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Expression-based subtypesdefinepathologic
response to neoadjuvant immune-
checkpoint inhibitors in muscle-invasive
bladder cancer

A. Gordon Robertson1, Khyati Meghani2, Lauren Folgosa Cooley2,
Kimberly A. McLaughlin2, Leigh Ann Fall2, Yanni Yu2, Mauro A. A. Castro 3,
Clarice S. Groeneveld4,5, Aurélien de Reyniès6, Vadim I. Nazarov 7,
Vasily O. Tsvetkov 7, Bonnie Choy 8, Daniele Raggi9, Laura Marandino9,
Francesco Montorsi10,11, Thomas Powles 12, Andrea Necchi9,11 &
Joshua J. Meeks 2,13

Checkpoint immunotherapy (CPI) has increased survival for some patients
with advanced-stage bladder cancer (BCa). However, most patients do not
respond. Here, we characterized the tumor and immunemicroenvironment in
pre- and post-treatment tumors from the PURE01 neoadjuvant pem-
brolizumab immunotherapy trial, using a consolidative approach that com-
bined transcriptional and genetic profiling with digital spatial profiling. We
identify five distinctive genetic and transcriptomic programs and validate
these in an independent neoadjuvant CPI trial to identify the features of
response or resistance to CPI. Bymodeling the regulatory network, we identify
the histone demethylase KDM5B as a repressor of tumor immune signaling
pathways in one resistant subtype (S1, Luminal-excluded) and demonstrate
that inhibition of KDM5B enhances immunogenicity in FGFR3-mutated BCa
cells. Our study identifies signatures associated with response to CPI that can
be used to molecularly stratify patients and suggests therapeutic alternatives
for subtypes with poor response to neoadjuvant immunotherapy.

Over 80,000people in theUS are diagnosedwith bladder cancer (BCa)
each year, with almost 18,000 deaths1. Despite improvements in
smoking cessation, surgery, and systemic therapy, there has been no
improvement in survival for BCa for over twenty years. The current

standard for locally advanced BCa (Stage II or greater, muscle-invasive
bladder cancer, MIBC) is three to four cycles of cisplatin-based che-
motherapy before radical cystectomy. In 2016, the FDA approved
therapeutic antibodies targeting the program cell death protein-1/

Received: 12 December 2021

Accepted: 21 March 2023

Check for updates

1Dxige Research Inc., Courtenay, BC, Canada. 2Departments of Urology, and Biochemistry andMolecular Genetics, Northwestern University, Feinberg School
of Medicine, Chicago, IL, USA. 3Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil. 4Université Paris Cité, Centre de
Recherche sur l’Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018 Paris, France. 5Oncologie Moleculaire, Institut Curie, Equipe Labellisée Ligue
Contre le Cancer, Paris, France. 6Université Paris Cité, INSERM U1138 Centre de Recherches des Cordeliers, APHP, SeQOIA-IT, Paris, France. 7ImmunoMind
Inc., Berkeley, CA, USA. 8Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. 9Department of Medical
Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy. 10Department of Urology, IRCCS San Raffaele Hospital and Scientific Institute,
Milan, Italy. 11Vita-Salute San Raffaele University, Milan, Italy. 12Barts Experimental Cancer Medicine Centre, Barts Cancer Institute, Queen Mary University of
London, London, UK. 13Jesse Brown VA Medical Center, Chicago, IL 60611, USA. e-mail: joshua.meeks@northwestern.edu

Nature Communications |         (2023) 14:2126 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4942-8131
http://orcid.org/0000-0003-4942-8131
http://orcid.org/0000-0003-4942-8131
http://orcid.org/0000-0003-4942-8131
http://orcid.org/0000-0003-4942-8131
http://orcid.org/0000-0003-3659-2709
http://orcid.org/0000-0003-3659-2709
http://orcid.org/0000-0003-3659-2709
http://orcid.org/0000-0003-3659-2709
http://orcid.org/0000-0003-3659-2709
http://orcid.org/0000-0002-3858-8976
http://orcid.org/0000-0002-3858-8976
http://orcid.org/0000-0002-3858-8976
http://orcid.org/0000-0002-3858-8976
http://orcid.org/0000-0002-3858-8976
http://orcid.org/0000-0002-3670-3715
http://orcid.org/0000-0002-3670-3715
http://orcid.org/0000-0002-3670-3715
http://orcid.org/0000-0002-3670-3715
http://orcid.org/0000-0002-3670-3715
http://orcid.org/0000-0001-7760-4724
http://orcid.org/0000-0001-7760-4724
http://orcid.org/0000-0001-7760-4724
http://orcid.org/0000-0001-7760-4724
http://orcid.org/0000-0001-7760-4724
http://orcid.org/0000-0002-5444-5510
http://orcid.org/0000-0002-5444-5510
http://orcid.org/0000-0002-5444-5510
http://orcid.org/0000-0002-5444-5510
http://orcid.org/0000-0002-5444-5510
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37568-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37568-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37568-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37568-9&domain=pdf
mailto:joshua.meeks@northwestern.edu


program cell death death-ligand-1 (PD-1/PD-L1) checkpoint (check-
point inhibitors, CPI)2. Despite improved survival in second-line and
even first-linemetastatic BCas treated with CPI, only 25% of tumors are
responsive to CPI; however, responders are likely to experience a
durable cure3. Currently, the most effective therapy for locally
advanced and metastatic BCa is unknown, with some treated with
chemotherapy and others with immunotherapy. Therefore, accurate
biomarkers that distinguish CPI responders from non-responders are
critically needed. A “neoadjuvant paradigm” in which pre-treatment
tumors are biopsied before administration of systemic therapy and
cystectomy is essential to gain insights intomechanismsof therapeutic
response4–6.

Due to the limited but favorable response of metastatic BCa to
CPI, multiple small Phase II trials have evaluated the pathologic
response to CPI instead of chemotherapy before radical cystectomy.
The largest trial of neoadjuvant immunotherapy for MIBC is PURE01
(NCT02736266), in which 143 patients were treated with three cycles
of pembrolizumab before cystectomy7–9. PURE01 reported a com-
plete pathologic response (ypT0N0) of 36%. IncreasedCD8+ immune
infiltration, PD-L1 status, immune-infiltrated basal subtype, and
tumor mutation burden (TMB) were all associated with favorable
pathologic response to pembrolizumab9. ABACUS (NCT02662309)10,
a Phase II trial of neoadjuvant atezolizumab in patients with muscle
invasive urothelial cancer, reported similar efficacy (31% complete
pathologic response), but the response was not associated with TMB
or PD-L1. While identifying biological features associated with
response or resistance to CPI could help clinicians stratify patients
who should receive neoadjuvant chemotherapy instead of immu-
notherapy or identify potential combination treatments to improve
response and, ultimately, survival, the features associated with
response to CPI remains an area of investigation. Here, we dissected
the heterogenous cancer cell program associated with response and
resistance to CPI using multi-omics analysis of pre-treatment and
matched post-treatment tumors from PURE01 (82 pre- and 31 post-
treatment). We identified fiveMIBC expression subtypes with distinct
genomic, transcriptomic, and pathologic profiles. We developed a
single-patient classifier, which we applied to identify the least-
responsive subtype (S1, Luminal-Excluded/LumE) in an independent
neoadjuvant CPI trial, ABACUS. Further investigation of S1/LumE
tumors, which were enriched for FGFR3mutations, identified KDM5B
as a negative regulator of an immune-related gene network.
Enhanced KDM5B activity was unique to S1 tumors, in contrast to the
other CPI-resistant subtype, S4. Targeted inhibition of either FGFR3
or KDM5B enhanced immunogenicity in S1-like urothelial cells, sug-
gesting a potential combination treatment for tumors classified as
S1/LumE. These results suggest that the biologic classification of
MIBC tumors may aid clinicians and patients in precision approaches
to CPI prior to radical cystectomy.

Results
Clinical, pathologic, and molecular information
Patients were enrolled in the PURE01 clinical trial, a Phase II pro-
spective study of neoadjuvant pembrolizumab before radical
cystectomy (NCT02736266).We used tumor samples from 82 patients
as a biomarker-evaluable subset representative of the overall study
cohort of 114 patients. The median follow-up for 68 patients without
progression was 22 months, and 14 patients had recurrence after a
median of 11 months. A detailed summary of clinical and histopatho-
logical information is provided in Supplementary Data 1. Initial reports
from the PURE01 trial included limited mutation and transcriptomic
analysis7–9. We have now performed a comprehensive multi-omics
analysis of 82 pre-treatment tumors. In addition, we have expanded
our cohort to include 31 post-treatment tumors (27 matched pre- and
post-pembrolizumab specimens), which may identify features asso-
ciated with treatment response.

Development of CPI-MIBC subtypes. To identify molecular features
associated with response to pembrolizumab in MIBC, we performed
bulk RNA-Seq transcriptional profiling of 82 pre-treatment tumors.We
first assessed gene sets for complete responders (CR, n = 30) vs. non-
responders (NR, n = 33) for the overall cohort (Supplementary Fig. 1).
While this analysis returned statistically enriched and repressed gene
sets, we anticipated that the cohort would contain several molecular
subtypes, and that characterizing these subtypes might provide
insights into response or resistance to immunotherapy. Using unsu-
pervised consensus clustering, we identified five transcriptomic sub-
types that reflected the underlying transcriptional heterogeneity
observed in MIBC and were associated with response to pem-
brolizumab (Fig. 1a–c, Supplementary Fig. 2a, b). Then, using a com-
bination of histology and gene expression profiling, we developed
names for the new tumor subtypes that attempted to describe their
biology. Subtype 1 (S1) had the worst pathologic response rate, with
65% NRs (≥pT2 or N+), 19% PRs (≤pT1N0, including CIS), and only 15%
CRs (pT0N0). S4 had a comparably low pathologic response rate, with
50% NR, 25% PR, and 25% CR. S3 and S2 had the highest pathologic CR
rates, with 63 and 47% CR, respectively. For four of the five subtypes
(S1, S2, S3, and S4), pathologic response correlated to recurrence-free
survival (RFS) after radical cystectomy (Fig. 1b, c). Recurrence rates at
two years were 27% for S1 and 38% for S4, while the subtypes with the
best response rates had low two-year rates of recurrence of 7% for S2
and 5% for S3. Clinical response was discordant for S5, with an overall
pathologic response of 50% but few relapses (7%).

Next, we sought to interrogate biomarkers previously associated
with CPI response within the subtypes. The pembrolizumab (Dako
22C3) companion biomarker detects PD-L1 expression in tumor and
immune cells and has been weakly associated with response to CPI11.
Subtypes with high response rates (S2 and S3) had higher proportions
of PD-L1(+) tumors. In contrast, subtypes with the lowest pathological
response rates (S1, S4, and S5) were enriched in PD-L1(−) tumors
(Fig. 1d). We observed a significant correlation between PD-L1
expression levels and pathological outcomes (p =0.011, Pearson,
Supplementary Fig. 2e).

Next, we characterized pre-treatment tumors using four
expression-based MIBC classifiers: Lund12,13, TCGA14, consensusMIBC
(cMIBC)15, andMD Anderson (MDA)16–18 (Fig. 1e). We found statistically
significant similarities between our five pre-treatment subtypes and
tumor classes annotated using these independent classifiers (Fisher’s
Exact tests, Bonferroni correction; Supplementary Data 2). Most S1
tumors were classified as luminal or luminal papillary by TCGA sub-
typing (24/26), as luminal byMDA subtyping (20/26), and asurothelial-
like (Uro) by Lund subtyping (23/26). S2 tumors were comprised of
luminal papillary by TCGA, luminal by MDA, and either genomically
unstable (GU) or Uro by Lund. S4 tumors were classified as small cell/
neuroendocrine-like (SC/NE-like), GU, orUrobyLund and as luminal or
neuronal by TCGA. S5 tumors were classified as mesenchymal-like
(Mes-like) by Lund, luminal-infiltrated by TCGA, p53-like by MDA, and
Stroma-rich by cMIBC. S3 tumors were enriched for basal (Ba/Sq)
tumors by cMIBC and MDA. Thus, the PURE01 subtypes we describe
reflect features of different subtypes across previously described
classifications, suggesting no prior classification was directly com-
parable. However, compared to alternative classifications, our sub-
types were more strongly associated with pathological responses to
CPI (Supplementary Data 3).

To characterize the biological features of each subtype, we per-
formedGene Set Enrichment Analysis (GSEA) usingMSigDBHallmark19

andMariathasan20 gene sets (Fig. 1f, g; Supplementary Data 4). Tumors
from subtypes with limited response to pembrolizumab, S1 and S4,
were both characterized by repressed inflammatory pathways. S1
tumors demonstrated a strong activation of FGFR3 pathways and
repression of immune checkpoint and antigen presentation pathways.
In contrast, S4 tumors showed an upregulation of MYC targets, cell
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cycle, and signaling modules related to DNA damage (DDR, Fanconi).
Thus, despite S1 and S4 having similar poor pathologic and clinical
responses to pembrolizumab, they may have different biologic
mechanisms of immune evasion. In contrast, responsive subtypes S2
and S3 demonstrated upregulation of genes involved in IFN-αand IFN-γ
pathways and antigen presentation machinery (APM). These simila-
rities and differences between subtypes highlight the heterogeneity of

MIBCs andmayexplainwhyno single biomarker hasbeenpredictive of
response to CPI.

To gain further insight into the underlying biology of each sub-
type, we investigated Connectivity Map (CMap)21 data, seeking to
identify perturbations that resulted in signatures similar or opposed to
the expression signature in each subtype (Fig. 1h). Each subtype had a
unique enrichment of perturbagens with strong negative connectivity
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scores that reflected that subtype’s underlying transcriptional chan-
ges. For example, for the subtype S4, in which cell-cycle genes were
upregulated by GSEA (Fig. 1f, g), CMap identified CDK inhibitors
among the top negative correlators, likely reflecting the underlying
CDK activity of S4 tumors, which have a proliferative phenotype.
Conversely, in S3 tumors, with upregulation of immune checkpoints
and EMT signatures, TGF-β receptor inhibitors were predicted to be a
potential treatment.

Finally, we evaluated the histomorphologyof tumors from thefive
subtypes, comparing the epithelial, immune, and stromal components
(Supplementary Fig. 2f). In general, S1 and S2 tumors had prominent
papillary arrangement; however, S1 tumors were depleted of immune
cells (immune deserts), while S2 tumors were enriched with immune
infiltrate. S4, S5, and S3 tumors had comparatively less papillary
architecture than S1 and S2 but had rather more diffuse tumor invol-
vement of the lamina propria and muscularis propria. While both S5
and S3 had increased immune infiltrates, in S5, the immune cells were
excluded/separated from the tumor by stromal cells (immune exclu-
ded). S4 tumors had few to no immune cells. Areas of necrosis were
seen in 2 of the S1 tumors, 4 of the S3 tumors, and 4 of the S4 tumors.
Based on the histologic characteristics and expression signatures, we
gave each subtype a name that described its unique pathologic find-
ings (Fig. 1).

Assessing CPI-MIBC subtypes in an independent cohort. ABACUS is
the only other trial of single-agent neoadjuvant CPI in MIBC. We used
GLMnet22 to develop a single-patient RNA-Seq subtype classifier to
validate our findings in an independent cohort. We applied it to the
ABACUS pre-treatment cohort of 84 tumors (Fig. 2a; Supplementary
Fig. 3a–d; Supplementary Data 5). To evaluate the accuracy of the
classifier,we compared the PURE01 subtypes to the predictedABACUS
subtypes, assessing Hallmark gene sets, CMap perturbagens, PD-L1
status, and responses to CPI treatment (Fig. 2b–f). GSEA results for
Hallmark gene sets were broadly consistent between PURE01 and
ABACUS (Figs. 1f, 2b, Supplementary Data 6). CMap connectivity
scores for perturbagens showed significant (p≪10−30) Spearman cor-
relations between PURE01 and corresponding ABACUS subtypes
(Supplementary Fig. 4), and perturbagens with significant negative
connectivity scores were in many cases similar in related subtypes
(Fig. 1h, Supplementary Fig. 2g). PD-L1 expression was consistent
between PURE01 andABACUS cohorts (Fig. 2d), with higher PD-L1 in S2
and S3. We then compared the response rates in each ABACUS and
PURE01 subtype (Figs. 1b, 2e). ABACUS tumors classified as S1 had an
18% CR rate, which was below the 24% for the overall cohort. Inter-
estingly, in ABACUS, we observed decreased overall response (OR:
CR + PR) in predicted subtypes S2 and S3 (Fig. 2f). This response
translated into clinical outcomes. Tumors in ABACUS classified as S4
had the worst recurrence, and 25% of S1 tumors recured by 24months,
similar to PURE01. Yet, S2, S3, and S5 had fewer recurrences in PURE01
but had similar recurrence rates to S1 in ABACUS (Fig. 2c). The higher
recurrence rates of S2, S3, and S5 in ABACUS correlate to the limited
pathologic response to atezolizumab in these subtypes (Fig. 2e). Given

the similarity of the per-subtype molecular features and gene-
enrichment pathways between the cohorts, we hypothesize that this
OR difference may be secondary to the differential response of
subtypes S2, S3, and S5 to different CPI agents (pembrolizumab vs.
atezolizumab), differences in trial design, and inclusion character-
istics. To further validate our findings, we evaluated a third cohort,
the adjuvant IMvigor010 trial of 670 patients with MIBC23,24

(NCT02450331). In this Phase III MIBC trial, participants were ran-
domized to atezolizumab or observation after radical cystectomy.
When we applied the classifier to cystectomy specimens of the
cohort, we found that the “responsive” subtypes (S2, S3, and S5),
treated with 12 months of atezolizumab, had an improvement in
outcomes compared to “unresponsive” subtypes (S1 and S4)
(p = 0.046) (Fig. 2g). In the observation cohort we identified no dif-
ference in recurrence between subtypes (Supplementary Fig. 2h).
Collectively, validation in two additional trials suggest that MIBCs
may be evaluated by transcriptional subtype, which may help to
identify CPI-responsive tumors.

Somatic mutation and copy number variation in CPI-MIBC sub-
types. To identify the genetic features of each subtype, we ompared
somatic mutations and copy number variations for tumors in the
PURE01 and ABACUS cohorts compared to mutations from ABACUS.
We started by evaluating the association of Hallmark gene sets to
mutations found in at least 10%of tumors.We foundmutationpatterns
associated with the repression or activation of the cell cycle, DNA
repair, and inflammatory pathways (Fig. 3a). Tumors in the S1 subtype
had frequent mutations in KRAS, FGFR3, and KMT2C and had repres-
sed Hallmarks of immune suppression (IFN-α and IFN-γ response,
allograft rejection, IL6-JAK-STAT3 signaling), whereas S2 tumors had
frequent mutations in the replication stress response kinase ATR, and
had upregulated inflammatory gene sets. Interestingly, mutations in
FGFR3, KRAS, and KMT2C were found at a higher frequency in S1
tumors, the ‘immune desert’ subtype with the highest frequency of
non-responders; in contrast, tumors with ATR mutations were more
frequent in subtypes with higher fractions of responders in S2. Overall,
responders had higher frequencies ofmutations inDNAdamage repair
genes (ATR, KMT2A, FANCD2, CDK12, and PALB2) than non-
responders (Fig. 3b).

We then characterized the distribution of somatic mutations
and copy number variations (CNVs) in each expression subtype
(Fig. 3c). Overall mutation frequencies in the PURE01 and ABACUS
cohorts were comparable to those previously reported for the TCGA
MIBC cohort (Supplementary Fig. 5a–c). S1, the subtype with the
worst pathologic response, had frequent, mutually exclusive muta-
tions in FGFR3 (35%) and KRAS (23%), and amplifications in PPARG
(23%) (Supplementary Fig. 5b). CCND1 amplifications, which have
recently been associated with poor response to CPI in a pan-cancer
analysis25, were more frequent in S1 tumors (31%) (Supplementary
Fig. 5a). Enrichment of S1-specific FGFR3 mutations and CCND1
amplifications was confirmed in ABACUS (Supplementary Fig. 6a).
Subtypes with high response rates (S2 and S3) were frequent

Fig. 1 | Overall characteristics of the PURE01 pre-treatment cohort. a Heatmap
showing five unsupervised consensus clusters, and 1005 differentially expressed
genes satisfying p(adj) <10−4 and |log2(FC)| > 2. Covariate tracks show response (CR
complete response, PR partial response, and NR non-response), PD-L1 (+/−) status
from a Dako 22C3 combined positive score (CPS) assay (+ corresponds to ≥10%),
and gender. P-values are from two-sided Fisher exact tests, and are uncorrected for
multiple hypothesis testing. b Fraction of PURE01 samples in consensus subtypes
that had a complete response (CR), partial response (PR), and non-response (NR).
The stacked bar at the right shows the overall responses for the cohort.
c Kaplan–Meier plot of recurrence for the five PURE-01 MIBC expression subtypes,
censored at 24 months, with a log-rank p-value. d PD-L1 +/− status, shown as

fractions of samples in each subtype. e Predicted Lund, TCGA, consensusMIBC, and
MD Anderson subtypes for PURE-01 n = 82 expression subtypes. P-values for the
covariate tracks are from Fisher exact tests and were Bonferroni-corrected for
multiple hypothesis testing (x4). f, gDot representation of GSEA AUCs for selected
f MSigDB Hallmark gene sets, and g Mariathasan et al. 2018 gene sets for the five
subtypes. Enriched (vs. repressed) gene sets are shown as red (vs. blue) discs, with
disc areas proportional to the areas-under-the-curve (AUCs) of the CERNO test
results. h For the PURE01 subtypes, CMap v1.0 connectivity score-rank distribu-
tions, with a binary heatmap showing chemical perturbagens with the most nega-
tive scores. The dotted box highlights perturbagens that have large negative
connectivity scores.
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mutations in ATR (S2: 33%, S3: 16%); and TP53, the most frequently
reported mutation in TCGA BLCA14, was also frequently mutated in
these subtypes (S2: 73% and S3: 68%). While the distribution of tumor
mutational burden (TMB) was not statistically associated with sub-
type (p = 0.49, Kruskal–Wallis test) (Supplementary Fig. 5c), TMB
trended towards being positively correlated with response (p = 0.10,
Kruskal–Wallis test) (Supplementary Fig. 5d).

Subtype differences in the tumor microenvironment by bulk and
spatial analysis. The compositions of immune and stromal cell
populations of the tumor microenvironment (TME) have been asso-
ciated with the immune response to CPI. For example, an ‘inflamed’
immune phenotype, with increased immune cells and low numbers of
fibroblasts, is associated with improved response to CPI compared to
immune-desert and immune-excluded TME10,20,26. We sought to
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evaluate the unique stromal and immune features of the TME in each
subtype by both bulk RNA-Seq and spatial profiling (NanoString
GeoMX Digital Spatial Profiling, DSP). Using ESTIMATE27 and MCP-
counter28 immune deconvolution algorithms, we observed differences
between subtypes in immune cell populations (Fig. 4a, Supplementary
Data 7, 8). We performed DSP to complement the bulk deconvolution
results (Supplementary Figs. 7a–c, 8). Overall, the two subtypes with
the lowest pathologic response rates, S1 and S4, had the lowest
ImmuneScores by ESTIMATE analysis, and the fewest T cells, CD8+
T cells (cytotoxic T lymphocytes, CTLs), B cells, andmyeloid dendritic
cell counts by MCP-counter, suggestive of an ‘immune desert’ TME.
The subtypes with the highest pathological response rates, S2 and S3,
had higher ImmuneScores and levels of immune cell populations
(T cells/CTLs, B cells, and myeloid dendritic cells), consistent with
immune-inflamed tumors. By histology (Supplementary Fig. 2f), S5
tumors appeared to be ‘immune excluded,’ as they had increased
immune cells anddense stromalfibroblasts that restricted the immune
cells from infiltrating the tumor. By ESTIMATE and MCP-counter, S5
tumors had higher ImmuneScores and StromalScores, and higher
levels of fibroblasts and other immune cell types, confirming the
immune-excluded phenotype observed by histology (Supplementary
Figs. 7a, 9a). In addition, S5 tumors had the highest expression of
cancer-associated fibroblast (CAF) markers (Supplementary Fig. 9b).

Tumor-infiltrating B-cells have long been associated with
improved prognosis and clinical outcomes29. Applying the Immuno-
Mind platform’s R package immunarch to TRUST4-processed bulk
RNA-Seq data, we tested PURE01 pre-treatment B-cell repertoires for
specific immunoglobulin signatures associated with response to
neoadjuvant pembrolizumab. Gene usage analysis of the IGH, IGK, and
IGL segments showed that some V(D)J genes were used more fre-
quently. Fitting generalized linear models for overall response rate
(OR: CR + PR) vs. NR, we found that the level of IGHJ130 varied across
subtypes and was lower in OR samples than in NR samples
(p = 3.4 × 10−3, Chi-square test) (Supplementary Fig. 9d). Aswell, in four
of the five subtypes, the mean IGHJ1 level was inversely related to the
frequency of complete responders (CR vs. CR +NR), with higher IGHJ1
usage in S1 and S4 subtypes (Supplementary Fig. 9e).

While deconvolution algorithms can quantify immune cell popu-
lations within a tumor from bulk RNA-Seq data, the spatial organization
of immune cells in the TME is an important determinant of anti-tumor
immunity31. To assess features of TMEs associated with the response at
the spatial level, we performedproteomicDSP,measuring 71 proteins in
pre-treatment tumors from 5 complete responders (CR) and three non-
responders (NR) (Fig. 4b). This method allows non-destructive, image-
basedmicrodissection of distinct compartments of the tumor and TME
as multiple areas of interest (AOIs) in each sample. To distinguish the
unique proteomic profiles in the TME that were associated with
response to CPI, we used principal component analysis (PCA) to cap-
ture the differences between the CR and NR samples from the
luminal subtypes S1 and S2 and from S4 (Fig. 4c). While TME AOIs from
complete responders were relatively concordant, TMEs from non-
responders were separated by principal components, suggesting
significant inter-TME heterogeneity between the non-responders of
different subtypes. For example, for NR AOIs, the first principal

component (PC1) captured global differences in immune infiltration,
with immune-infiltrated subtype S2 separating into a distinct cluster
with higher expression of lymphocyte markers (CD3, CD4), immune
activation markers (ICOS, β2-microglobulin or B2M, TIM-3) and the
immune-suppressive marker IDO1. In NR AOIs, the two immune-desert
subtypes, S1 and S4, separated strongly across PC2, with a stronger
correlation observed for regulatory proteins such asCTLA4 andOX40L.

To further investigate features associated with resistance to
pembrolizumab within each subtype, we then compared the expres-
sion of immune cell markers and immune regulatory proteins in TME
AOIs from CR and NR tumors (Fig. 4d). TMEs from the immune-desert
subtypes S1 and S4 had lower levels of immunemarker and regulatory
proteins than TMEs from S2. Conversely, non-responders of inflamed
S2 tumors had increased immune markers (CD3, CD4, CD8), co-
stimulatory proteins (B7-H3, ICOS), and the inhibitory immune
checkpoint protein IDO1, suggesting that an exhausted immune phe-
notype may contribute to S2’s decreased pathologic response in non-
responders. In summary, we profiled pre-treatment immune cell types
within each subtype by immune deconvolution of bulk RNA-Seq data
with further evaluation by spatial protein data for TMEs. We found
greater divergence of immune cell markers and regulatory proteins of
the TME of S1, S2, and S4 from non-responders (NR) compared to
responders (CR) from the same subtypes.

Comparison of pre- and post-treatment tumors. To further dissect
tumor and TME features specifically associated with resistance to
pembrolizumab, we evaluated 31 post-treatment samples, of which 27
were paired samples taken pre- and post-treatment from the same
anatomic site (Supplementary Data 9). We first re-analyzed the cohort
of 113 tumors (82 pre- and 31 post-treatment tumors) by unsupervised
consensus clustering (Supplementary Fig. 2c, d, Supplementary
Data 10). Samples from the original five subtypes clustered together,
particularly S1, S2, and S4, while 24 (77%) of the 31 post-treatment
tumors clustered within two new subtypes (hereafter named S6 and
S7) (Fig. 5a). Approximately half of the resistant tumors (14, 52% of 27
matched pairs) originated from S1, and 11 of these (79% of 14) were
classified as S6 or S7 after pembrolizumab (SupplementaryData 11). By
MIBC expression subtyping, S6 had more Mes-like tumors, while S7
was comprised of luminal-infiltrated tumors (Supplementary Data 12).
By histology, S6 tumors had more ‘scar-like’ stromal features. In con-
trast, S7 tumors were characterized by increased immune cell infiltrate
(Fig. 5b, Supplementary Fig. 10). S6 tumors had a higher rate of nodal
metastasis than S7 (5/11 for S6 vs. 1/10 for S7, p = 0.15, Fisher’s Exact
test) (Fig. 5c), with no statistical difference in tumor volumes by
morphometric analysis (p = 0.65, t-test) (Fig. 5d, Supplementary
Data 13).

GSEA with MSigDB Hallmarks showed that both post-treatment
subtypes S6 and S7 had upregulated expression of EMT genes, as well
as repressed genes associated with cellular proliferation (G2M check-
point and E2F targets) (Fig. 5e). Hallmarks for S7 reflected an immune-
reactive phenotype, with upregulated inflammatory gene sets (allo-
graft rejection, inflammatory response, IFN-α, and TNF-α response).
ForMariathasangene sets, both S6 and S7 had repressed cell-cycle and
DNA damage response and repair pathways (DDR, Mismatch repair,

Fig. 2 | Identifying and characterizing predicted PURE01 subtypes in the
ABACUS cohort. a The GLMnet classifier. Left: Heatmap of the 100 features used
by the classifier, shown for the PURE01 pre-treatment cohort (n = 82) and its con-
sensus subtypes. Right: Heatmap of the 100 classifier features in the ABACUS pre-
treatment cohort (n = 84), with semi-supervised clustering within each of the pre-
dicted subtypes. The covariate track above the heatmap shows the predicted
PURE01 subtype calls, while the covariate track below the heatmap shows the
prediction probabilities for each subtype in each ABACUS sample. b GSEA results
for selectedMSigDB Hallmark gene sets for the five classifier-predicted subtypes in
the ABACUS cohort. Enriched (vs. repressed) gene sets are shown as red (vs. blue)

discs; disc areas are proportional to the areas-under-the-curve (AUCs) of the
CERNO test results. c Kaplan–Meier plot for DFS for predicted subtypes in the
ABACUSn = 84pre-treatment cohort.dPD-L1(+) status ineach PURE01 subtypeand
each classifier-predicted subtype in ABACUS. e Response (CR, PR, NR) for the
classifier-predicted PURE01 subtypes in the ABACUS pre-treatment cohort.
f Overall response (OR =CR + PR) for PURE01 subtypes and predicted subtypes in
the ABACUS pre-treatment cohort. g Kaplan–Meier plot for DFS, in the atezolizu-
mab arm of the IMvigor010 n = 670MIBC cohort, for predicted subtypes S1 + S4 vs.
predicted subtypes S2 + S3+ S5. The p-value is from a log-rank test, and is not
corrected for multiple comparisons.
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Fanconi, DNA replication) (Fig. 5f), contrasting with pre-treatment
results (Fig. 1g). By comparing immune deconvolution for the 27
matched-pair tumor samples, we identified that post-treatment
tumors had increased immune and stromal populations and
decreased tumor purity, with all but two tumors demonstrating an
increase in immune score, and all but five with an increase in the
stromal score (Fig. 5g, Supplementary Data 9, 14). Specifically, post-
treatment subtypes S6 and S7, particularly S6, showed an increase in

fibroblast populations (p = 4.1 × 10−9, Kruskal test) (Supplementary
Fig. 9a–c, Supplementary Data 15).

Tumors resistant to neoadjuvant therapy are associated with
recurrence and progression, and analysis of post-treatment
tumors from PURE01 may identify new therapeutic options for
patients with CPI-resistant bladder cancers. We applied the CMap
perturbagen gene signatures to identify potential therapeutic
targets for S6 and S7 (Fig. 5h, i). This identified several compounds

Fig. 3 | Somatic mutations and copy number alterations in CPI-MIBC PURE-01
expression subtypes. a Dotplot (left, i): Hallmark gene-set analysis for PURE01
tumors with mutations in 13 selected genes (relative to WT). Barplot (right, ii):
fraction of samples in a subtype with somatic mutations in KRAS, FGFR3,
KMT2C, or ATR. Exact padj, given for each gene, were calculated as follows.
P-values were calculated using two-sided Pearson’s chi-square tests, and were
Bonferroni-corrected formultiple comparisons.bRelativemutation frequency
of five selected genes, stratified by response (CR or PR; non-response is NR).
P-values were calculated using two-sided Pearson’s chi-square tests, and were

Bonferroni-corrected formultiple hypothesis testing. cOncoprints for somatic
mutations and somatic copy number alterations in the five n = 82 PURE-01
expression subtypes. The top-to-bottom gene order is set by decreasing
alteration frequency in the Luminal-Excluded (S1) subtype. For each subtype,
horizontal bars to the right indicate the number of sampleswith an alteration in
that gene, and the types of alterations. Barplots at the top of each subtype’s
oncoprint show the total number of genetic alterations in the oncoprint genes,
colored by the alteration type.
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with large negative connectivity scores for each subtype, poten-
tially identifying alternative treatments. For S6, FGFR inhibitors
and DNA alkylating agents were among the top negative correla-
tions, suggesting increased FGFR pathway activity in this subtype.
In contrast, S7 expression profiles were similar to more

immunologically active signatures generated by treatment with a
protein kinase C (PKC) activator, consistent with the elevated
expression of immune gene sets in this subtype32. Interestingly, for
S7, CMap analysis also identified MAPK and MEK inhibitors among
the top negative correlations, suggesting upregulated MAPK/ERK

Fig. 4 | Pre-treatment subtypes have distinct immune infiltration patterns.
a Heatmaps showing ESTIMATE Immune and Stromal scores, and immune cell
scores from MCP-counter for the five pre-treatment expression subtypes. See also
Supplemental Fig. 4 and the ‘Comparing ESTIMATE,MCP-counter and DSP’ section
in Results.bNanostringGeoMx digital spatial profiling (DSP). Above left: schematic
of the DSPworkflow. Above right: protein panels used, with the number of proteins
or phosphoproteins in each panel. Below left: a response-by-subtype barplot (as in
Fig. 1b) showing sample numbers/IDs for the eight samples for which we generated
DSP data (three CR-NR pairs for S1, S2, and S4, and one additional CR for both S5
and S3). Below right: a representative digital micrograph image of a stained slide,
on which white circles show Regions-of-Interest (ROIs), and a red arrow indicates
ROI 2. (‘Representative’ implies manual selection, with no biological or technical
replicates.) Enlarged, this ROI is shown to the right, with green PanCk+ stain

indicating the tumor cells and red-purple CD3 + stain indicating the tumor micro-
environment (TME). The two micrographs further to the right are ROI 2’s color-
filtered Areas-of-interest (AOIs) for TME and Tumor, from which the DSP protein
signals were generated. c Principal component analysis (PCA) for TME AOI proteins
for PURE01 subtypes LumE (S1), LumR (S2), and MycU (S4), comparing complete
responders (CR, left) and non-responders (NR, right). Above: PCA similarity plots.
Outlined areas indicate sets of AOIs that correspond to a subtype, and X- and Y-axis
labels indicate the percentage of total variation explained by the first two principal
components. Below: In loading plots, arrow lengths and directions indicate the
relative contributionof an important protein to principal components PC1 andPC2.
d Heatmaps of DSP protein abundance for TME AOIs (columns) for a complete
responder and a non-responder from PURE01 subtypes S1, S2, and S4, for 13
immune regulatory proteins and immune markers.
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pathway activity in this subtype. In addition to identifying possible
adjuvant therapies, the CMap analysis confirmed that S6 and
S7 subtypes have different biologies and suggested that subtype-
specific combination therapies may have a role after cystectomy in
CPI-resistant tumors.

FGFR3 and KDM5B are potential therapeutic targets in subtype
LumE/S1. Because 11 (52%) of the 21 CPI-resistant tumors in S6 and S7
were originally from S1 (Fig. 5a), we next sought to identify regulators
of the repressed inflammatory gene network observed in S1 tumors.
First, we applied regulon analysis to uncover transcription factors that

Fig. 5 | Comparison of pre- and post-treatment PURE01 samples. a Sankey-like
diagram showing: (above) five unsupervised clusters for pre-treatment samples
(n = 82) and (below) seven clusters for pre+post samples (n = 113). Eachbezier curve
shows the positions of one sample in two consensus clustering solutions. Below,
bezier curves are drawn only for the n = 27 matched pre-post sample pairs. The
n = 113 clusters are colored to indicate subtypes that correspondbetween then = 82
andn = 113 clustering results. The gray-black covariate track indicatespre- andpost-
treatment samples in the n = 113 clustering solution. A two-sided Fisher exact test
that compared pre/post-treatment status to seven consensus subtypes returned
p = 8.7 × 10−13, uncorrected formultiple comparisons.bRepresentativeH&E-stained
micrographs for post-treatment subtypes S6 and S7. (‘Representative’ implies
manual selection, with no biological or technical replicates.) Scale bars are 0.1mm.
c Fraction of samples in S6 (n = 11) and S7 (n = 10) that were lymphnodeN0 vs. N1 at
radical cystectomy. d Distributions of tumor areas in subtypes S6 and S7. Results

were generated from RNA-Seq data for the n = 113 PURE01 pre- and-post-treatment
cohort, with no biological or technical replicates. Dots represent individual sam-
ples. The p-value is from a two-sided Student’s t-test. e, fGSEA results for S6 and S7
using eMSigDB Hallmark gene sets and fMariathasan gene sets. See the legend for
Fig. 1f, g.gChanges in ESTIMATE ImmuneScore, StromalScore, and tumorpurity, in
pre and post-samples, with lines colored as in (a), for the n = 27 matched sample
pairs. Results were generated from RNA-Seq data for the n = 27 PURE01 pre/post-
treatment matched sample pairs, with no biological or technical replicates. Dots
showmatched-pair pre-or-post-treatment samples; lines show pre-to-post changes
for an individual sample. h, i Connectivity score-rank distributions for CMap v1.0
perturbagens identified for subtypes h S6 and i S7. For each subtype, insets show
details of the chemical perturbagens with the largest positive and negative con-
nectivity scores and highlight a subset of these perturbagens.
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regulate the expression of inflammatory genes in S1 tumors. This
identified the histone H3K4 demethylase KDM5B as having multiple
negatively regulated immune target genes (Fig. 6a). KDM5B regulon
activity was highest in 18 (69%) of 26 S1 samples andwasmost strongly
and consistently repressed in subtype S5, which had the highest
median ImmuneScore (Supplementary Fig. 11a, b; Supplementary
Data 7). In comparison, the KDM5B regulon was repressed in subtypes
with higher ImmuneScores (S5 and S3) (SupplementaryData 7, 16), and

we confirmed this negative relationship in the independent TCGA-
BLCA cohort (Fig. 6b, Supplementary Data 18).We then used STRING33

network analysis and Reactome pathways to infer and functionally
interpret the interactome of KDM5B’s negative target genes and found
that the network was enriched in genes involved in immune modula-
tion (TNFR1-induced NFkB signaling and the TLR4 cascade) (Supple-
mentary Fig. 11c, Supplementary Data 19). Finally, we used single-cell
RNA-Seq from human MIBC tumors to establish that epithelial cells

Fig. 6 | KDM5B and FGFR3 are potential therapeutic targets to activate an
immune response in S1 CPI-MIBCs. a KDM5B regulon target genes (red = positive
targets, blue = negative targets), with immune-related genesmarked by black discs.
b Validating the negative association between KDM5B regulon activity and ESTI-
MATE ImmuneScore. (i) The relationship of KDM5B regulon activity to ESTIMATE
ImmuneScore in the PURE01 pre-treatment cohort, with samples (dots) colored by
KDM5B regulon activity status. (ii) Rank-sorted profile of KDM5B regulon activity
across the PURE01 pre-treatment cohort, showing activated (n = 23, 28%), unde-
fined (n = 23, 28%), and repressed (n = 36, 43%) cohort subsets. (iii) Relationship of
KDM5B regulon activity to ESTIMATE ImmuneScore in the TCGA-BLCA cohort
(n = 404). (iv) Rank-sortedprofile of KDM5B regulon activity across the TCGA-BLCA
cohort, showing activated (n = 111, 27%), undefined (n = 146, 36%), and repressed
(n = 147, 36%) cohort subsets. c Left: Unsupervised clustering of single-cell RNA
sequencingdata from three humanMIBC tumors identified 19clusters consistingof

cells from the tumor, immune, and stromal compartments. Right: (i) Unsupervised
reclustering of scRNA-Seq data for epithelial cells identified nine sub-clusters. (ii)
Distribution of a luminal signature score in the epithelial cell sub-clusters. (iii)
KDM5B expression in the epithelial cell sub-clusters. (iv, v) AUCell scores reflect the
activity of KDM5B(+) and KDM5B(−) regulons in a given cell. d Volcano plots for
differentially expressed genes from bulk RNA-Seq data for RT4 cells treated with
the KDM5Bi C70 or an FGFRi. e Dot representation of GSEA AUCs for enriched vs.
repressed Hallmark gene sets in RT4 cells treated with C70 and FGFRi See the
legend of Fig. 1f, g. f Heatmaps of the ATAC-seq signal profiles in RT4 cells treated
with the KDM5i C70 or with DMSO as a control, centered on transcriptional start
sites. g ATAC-seq and RNA-Seq peak profiles at the interferon-inducible IFI27 and
HLA-DQA1 gene loci in RT4 cells treated either with DMSOas a control or the KDM5
inhibitor C70. Pale blue rectangles highlight regions around transcriptional
start sites.
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expressed luminal markers, that KDM5B was relatively highly expres-
sed in subsets of the epithelial cells, and that activated and repressed
KDM5B regulon activities were consistent with higher and lower
KDM5B expression levels (Fig. 6c, Supplementary Fig. 11d).

To determine whether KDM5B can repress immune target genes
in urothelial cancer, we used the KDM5-inhibitor (KDM5i) C7034,35 in S1-
like RT4 bladder cancer cells, which harbor an oncogenic FGFR3-
TACC3 fusion36. The enzymatic inhibition of KDM5 with C70 in these
cells caused upregulation of genes that were negative KDM5B regulon
targets (Fig. 6d). Since 35% of S1 tumors had mutations in FGFR3
(Fig. 3c), and the FGFR3 gene set was upregulated in S1 (Fig. 1g), we
compared KDM5B inhibition to an FDA-approved mutant-FGFR3-
directed therapy, erdafitinib37. Of the 1519 genes significantly differ-
entially expressed by KDM5Bi treatment (|log2FC| >1.5, FDR <0.05),
454were also significantlydifferentially expressed after treatmentwith
this FGFR inhibitor (FGFRi) (p = 2.4 × 10−286, Fisher’s Exact test) (Sup-
plementary Fig. 11e). Importantly, GSEA indicated that treatment of
RT4 cells with either the KDM5i C70, or with erdafitinib, upregulated
an inflammatory phenotype associated with expression of genes from
IFN-α, IFN-γ, and IL6 JAK-STAT3 gene sets (Fig. 6e, Supplementary
Fig. 11f, g). Given KDM5B’s role as a histone demethylase of H3K4me3
and H3K4me235,38, we further characterized the mechanism of KDM5i-
C70 activity in RT4 cells by comparing areas of open or closed chro-
matin using bulk ATAC-Seq data. Our results suggest a global increase
in open chromatin signals close to transcription start sites (Fig. 6f) and
enrichment of open chromatin regions at transcription start sites for
immune regulatory genes, such as the IFN-α regulated gene IFI27, and
themajor histocompatibility complex gene HLA-DQA1 (Fig. 6g). Taken
together, our results suggest that subtype-specific targeting of KDM5B
or FGFR3 in S1 tumors can alter chromatin accessibility profiles, and
can enhance immunogenicity to make S1 tumors potentially become
more responsive to immunotherapy. KDM5B regulon activity is high in
the S1/Lum-E tumor subtype, in contrast to the other resistant subtype,
S4/MycU, suggesting that these two subtypes may have disparate
mechanisms of resistance. Active regulons in S4 included YY1, DNMT1,
and the MYC-regulated gene MAZ1 (Supplementary Fig. 11a), which
have been associated with PD-L1 resistance in melanoma39.

Discussion
The neoadjuvant paradigm, in which a tumor is sampled before sys-
temic therapy, and then again post-treatment at radical cystectomy,
may offer opportunities to identify biological features that can guide
higher-efficacy treatment strategies for BCa patients. Currently, no
reliable biomarkers are available to guide the selection of individua-
lized neoadjuvant or adjuvant chemo- or immunotherapy in MIBC
patients. Unfortunately, the companion PD-L1 biomarker for CPI
therapy has not shown a strong association with the response across
trials with anti-PD1/PDL1 antibodies, challenging investigators to find
other biologic predictors. Our study describes comprehensive multi-
omic profiling of MIBC tumors from PURE01, the largest study avail-
able of neoadjuvant CPI before radical cystectomy. The study’s overall
goal was to dissect the molecular heterogeneity of MIBCs to further
define features associated with resistance.

By unsupervised consensus clustering, we identified five tran-
scriptomic MIBC subtypes associated with clinical and pathological
responses to pembrolizumab (Fig. 7). We assessed each subtype for
genetic and transcriptomic features that may be associated with the
observed pathologic immune phenotype. Signatures with enhanced
IFNA and IFN, such as S2 and S3, had a better response than tumors
with a low IFN expression (S1 and S4). In addition, we sought to
determine the unique drivers of immune resistance of each tumor
subtype. S1 luminal tumors had a high frequency of mutations in
FGFR3 and KRAS, along with repressed inflammatory gene signatures.
S4 tumors had immune desert phenotype characterized by coopera-
tive transcriptional activity of MYC- and KRAS-driven immune evasion

programs40. S5 tumors had a stroma-rich, immune-exclusion pheno-
type with a high frequency of T cells in the TME with increased IFN
signatures; however, S5 had few to no immune cells infiltrating the
tumors and had elevated expression of immune checkpoint sig-
natures, potentially explaining this subtype’s relatively poor patholo-
gic response rate. Yet, the mechanistic differences between clinical
and pathologic responses require further investigation. Collectively,
our data identified expression signatures that were associated with
intrinsic resistance to CPI, providing further granularity into features
associated with response to checkpoint immunotherapy.

We integratedbulk transcriptomeand spatial protein data profiles
to identify features of non-responsive tumors (Fig. 7). Spatial analysis
of the tumor microenvironment from a non-responding S2 sample
identified elevated protein expression of the immune suppressive
checkpoint marker IDO1. The multi-faceted role of IDO1 in the sup-
pression of T-cell responses is well-studied in several different
cancers41. IDO1 inhibition in combination with anti-PD-1 therapy
(nivolumab) and chemotherapy is being tested in a Phase III clinical
trial for MIBC (NCT03661320)42,43. While further investigation of the
spatial heterogeneity is necessary for a larger cohort, our results may
help explain the lack of CPI activity in the small fraction of non-
responders within the S2 subtype.

Prior work has suggested activating mutations in FGFR3 may be
associated with an immune-evasive phenotype and poor response to
CPI44. Upper tract urothelial carcinoma (UTUC), which harbors muta-
tions in FGFR3 in 74% of patients44, exhibited a particularly poor
response to adjuvant nivolumab in the CheckMate274 trial45 (HR = 1.16,
95% CI = 0.62–2.13 for renal pelvis, and 1.55 (0.7–3.45) for ureteral
tumors). Herein, we identified a higher frequency of FGFR3 mutations
in S1 tumors and KDM5B as a regulator of the immune suppression
program in this subtype. While only 35% of tumors had mutations in
FGFR3, FGFR3 expressionwas enhanced in tumors fromS1. In vitro, we
demonstrated an increase in immune pathway gene sets with KDM5B
or FGFR3 inhibition in a luminal cell-line model representative of the
S1 subtype. While erdafitinib has been associated with immune acti-
vation in lung cancer46, little is known aboutmutant FGFR3-dependent
immune regulation in BCa. We demonstrated that KDM5B inhibition
alters the chromatin accessibility of FGFR3-mutated RT4 cells, result-
ing in increased expression of proinflammatory genes. These results
suggest that genetic and epigenetic drivers of tumor subtypes could
be targeted to transform a resistant tumor into a more CPI-responsive
state. Transcriptomic analysis identified an increase in immune infil-
tration and stromal expansion in post-treatment, pembrolizumab-
resistant tumors. Furthermore, in S6-subtype post-treatment tumors,
CMap analysis identified FGFR inhibitors as a potential therapeutic
target, likely reflecting a continued dependence of these tumors on S1
gene expression patterns post-therapy, e.g., FGFR3-related pathways.
If an S1 tumor were identified before treatment, itmight be possible to
change its susceptibility toCPI by using an inhibitor targeting FGFR3or
KDM5B. In contrast, S7 tumors were associated with greater immune
activation, and CMap analysis identified the MAPK pathway and WEE1
as potential targets in these tumors. A combination of WEE1 inhibitors
withCPI is currently being evaluated in a Phase Ib study inpatientswith
muscle invasive bladder cancer (NCT0254666147). These examples
further support using an RNA-based platform to identify potential new
therapeutics.

We acknowledge the limitations of this study. We developed
tumor subtypes from a unique cohort with limited sample numbers
and attempted to validate the subtypes in two cohorts of tumors
from different clinical trials. ABACUS and PURE01 had different rates
of PD-L1 positive tumors, clinical stage, and duration/doses of ther-
apy. In addition, the two cohorts were treated with different immune
checkpoint blockade agents (the PD-1 inhibitor pembrolizumab and
the PD-L1 inhibitor atezolizumab, respectively) and assessed PD-L1
with different IHC assays. At a technical level, RNA and DNA from the
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tumors were processed by different extraction and sequencing
methods, and we did not attempt to correct for potential batch
effects. We hypothesize that differences in outcomes within sub-
types between trials may be secondary to differences in immu-
notherapy drugs; however, we cannot validate this hypothesis with
mechanistic studies. In addition, our spatial proteomic evaluation
involved areas of interest from a limited number of tumors; further
investigation of spatial heterogeneity should be performed in MIBC.
Finally, as almost all post-treatment tumors from ABACUS were from
non-responsive tumors, we could not compare the effect of immu-
noediting or how TCR/BCR diversity changes in responsive tumors.
Similarly, tumors from IMvigor010 were biased towards more
aggressive tumors.

Our work identifies the heterogeneity associated with responses
to CPI in muscle invasive bladder cancer. We describe five subtypes
with unique genomic and transcriptomic cancer cell programs and
distinct tumor microenvironments with differential responses to
neoadjuvant pembrolizumab in bladder cancer. In addition, we have
uncovered FGFR3mutations and KDM5B overexpression as resistance
biomarkers to CPI and describe therapeutic alternatives that can help
guide patient stratification for combinatorial therapies.

Methods
Clinical data and metadata
For ABACUS, clinical/metadata were previously reported, and we
accessed FASTQ files from the European Genome-Phenome Archive
(EGAS00001004445). For ABACUS, we describe how pathological
responsewas assigned asCR, PR, NR, andUnknown in the ‘Pathological

response’ section below. We defined PD-L1(+) as IC2+. For the IMvi-
gor010 cohort, we downloaded metadata from EGAD00001007575.

H&E micrographs
Unstained formalin-fixed and paraffin-embedded (FFPE) bladder tis-
sue/tumor sections were received from the PURE-01 study. A repre-
sentative slide from each patient was stained with hematoxylin and
eosin. Images were taken with a Zeiss Axioskop/Nuance microscope
using a 10x objective.

Tumor morphometry
To quantify the amount of tumor in each bladder specimen, the H&E-
stained slides were scanned at low magnification and digitized using
the TissueFAXS system (TissueGnostics, Los Angeles, CA, USA). The
acquired images were analyzed using TissueGnostics’HistoQuest cell
analysis software. Prior to morphometry, the tumor was marked by a
GU pathologist (BC) with a black marker. We then used the auto-
mated region of interest (auto-ROI) function to identify the borders
of the specimen and manually excluded any non-urinary bladder
components that auto-ROI had included. Finally, in the HistoQuest
software, we traced the area indicated as tumor by our pathologist
and recorded the total tumor area (mm2, including necrotic tumor)
for each slide.

RNA sequencing
For PURE01, the paraffin block at diagnosis was used as the primary
tissue for evaluation. Paraffin blocks were stored at room temperature.
A GUpathologist evaluated every section and identified the high grade

Fig. 7 | Summary characteristics of PURE-01 consensus expression subtypes.
Top to bottom: cluster number; subtype name; immune class (desert, infiltrated or
excluded); GSEA signed areas under the curve (AUCs) for gene sets from Mar-
iathasanet al. 201820, positive vs. negativeAUCs indicate enriched vs. repressed sets
and AUC=0 indicates either that no result was returned from a CERNO52 test with

qval <0.05, or padj > 0.1; GSEA summary, largely from MSigDB Hallmark gene sets;
PD-L1 status (CPS> 10% for PD-L1+); response topembrolizumab treatment (CR, PR,
NR); number of samples and percent of the n = 82 cohort; and finally the percent of
samples in a subtype that had recurrences within 24 mo.
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and invasive parts of the tumor, which were then macro-dissected for
dual RNA and DNA extraction.

RNA was extracted with the Roche HighPure miRNA Kit (Roche
#05080576001), following the manufacturer’s instructions. Stranded
total RNA-Seq was conducted in the Northwestern University NUSeq
Core Facility. Briefly, RNA quantity was determined with a Qubit fluo-
rometer. Total RNA examples were also checked for fragment sizing
using Agilent Bioanalyzer 2100. The Illumina TruSeq Stranded Total
RNA Library Preparation Kit was used to prepare sequencing libraries,
following the manufacturer’s recommendations, including rRNA
depletion with RiboZero Gold, cDNA synthesis, 3′ end adenylation,
adapter ligation, library PCR amplification, and validation. Libraries
were pooled and sequenced on an Illumina HiSeq 4000, generating
50 bp single-end (SE) reads at a sequencing depth of 20–25M reads/
sample. For ABACUS, RNA sequence data from FFPE samples, and
clinical/metadata, were made available by T. Powles and Genentech
from the European Genome-Phenome Archive (EGAS00001004445).

For RNA sequence data for both PURE01 and ABACUS, we trim-
med Illumina adapters with TrimGalore v0.6.5. We aligned the trim-
med reads to the GRCh38.p12 reference human genome with STAR
v2.7.5a48 and converted SAM files to sorted BAMs with Samtools v1.6.
Wegenerated readcountswith ‘htseq-count’ from ‘htslib’ v0.11.2, using
Ensembl v95 (GRCh38) gene annotations. To generate gene-level
FPKM values, we used ‘cuffquant’ and ‘cuffnorm’ from Cufflinks
v2.2.149, with these gene annotations. For the IMvigor010 cohort, we
downloaded RNA-Seq FASTQ files and metadata from
EGAD00001007575. We removed adapters from reads with Trimmo-
matic v0.39, then aligned trimmed reads to the GRCh38 reference
genome with STAR v2.5.2, and generated read counts for Ensembl v95
gene annotations with HTseq count v0.11.1.

Consensus expression subtypes
For PURE01 n = 82, we input FPKM profiles for the 1950 coding genes
with the largest variance into ConsensusClusterPlus v1.52.050, and
evaluated results for hierarchical, PAM, and k-means clustering, and
for Pearson, Spearman, and Euclidean distances. Specifically, for runs
using Pearson and Spearman distances, we input a distance matrix via
as.dist(1 - cor(T, method = "…")), where T was the log10-transformed,
median-centered FPKMs. We chose to work with a five-cluster solution
with Spearman distances, PAM clustering, random subsets of samples
set by pItem=0.85, and 10,000 iterations. For PURE01 n = 113, we
chose to report on a seven-cluster solution using Spearman distances,
PAM clustering, pItem=0.875, and 50,000 iterations.

We generated a heatmap for the consensus clusters (Fig. 1a) as
follows. Using edgeR51 v3.28.1’s ‘filterByExpr’ function, we retained the
15,918 of the 19,951 coding genes that had sufficiently large RNA-Seq
counts in the PURE01 n = 82 cohort (minimal count = 10, minimal total
count = 15, minimal proportional count in the smallest group =0.7).
We then used DESeq252 v1.26.0 to identify genes that were differen-
tially expressed (DEGs) between subtypes, using default parameters
for pairwise contrasts. The heatmap shows FPKM gene expression
levels for genes with |log2FC| > 2 and adjusted P < 10−4.

To predict Lund, TCGA, and consensusMIBC subtypes across the
consensus clusters, we used the R-based BLCAsubtyping and con-
sensusMIBC subtype classifiers12 with FPKM gene expression profiles.
To transform ten Lund subtypes into five simpler Lund subtypes, we
combined ‘Ba/Sq’ and ‘Ba/Sq-Inf’ into ‘Ba/Sq’; ‘GU’ and ‘GU-Inf’ into
‘GU’; and ‘UroA-Prog,’ ‘UroB,’ and ‘UroC’ into ‘Uro.’ We assessed the
association of each set of (predicted) subtypes with CR/PR/NR
response, using a Chi-square tests, then Bonferroni-correcting the p-
values for multiple hypothesis testing.

Pathological response
For PURE01 n = 82 pre-treatment samples, clinical data reported CR,
PR, and NR pathological responses.

For ABACUS n = 84 pre-treatment samples, clinical data reported
‘pathological complete response’ (PCR) and ‘major pathological
response’ (MPR) for each sample. We assigned response = CR to
20 samples that had PCR == “Yes” and MPR== “No”, response = PR to
5 samples with PCR = = “No” and MPR== “Yes”, response =NR to
57 samples with PCR == “No” and MPR== “No”, and response =
Unknown to 2 samples with PCR == “Yes” & MPR== “Yes”. For the
IMvigor010 cohort, for MIBC samples in the atezolizumab trial arm,
n = 127 samples with relapseID “relapse” were assigned as non-
responders (NR), while n = 144 samples with relapseID = “nonrelapse”
were assigned as complete responders (CR).

Gene set enrichment analysis (GSEA)
For GSEA with n = 30 CR (complete responder) vs. n = 33 NR (non-
responder) tumor samples from the PURE01 pre-treatment cohort
(n = 82), we used FPKMs for 15,488 expressed coding genes.We sorted
the gene symbols by the signal-to-noise ratio (S2N). Given two groups
of samples (here, CR vs. NR, see ‘Pathological response’, above), we
calculated S2N for eachgene as thedifference inmeanFPKM in the two
groups, divided by the sum of FPKM standard deviations53. We then
used tmod v0.46.2, in R v4.1.2, to run CERNO tests on the ranked gene-
symbol vector and on its reverse53,54. We tested 50 MSigDB v7.2
Hallmark19 gene sets and, separately, 20 gene sets whichwere available
as Imvigor210CoreBiologies_1.0.0.tar.gz from research-pub.gene.com/
Imvigor210CoreBiologies. We reported tmod evidencePlots and tab-
ular results, typically showing only gene sets with AUC>0.60 and
FDR <0.01.

For each PURE01 expression subtype, we ranked ~15.5 thousand
expressed protein-coding genes by the signal-to-noise ratio (S2N). For
a similar analysis with predicted subtypes in ABACUS, we used ~15.8
thousand coding genes. Then, working with 50MSigDBHallmark gene
sets and the twenty-gene set fromMariathasan et al.20, we used CERNO
tests54, typically with qval = 0.05, to identify enriched and repressed
gene sets for each subtype or predicted subtype.We summarized gene
set results with ‘dot’ diagrams that we generated with Complex-
Heatmap v2.6.255, setting dot radii to be proportional to the CERNO
areas under the curve (AUCs).

To summarize these results, we thresholded CERNO results at
pAdj (i.e., qval, FDR) = 0.1, then, for Fig. 7, we generated radar charts
using the R package fmsb v0.7.0 and a custom R script. We displayed
signedAUCs, i.e., using theCERNO test AUCvalue for an enriched gene
set, but taking the negative of the AUC value for a repressed gene set.
We set the y-axis limits in each radar chart. An AUC of zero indicates a
gene set for which either (a) no result was returned from a CERNO test
using a qval = 0.05 significance threshold, or (b) the result returneddid
not satisfy the Padj = 0.1 threshold.

DNA extraction, sequencing, and analysis
For PURE01, DNA was extracted from FFPE tissue from pretherapy
transurethral resection of the bladder (TURB) samples, and a
hybridization-capture panel of approximately 400 cancer-related
genes was sequenced to a median coverage of 743x, then analyzed
for mutations and copy number alterations by Foundation Medicine
(Cambridge, MA, USA), as described previously. For ABACUS, we
downloaded mutation and copy number data from EGA as dataset
EGAD00001006201. We generated oncoprints of mutations and copy
number variations using ComplexHeatmap v2.6.255. For comparisons
of mutation frequencies between the different subtypes, we used R’s
Fisher’s Exact test unless otherwise noted. In Fig. 3a, b, we used p-
values that we Bonferroni-corrected formultiple hypothesis testing; in
Fig. 3c, we used R’s p.adjust() to correct p-values to FDRs.

Tounderstandbiological pathways impactedbymutations in a set
of selected genes, we used DESeq2 v1.30.052 to rank genes by differ-
ential expression in samples in which a selected gene was mutated vs.
samples with the wild-type gene. We processed each list of DEGs with
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tmod v0.46.2, using MSigDB Hallmark v7.5.1 gene sets as an input, to
identify gene sets that were enriched or repressed in the mutated
samples relative to thewild type.WeusedComplexHeatmapv2.10.0 to
generate dot graphics representing the area-under-the-curve (AUC)
values from a tmod GSEA analysis for each gene mutation.

Kaplan–Meier plots
For time-to-event analysis, we used the R survival package v3.2–7 to
generate Kaplan–Meier (KM) plots and calculate log-rank p-values. For
PURE01, we calculated times-to-events as follows: if RELAPSE == 1,
time= Time to recurrence; otherwise, time= Time to last follow-up.
Times were from the date of the first pembrolizumab to the date of
relapse (i.e., recurrence). Prior to KM calculations, we censored data
for status and times-to-event to 24 months. For the ABACUS pre-
treatment cohort (n = 84), and the Atezolizumab arm of the MIBC
samples in the IMvigor010 cohort, we used clinical DFS data.

Immune cell type deconvolution
We deconvolved bulk RNA-Seq data with MCP-counter v1.2.025 and
with ESTIMATE v1.0.1327 (bioinformatics.mdanderson.org/estimate/
rpackage.html). To generate heatmaps for MCP-counter, we log2-
transformed the FPKM inputs to MCP-counter result for a cell type
(adding one); median-centered each record; removed results for NK
cells, Endothelial cells, and Neutrophils because they had very low
scores; then generated a heatmapwith ComplexHeatmap v2.6.2, using
the original CCP heatmap column order, and splitting columns by
consensus clusters. We re-ordered subtypes in the PDF file by hand,
using Affinity Publisher v1.9.3. For ESTIMATE results, we median-
centered the output scores, then generated a heatmap with Com-
plexHeatmap v2.6.2. We compared ESTIMATE and MCP-counter
results to distributions of digital spatial profiling (DSP) data for 71
proteins, SNR-normalized, for areas of interest (AOIs) corresponding
to each slide’s tumor microenvironment (TME) (see DSP, below). To
test differences in ESTIMATE ImmuneScore and StromalScore for
n = 113 subtypes S6 vs. S7 (Fig. 5h), we used Kruskal–Wallis tests, then
applied a Bonferroni (x2) correction for multiple hypothesis testing.
We used Kruskal–Wallis tests to assess differences in MCP-counter
fibroblast results for n = 113 S6 and S7 vs. S1-to-S5, and to assess dif-
ferences in ESTIMATE ImmuneScore and StromalScore for n = 82
S5 and S3.

Expression of cancer-associated fibroblast (CAF) genes across
n= 82 subtypes
For five marker genes (CFD, COL1A1, DCN, LUM, PTGDS) for inflam-
matoryCAFs (iCAFs) and five (ACTA2, CALD1,MYL9, RGS5, TAGLN) for
mCAFs56, we used a custom R script to generate box-whisker plots of
FPKMs of each gene across the PURE01 n = 82 subtypes. For S5 and S3,
we compared FPKMs for each gene with a Kruskal–Wallis test, then
transformed the 10 p-values into adjusted p-values with a Bonferroni
correction for multiple hypothesis testing.

Gene usage for IGH, IGK, and IGL subrepertoires
We processed RNA-Seq data for n = 82 PURE01 pre-treatment samples
with TRUST457 v0.2.054, then processed the TRUST4 output with the
immunarch v0.6.5 R package (ImmunoMind, Berkeley CA). In
TRUST4’s output, we separated the mixed TCR and BCR receptor
sequences and removed out-of-frame, partial, and erroneous CDR3
amino acid sequences. While the data contained too few TCR
sequences to allow estimating TCR diversity, it contained a large
enough number of BCR sequences to support robustly estimating BCR
repertoire diversity. We assessed gene usage for IGH, IGK, and IGL
subrepertoires, retaining the n = 74, 75, and 66 of 82 samples that had
at least 100 clonotypes for each subrepertoire, and fitting generalized
linearmodels against overall response rate (ORR =CR or PR, n = 49) vs.
NR (n = 33).

PD-L1+/− status
For PURE01, using data from a Dako 22C3 immunohistochemical (IHC)
assay, we scored samples as PD-L1(+) if the combined positive score
(CPS)was>10%.We set “Neg”CPSvalues to0.0 anddeleted the “%” and
“<” symbols. We calculated a covariate independence p-value for PD-
L1(+) vs. subtypes with a Fisher exact test. For ABACUS, using PDL1_IC
(by immune cells) data from a Ventana SP142 IHC assay (which con-
sisted of values IC0, 1, or 2+), we scored samples as PD-L1(+) when
PDL1_IC was 2+.

Regulon analysis
We calculated a transcriptional regulatory network for 1612 tran-
scription factors (TFs) using RTN v2.13.2, as described elsewhere58,59.
The TFs are available from RTN’s ‘tfsData’ object as ‘Lambert2018’.
Briefly, RNA-Seq expression profiles were used to estimate the asso-
ciations between a TF and all of its potential targets. We used two
metrics to identify potential TF-target associations: Mutual Informa-
tion (MI) and Spearman’s correlation. MI-based inference indicates
whether a TF’s expression is informative of the expression of a
potential target gene, while Spearman’s correlation indicates whether
the ‘direction’ of an inferred TF-target association is positive or nega-
tive. AssociationswhoseMIwerebelow a thresholdwere eliminated by
permutation analysis (BH-adjusted p-value <0.026), and unstable
interactions were then removed by bootstrapping. RTN regulons were
additionally processed by the ARACNe algorithm, which uses the data
processing inequality (DPI) theorem to enrich the regulons with direct
TF-target interactions58. The regulatory network construction and
analysis were performed in R v3.x (R-Core-Team, 2020).

Validation of the KDM5B regulon in the TCGA-BLCA cohort
To validate the KDM5B regulon and the negative association between
KDM5B regulon activity and immune scores in the TCGA-BLCA cohort
(n = 404), we used two approaches. In the first approach, we compared
TF-target associations inferred for the PURE01 n = 82 KDM5B regulon
targets (n = 72 targets; 56 negatives and 16 positives) with those for the
TCGA-BLCA RNA-Seq data14. We downloaded the batch-corrected
RNA-Seq data for the TCGA-BLCA cohort (n = 404) from gdc.cancer.-
gov/node/977, and used RTN to compute Mutual Information (MI)
between KDM5B and each of its inferred PURE01 regulon target genes,
in the TCGA-BLCA RNA-Seq data, using RTN’s tni.permutation() func-
tion to assign a BH-adjusted p-value to each MI value. We then strin-
gently filtered by the TCGA-BLCA adjusted p-values (padj < 0.001) and
required that each PURE01 gene symbol be present in the TCGA-BLCA
RNA-Seq data. This retained 59 (82%) of KDM5B’s 72 PURE01 target
genes (Supplementary Data 17). For these targets, we compared the
positive or negative ‘sign’ of the target gene’s relationship to KDM5B
activity in PURE01 and TCGA-BLCA data. In the second approach, we
compared the negative relationship between KDM5B regulon activity
and ESTIMATE ImmuneScore for the PURE01 and TCGA-BLCA cohorts,
as follows. Given the batch-corrected TCGA-BLCA RNA-Seq data, we
used RTN’s tni.replace.samples() function to replace the PURE01
expression data with the TCGA-BLCA gene expression data in the
PURE01 n = 82 cohort’s transcriptional regulatory network calculated
in the previous section. We then used RTN’s tni.gsea2() function to
calculate regulon activities and activity status.

To calculate ESTIMATE ImmuneScores for the PURE01 n = 82
cohort, we log2-transformed the FPKMs for protein-coding genes and
ran ESTIMATE v1.0.13 on the transformed data. For RNA-Seq data for
the TCGA-BLCA cohort, we transformed the 20531 TCGA gene names
(e.g., ‘SLC35E2|728661’) into 20501 unique gene symbols, then ran
ESTIMATE on the log2-transformed RNA-Seq data.

Finally, we generated scatterplots of KDM5B regulon activity vs.
ESTIMATE ImmuneScore, for PURE01 and TCGA-BLCA results, color-
ing scatterplot dots (each dot represented a cohort sample) by the
activated/undefined/repressed activity status of the KDM5B regulon in
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each respective cohort. To complement each scatterplot, we gener-
ated rank-sorted KDM5B activity profiles for each cohort, using red/
gray/blue to represent activated/undefined/repressed KDM5B regulon
activity status. We note that these rank-sorted activity/status barplots
are a specific representation of the KDM5B regulon activity across a
cohort, and the ranges of repressed/undefined/activated samples in a
barplot are not expected to match the corresponding ranges of
ImmuneScore values in the corresponding scatterplot.

Inferred interactome of KDM5B’s negative regulon targets
Given KDM5B’s regulon, we input gene symbols for the 56 negative
targets into STRING v11.0 (string-db.org)33, and generated a ‘full’ PPI
network, using the highest confidence (0.90), and allowing up to 10
first and second shell interacting proteins. We exported a table of
Reactome60 pathways that were enriched in this network, then dis-
played the statistical significance values of the top six Reactome
pathways as a horizontal barplot, using a custom R script.

Digital spatial profiling (DSP) of proteins
We chose representative CR and NR slides for each luminal subtype,
and a representative CR slide for each basal/mesenchymal subtype: S1
(CR = sample 88; NR = sample 12), S2 (CR = sample 37; NR = sample 17),
S4 (CR = sample 86; NR = sample 99), S3 (CR = sample 50), and S5
(CR = sample 34). (‘Representative’ implies manual selection, with no
biological or technical replicates.)

Using methods previously described61, slides were deparaffinized
and rehydrated by incubating in CitriSolv (3 × 5min), 100% ethanol
(2 × 5min), 95% ethanol (2 × 5min), and deionized water (2 × 5min).
For antigen retrieval, slides in 1X Citrate Buffer (pH 6) were placed into
a pressure cooker at high temperature and pressure for 15min. After
releasing the pressure, slides were equilibrated to room temperature
for 25min. Slides were washed (1x TBS-T, 5 × 1min), blocked with
Buffer W (NanoString, Seattle WA) in a humidified chamber for 1 h at
room temperature, and stained overnight with a panel of 77 oligo-
conjugated detection antibodies at a final concentration of ~0.25 µg/ml
for each antibody. The next day, slides were washed (1x TBST-T,
3 × 10min), postfixed in 4% PFA for 30min at room temperature,
washed (1x TBS-T, 2 × 5min), and nuclei were stained with 500nM
SYTO 83 (Thermo Fisher S11364) for 15min at room temperature in a
humidity chamber, and rinsed with 1X TBS-T.

Prior to slides being loaded into a GeoMx Digital Spatial Profiler
(NanoString, Seattle WA), they were stained with immunofluorescent
antibodies to facilitate identification of the tumor and tumor
microenvironment components: pan-cytokeratin (clone AE1/AE3,
Novus Biologicals, NBP2-33200DL594, 1:400) for epithelial/tumor
cells; CD3 (UMAB54, OriGene, UM500048, 1:100) for T cells; and
smooth muscle actin (1A4, eBio 53-9760-82, 1:400) for muscle. Once
scanned, the digital image for each tissue section was assessed by a
pathologist, and regions of interest (ROI) were selected that were
representative of the tumor morphology and tumor microenviron-
ment for each sample.

Supplementary Data 20–24 give the NanoString DSP protein data.
We assessed a total of 71 proteins from the following DSP modules or
panels: Cell Death (10 proteins), Immune Activation Status (8 pro-
teins), Immune Cell Profiling Core (18 proteins, plus three positive and
three negative controls, see below), Immune Cell Typing (7 proteins),
IO Drug Target (10 proteins), Pan-Tumor (9 proteins), and PI3K-AKT (9
proteins/phosphoproteins). The proteins included three negative
controls (Ms IgG1, Ms IgG2a, and Rb IgG) and three positive controls
(GAPDH, S6, and histone H3).

For each slide (see above), DSP data were generated for regions-
of-interest (ROIs), and each ROI could yield one or more areas-of-
interest (AOIs) after color filtering (see micrographs in Fig. 4b). For
correlation, PCA, and differential abundance calculations, we used a
subset of 49 expressed proteins, as follows. We first removed the one

‘muscle’ record (ROI = AOI) from the dataset. Then, because we have
more confidence in proteins whose abundance distributions were
above the distributions of the negative controls, we calculated the
mean abundance of the three negative controls across all AOIs and
retained only signal (i.e., non-control) proteins whose median abun-
dances were above themedian of the negative control average. Taking
SMA as a muscle marker, we then removed SMA from all AOIs, leaving
49 of the original 71 signal proteins. We then used protein levels nor-
malized by the signal-to-noise ratio (SNR) (SupplementaryData 21) and
only TMEAOIs, to do two types of calculations. First, with centered and
scaled protein abundances, we used PCAtools v2.2.0 to generate
principal component similarity and loading plots. Then, for 13 immune
regulatory proteins and immune markers, we generated heatmaps of
SNR-normalized protein abundance for TME AOIs for complete
responders and non-responders, using pheatmap v1.0.12 and scale =
“row” within each group.

We extended this analysis for the subset of proteins whose med-
ian levels were greater than the median levels of the most abundant
negative control, rabbit (Rb) IgG. For the 21 CR AOIs for S1, S2, and S4
(Fig. 4b), and 42 proteins for the 17 NR AOIs, this retained 35 and 42
proteins, respectively (Supp. Fig. 8a, b). For these two sets of more-
highly-abundant proteins, we calculated Spearman correlations sepa-
rately for CR and NR AOIs (Supp. Fig. 8c, d), highlighted certain heat-
map regions by adding a rectangle or triangle, then annotated each
protein in each heatmap with ‘probe groups’ (Supp. Fig. 8e, f).

RNA sequencing of RT4 cells treated with the KDM5i C70 and
an FGFRi
RT4 cells were purchased fromATCCand cultured inMcCoy’smedium
(Thermo Fisher Scientific) with 10% FBS. RT4 cells were treated with
DMSO, 5 µMKDM5i KDM5-C70 (XcessBio, M60192-2S) for 72 h with or
5 µM FGFRi Erdafitinib (MedChemExpress, HY-18708) for 48 h. All
experiments were done with biological triplicates. RNA was isolated
using a Qiagen RNeasy Mini kit, and on-column DNAse digestion was
performed to avoidDNAcontamination. RNAqualitywas assessed by a
High Sensitivity RNA Tapestation (Agilent Technologies Inc., Cali-
fornia, USA) and quantified by a Qubit 2.0 RNA HS assay (Thermo-
Fisher, Massachusetts, USA). Paramagnetic beads coupled with oligo
d(T)25 were combined with total RNA to isolate poly(A) + transcripts
following the NEBNext Poly(A) mRNA Magnetic Isolation Module
manual (New England BioLabs Inc., Massachusetts, USA). All library
construction followed themanufacturer’s instructions for theNEBNext
Ultra II Non-Directional RNA Library PrepKit for Illumina (NewEngland
BioLabs Inc., Massachusetts, USA). Final library quantity was assessed
by a Qubit 2.0 (Thermo Fisher, Massachusetts, USA), and quality was
assessed by TapeStation D1000 ScreenTape (Agilent Technologies
Inc., California, USA). The final average library constructs and insert
sizes were, respectively, approximately 380bp and 260 bp. Illumina
8-nt dual indices were used for demultiplexing. Libraries were equi-
molar pooled based on QC values. The pools were sequenced on an
Illumina NovaSeq S4 (Illumina, California, USA) as 150-bp PE reads,
generating 20M read pairs per sample. BCL2fastq was used to convert
BCL files generated by the sequencer into fastq format, and fastq files
were processed using the Ceto pipeline created by Elizabeth Bartom
(https://github.com/ebartom/NGSbartom). Briefly, RNA sequencing
reads were aligned to the GRCh38 reference genome using STAR
v2.7.5. Gene expression was quantified using HTSeq v0.11.1, and dif-
ferential gene expression profiles were generated using edgeR
v3.16.551. HTSeq FPKM values were used for downstream analysis in R
v3.6.3. Volcano plots and dotplots were generated using ggplot2
v3.3.2, and gene set enrichment analysis was performed using tmod
v0.46.2 CERNO tests and Hallmark gene sets from MSigDB v7.219. A
Venn diagram showing the overlap of significantly expressed genes
between KDM5i C70 and FGFRi treated cells were manually generated
using numbers calculated from the HT-seq/edgeR output files.
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Coverage profiles were generated using deepTools andweredisplayed
in the UCSC genome browser.

Single-sample expression subtype classifier
GLMnet elastic nets are generalized linear models with regularization.
While they are normally used in regression contexts, they can be easily
adapted to classification tasks using binomial familymodels, and the R
package caret includes this possibility by default. Previous publica-
tions in our field had used this type of classifier62,63. We also tested a
random forest (RF)model and a simpler nearest-centroid (NSC)model,
all in 3-fold repeated cross-validation runs. Consistently, the best-
tuned elastic netmodelsoutperformedboth alternativemodels (Supp.
Figure 3d). The elastic net classifier’s cross-validation accuracy was
92%. Given that we lack the ground-truth labels for ABACUS subtypes,
we are restricted to assessing accuracy with cross-validation metrics.

We used log2-transformed FPKM RNA-Seq data from the n = 82
pre-treatment PURE01 samples to generate a single-sample classifier,
as follows. We used ANOVA tests to find the genes that discriminated
between the five unsupervised subtypes, then selected between 20
and 1500 of the most discriminatory of these genes, and applied the R
caret package (v6.0-86, R 4.0.4) to fit four different kinds of models:
nearest shrunken centroids (NSC, pamr v1.56.1), elastic net (glmnet
v4.1-1), multi-class random forest, and the combination of five one-vs-
all random forest models (ranger v0.12.1). We evaluated each model
using repeated cross-validation (3-fold, five repeats) and, using levels
suggested by the R package dials (v0.0.9), tuned parameters to max-
imize cross-validation accuracy. For NSC, we tuned thresholds (10
levels); for the elastic net, we tuned α (10 levels) and λ (20 levels); and
for the random forest, using ‘gini’ as the splitting rule, we tuned the
number of trees (6 levels between 2 and 18) andminimumnode size (4
levels between 2 and 15). From this assessment, we chose a 100-gene
GLMnet model with parameters α = 0.1 and λ = 0.05, which had an
estimated cross-validation accuracy of 88%. The R-based classifier,
with installation and usage instructions, is available at https://github.
com/csgroen/mibcCPIclass.

We applied the 100-gene classifier to log2-transformed FPKM
RNA-Seq data from the ABACUS pre-treatment cohort, predicting
probabilities that each of the n = 84 samples corresponded to one of
the five PURE01 expression subtypes.

For comparison, we trained 100-gene and 500-gene GLMnet and
random forest classifiers with VST-transformed52 PURE01 RNA-Seq
data in the same manner as described previously and used these
classifiers to predict in VST-transformed ABACUS RNA-Seq data. We
found no benefit in using VST normalization for building the single-
sample classifier [cross-validation accuracy: log2(FPKM)= 92.1%
(83.2–100%, 95% CI), VST = 89.7% (78.8–100%, 95% CI; cross-validation
kappa: log2(FPKM) = 86.7% (71.8–100%, 95% CI), VST = 89.7%
(78.2–100%, 95% CI)]. Given this, we recommend using log2(FPKMs)
with theGLMnet classifier, rather than VST-transformedRNA-Seq data.

Single-cell RNA sequencing of MIBC tumors
Three fresh bladder tumors from patients undergoing TURBT (trans-
urethral resection of a bladder tumor) were collected under IRB
STU00204352. Tissue was cut into small pieces and enzymatically
digested to achieve a single-cell suspension. Next, cells were re-
suspended in 0.04% BSA in PBS solution and loaded into a 10X
Genomics Chromium platform for Gel Bead-In Emulsion (GEM) gen-
eration and barcoding. Samples were processed using the Chromium
Single GEM Single Cell 3’ reagent kit v3.1, following themanufacturer’s
instructions. Libraries from three 10X channels were pooled and
sequenced on one lane of an Illumina HiSeq X as 150-bp paired-end
reads. Read sequences were demultiplexed to generate FASTQ files,
which were further processed using 10X Genomics’ Cell Ranger v4.0.0
pipeline. Reads were aligned to the GRCh38 genome, and GENCODE
v32/Ensembl 98 gene counts were quantified using the counts

command in Cell Ranger to generate feature-barcode matrices. Sam-
ples were further analyzed in Python3.8 using Scanpy v1.8.264 with the
following modifications. To reduce false positive readouts from cells
with low gene counts, we removed from the analysis cells with fewer
than 200 unique features and features that were identified in fewer
than 200 cells, as well as cells for which greater than 20% of UMIs
mapped to mitochondrial genes and greater than 5% of UMIs mapped
to ribosomal genes. Post-filtering, the remaining features (i.e., genes)
across 15922 unique cells were scaled and centered to define the
relative expression of features across cells. Next, we used the SCSA65

package to annotate cell typeswithin each cluster. After identifying the
main cell lineages (tumor, immune and stromal compartments), we
used unsupervised clustering to refine the cell states identified for the
epithelial cell lineage, identifying nine sub-clusters. We generated a
luminal gene expression score using scanpy.tl.score() genes and 16
luminalmarkers: CYP2J2, ERBB2, ERBB3, FGFR3, FOXA1, GATA3, GPX2,
KRT18, KRT19, KRT20, KRT7, KRT8, PPARG, XBP1, UPK1A, and UPK2,
which are associated with the luminal subtype in muscle invasive
bladder cancer14. Next, we used the top ten principal components as
input to Louvain graph-based clustering, with a resolution parameter
of 0.4. All gene expression and clustering results were visualized using
the UMAP function in Scanpy. Regulon analysis was conducted using
pyScenic v0.11.266. For the epithelial cell sub-cluster, anAnnData object
was created and used as an input to the pyScenic pipeline. The count
matrix was used as an input to pyScenic and processed with default
parameters. Next, regulon prediction was performed using cisTarget
with default parameters and three hg38 .feather ranking databases.
pyScenic runs using default settings detect only activating targets and
not repressive targets. We modified this behavior by using the –all-
modules option in the -ctx command to generate a list of all enriched
motifs for activating and repressive targets, then used aucell to
quantify the activity of each gene signature across single cells in the
epithelial cell sub-cluster. Finally, results from pyScenic were inte-
grated into a Scanpy AnnData object. For marker genes in each epi-
thelial cell sub-cluster, we show the top five genes, ranked by adjusted
p-value, requiring a minimum absolute value log2-fold change of 1.5.

ATAC-seq sample and data processing
Replicate samples from RT4 cells treated with DMSO or 5 µM KDM5i-
C70 for 3 days were processed for chromatin profiling by ATAC-
sequencing using a previously described protocol67. Briefly, 50,000
cells werewashed in cold PBS and lysed. Transposition was performed
at 37 °C for 30min using Illumina Tagment DNA Enzyme and Buffer kit
(Illumina, 20034197). DNA was isolated using the Qiagen MinElute
Reaction Cleanup kit and was amplified for five cycles. The final
number of additional PCR cycles was evaluated by real-time PCR. The
final library was purified using double-sided AMPure XP beads pur-
ification to remove primer dimers and >1000bp fragments. Library
qualitywas assessedby running 1 µl of library on aHigh Sensitivity DNA
Bioanalysis chip (Agilent, Santa Clara, CA). TheDNA concentrationwas
quantified by QuBit. Samples were sequenced on an Illumina HiSeq as
150-bp paired-end reads, with an average of 92.5M paired-end reads
generated per sample.

For the rawsequencingdata, qualitymetricsweregeneratedusing
FastQC v0.11.5. Cutadapt v3.3 was used to trim adapter sequences.
Paired-end-reads were aligned to the GRCh38 reference human gen-
ome using Bowtie2 v2.4.1. Non-uniquely mapped reads were removed.
Using a previously described method that accounts for Tn5 transpo-
sase binding during analysis68, all positive-strand reads were shifted
4 bp downstream, and all negative-strand reads were shifted 5 bp
upstream using the alignmentSieve tool in deepTools v3.1.1. Shifted
reads were pooled by condition, and peaks were identified using
MACS2 v2.1.0. Profile plots and heatmaps for the ATAC-seq signal
profiles around transcription start sites (TSS) were generated using
plotHeatmap and plotProfile tools in deepTools v3.1.1 by pooling
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DESeq2 v1.30.0 normalized read counts for each condition. ATAC-seq
coverage tracks were generated using deepTools and were visualized
using the UCSC genome browser.

CMap/LINCS analysis
To identify potential drug targets for S6 and S7 subtypes, and to
compare PURE01 subtypes S1-5 and ABACUS predicted subtypes S1-5,
we utilized the Connectivity Map (CMap) LINCS gene expression
resource21,69 to identify perturbed gene expression signatures that
were similar (vs dissimilar) to the gene expression signatures of eachof
these subtypes. For each subtype, we ranked coding genes by the
signal-to-noise ratio (SNR) and submitted gene symbols for the top 150
high-SNR and 150 low-SNR genes to the expressionQuery tool (https://
clue.io) using the Touchstone v1 L1000 dataset70. Results from each
query assigned a connectivity score between −100 to 100 to each
CMapperturbagen. A positive score indicated that the query signature
was similar to a perturbagen signature (i.e., genes that were upregu-
lated in the query were upregulated in reference data for treatment
with a perturbagen),while a negative score indicated the opposite (i.e.,
upregulated query genes were downregulated in reference perturba-
gen data). We ranked perturbagens based on the connectivity scores,
and generated score-rank plots with Graphpad Prism, then manually
generated per-subtype heatmaps of selected perturbagens.

Statistics and reproducibility
We did calculations in R, typically with v4.x. Statistical tests were
typically done with R’s two-sided fisher.test(), kruskal.test(), and
chisq.test() functions. P-values reported were corrected for multiple
hypothesis testing using Benjamini–Hochberg (FDR) or Bonferroni
approaches, where noted. Boxplots were generated in R using default
settings. Each box spans the 25th to 75th percentile range in the data
(i.e., the interquartile range, IQR) and shows a horizontal line at the
median value. Whiskers extend 1.5 times the IQR from the box, and
dots, where shown, show all data values, including minima (minimum
values) and maxima (maximum values). Violin plots (Fig. 5d) were
generated with Graphpad Prism; as in the boxplots, dots show all data
values. Results for each cohort (PURE01, ABACUS, and IMvigor010)
were generated from RNA-Seq data for the cohort, with no biological
or technical replicates. Similarly, ‘representative’ micrographs in
Figs. 4b, 5b, and in Supplementary Fig. 2f, were chosen manually; they
do not include technical or biological replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data have been deposited in the EGA
database (https://ega-archive.org/studies) under the accession code
EGAS00001005549: (a) for the PURE01 cohort, bulk RNA-Seq data
derived from human samples; (b) scRNA-Seq data for human muscle-
invasive tumor samples; (c) bulk RNA-Seq data for the human RT4 cell
line treated with either the KDM5Bi C70, an FGFRi, or a DMSO control;
and (d) bulk ATAC-Seq data for RT4 cells treated with the KDM5B
inhibitor C70, or with a DMSO control. Access can be granted by
contacting the corresponding author (joshua.meeks@northwes-
tern.edu) with responses addressed within 14 working days. Data will
be available for at least 24 months from publication. Human subject
data are available under restricted access to protect patient informa-
tion. For the ABACUS cohort, clinical and bulk RNA-Seq data can be
requested from the EGAS00001004445 Data Access Committee
(DAC, bci-cecmqa@qmul.ac.uk); data for the IMvigor010 cohort
(EGAS00001004997) can be requested at devsci-dac-d@gene.com.
Source data to generate most figure panels are publicly available at
Zenodo (https://doi.org/10.5281/zenodo.7750550).

Code availability
Original R and Python code are publicly available on Zenodo (https://
doi.org/10.5281/zenodo.7750550).
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