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Implementing quantum dimensionality
reduction for non-Markovian stochastic
simulation

Kang-Da Wu 1,2, Chengran Yang 3 , Ren-Dong He1,2, Mile Gu 3,4,5 ,
Guo-Yong Xiang 1,2,6 , Chuan-Feng Li 1,2,6, Guang-Can Guo1,2,6 &
Thomas J. Elliott 7,8,9

Complex systems are embedded in our everyday experience. Stochastic
modelling enables us to understand and predict the behaviour of such sys-
tems, cementing its utility across the quantitative sciences. Accuratemodels of
highly non-Markovian processes – where the future behaviour depends on
events that happened far in the past – must track copious amounts of infor-
mation about past observations, requiring high-dimensional memories.
Quantum technologies can ameliorate this cost, allowing models of the same
processeswith lowermemorydimension than corresponding classicalmodels.
Here we implement such memory-efficient quantum models for a family of
non-Markovian processes using a photonic setup. We show that with a single
qubit of memory our implemented quantum models can attain higher preci-
sion than possible with any classical model of the same memory dimension.
This heralds a key step towards applying quantum technologies in complex
systems modelling.

From chemical reactions to financial markets, and meteorological
systems to galaxy formation, we are surrounded by complex processes
at all scales. Faced with such rich complexity, we often turn to sto-
chastic modelling to predict the future behaviour of these processes.
Often, these future behaviours—and thus our predictions—are based
not only onwhat we canobserve about the current state of the process
but also its past: they are non-Markovian.

To simulate such processes, our models must have a memory to
store information about the past. Storing all past observations comes
with a prohibitively large memory cost, forcing a more parsimonious
approach to be adopted whereby we seek to distil the useful infor-
mation from the past observations and store only this. Yet, when

processes are highly non-Markovian, we must typically retain infor-
mation about observations far into the past, which still bears high
memory costs. In practice, this leads to a bottleneck, where we trade-
off reductions in the amount of past information stored against a loss
in predictive accuracy.

Quantum technologies can offer a significant advantage in this
endeavour, even when modelling processes with purely classical
dynamics. They capitalise on the potential to encode past information
into non-orthogonal quantum states to push memory costs below
classical limits1,2. This advantage can be particularly pronounced for
highly non-Markovian processes where the separation between quan-
tum and classical memory costs can grow without bound3–5.
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Here, we experimentally realise quantum models for a family of
non-Markovian stochastic processes within a photonic system. This
family of processes has a tunable parameter that controls their effec-
tive memory length, and the memory dimension of the minimal clas-
sical model grows with the value of this parameter. Our quantum
models can simulate any process within the family with only a single
qubit of memory. Moreover, we show that even with the experimental
noise in our implementation, our models are more accurate than any
distorted classical compression to a single bit of memory. This is a
significant advance over previous demonstrations of dimension
reduction in quantum models, which were limited to models of Mar-
kovian processes6, and so did not require the preservation of infor-
mation in memory across multiple timesteps. Altogether, our work
presents a key step towards demonstrating the scalability and
robustness of such quantum memory advantages.

Results
Framework and theory
Stochastic processes consist of a series of (possibly correlated) ran-
dom events occurring in sequence. Here, we consider discrete-time
stochastic processes7, such that events occur at regular time steps. The
sequence of events can be partitioned into a past x detailing events
that have already happened and a future x! containing those yet to
occur. Stochastic modelling then consists of sequentially drawing
samples of future events from the process given the observed past.

This requires a model that can sample from the conditional form
of the process distribution using a memory that stores relevant
information from past observations. An (impractical) brute force
approach would require the model to store the full sequence of past
observations. Amore effectivemodel consists of an encoding function
that maps from the set of pasts to a set of memory states {sj}, and an
evolution procedure that produces the next output (drawn according
to the conditional distribution) and updates the memory state
accordingly8. A more technical exposition is provided in the Methods.

A natural way to quantify the memory cost is in terms of the
requisite size (i.e., dimension):

Definition: (Memory Cost) Thememory costD of a model is given
by the logarithm of the memory dimension, i.e., D : = log2 dimðfsjgÞ.

The number of (qu)bits required by the model’s memory system
corresponds to the ceiling of this quantity. For classical models, where
the memory states must all be orthogonal, the memory cost is simply
given by the (logarithm of the) number of memory states, i.e.,
D= log2∣fsjg∣. Moreover, when statistically exact sampling of the future
is required, a systematic prescription for encoding the memory states
with provably minimal classical memory cost is known—two pasts x 
and x 0 are mapped to the same memory state if and only if they give
rise to the same conditional future statistics. These memory
states are termed the causal states of the process, and the corre-
sponding memory cost Dμ is termed the topological complexity of the
process9,10.

Renewal processes11 represent a particularly apt class of stochastic
processes for studying the impact of non-Markovianity in stochastic
modelling. They generalise Poisson processes to time-dependent
decay rates. In discrete-time, families of renewal processes with tun-
able lengths ofmemory effects can be constructed, providing ameans
of exploring how memory costs change as non-Markovianity is
increased4,12. Renewal processes consist of a series of ‘tick’ events
(labelled “1”) stochastically spaced in time; in discrete-time, timesteps
where no tick occurs are denoted “0”. The time between each con-
secutive pair of events is drawn from the same distribution. Thus, a
discrete-time renewal process is fully characterised by a survival dis-
tribution Φ(n), codifying the probability that two consecutive tick
events are at least n timesteps apart.

In this work, we consider a family of renewal processes with a
periodically modulated decay (PMD) rate, which we refer to as PMD

processes. Their survival probability takes the form

ΦðnÞ= Γnð1� Vsin2ðnθÞÞ, ð1Þ

where θ: =π/N. Here, Γ represents the base decay factor (i.e., the
probability that the process survives to the next timestep in the
absence of modulation), V the strength of the modulation, and N 2N
the period length. Note that a physical PMD process must satisfy
ΦðnÞ<Φðn� 1Þ8n 2N. If we consider the process as a discretisation of
a continuous-time process with base decay rate γ, then Γ= expð�γΔtÞ,
where Δt is the size of the timestep.

For a general renewal process, the causal states are synonymous
with the number of timesteps since a tick event last occurred12,13, as the
conditional distribution for the number of timesteps until the next tick
is unique for each n. Further refinement is not necessary as the inter-
tick time interval distributions are all conditionally independent.
However, due to the symmetry of PMD processes, the conditional
distribution repeats every N steps, and so the causal states group
according to the value of nmod N (see Fig. 1). Correspondingly, the
minimal classical memory cost for statistically-exact modelling of a
PMD process is Dμ = log2N. We remark that while N thus suggests an
effective memory length for the process, PMD processes nevertheless
have an infinite Markov order (the number of timesteps that must be
removed from the most recent past such that the remaining part is
conditionally independent of the future, formally given by
min
n

n∣PðX0:1∣X�n:0Þ=PðX0:1∣X�1:0Þ) for any N ≠ 1. This requires that a
model must, in general, retain information in memory across multiple
timesteps about its initial preparation that cannot be extracted from
output sequences of any length.

Quantum models can push memory costs below classical
limits1,2,14. They operate by encoding relevant past information into a
set of quantum memory states (i.e., fsjg ! f∣σjig). By coupling the
quantummemory systemwith an ancilla probe (initialised in a ‘blank’
state ∣0i) at each timestep, the output statistics can be imprinted
onto the probe state. Specifically, in state-of-the-art quantum
models2, an interaction U produces a superposition of possible out-
puts (encoded in the ancilla state) entangled with corresponding

RReset

Survive

Fig. 1 | Modelling PMD processes. A PMD process with period N can be exactly
modelledwithNmemory states. At each time step, theprocess either “survives” (no
tick occurs) and themodel advances to thenext state or undergoes a tick event, and
the model moves to a reset state. Due to the N-periodic nature of the conditional
statistics, the model also returns to the reset state after surviving N timesteps,
leading to the clock-like structure of the model dynamics as depicted.

Article https://doi.org/10.1038/s41467-023-37555-0

Nature Communications |         (2023) 14:2624 2



updated memory states. Measurement of the ancilla (in the compu-
tational basis) then produces the output and leaves the memory
system in the appropriately updatedmemory state. This procedure is
repeated at each timestep using the same interaction and a fresh
blank ancilla. See Fig. 2 for an illustration. Note that the interaction
can equivalently be expressed in terms of Kraus operators
{Ax: = 〈x∣U∣0〉} acting on the memory, where {x} corresponds to the
outputs. Further details, and the specific (tunable) form of U, can be
found in the Methods section.

The form of U implicitly defines (up to an irrelevant common
unitary transformation) the quantum memory states f∣σjig2. The
memory cost of a quantum model is then given by the (logarithm of
the) span of these states: Dq = log2ðdimðf∣σjigÞÞ. Thus, when these
quantum memory states are linearly dependent, Dq is less than the
corresponding classical cost2–4. We emphasise here the importance of
linear dependence for quantummemory advantage: a quantummodel
will still require 2Dμ different memory states f∣σjig in one-to-one cor-
respondence with the causal states, but when the quantum memory
states are linearly dependent (such that they span a Hilbert space of
dimension 2Dq<2Dμ ), a quantum memory advantage is achieved.

We show that PMD processes can be modelled with drastically
reduced memory cost in this manner:

Result (Theory): For any PMD process, we can construct a
statistically-exact quantum model with memory cost Dq ≤ 1.

That is, a statistically-exact quantum model can be constructed
for any PMD process that requires only a single qubit memory. Cru-
cially, this holds for any value of N, and so while the classical memory
cost will diverge with increasingN, the quantummemory cost remains
bounded. The quantum memory advantage Dμ −Dq is thus scalable.

We remark that this scalability comes with practical considera-
tions. As N increases, a quantum model using a single qubit as
memory will necessarily require a high degree of overlap between
some quantummemory states. This requires that an implementation
of the model be able to store and manipulate quantum states with
sufficiently high precision tomeaningfully distinguish between these
highly overlapping states, lest the impact of noise becomes toogreat.
Thus, the theoretical scaling advantage is tempered by practical
limitations on the precision afforded by their implementation.
Nevertheless, as our ability to control quantum systems improves, we
are able to ever increasingly offset these practical limits, and as our
implementation shows, we can already begin mapping out the scal-
ing curve.

For PMD processes with periodicity N, a quantum model can be
specified by a pair of Kraus operators {A0,A1} corresponding to each of
the two outputs and a set of N memory states f∣σnig. Following the
transition structure of the corresponding minimal-memory classical

model, these must satisfy

A0∣σn

� / ∣σn+ 1modN

� ð2Þ

A1∣σn

� / ∣σ0

�
: ð3Þ

That is, on event 0, the state label increments by 1 (modulo the peri-
odicity), while on event 1, the state label resets to 0. In the Supple-
mentary Material we show that for any PMD process—irrespective of
the parameters—a set of such Kraus operators and quantum memory
states exist within a 2-dimensional Hilbert space that will reproduce
the correct output statistics for the process; in other words, a
statistically exact quantum model with Dq ≤ 1 can be constructed for
any PMDprocess.Moreover, weprovide an explicit construction of the
Kraus operators and quantum memory states that we then use to
design our implementation of the quantum models. This constitutes
our main theory result.

Experimental Implementation
We implement these memory-efficient quantum models of PMD pro-
cesses using a quantum photonic setup. The experimental setup, illu-
strated in Fig. 3, consists of threemodules: state preparation (orange),
simulator (blue), and state tomography (green). The polarization of a
photon is used for the memory qubit, and the ancilla(e) is encoded in
its path degree of freedom.

The state preparation module is able to initialise the memory
qubit in an arbitrary pure state, togetherwith an initial vacuum state of
the ancilla. This allows us to initialise the model in the state ∣σji∣0i for
any of the memory states f∣σjig.

The simulation module is the key part of the model, where the
photon undergoes an evolution to produce the outputs and updated
memory state. At each timestep, the photon passes through a series of
optical components that displaces the beam such that the path cor-
responds to the outputs {0, 1}, and the polarization is conditionally
rotated into the subsequent memory state for the next time step. The
details of this evolution are given in the Methods. Note that we do not
measure the output ancilla until after the full simulation state, instead
preserving the superposition over outputs. Thus, for an L-timestep
simulation with the outputs mapped to path states, 2L paths are nee-
ded in order to maintain this superposition. Nevertheless, it does not
destroy the simulation if coherence is lost between the optical paths
carrying different outputs, as the simulation does not require that they
interact after their generation.

The final state tomography module enables us to validate the
performance of the model. First, by detecting the final path of the
photon, it manifests the output of the model, the statistics of which
can then be checked. Second, through tomographic reconstruction of
the final polarisation of the photon (conditional for each initial state
and set of outputs), we are able to verify the integrity of the final
memory state, which could, in principle, have instead been used to
produce the outputs for further timesteps.We remark that as there are
no nondeterministic elements to the evolution in our simulation stage,
the impediments to running for larger L are largely practical, in terms
of the need for additional optical paths and optical equipment, and the
accumulation of errors. We emphasise that tomography is used here
only as a diagnostic of our experiment; in normal operation, mea-
surement of the final path state of the photon alone is sufficient to
extract the output of the model.

Our implementation runs the model for L = 2 timesteps. This is
sufficient to witness the effect of memory preserved across timesteps;
the conditional distribution of the second output given the first
changes based on the initialmemory state, indicating that information
contained within this initial state is propagated across the simulation—
i.e., that there is persistent memory. We modelled multiple PMD

210

Quantum Model

Fig. 2 | Quantum models. Quantum models store one of a set of memory states
f∣σjig that correspond to an encoding of information from past observations
(green). At each time step, a blank ancillary system set to ∣0i (red) is introduced and
undergoes a joint interaction U that creates a weighted superposition of possible
events imprinted onto the ancilla, coupled with the corresponding updated
memory state. The ancilla is thenmeasured toproduce theoutput statistics, leaving
thememory ready for the next time step.Depicted are three timesteps, producing a
string of outputs x0x1x2.
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processes with base decay factor Γ ranging from0.49 to 0.64, periodN
from 3 to 8, and modulation strength V =0.4.

We briefly highlight key advancements our implementation
makes over a prior experimental implementation of quantum dimen-
sion reduction6. While this prior work successfully demonstrated
quantum dimension reduction in stochastic simulation – and made
valuable experimental progress in doing so—it did not strictly make
use of memory. That is, it simulated a Markovian process, and only for
one timestep. Crucially, this did not require a persistent memory to be
maintained across the evolution of a timestep (it is consumed and then
reconstituted from the subsequent output), nor did it explicitly pro-
pagate a memory between multiple timesteps of an implementation.
Thus, in this sense, only our implementation strictly demonstrates the
memoryful simulation of a non-Markovian stochastic process with
quantum dimension reduction. Further, it is only in our work that we
demonstrate the superior accuracy of our implemented quantum
models relative to that of the best classical models of the same
dimension. We also remark on a secondary advantage specific to our
implementation, namely that because we do not require any non-
deterministic optical operations in our evolution, we avoid the expo-
nential decay with L of the probability of a successful simulation that
would be suffered by this prior work had they sought to extend their
simulation to further timesteps. This places our work much more
favourably as a means to truly demonstrate the scalability of quantum
dimension reduction.

Experimental results
We first verify that the output statistics produced by our model are
faithful to the process.Outputs are determinedbymeasurement of the
final path of the photon, each corresponding to one of the four pos-
sible outputs for two timesteps of the process {00, 01, 10, 11}. For each
of the parameter ranges detailed above and for each of the initial
memory states f∣σjig we obtain O(106) coincidence events, each cor-
responding to a single simulation run. We use these to reconstruct the
probability distributions ~Pðx0x1∣sjÞ. Figure 4a presents our obtained
distributions for N = 4, V =0.4 and Γ = {0.49, 0.52, 0.57, 0.64}, with the
insets showing the discrepancy with the exact statistics. We quantify

this distortion of the statistics using the Kullbach–Liebler (KL)
divergence15 between experimentally-reconstructed and exact theo-
retical distributions (see Methods). We plot the normalised (per sym-
bol) KL divergence dKL of ourmodels in Fig. 5, wherewe see that for all
parameters simulated, our models yielded a distortion below 10−2 bits.

Given this statistical distortion due to experimental imperfec-
tions, it would be disingenuous to consider only the memory cost of
statistically exact classical models. In order to provide a fair compar-
ison, we compare the accuracywe achieve to that of the least-distorted
classical models with the same memory cost D = 1 (i.e., one bit). Spe-
cifically, we establish a lower bound on the smallest distortion
(according to the KL divergence) that can be achieved by classical
models with a single bit of memory (see Methods). This bound is
plotted together with the distortion of our quantum models in Fig. 5,
wherewe can see that our quantummodels, in all cases, have a smaller
distortion. That is, even accounting for the experimental imperfec-
tions of current quantum technologies, our quantum models of PMD
processes achieve greater accuracy than is possible with any classical
model of the same memory size. We remark that across all prior
implementations of quantum models of stochastic processes, ours is
the first to verify this. Note that the distortion in the classical models
here is fundamental due to the constraints on the memory size, while
for the quantum case, the distortion is purely due to imperfect
experimental realisation.

We also verify the integrity of the finalmemory state at the end of
our simulations. While we run our models for L = 2 timesteps, in prin-
ciple, they can be run for arbitrarily many timesteps given sufficient
optical components as the simulation updates the memory state at
each step. This continuation requires that the final memory state
output by themodel (i.e., the polarisation of the photon) is faithful. By
tomographic reconstruction of the photon polarisation, we can eval-
uate the infidelity of the final memory state ~ρ: Ið~ρÞ= 1� hσk ∣~ρ∣σki,
where ∣σk

�
is the requisite finalmemory state given the initial state and

outputs. In Fig. 4b,we plot the obtained infidelities for each initial state
and outputs for N = 4, Γ =0.49, and V =0.4, while Fig. 4(c) shows the
tomographically-reconstructed final memory state for each output
when the initial state is ∣σ2

�
. We find that reconstructed final states are

Fig. 3 | Photonic implementationofquantummodels of PMDprocesses.Weuse
a photonic setup to implement our quantummodels. The orange region highlights
the state preparation module, where two photons with a central wavelength of
808nm are generated via pumping a PPKTP crystal with temperature stabilised to
around 35 °C through a type-II spontaneous parametric down-conversion process.
One of the photons passes through a single-mode fibre and is prepared with an
initialmemory state encoded in its polarization, whilst the other is used as a trigger.
The blue regions show the simulation module that carries out the evolution,

encoding outputs into the photon path and updating the memory by rotating its
polarisation (see Methods for details). After evolving two timesteps, the photon is
passed into the tomographymodule (green region), where the output statistics are
produced by photodetection counts, and the polarization is measured to tomo-
graphically reconstruct the final memory state. The optical components shown
comprise PBS, polarising beamsplitter; M, mirror; IF, interference filter; QWP,
quarter-wave plate; HWP, half-wave plate; FC, fibre coupler; BD, beam displacer;
SPD, single photon detector.
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highly faithful to their corresponding requisite states (across all para-
meters simulated, a maximum infidelity of 0.0212 was obtained),
suggesting thatour simulation could be run for severalmore timesteps
before the onset of significant degradation in the statistics.

Discussion
Our work reports the first experimental implementation of quantum
simulators of non-Markovian stochastic processes exhibiting memory
advantages over optimal classical counterparts. We used these simu-
lators to model a family of stochastic processes that have a tunable
memory length; while increasing this corresponds to an ever-
increasing classical memory cost, our simulators always require only
a single qubit of memory—leading to a scalable quantum advantage.
The non-Markovian nature of the processes required that information
was retained in memory and propagated across the whole of the
simulation over multiple timesteps that could not be extracted from

observing the outputs alone.Moreover, we show that this advantage is
robust to the experimental noise introduced by our implementation
via a comparison with bounds on the smallest noise achievable with
classical models of the same memory cost.

The photonic setup in which we have implemented our quantum
models is well-suited to the task at hand. As such models consist of
repeatedmotifs of the interaction betweenmemory and probe at each
timestep—which are fixed in advance—the optical components can be
finely calibrated in advance and achieve much smaller errors than
typical of current universal quantum processors. Furthermore, our
setup can readily be modified to simulate other non-Markovian sto-
chastic processes. In particular, whilst not every renewal process can
be exactly modelled by a quantum model with a single qubit of
memory, recent work has developed techniques for constructing
highly accurate near-exact quantum models of such processes with
significantly reduced memory cost5. By adjusting only single-qubit

(a) (b) (c) (d)

Fig. 5 | Distortion of single (qu)bit memory models. a KL divergence dKL of
experimentally-obtained statistics from our quantum models (orange) from exact
statistics, and lower bound on the divergence of single bit distorted classical
models (yellow) for N = [3. . 8], Γ =0.5, and V =0.4. b–d Analogous plots for N = 3

(b),N = 4 (c), andN = 5 (d) with varying Γ. Distortions of quantummodels are shown
as discs and lower bounds on the distortion of single-bit classical models as solid
lines. Error bars are omitted as they are smaller than data points.

(b)(a)

=0.64 =0.57

=0.52 =0.49

“11" “10"

“01" “00"

=0.49

Fig. 4 | Experimental results for quantum models of PMD processes.
a Theoretical (green) and experimentally obtained (blue) probability distribution
for two timestep simulations of PMD processes for each possible initial memory
state. Insets show discrepancies between theoretical and experimentally-obtained
values. Parameter range N = 4, V =0.4, and Γ = {0.49, 0.52, 0.57, 0.64}. b Upper:

Infidelity of final memory states after two timesteps. Lower: Real and imaginary
components of the tomographically-reconstructed final memory states after two
timesteps for the initial state ∣σ2

�
; outlines show target values. Parameters: N = 4,

V =0.4 and Γ =0.49.
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unitaries acting on photon polarisation—a comparatively straightfor-
ward task—our setup can implement single-qubit-memory quantum
models (exact if possible, approximate otherwise) of any renewal
process.

Our theoretical result on the scalability of the quantum advantage
notwithstanding, there are still practical obstacles to a full experi-
mental demonstration of the scaling. Namely, as N increases, the
proximate (in the label) quantum memory states have an increasingly
strong overlap in statistics and, correspondingly, increasingly strong
state overlap. Once the state (non-)overlap becomes comparable to
the loss of fidelity in the evolution, the memory states will, in effect,
‘smear’ and lose the proper transition structure. While this will not be
immediately clear in short output strings (as the statistics of the
smeared states will look very similar), it will become increasingly
apparent for larger L; thus, a proper test of the scalability of the
advantage must also show the faithfulness of the statistics over longer
numbers of timesteps. Increasing L presents further challenges as the
number of optical paths (and optical equipment) required grows
exponentially with L. A preferable approach would be to fold the
interactions into a recursive circuit that reuses the optical equipment
at each timestep and avoids the exponential growth in the required
number of optical paths. However, realising this by coupling the out-
put into additional photons presents its own drawbacks6, in terms of
nondeterministic gates and the need to produce additional photons
for each timestep.

A further advantage of our quantum models not explored here is
that the outputs are not measured until the final step, up until which
the output system is in a weighted superposition of the possible out-
put strings16. This quantum sample (or ‘q-sample’) state can then be
used as an input to quantum algorithms for, e.g., quantum-enhanced
analysis of the properties of the process17 with potential applications in
financialmodelling18,19. Such q-samples (of length L) require a coherent
superposition over all possible length L output strings, which may
present a challenge for current quantum hardware; nevertheless, we
emphasise that the main task considered here—that of simulating the
process’ statistics—does not require this superposition, and requires
only coherence in the memory qubit (i.e., photon polarisation) state.

Quantummodels of stochastic processes have alsobeen shown to
exhibit other advantages over classical models that can be explored,
such as reduced thermal dissipation20,21. We also note a close connec-
tion with studies on the fundamental limits of classical and quantum
clocks22–24, the latter of which have been shown to exhibit memory/
accuracy advantages. Specifically, the behaviour of so-called ‘reset
clocks’—that are shown to be classically optimal22 and postulated to be
quantumly optimal—correspond to renewal processes; our models
could be used to implement such reset quantum clocks.

Another enticing next step that builds upon our work is to extend
to higher-dimensional quantum memories25. Further, by introducing a
means of conditionally modifying the interaction, input-dependent
stochastic processes can be implemented, which can be used to realise
memory-efficient quantum-enhanced adaptive agents26, complement-
ing quantum techniques for accelerating their learning process27,28.
Similar approaches could be made to implement simulators of quan-
tum stochastic processes29, which show interesting quirks in terms of
non-Markovianity and Markov order30,31. Our work represents a key
movement towards all these directions and applications.

Methods
Stochastic processes and minimal-memory classical modelling
A discrete-time stochastic process7 consists of a sequence of
random variables Xt, corresponding to events drawn from a set X ,
and indexed by a timestep t 2 ½tmin::tmax�. The process is defined by
a joint distribution of these random variables across all timesteps
PðXtmin :tmax

Þ, where Xt1 :t2
: =Xt1

,Xt1 + 1
, . . .Xt2�1 represents the con-

tiguous (across timesteps) series of events between timesteps t1

and t2. We consider stochastic processes that are bi-infinite, such
that tmin = �1 and tmax =1, and stationary (time-invariant), such
that P(X0:L) = P(Xt:t+L)∀ t, L∈Z. Without loss of generality, we can
take the present to be t = 0, such that the past is given by
x : = x�1:0, and the future x!= x0:1. Note that we use upper case
for random variables and lower case for the corresponding
variates.

A (causal) model of such a (bi-infinite and stationary) discrete-
time stochastic process consists of an encoding function f : X ! S
that maps from the set of possible past observations X to a set of
memory states s 2 S8–10. The model also requires an update rule Λ :

S! S ×X that produces the outputs and updates the memory state
accordingly. We then designate thememory costDf of the encoding as
the logarithm of the dimension (i.e., the number of (qu)bits) of the
smallest system into which these memory states can be embedded9.
For classical (i.e., mutually orthogonal) memory states, this corre-
sponds toDf = ∣S∣. For quantummemory states, whichmay, in general,
be linearly dependent, Df ≤ ∣S∣2.

Let us, for now, restrict our attention to statistically-exactmodels,
such that (f,Λ) must produce outputs with a distribution that is iden-
tical to the stochastic process beingmodelled. Under sucha condition,
the provably-memory minimal classical model of any given discrete-
time stochastic process is known and can be systematically
constructed10. These models are referred to as the ε-machine of the
process, which employs an encoding function fε based on the causal
states of the process. This encoding function satisfies

f εð x Þ= f εð x 
0Þ () PðX!∣ x Þ=PðX!∣ x 0Þ, ð4Þ

and given initial memory state f εð x Þ, the evolution produces output
x0with probability Pðx0∣ x

 Þ and updates thememory to state f εð x x0Þ.
The memory states are referred to as the causal states of the process,
and the associated cost Dμ is given by the logarithm of the number of
causal states.

Classical models of PMD processes
Recall that a (discrete-time) renewal process is fully defined by its
survival probability Φ(n), describing the probability that any con-
secutive pair of 1s in the output string is separated by at least n 0s. We
can deduce the distribution for the next output given the current
number n of 0s since the last 1:

Pð0∣nÞ= Φðn + 1Þ
ΦðnÞ ð5Þ

Pð1∣nÞ= 1�Φðn + 1Þ
ΦðnÞ : ð6Þ

PMDprocesses correspond to a particular formof survival probability,
viz.,ΦðnÞ= Γnð1� Vsin2ðnθÞÞ. It can readily be seen that when inserted
into Eq. (5), the output probabilities of PMD processes are periodic,
with period N. Noting also that the counter n always resets to 0
immediately after a 1 is output, we have that the causal state encoding
function fε maps pasts into memory states according to the value of
nmod N, where n is the number of 0s since themost recent 1. Without
loss of generality, we can use this value to label the memory states sj,
with j∈ [0. .N − 1]. Thus, upon output 0 the memory state will update
from sj to sðj + 1ÞmodN , and on output 1 it will update to s0 irrespective of
the initial memory state. The probability of each output depends on
the initial memory state.

Quantum models
Though ε-machines are the provably memory-minimal classical mod-
els of stochastic processes, thememory cost canbepushed even lower
through the use of quantum models—even when the process being
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modelled is classical. Current state-of-the-art quantum models map
causal states {sj} to corresponding quantum memory states f∣σjig,
which are stored in thememory of the quantummodel2. The quantum
model then functions by means of a unitary interaction between the
memory system and an ancilla initialised in ∣0i.

This unitary interaction takes the following form:

U∣σji∣0i=
X
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðx∣sjÞ

q
eiφxj ∣σλðj,xÞi∣xi, ð7Þ

where {φxj} are a set of phase parameters that can be tuned to modify
the memory cost, and λ(j, x) is an update rule that returns the label of
the updated memory state given initial state label j and output x, fol-
lowing the transition structure of the corresponding ε-machine. As
remarked above, Eq. (7) implicitly defines the explicit form of the
quantum memory states f∣σjig up to an irrelevant common unitary
transformation, as well as U. As the evolution always begins with the
ancilla in the same blank state, it can also be equivalently be specified
according to its Kraus operators {Ax: = 〈x∣U∣0〉}, where the contractions
aremadeonly on the ancilla subsystem32. TheseKraus operators satisfy
the completeness relation

P
xA
y
xAx =1.

Following the definition of the memory cost of a model, the
memory cost Dq of such quantum models is given by the number of
qubits required by a memory system to store the quantum memory
states. In other words, the quantum memory cost is given by the
logarithm of the number of dimensions in the smallest Hilbert space
that can support the quantum memory states:

Dq = log2ðdimðf∣σjigÞÞ: ð8Þ

This is upper-bounded by the memory cost of the ε-machine as N
quantum states span at most N dimensions. That is, Dq ≤Dμ, with
equality if the quantummemory states are all linearly independent. For
many stochasticprocesses, though, it is possible tofind sets of linearly-
dependent memory states satisfying Eq. (7), leading to a strict (and
sometimes extreme) quantum memory advantage2–4—as we have also
demonstrated for PMD processes.

Further experimental details
The state preparation module of our implementation prepares the
initial quantum memory state ∣σji prior to the start of the simulation.
We encode this memory state in the polarisation of a photon. To do
this, a photon pair is prepared via spontaneous parametric down-
conversion by pumping a type-II PPKTP crystal with a 404nm laser
pulse. One of the two photons is first sent to a Glan-Thompson prism
(GT) to ensure the photon isH-polarised; then, the H-polarised photon
passes through a half-wave plate and a quarter-wave plate (H-Q). This
allows us to prepare arbitrary initial qubit states in the photon
polarisation33. Meanwhile, the other photon of the pair serves as a
trigger and is detected via a single-photon detector (SPD).

As shown in the inset of Fig. 3, our implementation embeds the
simulation module within a one-dimensional discrete-time quantum
walk, using recently-introduced photonic techniques to realise arbi-
trary general evolution on one- and two-qubit systems34–36. Each
timestep of the evolution is realised through a finite-step quantum
walk evolution; the details of this embedding are given in the Supple-
mentary Material.

Quantifying statistical accuracy with KL divergence
We use the KL divergence to quantify the statistical accuracy of the
output of a model (or realisation thereof). The KL divergence DKL

between a probability distribution Q and a target distribution P is

given by15

DKLðP∣∣QÞ : =
X
x

PðxÞ log PðxÞ
QðxÞ

� �
: ð9Þ

Wemustmake twomodifications to this to account for the fact thatwe
deal with stochastic processes rather than straightforward distribu-
tions. First, we must apply it to conditional distributions based on the
initialmemory state (and subsequently average over thememory state
distribution). Secondly, while a process constitutes an infinite string of
outputs, we observe only a finite-length string. To account for this, we
calculate the KL divergence over finite length strings and normalise to
obtain a per-symbol divergence. Thus, we have

dKLðP∣∣~P; LÞ : =
1
L

X
sj

πðsjÞ
X
x0:L

Pðx0:L∣sjÞlog2
Pðx0:L∣sjÞ
~Pðx0:L∣sjÞ

 !
, ð10Þ

where π represents the steady-state distribution of the model’s
memory states. In our implementation, we run the simulation for
two timesteps, and so we use L = 2. For general renewal processes
without periodicity, the steady-state distribution π(sn) = μΦ(n), where
μ−1: =∑nΦ(n) is a normalisation factor12,13. For PMD processes, this
simplifies to πðsnÞ= �μΦðnÞ, with �μ�1 : =

PN�1
n=0 ΦðnÞ.

Classical models with distortion
As the implementations of our quantum models are subject to
experimental noise—leading to distortion in the statistics—it is prudent
to compare them against classical models with distortion. That is,
rather than considering classical models of PMD processes with N
states that are able to produce statistically exact outputs, we consider
imperfect classical models with only a single bit of memory available.
This restriction on thememory unavoidably introduces distortion into
the output statistics; we show that this distortion is greater than that of
our implemented single-qubit-memory quantum models.

We use an approach akin to information bottleneck techniques37

introduced in previous work38 based on the concept of pre-models that
are tasked with finding encodings of the past such that a string of
future outputs (of pre-defined length L) can be produced from this
encoded representation of the past. Such pre-models encompass
models as a special case but are more general as they are not required
toproduce theoutputs one timestep at a time, nornecessarilyproduce
an arbitrarily-long string of future outputs. The minimal distortion of
all L-step pre-models at the fixed memory cost of a given stochastic
process serves as a lower bound on the smallest achievable distortion
of a model with this memory cost.

The full details can be found in ref. 38, but intuitively, the
mechanism of this approach can be understood as follows. We are
seeking a combination of a map from the set of pasts f x g to a set of
~N <N (for a bit, ~N = 2) memory states ~S and an update rule ~Λ : ~S!
~S ×X that produces the next output and updates the memory state,
such that the error in the conditional distribution for the future out-
puts X

!
given any particular past is minimised. Given the causal states

are already a coarse-graining of the set of pasts into groups with sta-
tistically indistinguishable futures, we can constrain the initial map to
assign any two pasts belonging to the same causal state s to the same
distorted memory state ~s. Consider now, that models producing the
entire future one output at a time are a strict subset of models that
produce the future in blocks of length L—which, as discussed above,
are a special case of pre-models that produce only the next L-length
block of outputs (all at once). Thus, the minimum distortion possible
for an L-length pre-model lower the bound of the distortion of any
model. This greatly simplifies the search space to need only consider
mappings from S! ~S, and instead of an update rule, only amap from
~S to the distribution of L-length futures X0:L.
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With this approach, we are able to bound the distortion dc
KL

achievablewith single bit classicalmodels of PMDprocesses. Formally,
a L-step pre-model consists of an encoding function ~f : X ! R, where
r 2 R are thememory states of the pre-model, and a set of conditional
output distributions {QL(X0:L∣r)}. It has been formally proven that the
minimum distortion (classical) pre-models have memory states that
are a coarsening of the causal states. Thus, a lower bound on the
distortion of single-bit-memory classical models is given by

dc
KL ≥ min

~f ,fQLg

1
L

X
sj

πðsjÞ
X
x0:L

Pðx0:L∣sjÞlog2

Pðx0:L∣sjÞ
QLðx0:L∣~f ðsjÞÞ

 !
, ð11Þ

subject to the constraint that the encoding function maps to only two
memory states. With the modest number of states and L considered
here, the minimisation is highly amenable to an exhaustive numerical
search, which we perform to determine the lower bounds on classical
distortion presented in the main text. We use L = 2 for parity with our
implementations of quantum models.

Data availability
Data displayed in the plots are made available as a supplemental file.
Further details and explanations of the data are available from the
authors upon reasonable request. Source data are provided in
this paper.

Code availability
The code used to determine bounds on classical models with distor-
tion is available at https://github.com/Yangchengran/
LearningQuantumStochasticModellingCode. Further details and
explanations of the code are available from the authors upon reason-
able request.
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