment. Due to the nonlinear corre-
spondence between the original Euclidean three dimensional space in
which the cortical surface models are observed and the spectral
embedding space, additional processing of the correspondences is
required in order to obtain continuous, invertible maps between two
cortical surface models. First, we use a method proposed for the
matching of developing fetal brain surfaces in humans154, which shows
a comparable range of geometric variability as our dataset from lis-
sencephalic first trimester of gestation to strongly gyrated in the third
trimester. Instead of defining corresponding points in the two shapes
directly using nearest neighbours in the embedding space, this
method first performs edge-based smoothing of the embedding
coordinates, resulting in smoother maps. In order to further enforce
diffeomorphic correspondences between the shapes, the resulting
correspondences are used as inputs to a joint Laplacian matching
step149,155. Contrary to the original procedure of computing alignments
between individual embeddings of the two shapes, this method is
based on the spectral decomposition of a joint Laplacian matrix. The
joint Laplacian of two shapes has a block structure, with the mesh
topology and geometry of the individual meshes encoded in two
diagonal blocks, containing edges between neighbouring vertices
weighted by their geodesic distance, and the pair-wise corre-
spondences between the two shapes encoded on the off-diagonal
blocks, either as binary entries for corresponding vertices or also
weighted by their respective distances in their aligned embedding
space. As before, correspondences of onemesh to vertices of the other
can be established using nearest neighbours in the resulting embed-
dings space of the now joint Laplacian. The third regularisation step
that we perform in order to ensure reversibility of the resultingmaps is
based on the Dirichlet energy of the resulting map. As of now, we only
considered the locations of correspondences of the vertices of one
surface mesh in the other. However in practice, it is important to
ensure that both maps from either mesh onto the other are well-
behaved, eg. are reversible with as little distortion as possible. To
ensure this, we optimise the correspondences obtained from the joint
Laplacian embedding using the method proposed in Ezuz et al.156,
which explicitly optimises a joint energy functional consisting of terms
for smoothness and reversibility of the resulting deformations using
block coordinate descent.

Approximating ancestral shapes of cortical surfaces. We iterate the
procedure of establishing pairwise correspondences between the
surfacemodels of the cerebral cortex in sister species, traversing the
phylogenetic tree from the leaves until the root, corresponding to
the last common ancestor (LCA) of rodents and primates. Enabling
this iterative procedure requires the interpolation betweenmatched
surfaces. However, simple linear interpolation via weighted aver-
aging in Euclidean space can result in both geometric and topolo-
gical errors such as excessive thinning of structures and fold-overs
due to the intrinsic nonlinearity of shape space. We therefore per-
form shape averaging in the space of discrete shells41,42. This allows
the incorporation of biomedically motivated penalties to the cal-
culation of intermediate shapes between shapes of matched topol-
ogy. The underlying biomechanical model is equivalent to a thin
elastic shell, which is only a rough approximation of the non-linear
material properties of the true cortical tissue157. However, a com-
plete incorporation of the biomechanics of brain tissue in the
matching procedure is both mathematically and computationally
challenging due to the non-linear tissue properties, and of ques-
tionable validity due to the unknown evolutionary changes they
might be subjected to. We therefore leave these extremely inter-
esting questions for future research and limit the biomechanics of
the matching procedure to linear elasticity.

We could obtain the relative weightings of the surface models of
each sister species in the computation of their average directly from

the underlying calibrated phylogeny. However, this would imply the
unrealistic assumption of uniform relationship between genetic simi-
larity on which the phylogeny is based and the morphological differ-
ences in the shapes of the cerebral cortices of sister species. We
therefore first estimate the ancestral states of global shape variables in
the whole tree which does not requires a-priori correspondences (cf.
“Phylogenetic Model of Global Cerebral Morphology” for a detailed
explanation). This allows for the computation of a parameter reflecting
the estimated scaling factor between genetic and morphological dif-
ferences between an ancestor and its daughter states. We then gen-
erate the shell space interpolation at these distances between the two
sister species as an approximation of the ancestral state of the cortical
surfaces.

Label fusion using optimal transport. After establishment of pair-
wise correspondences between sister species, available annotations
of specific homologous structures (Corpus Callosum, olfactory
bulb, thalamus, hypothalamus, septum) are mapped onto the
ancestral morphology estimated via shell-space interpolation. In
caseswhere the same label is available for both daughter shapes, this
information needs to be combined in the ancestral state. As with the
shapes themselves, label information can only be poorly processed
using euclidean methods, as linear averaging would inadvertently
result in blurring of the boundaries of the labels due to both mis-
alignment of structures due to regularisation in the matching pro-
cedure but also changes in the true extent of individual structures
during evolution. Instead, we represent labels as pseudo-
probabilities of the extent of a structure at a specific position of
the cerebral cortex and use optimal transport geometry to compute
averages of these distributions on the estimated surface models of
ancestral states using Convolutional Wasserstein Distances158. This
procedure results in estimates of the distribution for each label in
the ancestral state, but also breaks the commutativity of label cor-
respondence between parent and daughter states. We therefore
perform an additional matching step between the newly labelled
ancestral shape and its daughter shapes to reestablish consistency
between the shape and label correspondences.

Consistent topologyof corticalmorphology. After iterative pairwise
matching of the surface models of individual cortical shapes, global
correspondence between all shapes in the dataset can be established
by propagating the correspondences throughout the phylogenetic
tree. Throughout the iterative surface mapping, we use the more
densely sampled cortical surfaces of the two sister shapes as
topology of the estimated ancestral shape. Once the LCA of rodents
and primates at the root of the tree is reached, we resample all
shapes in the dataset to fsaverage6 topology to allow the easy
application of published results on cortical topography in humans.
The resulting surface models are available at https://github.com/
cirmuw/EvolutionOfCorticalShape.

Phylogenetic modelling
Estimation of phylogenetic relationships. We obtain the phyloge-
netic relationships for the taxa used in the present study from a time-
calibrated phylogeny of the mammalian class39. The phylogeny is
constructed using a Bayesian “backbone-and-patch”method from a 31
gene Supermatrix, resulting in probabilistic estimates of the branch
lengths and divergence times in the tree. We draw 100 samples from
the posterior distribution of trees of the 90 species contained in our
dataset and compute the consensus tree to obtain a single phyloge-
netic topology and divergence times. As the human brain showed
extensive expansion compared to other species, we augment the
resulting consensus tree with that of hominin fossils obtained from
Melchionna et al.159. We merge the two trees using phylogenetic
inference under matrix representation160.
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Phylogenetic modelling of global cerebral morphology. Estimation
of the ancestral shape of the cortical surface models of two sister
species requires a measure of the degree of morphological changes
each sister species has been subjected to. However, divergence time
estimates in the used phylogeny are based on genetic information, and
there is no unique universal scaling factor that would relate changes to
the genetic code to cortical morphology. On the other hand, estima-
tion of an evolutionary model for changes in cortical shape requires a
priori correspondences between surfaces. To avoid this circular pro-
blem, we assume a linear relationship between the changes to the
global shape measures of surface area (SA) and gyrification and the
degree of local changes to cortical morphology. As a first step in our
phylogenetic analysis, we then use the combined tree of extant and
extinct species to determine an appropriate evolutionary model for
these global morphological properties of the cerebral cortex.

From the available 90 species, we estimate both the cortical SA
and the area of the convex hull of each hemisphere, as their ratio
constitutes a measure of gyrification161. We then fit scalar Ornstein-
Uhlenbeck (scOU) models with evolutionary rate shifts40 to the SA
measurements of the cerebral cortex and its convex hull. Briefly, the
scalar formulation of the OU mixture models simplifies the definition
of rate shifts inmultivariate correlated traits in a phylogeny by shifting
the inter-trait covariance to the Brownianmotion part of theOUmodel
whilemodelling the selection pressure jointly as a scalar parameter for
all observed traits. We assume that this simplification is acceptable for
modelling the evolution of the SA of the cerebral cortex and its convex
hull due to the existenceof strong scaling laws162–164 relating the folding
and scaling of mammalian cerebra. Estimation of rate shifts is then
performed in an Expectation-Maximisation framework, which allows
for the automatic determination of evolutionary rate shifts. However,
the scalar formulation of mixture of OU models is defined only for
ultrametric trees (eg. trees whose tips all have the same age). We
therefore shift the tip ages for the fossil data to thepresent day. For the
extinct hominin species included in the augmented tree, only esti-
mates of the SA of the convex hull of the brain are available from
endocasts of the fossil crania; the SA of the cerebral cortex is con-
sidered missing in phylogenetic modelling. We assume that the slight
misspecification of the tip-dates for the fossil hominin data is imma-
terial to the relative BIC values used for model selection. We conse-
quently perform ancestral state estimation of the two SA values for
each case and hemisphere and prune the tree to cover only the avail-
able extant species for further processing. The resulting estimates of
the surface areas of the cerebral cortex and its convex hull are then
available throughout the phylogenetic tree. We use the ancestral state
reconstructions of these values to determine the interpolation factors
between two matched cortical surface models to reconstruct their
putative ancestral state without a priori matching of all shapes in the
dataset as described above.

Phylogenetic geometric morphometrics of cortical morphology.
After having obtained an estimate for the rate of evolutionary change
in global morphological properties of the primate and rodent cere-
brum, we aim at determining the shape space of the cerebral cortices
of rodentia, lagomorphs, scandentia, dermoptera and primata. How-
ever, the dimensionality (40962 vertices per hemisphere, as defined in
FreeSurfer fsaverage6 space) of the dataset is too large in relation to
the sample size (90 cortical surface models). We therefore use low-
resolution icosahedral subdivision to first reduce the dimensionality of
thedata to 162 verticesper hemisphere, and remove any samples in the
medial wall, which results in 900-dimensional representations of each
pair of hemispheres for each taxon in the dataset. We fit both simple
(Brownian Motion (BM), Early Burst (EB) and Ornstein-Uhlenbeck
(OU)) as well as OU models with evolutionary shifts (OU_shift) to the
shape data165. Note that the position of these evolutionary shifts have
been determined a priori from the global cortical shape parameters,

and the multivariate OU models used for modelling the localised
evolution of the cortical shapes are not subject to the same simplifying
assumption as those used in estimating the rate shifts. This approach
results in a strong link between changes in evolutionary rates of the
global and local cortical morphology, but nonetheless allows for the
independent estimation of correlation structure for the local change in
cortical morphology during evolution.

We perform phylogenetic model selection based on the Gen-
eralized Information Criterion (GIC)166, which selects an adaptive OU
model with 2 rate shifts (BM: -460733.9, OU: -480972.5, EB: -460731.9
OU_shift: -496364.8) (Supplementary Fig. 1). We performphylogenetic
PCA165 on the low-resolution representation of the dataset in order to
account for phylogenetic correlation in the shapes. We then use L2-
regularisation as proposed in Clavel et al.167 to estimate the phyloge-
netic covariance matrix, as its unregularised computation is still ill-
posed due to the large number of landmarks compared to the number
of samples. The ratio of one to ten between dimensionality of the
samples and their number is comparable to that used inotherworks on
phylogenetic brain shape analysis with similar or smaller sample
sizes168.

Analysis methods for cortical surface maps
Meta-analytic decoding. We use meta-analytic decoding to analyse
the cortical surface maps obtained from phylogenetic modelling
(pPCA, ancestral state reconstruction).Wefirstmap themeasurements
obtained on the cortical surface into the standard MNI space46. The
resulting volumetric maps are then correlated with 3228 individual
maps obtained from 14371 individual neuroscientific studies of brain
activation in humans54. We retain the most strongly correlated 1% of
these terms to interpret the expansion maps in terms of neuroanato-
mical localisation and neurological function (Supplementary Datas 3
and 4). We note the anthropocentrism inherent to the utilisation of
human reference maps for the decoding maps related to evolutionary
processes. However, to the best of our knowledge there unfortunately
does not exist to date any comparable dataset for other species which
would improve on this.

Projecting maps onto functionally defined parcellation. Addition-
ally to interpreting the maps obtained from phylogenetic modelling
using meta-analytic encoding, we also analyse the obtained values in
relation to their position in a commonly used parcellation of the
human cortex from resting state functional MRI data46. While this sort
of analysis can be criticised for its anthropocentrism, the proposed
parcellation has been shown to be highly consistent for the analysis of
a detailed battery of cognitive tasks169, highlighting the robustness of
the underlying topography in describing functionally distinguishable
regions of the cerebral cortex.

Merging of cytoarchitectonic and functional atlases. Cytoarchitec-
tonic cortical atlases are themaps thathavebeen themost consistently
defined for different species170–172. Specifically, detailed atlases have
been published for Mus musculus173, Rattus norvegicus173, Callithrix
jacchus174, Macaca mulatta175 and recently Homo sapiens176. Addition-
ally, continuous work in analysing functional specificity of individual
cortical regions has led to the proposition of a detailed atlas of the
specificity of cortical areas in terms of auditory, visual and motor
processing52 in humans.We combine these two sources of information
about the structure and function of cortical regions in order to analyse
the changes their organisation was subjected to during evolution.
Specifically, we first map the values for modal specificity into the
individual highest resolution cytoarchitectonic parcellations in eachof
the 5 species for which cytoarchitectonic atlases are available, yielding
3maps ranging from0 to 1 at each vertex for each species.We estimate
the ancestral state of each of these maps using the phylogenetic cov-
ariance matrix obtained from the cortical surface shape models. This
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procedure can be thought of as a constrained surface smoothing
procedure in which the blurring of functional specificity of individual
regions in the cortex is constrained both by the species-specific
cytoarchitecture and the phylogenetic stability of these maps.

Statistical treatment
General statistical methods. Throughout the paper, significance was
assumed at a 5% false positive level. When required, multiple com-
parison correction was performed using Benjamini-Hochberg correc-
tion for False Discovery Rate. Normality of distributions of analysed
data was assessed using one-sample Kolmogorov-Smirnov (KS) tests.
Dependent and independent t-tests were used for determining sig-
nificance of group differences when normality could be assumed for
both tested distributions. Wilcoxon rank sum tests were used In cases
where normality could not be assumed in either of the distributions.
When testing for equality of the means of multiple dependent mea-
surements over time, we use repeated measurements analysis of var-
iance (RANOVA) after testing for normality using KS tests at each time-
point, followed by post-hoc testing using the Games-Howell method.
Equal variance was tested for using Bartlett, sphericity using Mauchly
tests. In case of violation of the sphericity assumption, the
Greenhouse-Geisser approximation was used for p-value adjustment.
In case of unequal variances, the Games-Howell method was used for
multiple comparison post-hoc testing.

In cases where independence of the measurements could not be
assumed (see “Null models for brain maps” below), significance of
group effects was established by permutation testing against effect
distributions. Group effects were determined using Kruskall-Wallis
tests, post-hoc testing using pairwise Wilcoxon-Rank-Sum/Mann-
Whitney U-Test that were corrected for multiple comparisons using
the Benjamini-Yekutieli procedure for non-independent tests177.

Testing for the effect of species habitat on functionally defined
brain regions. We use repeated measurements correlation
(RMCORR)47 for testing the association of non-independent measure-
ments in brain regions with species habitat, where we consider an
ordering of habitat in terms of sensory complexity from arboreal to
terrestrial to fossorial. To enable such an analysis, we first compute the
overall brain expansion computed from linear combinations of all
pPCA modes significantly associated with a specific habitat. We use
summary measures for each habitat to transform the ordering of
habitats into a tentative continuous variable (Fig. 4a). The correlation
values of each functional cortical area fromRMCORR then correspond
to ameasure of relative consistency in the expansion or contraction of
a specific region relative to the whole cortex.

Null models for brain maps. Measures obtained from different loca-
tions on the cortex violate the independence assumption, which pre-
cludes the application of most parametric and non-parametric
procedures for estimation of significance of results. When needed, we
therefore rely on permutation testing under appropriate null hypoth-
esis. Specifically, when estimating the significance of results corre-
sponding to a specific subregion of a brainmap against others, we use
a test distribution of 1000 randomly generated brain maps showing
the same spatial autocorrelation at different locations of the brain
obtained from a generative model178. The corresponding null hypoth-
esis is that the observed effect is related to spatial autocorrelation of
themeasurements andnot anyprocess-specific topographic feature179.

Spatial statistics. We use spatial statistics to quantify the relationship
between distances on the cortical surface and differences in the dis-
tribution of cognitivemodalities at these vertices.We approximate the
geodesic distance between two surface vertices using the shortest
path in the graph defined from the surface mesh topology, normalise
the resulting value to the range [0,1] and bin the resulting values into

20 non-overlapping bins. For each bin, we compute the average pair-
wise cosine distance of the three-dimensional (propensity for visual,
auditory and somatosensory function) vectors measured at the inclu-
ded surface vertices, which we again normalise to unit range. We then
perform 100 independent, randomly initialised fits of linear, spherical
and exponential models to the resulting empirical variogram and
retain the model best-fitting model in terms of sums of squares error
(SSE). Fromthe selectedmodel,we estimate the sill (maximumvalueof
spatial independence) and range (distance at which the sill is reached,
e.g. measurements of modal specificity at pairs of points separated
from each other by a higher geodesic distance can be considered
independent), where only the latter is of interest due to the a-priori
unit-normalisation of both regressor and regressed variables.

Software. All analysis was implemented inMatlab R2014a and R2019a,
Python 2.7.13 and 3.7.3 as well as R 3.6.0 and 4.0.3. Additional pro-
cessing was performed using Convert 3D 1.1.0, FSL 6.0.4, FreeSurfer
6.0.0 and 7.1.1, ANTs 2.3.4 and ImageJ 1.49 u.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All quantitative data supporting the findings of this study are provided
as Supplementary Information to the article. Sources of all imaging
data used in the study as well as reference publications are available in
Supplementary Data 1. Aligned surface models used to define the
proposed common reference frame, as well as ancestral state esti-
mates obtained from it are publicly available at https://github.com/
cirmuw/EvolutionOfCorticalShape and https://doi.org/10.5281/
zenodo.7713847. Expansion maps used for meta-analytic decoding
are additionally made publicly available at https://neurovault.org/
collections/IHFSXSES/.

Code availability
Computer code written to perform surface alignment and analysis will
be available from the corresponding author upon reasonable request.
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