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Meta-learning biologically plausible
plasticity rules with random feedback
pathways

Navid Shervani-Tabar1 & Robert Rosenbaum 1

Backpropagation is widely used to train artificial neural networks, but its
relationship to synaptic plasticity in the brain is unknown. Some biological
models of backpropagation rely on feedback projections that are symmetric
with feedforward connections, but experiments do not corroborate the
existence of such symmetric backward connectivity. Random feedback
alignment offers an alternative model in which errors are propagated
backward through fixed, random backward connections. This approach
successfully trains shallow models, but learns slowly and does not perform
well with deeper models or online learning. In this study, we develop a meta-
learning approach to discover interpretable, biologically plausible plasticity
rules that improve online learning performance with fixed random feedback
connections. The resulting plasticity rules show improved online training of
deep models in the low data regime. Our results highlight the potential of
meta-learning to discover effective, interpretable learning rules satisfying
biological constraints.

Error-driven learning inmultilayer neural networks was revolutionized
by the error backpropagation algorithm1, or backprop for short. In
backprop, gradients or “errors” are propagated backward through
auxiliary feedback pathways to compute parameter updates.

While practical, backprop has strong structural constraints that
make it biologically implausible2,3. A major limitation, known as the
weight transport problem4 states that transmitting gradients to
upstream layers requires feedback connections that are symmetric
with feedforward connections. Such symmetric connectivity is not
known to exist in the brain. In an attempt to depart from the symmetry
assumption, Lillicrap et al.5 show that even random backward con-
nections can transmit effective teaching signals to train the upstream
layers. In this scenario, while the backward connections are fixed,
forward weights evolve to align the teaching signals with those pre-
scribed by the backprop algorithm. However, leaving out the sym-
metry constraint comes with caveats. Random feedback alignment
struggles with deeper networks, limited training data sizes, convolu-
tional layers, and online data streams6,7.

To improve random feedback alignment, Nøkland8 proposed to
rewire the feedback connections and feed the teaching signals directly

from the output layer to the upstream layers. While this improves the
transmission of errors, it still does not perform as robustly as the
symmetric case in the low data regime. Parallel to this, Liao et al.9

suggested dismissing symmetry in magnitude, but assigning sym-
metric signs to the feedback connections. Nonetheless, they found
that decreasing the batch size of the training data may deteriorate
performancewhendiscarding symmetry. In addition, they foundbatch
normalization10 critical for training with asymmetric connections.
These findings render the methods inadequate for training with an
online stream of data, where the batch size is one, and ultimately
undercuts their biological plausibility.

An alternative strategy is to implement a secondary update rule to
modify the backward connections along with the forward weights. To
that end, Akrout et al.11 proposed to use a Hebbian plasticity rule12 to
adjust the feedback matrices parallel to the approximate gradient-
based update of the forward path. The former pushes the backward
connections toward the transpose of the forward weights. However,
Kunin et al.13 show that this approach is highly sensitive to hyper-
parameter tuning. Instead, they redefine the optimization objective as
a loss function based on the forward path in combination with layer-
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wise regularization terms for backward weights to update forward and
backward pathways concurrently. They propose a few regularization
terms and show that combining these units can achieve more stable
plasticity rules.

Meta-learning is a broad learning framework consisting of a
learning process that envelopes another optimization loop and learns
some aspect of the inner learning procedure, effectively “learning to
learn.” Although this concept has been around for decades14, Finn
et al.15 popularized meta-learning for few-shot learning applications.
This approach employs meta-learning to optimize an internal repre-
sentation of the network, which is subsequently used as an initial
weight to expedite learning on a downstream task. Further, Javed and
White16 extended this approach to continual learning bymodifying the
objective function of the outer optimization loop. Still, they used the
modified approach to learn a partial initialization of the network’s
forwardweights. Although effective in learning representations for the
few-shot learning, they effectively work by pre-training a model rather
than by learning to learn. More precisely, their effectiveness is largely
derived from their ability to meta-learn a weight initialization, rather
than meta-learning a learning rule itself.

The meta-learning framework has provided a new direction for
building biologically plausible computational neural models. For
example, Lindsey et al.17 learn the direct feedback pathways that
modulate activations and use a supervised adaptation of Oja’s rule to
update forward connections. It is supervised because it benefits from
modulated activations, which do not guarantee the established prop-
erties of conventional Oja’s rule18. Nevertheless, they also meta-learn
an initial value for the forward connections, which makes their
approach dependent on the learned weight initialization, not on the
learned learning rule alone.Miconi et al.19,20 showed thatmeta-learning
can train a variety of network architectures on various tasks. Like
Lindsey et al.17, their approachmeta-trains a separate plasticity rule for
each weight. While this approach can be effective, the resulting plas-
ticity rules are difficult to interpret. In addition, meta-learning weight
initialization in theseworksmakes it unclear to what degree the results
are affected by the proposed plasticity rule as opposed to the weight
initialization.

A growing body of work aims to only meta-learn a plasticity rule
without inferring any component of the inner model, such as initial
weights. Early work includes Bengio et al.21, who meta-learned a para-
metric learning rule to train a 2D classifier and boolean function. In
each meta-iteration, they used the plasticity rule to train multiple
networks on separate tasks and obtained the meta-loss function by
summing over the loss of all these networks. More recent work
includes Andrychowicz et al.22, who parametrize the learning rule with
a Recurrent Neural Network (RNN) andmeta-learn weights of the RNN
model. Using an RNN allows for training a dynamic update rule. In the
context of biological plausibility, Confavreux et al.23 used meta-
learning to determine plasticity rules that train shallow linear net-
works. Rather than discovering new rules, they recover well-known
plasticity rules using objective functions based on their known
behavior.

The scope of the meta-learning framework is beyond learning the
forward pathway’s plasticity rule. Meta-learning has given rise to
unorthodox training models beyond the classic backward transmis-
sion of errors. For example, Metz et al.24 used a meta-learning frame-
work to learn a plasticity rule for unsupervised learning. They
proposed to infer the teaching signals bymeta-learning a network that
projects forward activation units and the downstream feedback signal
into backward hidden states. These hidden states are subsequently
used to update the forward and backward weights via each pathway’s
meta-learned plasticity rule. Another related work on semi-supervised
learning25 uses learnable auxiliary feedback and lateral connections to
facilitate error propagation during training and meta-learns the plas-
ticity rules to update these connections. Finally, Sandler et al.26

reformulate the interactions between the forward and backward acti-
vations by defining parameterized update rules for both feedforward
and feedback connections. Then, they yield new plasticity rules by
meta-learning these hyperparameters.

Here, we improve upon previous work by discovering a plasticity
rule that enhances the flow of information in the backward pathway
while learning more distinctive embeddings in the forward network.
We usemeta-learning to learn a parameterized plasticity rule based on
a combination of candidate rules. Key features that characterize our
approach include:
1. Our approach solely meta-learns a plasticity rule and does not

learn a weight initialization. As a result, our approach learns a
learning rule that can be applied to train “naive,” randomly
initialized networks from scratch.

2. We use “meta-parameter sharing” in the sense that all weights
share a common plasticity rule, instead of learning a separate
plasticity rule for each weight. This approach allows us to inter-
pret and understand the meta-learned plasticity rules.

3. We impose an L1 penalty on the plasticity coefficients in ourmeta-
loss function. This encourages our algorithm to learn a plasticity
rule with fewer terms, further simplifying the analysis and
interpretability of the resulting rule.

4. Our inner learning loop uses online learning (batch size 1) and
limited training data (250 data points). Coupled with the random
weight initialization in our inner learning loop, this forces the
plasticity rules to learn in a more biologically relevant and chal-
lenging setting, with which random feedback alignment is known
to struggle9.

Previous studies have employed different combinations of ele-
ments, such as meta-parameter sharing (as used in ref. 23) and online
learning (as used in ref. 17). In contrast to previous studies, we integrate
all these features to address the weight alignment problem. Our ana-
lysis of the meta-learned plasticity rules demonstrates how they
overcome the weight alignment challenge. Our approach further
advances the use of meta-plasticity to understand how effective
learning can emerge in biological neural circuits.

Results
Limitations of feedback alignment in deep networks
Consider a fully connected deep neural network fW parameterized by
weights W, representing a non-linear mapping fW : x↦ yL from the
network’s input y0 = x to the output yL, with L denoting the depth of
the network. Each network layer is defined by

z‘ =W ‘�1,‘y‘�1, ð1Þ

y‘ = σðz‘Þ, ð2Þ

where yℓ is the activation for layer ℓ and σ stands for the non-linear
activation function.

Given a dataset Dtrain = ðX train,Y trainÞ, the model is trained in an
attempt to find the set of weight parametersW = {Wℓ−1,ℓ∣0 < ℓ ≤ L}, that
minimize a loss function LðyL,Y trainÞ. Each weight matrix Wℓ−1,ℓ is
modulated by a teaching signal eℓ derived from L. A commonly used
method to compute eℓ is to analytically calculate themodulatory signal
eL in the output layer and then use a backward auxiliary network to
transmit it to the upstream layers. This backward projection follows
the relation

e‘ =B‘ + 1,‘e‘+ 1 � σ0ðz‘Þ, ð3Þ

where⊙ denotes element-wise multiplication and B = {Bℓ+1,ℓ∣0 < ℓ < L}
are the set of feedback connections.
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In a gradient-based optimization algorithm, eL is defined as the
derivative of the loss functionLwith respect to zL. This teaching signal
is propagated backward up to the initial layer to modulate the weight
parameters. A widely used scheme, backprop, uses feedback weights
BBP
‘+ 1,‘ that are the transposes of the forward path’s weights, to trans-

port thesemodulating signals using Eq. (3). Subsequently, the forward
weight parameters are updated by

ΔW ‘�1,‘ = � θe‘y
T
‘�1, ð4Þ

which represents a shared plasticity rule for all forward connections
Wℓ−1,ℓ and θ is the associated learning rate.

To alleviate the biologically undesirable characteristics of the
backprop algorithm, ref. 5 proposed the “Random Feedback Align-
ment” approach, which departs from the assumption of symmetric
feedback connections and instead uses fixed random backward con-
nections BFA that are not bound to the forward weights. To distinguish
between the two learning algorithms, we hereafter use the phrase
“feedback alignment” to refer to the learning rule in Eq. (4) with fixed
random BFA

‘+ 1,‘ and we use “backprop” to refer to Eq. (4)
with BBP

‘ + 1,‘ =W
T
‘,‘+ 1.

For feedback alignment, the teaching signal eFA‘ is not an exact
gradient, but an approximating pseudo-gradient term. The resulting
learning algorithm performs well on simple tasks and shallower net-
works. However, feedback alignment fails to reach good accuracy in
deeper networks and is not as robust in the small data regime. In our
empirical test with an online stream of data, feedback alignment only
begins to effectively learn after about 2000 iterations, while backprop
learns much more quickly (Fig. 1a). An alternative approach to using
feedback connections that link consecutive layers is to create direct
backward pathways8. This change allows errors to be transmitted
directly from the output layer to the upstream layers. This modifica-
tion leads to improved performance compared to the feedback
alignment method, speeding up the learning process and improving
accuracy. However, it still falls short of the performance level of
backpropagation (see Supplementary Fig. S1). In addition, Fig. 1b
shows that the teaching signals transmitted through fixed feedback
connections eFA‘ are not alignedwith the true gradients, eBP‘ , computed
by backpropagation at this stage of training.

These limitations indicate that the backward flow of information
through fixed feedback is insufficient for online training in deeper
models. This paper investigates modified plasticity rules to improve
the trained model’s performance. To that end, a meta-learning fra-
mework is adapted to explore a parameterized space of the
plasticity rules.

Meta-learning to discover interpretable plasticity rules
Meta-learning is a machine learning paradigm that aims to learn ele-
ments of a learning procedure. This framework consists of a two-level
learning scheme: An inner adaptation loop that learns parametersWof
a model fW using a parameterized plasticity rule F ðΘÞ and an outer
meta-optimization loop that modifies the plasticity meta-parameters
Θ. The meta-training dataset contains a set of tasks fT εg0 ≤ ε≤ E , each
consisting of K training data (Xtrain,Ytrain) and Q query data
(Xquery,Yquery) per class. The former is used to train themodel fWwhile
the latter optimizes the meta-parameters Θ. Algorithm 1 details the
meta-learning framework presented in this work.

Algorithm 1. Meta-learning algorithm.
Input meta-training set fT εg0 ≤ ε≤ E = fðXε

train,Y
ε
trainÞ,ðXε

query,
Y ε

queryÞg0 ≤ ε≤ E , plasticity rule F , number of episodes E, meta-learning
rate η, and regularization coefficient λ.
Initialize learning parameters Θ(0).
for ε=0, . . . ,E do

Initialize network parameters W(0) and B.
for ðxðiÞ

train, y
ðiÞ
trainÞ 2 ðXε

train,Y
ε
trainÞ do

Set y0 =x
ðiÞ
train

for ℓ = 1,…, L do
Compute zℓ (Eq. (1)).
Compute yℓ (Eq. (2)).

end for
Compute LðyL, y

ðiÞ
trainÞ.

Compute eL =∂L=∂zL.
for ℓ = L,…, 1 do

Compute e‘�1 =B‘,‘�1e‘ � σ0ðz‘�1Þ (Eq. (3)).
Update W ði + 1Þ

‘�1,‘ =W
ðiÞ
‘�1,‘ +F ðe‘�1, y‘�1, e‘,y‘,W

ðiÞ
‘�1,‘;Θ

ðεÞÞ.
end for
end for
Update meta-parameters Θðε + 1Þ =ΘðεÞ � η∇ΘðεÞ Lðf ðXε

query;
h

W ði+ 1ÞÞ,
Y ε

queryÞ+ λ k ΘðεÞk1�.
end for
In each meta-iteration, also known as an episode, a randomly

initialized model fW is trained on an online training data sequence. In
other words, each adaptation iteration uses a single data point
(xtrain, ytrain) to update W. It is worth emphasizing that reinitializing
weightsW at each episode removes the learning rule’s dependence on
theweight initialization. Themeta-learnedplasticity rules are therefore
optimized to learn a task starting from a randomly initialized weight
matrix. In contrast, meta-optimizing initial weights will adapt meta-
parameters Θ to the later stages of learning, which does not extra-
polate to the training lifetime anymore.Moreover,whenmeta-learning
a weight initialization in conjunction with a plasticity rule (e.g.17), it is

Fig. 1 | Feedback alignment learns poorly in deep models. Performance of
benchmark learning schemes while training a 5-layer fully connected classifier
network on MNIST digits47 with online learning. a Accuracy versus the number of
training data for Feedback Alignment (FA)5 and backprop (BP)1 methods, compared
to the discovered biologically plausible plasticity rule (bio) presented below. b The
angle αℓ between the teaching signal eFA‘ transmitted by the Feedback Alignment

method and the corresponding backpropagated signal eBP‘ (in degrees) for differ-
ent layers ℓ = 1, 2, 3, and 4. For both approaches, e5 is computed using ∂L=∂zL and
has the same value, resulting in α5 = 0. In all figures, each plot illustrates the mean
over multiple trials. The shaded area represents the 98% confidence interval (see
Methods).

Article https://doi.org/10.1038/s41467-023-37562-1

Nature Communications |         (2023) 14:1805 3



not clear to what extent improvements in learning can be attributed to
the weight initialization versus the meta-learned plasticity rule itself.

Each episode ε follows two objectives. The first is to quantify the
model parameters W using a loss function L, iteratively, on each data
point sampled from task T ε’s training set. Then, given a set of R can-
didate terms fF rg0 ≤ r ≤R�1, a parameterized plasticity rule is defined as
a linear combination of individual plasticity terms,

F ðΘÞ=
XR�1

r =0

θrF r : ð5Þ

where Θ = {θr∣0 ≤ r ≤ R − 1} is the set of learning parameters shared
across layers. This rule is used to update forward weights, W, in the
network. The second objective, dubbedmeta-loss, assesses themeta-
parameters Θ by evaluating the loss function L on the query set of
the same task T ε using the updated model fW. While meta-learning
over the pool of plasticity terms F ðΘÞ yields an optimized set of
meta-parameters,Θ, the resulting plasticity rule consists of toomany
terms which are difficult to interpret and understand and whose
underlying mechanisms may overlap. Therefore, following Occam’s
razor, we introduce an L1 penalty on plasticity coefficients to select
for a sparser set of plasticity terms. Mathematically put, the meta-
loss is defined as

LmetaðΘÞ=LðfW ðXqueryÞ,YqueryÞ+ λ k Θk1, ð6Þ

where fW is the model updated in the adaptation loop and λ is a pre-
defined hyperparameter. The regularization term in Eq. (6) is the L1
normof themeta-parameters, leading the algorithm to favor simplicity
in the plasticity model (see Supplementary Fig. S5, and Table S1 for a
comparisonwith alternative regularization approaches).Whileweights
W are optimized using F ðΘÞ, meta-parameters Θ are updated by a
gradient-based approach. Figure 2 summarizes the problem’s
configuration.

Benchmarking backprop and feedback alignment via meta-
learning
Before introducing new plasticity rules, it is necessary to establish the
baseline performance for the current learning models for the learning
task considered here. To this end, weuse themeta-learning framework
to optimize the learning rate, θ, in Eq. (4) for backprop and feedback
alignment. Since, in these examples, the meta-learning model seeks to
optimize the meta-parameter rather than selecting one term over the
other, the regularization coefficient λ in Eq. (6) is set to zero.

Figure 3a–c compares the performance of the two plasticity rules
over 600 episodes. First, the reinitializedmodels fW are trained at each
episode using an online stream of M ×K = 250 data points. Then, the
meta-accuracy and meta-loss are evaluated with the query data. Tra-
cing the evolution of the plasticity coefficients in Fig. 3c shows that the
meta-learning model converges after ~100 episodes. After con-
vergence, the model trained with feedback alignment is, on average,
about 25% accurate in its predictions, whereas the model back-
propagated via symmetric feedbacks reaches an approximate accu-
racy of about 70% (Fig. 3a). In addition, the backpropagated model
reaches considerably lower loss values as shown in Fig. 3b. The com-
parison shows that the former is not adequately trained with an online
data stream in the small data regime. This outcome is further sup-
ported by Fig. 3d, which illustrates the poor alignment of the mod-
ulating signals in feedback alignment with the backprop analogs.

Biologically plausible plasticity rules
The analysis in the previous section indicated a substantial perfor-
mance gap between the backprop model and the pseudo-gradient
rule with random feedback pathways early in the learning process.
However, with the interrupted backward flow as the only distinction

between the two rules, the error in the last layer and activations still
maintain proper information. Intuitively, introducing new local
combinations of these terms to the plasticity rule may restore
information flow and improve performance. To that end, we define a
set of candidate plasticity terms and use meta-learning to uncover
combinations that enhance learning. Meta-learning helps in two
ways: finding the optimized set of meta-parameters for the linear
combination of candidate terms and selecting the dominant plasti-
city terms. While the former avoids cumbersome hand-tuning of the
coefficients, the latter provides a tool for systematically studying the
space of learning rules.

We began by examining a set of R = 10 plasticity terms and com-
bined them according to Eq. (5) to form the learning rule Fpool (see
Methods and below for definitions of these rules). Figure 4a–c illus-
trates the performance of the model. We set the initial values of the
meta-parameters fθrg1≤ r<R to 0. As seen in Fig. 4a, themodel’s accuracy
initially resembles that of the FA model, but as the meta-optimization
continues, the accuracy improves, starting around 10 episodes. By
about 300 meta-iterations, the accuracy approaches that of the BP
model. This trend is also echoed in Fig. 4b, where the loss initially
follows that of the FA learning model but then declines and eventually
becomes similar to that of the BPmethod. In Fig. 4c, it is demonstrated
that the alignment angles of the teaching signals with their BP coun-
terparts are improved compared to the FA model, seen in Fig. 3d.
Figure 4d shows that the coefficients for all but 3 terms converge
toward zeroafter about 600episodes. Those three terms are apseudo-
gradient rule (F0), a Hebbian-like plasticity rule (F 2), and Oja’s rule
(F 9). Selecting these three terms and omitting the others gives a
simpler plasticity rule of the form

FbioðΘÞ= � θ0e‘y
T
‘�1 � θ2e‘e

T
‘�1

+θ9ðy‘y
T
‘�1 � ðy‘y

T
‘ ÞW ‘�1,‘Þ,

ð7Þ

where Θ = {θ0, θ2, θ9} is the set of plasticity meta-parameters. Fbio

performs similar to the Fpool (see Supplementary Fig. S2) and
significantly improves the performance of the feedback alignment
method in the low data regime (Fig. 1).

While the meta-learning successfully discovers Fbio, it is impor-
tant to interpret the plasticity rule and understand how it leads to
improved learning. Fbio consists of three components: a pseudo-
gradient term, aHebbian-style error-based term, andOja’s rule. Inwhat
follows, we study the latter terms separately with the pseudo-gradient
term to unveil the underlying reason behind their performance.

Hebbian-style error-based plasticity rule
Motivated to understand the Hebbian-style error-based learning term
in Eq. (7), we rerun the model using a plasticity rule that only includes
the modified Hebbian term and the pseudo-gradient term, but omits
the third term

F eHebbðΘÞ= � θ0e‘y
T
‘�1 � θ2e‘e

T
‘�1: ð8Þ

In Fig. 5, the meta-learning algorithm is used to optimize the
coefficients θ0 and θ2, which are initialized to 10−3 and zero, respec-
tively. Comparing the accuracy and the loss plot toFbio’s performance
(Supplementary Fig. S2) shows that while F eHebb demonstrates a sig-
nificant improvement overF0 via feedback alignment, it is yet to reach
that of Fbio. Despite this, the teaching signals of F eHebb are better
aligned with the backprop direction than Fbio’s (Supplementary
Fig. S2), which indicates that the Hebbian error term is the driving
force behind aligning the teaching signals in Fbio.

Figure 6 illustrates how F eHebb alters the communications
between the backward and forward pathways. The diagram in Fig. 6a
shows a model solely trained with the F0 via feedback alignment. In
this scenario, the information from B2,1 flows to W0,1 through Eq. (3),
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which is then propagated to W1,2 after the forward pass. This config-
uration updates W1,2 to align the modulator vector e1 with the back-
prop counterpart. Nonetheless, this machinery does not sufficiently
align the modulating signals when applied to deeper networks with
fewer training iterations. In the diagram on the right, the last layer is
updated with an additional Hebbian-style plasticity term F 2, while the

first layer is trained with vanilla F0 rule via feedback alignment. Once
again, information fromB2,1 flows intoW0,1. However, this time,F eHebb

introduces an auxiliary channel to flow the information from B2,1 to
W1,2. Finally, the forward propagation through the network implicitly
transmits the information from B2,1 to W1,2. The modified rule F eHebb

establishes an explicit supplementarymeans to communicate between

Fig. 2 | Schematic depiction of the meta-learning workflow. (1) A pool of R
biologically plausible plasticity terms fF rg0≤ r ≤R�1 is exploited to define a plasticity
rule F ðΘÞ that governs the weight updates of themodel fW. Each termF r integrates
local elements available to the weight, including pre-synaptic activation yi, post-
synaptic activation yj, pre-synaptic error ei, post-synaptic error ej, and the current
state of the weightWi,j. Such terms are consistent with local plasticity if yi and ei are
encodedby the sameneuron (seeDiscussion). The linear combinationof these terms
defines plasticity rule F ðΘÞ, where Θ = {θr∣0 ≤ r ≤R − 1} is the set of meta-parameters
shared across the network. (2) The parameterized local learning ruleF ðΘÞ is used to
navigate the weight parameter space. At each episode ε, F ðΘðεÞÞ iteratively searches

for optimized W starting from a random weight W(0). A single data point sampled
from T ε ’s train set is usedat each adaptation step for online trainingof themodel. (3)
In themeta-optimization phase, the solutionW of the inner loop is used to compute
themeta-lossL on the query set of task T ε. Then, a gradient-based strategy explores
the meta-parameter space to optimize the plasticity meta-parameters Θ(ε). (4) The
plasticity rule F ðΘÞ is reconstructed using the updated meta-parameters Θ(ε+1) to
guide the weight optimization in the next episode. This procedure is repeated until
the meta-parameters converge. In the initial episodes, the unoptimized F ðΘÞ is
unlikely to direct W to a solution. However, as Θ converges, F ðΘÞ discovers a new
direction that may only partially adhere to the direction of the gradient.

Fig. 3 | Meta-learning plasticity coefficients for feedback alignment and back-
prop. a Meta-accuracy of feedback alignment (FA) compared to backprop (BP)
trained using the meta-learning framework (Alg. 1) during 600 meta-optimization
episodes and b the corresponding meta-loss. The lower accuracy of FA compared
to BP in each episode manifests slower learning of FA when presented with the
same number of training examples and steps as BP for a 5-way classification task.

c Evolution of the learning rate meta-parameter (initialized to 10−3) with feedback
alignment (FA) compared to backprop (BP) during 600 meta-optimization epi-
sodes. In this figure, each meta-parameter was optimized separately in a single-
parameter meta-optimization problem and is superimposed for comparison.
d Alignment angle αℓ between modulating signals of the feedback alignment eFA‘
and backprop eBP‘ for ℓ = 1, 2, 3, and 4. Note that α5 = 0 (as discussed in Fig. 1).
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B2,1 and W1,2, boosts the alignment of e1, and improves the model’s
performance. Note that the mechanism in F0 needs two learning
iterations to transmit information from B2,1 to W1,2; information from
W0,1 propagates to W1,2 only after y1 is computed with the updated
W0,1. Meanwhile, F 2 does this in the same iteration, carrying out
expedited learning.

To corroborate the argument above, we consider a 3-layer net-
work trained with F0 rule via feedback alignment and inspect the

effect of adding the error-based Hebbian-style plasticity term F 2 on
the alignment angles in different layers. To that end, rather than
sharing the same learning rule across the network, each layer is
updated using one of the F0 rule via feedback alignment or F eHebb

rules. Table 1 determines that adding the Hebbian error term to the
weight update reduces the alignment angleαbetween the pre-synaptic
error and its backprop analog. A more detailed discussion can be
found in Supplementary Note 3.

Fig. 4 | Meta-learning biologically plausible plasticity rules. Performance of a
classifier network trained with a pool of biologically plausible plasticity rules Fpool

(pool) through fixed feedback pathways. aMeta-accuracy and bmeta-loss forFpool

compared toF0 via feedback alignment (FA) and backprop (BP). While learning by
Fpool initially resembles F0, continued meta-optimization raises accuracy. This
increase reflects the discovery of plasticity terms that can improve learning with
random feedback pathways to level with the backprop method in the given

classification task. c Alignment angle αℓ of the teaching signals of Fpool with the
ones for backprop for ℓ = 1, 2, 3, and 4. As discussed in Fig. 1, α5 = 0. d Convergence
of the plasticity coefficients Θ = {θr∣0 ≤ r ≤R − 1} with R = 10. Using L1 regularization
in meta-loss (Eq. (6)) sparsifies the set of meta-parameters and helps with identi-
fying themost influential plasticity terms in learning (see SupplementaryNote 6 for
a discussion on alternatives).

Fig. 5 | F eHebb improves learning through fixed feedback pathways. Meta-
training an image classifier network with F eHebb plasticity rule (eHebb; Eq. (8)) on
5-way classification tasks sampled from EMNIST dataset49. a Meta-accuracy and
b meta-loss plots for F eHebb compared to F0 via feedback alignment (FA) and
backprop (BP), c alignment angles αℓ for modulating signals across the network

(ℓ = 1, 2, 3, and 4; see Fig. 1 for ℓ =0) compared with backprop model. Comparing
panels a and c indicates that F eHebb improves the model’s performance by ren-
dering the modulatory signals to be more backprop-like. d Convergence of the
plasticity coefficientsΘ = {θ0, θ2} using the meta-learning model (Alg. 1). The meta-
optimizer starts converging after 200 episodes.
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For a more precise, mathematical intuition of the effects that
F eHebb has on weights, we show in Supplementary Note 4 that, in a
linear network model under reasonable approximating assumptions,

E e‘e
T
‘�1 ∣B‘,‘�1

� � / BT
‘,‘�1 ð9Þ

for layers, ℓ = 1, 2,…, L − 1. Thus, the termeT‘ e‘�1 inF eHebb pushesWℓ−1,ℓ

toward the transpose of Bℓ,ℓ−1, resulting in faster alignment of the
modulatory signals with the backprop algorithm’s error vectors and
more efficient learning.

Oja’s rule
Equation (7) proposes a plasticity rule to train deep networks using
fixed feedback matrices. Above, we demonstrated that the Hebbian-
style learning term improves the trained model’s performance by
improving the modulatory signals’ alignments with the back-
propagated analogs. Here, we look at the remaining plasticity term in
Eq. (7): Oja’s rule, a purely local learning rule that updates the weights
based on its current state and the local activations in the forward path.
To this end, we redefine the plasticity rule as a linear combination of
the pseudo-gradient term and Oja’s rule

FOjaðΘÞ= � θ0e‘y
T
‘�1 +θ9ðy‘y

T
‘�1 � ðy‘y

T
‘ ÞW ‘�1,‘Þ: ð10Þ

We initializeθ0 to 10−3 andθ9 to zero andemployAlg. 1 to optimize
the set of meta-parametersΘ. Figure 7a, b illustrates that adding Oja’s

rule to the pseudo-gradient term enhances themodel’s accuracywhen
backwardconnections arefixed. Figure 7c presents the angles between
the teaching signals ensued by Eq. (10) and the corresponding back-
propagated ones. While the accuracy and loss are significantly
improved, contrary to expectations, Oja’s rule does not substantially
reduce the alignment angles (Fig. 7c). In fact, alignment angles are only
slightly smaller when using Oja’s rule compared to using pure FA, as
seen by comparing Fig. 7c to Fig. 3d. This contrasts with alignment
angles for F eHebb and Fbio, which are greatly reduced in deeper layers
compared to FOja (compare Fig. 7c to Fig. 5c and Supplementary
Fig. S2c).

Inspecting Fig. 7 suggests that rather than helping to align the
modulating signals, Oja’s rule helps by entirely circumventing the
backward path. Oja’s rule implements a Hebbian learning rule sub-
jected to anorthonormality constraint on theweights18. In Eq. (10), yℓ−1
and yℓ denote post-nonlinearity activations (as stated in Eq. (2)),
resulting in the F 9 plasticity rule to implement a non-linear version of
Oja’s rule. When trained iteratively, this non-linear variation imple-
ments a recursive non-linear algorithm for Principal Component
Analysis27,28. Previous studies on the convergence of Oja’s rule have
shown that for a compression layer, where dimðy‘�1Þ>dimðy‘Þ, rows of
the weight matrix W ‘�1,‘

� �
1, . . . , W ‘�1,‘

� �
dimðy‘Þ will tend to a rotated

basis in the dimðy‘Þ�dimensional subspace spanned by the principal
directions of the input yℓ−129.

We demonstrate that incorporating Oja’s rule into Feedback
Alignment improves feature map extraction in the forward path
through unsupervised learning, despite FOja not recursively applying
pure Oja’s rule. By analyzing the continuous-time differential equation
corresponding to the Oja’s learning rule, Williams29 and Oja28 establish
the stability limits for this rule. In a compression layer, the fixed point
of Oja’s rule is a stable solution ifW ‘�1,‘W

T
‘�1,‘ = I . This conclusion can

be used to derive a proximity measure30–32 of the estimatedWℓ−1,ℓ to a
stable solution of Oja’s rule in the presence of non-linear activations.
The error

EW = ∣z‘ �W ‘�1,‘�y‘�1∣
2
2, ð11Þ

where

�y‘�1 =W
T
‘�1,‘σ z‘

� �
, ð12Þ

can define this measure. Figure 8 studies this orthonormality measure
in models trained with different plasticity rules. Results show that
using Oja’s rule will render the weight matrices increasingly ortho-
normal, reducing the correlation in weight rows and improving the

Fig. 6 | Information flow between the forward and backward pathways. a Both
layers are trained with the rule F ðΘÞ=θ0F0 via feedback alignment. In this case,
information from B2,1 is transmitted to W0,1 through F0 (①) and then propagated
forward to W1,2 (②). b The first layer is updated with the rule F ðΘÞ=θ0F0 via
feedback alignment, while the second layer uses F eHebbðΘÞ=θ0F0 +θ2F 2. Using

F0, information from B2,1 is communicated toW1,2 (①,③); meanwhile, the presence
of F 2 sets up a new channel to directly communicate information from B2,1 toW1,2

(②). The blue arrows depict information propagation through the forward and
backward paths. The communications between feedback and feedforward path-
ways are represented with red arrows.

Table 1 | Effect of the Hebbian-like error learning rule F eHebb

on the alignment of the modulating signals αℓ for
different layers

F0 F eHebb α0 α1 α2

W0,1,W1,2,W2,3 – 89.89 76.69 82.04

W0,1, W2,3 W1,2 89.95 59.95 72.14

W0,1, W1,2 W2,3 90.03 75.18 29.02

W2,3 W0,1, W1,2 75.29 61.23 72.56

W0,1 W1,2, W2,3 90.2 49.4 27.9

W1,2 W0,1, W2,3 84.86 74.25 30.33

– W0,1, W1,2, W2,3 77.93 49.93 28.4

The leftmost column includes the parameters updated using F0 with feedback alignment, and
the next column indicates layers trained with F eHebb (Eq. (8)). Angles αℓ represent the alignment
between the modulatory signal eℓ and the backpropagated counterpart eBP

‘ at each layer (in
degrees). Since e0 is a synthetic error, the effect of theF eHebb onW0,1 alone has been excluded.
The model is trained for 500 episodes, and the computed angles are averaged after a burn-in
period of 100 episodes.
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feature extraction in these layers. These findings indicate that intro-
ducing Oja’s rule alone can help with the problem of slow learning
caused by random feedback connections (see Supplementary Fig. S4).

The architecture of a classifier network includes initial layers that
act as feature extractors, creating hidden representations for the final
layer. This last layer, dubbed predictor, maps the hidden feature
representations to the target class for the given input image. To
improve the classifier’s performance, a plasticity rule that enhances
feature extraction in the earlier layers is beneficial. However, this rule
has no grounds to positively impact the predictor layer’s performance.

Despite this, for comprehensiveness, we also applied the plasticity rule
FOja to the final layer and found no detrimental effect on the model’s
performance.

In summary, rather than improving alignment, FOja applied to
hidden layers provides embeddings that facilitate more effective
learning.

Discussion
Despite the dominance of the backpropagation algorithm as the pri-
mary technique to train deep neural networks, its biological

Fig. 7 | Oja’s rule helps with the slow learning introduced by random feedback
connections. Performance of the meta-learning model (Alg. 1) in training a 5-layer
classification network using FOja (Oja; Eq. (10)) through fixed backward connec-
tions. a Meta-accuracy and b meta-loss of FOja compared to F0 learning rule via
feedback alignment (FA) and backprop (BP). Although the modulatory signals of

FOja are not much backprop-like, there is still substantial improvement in the
model’s performance, as evident in panels a and b. c Alignment angles αℓ of
modulating signals of FOja with backprop’s teaching signals (in degrees).
d Evolution of the plasticity meta-parameters Θ = {θ0, θ9}. The meta-learner con-
verges in about 50 episodes.

Fig. 8 | Oja’s rule substantially improves the orthonormality of the weight
matrices.Orthonormality error EW (Eq. (11)) computed for different plasticity rules.
The error is measured at the end of each meta-optimization loop (episode) for
different layers of a 5-layer deep network. The model is trained using a F0 via
feedback alignment (FA),bF eHebb, cFOja, and d backprop (BP). Results from panel

c, along with Fig. 7c, demonstrate the role of Oja’s rule in improving the model’s
performance through improved feature extraction. All panels present the mean
error over multiple trials (seeMethods). In this comparison, the last layer has been
excluded.
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plausibility remains a significant ground for contest2,3. In particular, the
presence of feedback synaptic projections that are precisely sym-
metric to the forward projections is not biologically realistic. Previous
work5 showed that learning can be achieved without this symmetry
using feedback connections that are randomly sampled, not tied to the
forward path, and fixed throughout the training process. While a
breakthrough, this method is susceptible to diminished performance
when training deeper networks or using smaller batch sizes6,7. The
latter is a challenge for online learning.

A recent body of work attempts to improve learning through
asymmetric feedback connections. They either rewire fixed feedback
connections, use plastic feedback connections that are updated
through an auxiliary plasticity rule, or impose partial symmetry in the
backward network8,9,17,19,20. Our work accelerates the learning process
by enhancing the rules that govern neural plasticity while transmitting
teaching signals through fixed connections. Our proposed rules for
plasticity are based on biologically motivated learning principles, like
Oja’s rule, or have been inspired by them, such as the error-based
Hebbian rule. A linear combination of these terms yields a para-
meterized learning rule. To overcome the arduous hand-tuning of
these hyper-parameters, we use a meta-learning approach that sys-
tematically explores the pool of candidate plasticity rules. This
approach consists of an inner loop that learns a task and an outer loop
that updates the plasticity coefficients. The inner loop always starts
from randomly initialized weights, so the model must learn to learn
from scratch.Moreover, the inner loop learns from an online streamof
training data, simulating real-time learning in the brain.

To assure interpretability of our meta-learned learning rule, we
expressed the rule as a linear combination of individual plasticity
terms, imposed an L1 penalty on the coefficients, and used meta-
parameter sharing between all update rules. Many terms in the pool of
plasticity rules can be redundant and employ identical or overlapping
mechanisms but only differ in their efficiency, i.e., computational cost
or the number of required learning iterations to operate. Employing an
L1-penalized meta-loss decreases the count of plasticity terms that
work in parallel. In addition, while sharing the same meta-parameters
across layers may limit the model’s freedom in learning, it is a vital
component for discovering a global learning rule, leaving the door
open to investigate the revealed terms.

Using this meta-learning approach, we discover two plasticity
rules that accelerate learning through fixed feedback connections. The
first, an error-based Hebbian rule, combines the errors of pre- and
post-synaptic layers to update forward projecting weights. The second
rule, known as Oja’s rule, combines pre- and post-synaptic activations
with the connection’s current state to update weights.We investigated
each plasticity rule, its underlying mechanism, and how it contributes
to learning, revealing two distinct mechanisms behind them. First, the
Hebbian-like error term improves performance by modifying the flow
of information through the backward path. It introduces an auxiliary
channel to communicate information about the backward connections
to the forward weights. As a result, it accelerates learning by better
aligning modulating signals with the ones transmitted through a
symmetric feedback connection. Ultimately, the modified plasticity
alters the training to resemble backpropagation. Unlike the Hebbian-
like rule, Oja’s rule does not directly affect the flow of the feedback
signals. Instead, it acts only on the forward path, implementing an
unsupervised learning scheme that extracts feature maps indepen-
dently of the labels and loss. The updatedweight rows approximate an
orthonormalbasis in the subspace spannedby PCAeigenvectors of the
pre-synaptic activations28. The strengthened signal separation cap-
abilities in the earlier layers improve predictions made by the
output layer.

While synaptic plasticity in the brain ismediated by a vast array of
biophysical processes, the changes to a single synaptic weight largely
depend on the activity of its pre-synaptic and post-synaptic neurons

and the current weight, a property known as “local” plasticity. For the
plasticity rules used in our study (with the exception of Oja’s rule),
weight updates depend on activations from a forward pass and error
signals from a backward pass. Since these quantities were used to
update the forward projecting weights, this raises the question of
whether the plasticity rules are truly local. The answer to this question
depends on the biological interpretation of the forward and backward
passes.

Under one interpretation, separate populations of neurons
encode the forward and backward passes, i.e., the neurons encoding eℓ
are distinct from those encoding yℓ. Under this interpretation, the
plasticity rules used in this study are not strictly local.

Under another interpretation, forward activations and backward
errors are represented by the same neural populations, i.e., the same
neurons encode eℓ and yℓ. Under this interpretation, all of the plasticity
rules used in this study are local. There are severalmodels for how this
multiplexing of forward and backward signals could be achieved (see
ref. 2 for a review). For example, activations and errors could be
represented at separate points in time by the same neurons.

Alternatively, recent work hypothesizes that activations and
errors are encoded separately in the basal and apical dendrites of the
same cortical pyramidal neurons33. Along similar lines, a growing body
of work posits that activations and errors are multiplexed by the dis-
tinction between bursts and single action potentials, which
are communicated separately by synaptic projections onto the
soma versus apical dendrites of pyramidal neurons34–36. The depen-
dence of synaptic plasticity on the morphological site of the synaptic
contact and on the type of spiking (bursts versus individual spikes) is
well established in experiments37–41. Under these models, established
biophysical properties of cortical synapses canproduceplasticity rules
like ours that multiplex forward and backward propagating informa-
tion to update weights. Networks in36 rely on weight decay to
approximately align forward and backward weights11, while some
networks in33 rely on random feedback alignment. Hence, our meta-
learned plasticity rules could improve learning in those models.

Our meta-learning approach isolated three plasticity terms: a
backprop-like rule (F0), Oja’s rule18 (F 9), and a rule we refer to as
eHebb (F 2). Possible biological implementations of Oja’s rule and the
backprop-like rule have been studied in great depth in previous
work2,3,33,36. The eHebb rule could be implemented in a similar way to
the backprop-like rule. For example, under the model in ref. 36, eHebb
would change synaptic weights in response to the co-occurrence of
pre- and post-synaptic bursts. Plasticity is strongly mediated by firing
rates and intracellular calcium42,43, both of which are elevated during
bursts.

As the eHebb’s mechanism tends to align modulating signals with
the symmetric counterparts, its performancemay at bestmatch that of
backprop. However, as Oja’s rule does not aim to imitate backprop, its
performance is not bounded by that of backprop, and hence it can also
be used to enhance learning in symmetric feedback models. For
instance, we realized that adding Oja’s plasticity rule to the gradient-
based learning term accelerates learning for poorly initialized net-
works. This observation explains why the improved performance in
the fixed feedback model may outperform learning in the symmetric
case. A similar concept was used in the earlier works to initialize
internal representations of the neural networks32. However, that work
used weights preprocessed by Oja’s rule to start gradient-based
learning rather than using both terms simultaneously as the plasticity
rule. Hence, our results demonstrate the utility of the proposed meta-
learning approach as a tool for combining different learning terms as a
single parameterized learning rule.

We used meta-learning to find plasticity rules that can learn
effectively under the biologically relevant setting where forward and
backward weights are not explicitly aligned. But our meta-learning
technique can be applied more broadly to identify plasticity rules that
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overcome other biological constraints in various contexts andmodels.
For instance, our study only focused on plasticity in forward connec-
tions; however, backward projections in the brain can also exhibit
plasticity. Our meta-learning approach can be extended to discover
plasticity rules for backward connections in such settings. Another
interesting future direction is to meta-learn the architecture of the
feedback pathways instead of (or in addition to) the plasticity para-
meters. That is, to simultaneously provide both direct8 and regular5

feedback pathways and allow the meta-learning algorithm to pick the
most efficient path to carry the teaching signals to each layer.

In another direction, ourmeta-parameter sharing approach could
be partially relaxed without learning a new plasticity rule for each
connection. For example, one could consider a network with several
neural populations and a shared plasticity rule for each pair of popu-
lations. This approach could help understand the role of distinct
neuron types and populations in biological circuits.

We focused on meta-learning biologically plausible plasticity
rules, but our approach can also be applied to discover learning rules
that satisfy other constraints or optimize other meta-loss functions.
For example, the approach can be used to find learning rules that can
be implemented in non-standard hardware like neuromorphic chips or
optical networks, or to discover learning rules that minimize energy
consumption or other factors.

In summary, we developed and tested a meta-learning approach
designed to produce simple, interpretable plasticity rules that can
effectively learn on new data. First, using randomly initialized weights
on each iteration of the outer loop (instead of meta-learning the
initialization) and using online learning in our inner loop encouraged
plasticity rules that can perform online learning from scratch. Sec-
ondly, meta-parameter sharing yielded a vastly smaller set of learned
plasticity rules compared to learning a plasticity rule for each synapse.
Finally, an L1 penalty on plasticity coefficients promoted sparsity
within the learning rule, ultimately yielding a small set of plasticity
terms that are more readily interpreted. Our results demonstrate the
utility of this approach for discovering and interpreting plasticity rules.
Taken together, our work opens new avenues to the application of
meta-learning for discovering interpretable plasticity rules that satisfy
biological or other constraints.

Methods
Models
Figure 1 performs a 10-way classification on the MNIST dataset, with
images resized to 28 × 28 dimensions. The model is trained online,
processing one data point per iteration (batch size one) for a single
epoch. The model is a 5-layer fully connected neural network with
dimensions 784-170-130-100-70-47. Hidden layers use the softplus
activation function

σðz‘Þ=
1
β
logð1 + expðβz‘ÞÞ, ð13Þ

with β = 10. The output layer uses the softmax activation function.
Figures 3–5 and 7–8 perform 5-way classification on the EMNIST
dataset. During adaptation, the network is trained for one episode,
with a batch size of one. These figures use the same architecture as
Fig. 1. For Table 1, the model conducts a 5-way classification on the
EMNIST dataset with an image size of 28 × 28. The model is a 3-layer
fully connected neural network with dimensions 784-130-70-47. Like
the rest of the paper, hidden layers use softplus non-linearity with
β = 10, while the output layer uses softmax.

In the fixed feedback pathway problem, the weights and feedback
connections are initially set to random values that differ from each
other. Both symmetric and fixed feedback models utilize the Xavier
method44 to re-initialize forward andbackward connections at the start
of each meta-learning episode.

In Figs. 4, 5, 7, and 8, and Table 1, we set the initial value for the
learning rate θ0 of the term F0 to 10−3 and set all other hyper-
parameters to zero.

All plots depict the mean outcome over 20 trials, each with dif-
ferent initial weights and feedback matrices. The shaded region in the
loss, accuracy, and meta-parameters plots illustrates the 98% con-
fidence interval, determined through bootstrapping across trials with
500 bootstrapped samples.

Candidate learning terms
Equation (7) presented a plasticity rule that improves the model’s
performance in the presence of fixed random feedback connections.
We employed the meta-learning framework described in Alg. 1 to
explore a set of local learning rules to discover such a plasticity term.
This set of terms is defined as

F0 = � e‘y
T
‘�1, ð14Þ

F 1 = � y‘e
T
‘�1, ð15Þ

F 2 = � e‘e
T
‘�1, ð16Þ

F 3 = �W ‘�1,‘, ð17Þ

F 4 = � 1‘e
T
‘�1, ð18Þ

F 5 = � e‘1
T
‘ y‘y

T
‘�1, ð19Þ

F6 = � y‘y
T
‘ W ‘�1,‘e‘�1e

T
‘�1, ð20Þ

F 7 = � e‘y
T
‘ W ‘�1,‘e‘�1y

T
‘�1, ð21Þ

F 8 = � y‘y
T
‘�1W

T
‘�1,‘e‘e

T
‘�1, ð22Þ

F9 = ðy‘y
T
‘�1 � ðy‘y

T
‘ ÞW ‘�1,‘Þ: ð23Þ

The rules above are local in the sense that the updates to the j, kth
entry of Wℓ−1,ℓ depend only on the kth entry of eℓ−1 and yℓ−1, the jth
entry of yℓ and eℓ, and the j, kth entry of Wℓ−1,ℓ. This notion of locality
assumes that errors and activations are encoded in the same neurons
(see Discussion). Even under this constraint of locality, there is an
unlimited number of possible plasticity rules to choose from. To form
the list above, we first considered all quadratic combinations of acti-
vations and errors except we omitted pure Hebbian plasticity (y‘y

T
‘�1)

because we found that it leads to unstable network dynamics (a
blowupof activations). Instead,we replaced itwithOja’s ruleF 9, which
adds a stabilizing term onto pure Hebbian plasticity. Additional terms
were added to test the viability of higher order plasticity terms.

Computing the learning termsF 1,F 2,F 4,F 6,F 7, andF8 requires
a pre-synaptic error term. In order to update the weights in the first
layer W0,1, where there is no pre-synaptic error, we define a synthetic
error e0 using Eq. (3) and the activation function in Eq. (13), such that

e0 : =B1,0e1 � ð1� expð�βy0ÞÞ: ð24Þ

Meta-training
We presented a meta-learning framework for swiftly exploring a pool
of plasticity terms and uncovering combinations that exceed the
performance of the existing plasticity rule. We demonstrate this by
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training a classifier network, which performs a 5-way classification on
28 × 28 images. The cross-entropy function evaluates the loss in the
adaptation loop, whereas themeta-loss is determinedby Eq. (6).While,
in principle, any optimization algorithm, such as evolutionary meth-
ods, can be used to optimize Θ, the algorithm presented in Alg. 1 uses
ADAM45, a gradient-based optimization technique, with a meta-
learning rate of 10−3.

In the meta-optimization phase, this gradient-based optimizer
differentiates through the unrolled computational graph of the adap-
tation phase. Thus, the non-linear layers are double differentiated,
once to compute eL and a second time by the meta-optimizer. This
arrangementwill only allow a two-times differentiable non-linear layer,
which prohibits using the Rectified Linear Unit, ReLU, as the activation
function σ. Instead, we use the softplus function (Eq. (13)), a con-
tinuous, twice-differentiable approximation of the ReLU function. In
Eq. (13), parameter β controls the smoothness of the function. Fur-
thermore, the L1 norm used in the meta-loss (Eq. (6)), defined by the
absolute value function, is not continuously differentiable at every
point. However, it is commonly used in deep learning in conjunction
with stochastic gradient descent (SGD)46. In PyTorch and other deep
learning frameworks, the derivative of the absolute value function is
typically defined as zero at zero.

In the present examples, each task contains M = 5 labels. Conse-
quently, assembling adiverse set of 5-wayclassification tasks requires a
database with a large number of classes. Thus, databases such as
MNIST47, which only has ten classes, are unsuitable for proper meta-
training. On the other hand, in each episode, the classifier fW is reini-
tialized with random weights W. Therefore, the task should contain
enough data points per class to train fW adequately. Hence, databases
such as Omniglot48 with only 20 data points per character designed for
few-shot learning (e.g., with meta-optimizedW) are impractical in the
present framework. In the current work, meta-training tasks are made
from the EMNIST database49. This database contains 47 classes, mak-
ing it a good candidate for the meta-learning framework. Each task
contains K = 50 training and Q = 10 query data points per class.

Notably, the use of K = 50 training data per class withM = 5 classes
in each episode means that the meta-learned plasticity rule needs to
train a randomly initialized networkwith only 250 training data points.
Hence, our models are in a low data regime without the benefit of pre-
trained weights that are often used for few-shot learning.

Data availability
In this study, the EMNIST database49 was used for meta-learning
experiments. This database is publicly accessible at https://doi.org/10.
1109/IJCNN.2017.7966217. Additional benchmarking was done using
the MNIST dataset47 and the FashionMNIST dataset50. These datasets
can be found at http://yann.lecun.com/exdb/mnist and https://github.
com/zalandoresearch/fashion-mnist, respectively. Source data are
provided with this paper.

Code availability
The PyTorch-based implementation and script files used to generate
the results in this paper can be accessed at https://github.com/
NeuralDynamicsAndComputing/MetaLearning-Plasticity51.
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