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The most at-risk regions in the world for
high-impact heatwaves

Vikki Thompson 1 , Dann Mitchell 1, Gabriele C. Hegerl 2,
Matthew Collins 3, Nicholas J. Leach4,5 & Julia M. Slingo 1

Heatwaves are becomingmore frequent under climate change and can lead to
thousands of excess deaths. Adaptation to extreme weather events often
occurs in response to an event, with communities learning fast following
unexpectedly impactful events. Using extreme value statistics, here we show
where regional temperature records are statistically likely to be exceeded, and
therefore communities might be more at-risk. In 31% of regions examined, the
observed daily maximum temperature record is exceptional. Climate models
suggest that similar behaviour can occur in any region. In some regions, such
as Afghanistan and parts of Central America, this is a particular problem - not
only have they thepotential for farmore extremeheatwaves than experienced,
but their population is growing and increasingly exposed because of limited
healthcare and energy resources. We urge policy makers in vulnerable regions
to consider if heat action plans are sufficient for what might come.

Record-breaking temperature extremes can cause severe impacts on
society and the environment, as was seen in western North America in
June 20211–3. Identifying which regions globally have perhaps been
lucky not to have experienced higher temperature extremes so far is
important and is the focus of this study. Often, regions are only pre-
pared for events as extreme as they have already experienced, with
planning initiated by past disasters. Policymakers and governments
need to prepare for events beyond current records – particularly with
trends caused by anthropogenic climate change enhancing the prob-
ability of extremes4.

Heatwaves are deadly—but better preparation can save lives5,6.
Planning ahead can reduce mortality from climatic extremes. For
example, city heat plans that include actions such as establishing
cooling centres or reducing hours of work for outdoor workers can
reduce heat impacts. Policy changes following the 2003 European
heatwave led to fewer deaths after the similar magnitude 2006 event7,
and humanitarian response plans in Bangladesh reduced mortality
from Cyclone Amphan in 20208.

Understanding the likelihood of such extreme heat events is
essential to allow society to prepare for them, but by their very defi-
nition, these events are rare9. The chance of extremes can be assessed

using the observational record but, with global records of daily data
only spanning the last century, it is hard to estimate reliable return
periods for rare events10,11.

When investigating extreme heat events, decisions must be made
about how the extreme is measured12. We use the annual maximum
value of dailymaximum temperature (TXx), which is recommended by
the World Meteorological Organisation (WMO) for assessing
heatwaves13. There are many alternative climatic extreme measures,
such as a count of (multiple) days above a threshold14 or above a
percentile15. Some regional studies use heat comfort indices, which
combine temperaturewithhumidity16. Theminimumtemperaturemay
also be used—high nighttime temperatures prevent the body from
cooling, increasing health impacts17. The alternative measures are
often best suited to particular regions; as we carry out a global study
we use TXx.

The aim of this study is to identify which regions globally have
perhaps been lucky not to have experienced higher temperature
extremes so far. We argue that these regions may be particularly vul-
nerable to the impacts of a recordheatwave because there has been no
need for adaptation thus far. We use extreme value theory (EVT) to
assess return periods of observed temperature extremes globally. We
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begin by investigating the western North American heatwaves of June
2021 as an example of the technique in a regionwhich has been shown
to have experienced an event beyond the statistical maximum. We
then use the same methods to assess daily heat extremes globally,
identifying where in the world the current record has a short return
period. We also identify regions where the observed record tempera-
tures appear statistically implausible prior to their occurrence. Fur-
thermore, we use results from the analysis of large ensembles
of climate models to support the conclusions from the observational
record.

EVT provides a statistical method to estimate the return periods
of rare events—under the assumption that all events are from the same
distribution18. In climate science, this technique is used to assess
meteorological extremes in both observations and climatemodels19–21.
When the event statistics are nonstationary, for example, because of
external forcing such as greenhouse gas forcing, EVT can be extended
to allow for this. When estimating the return period of climate
extremes, to allow for climate change, a linear relationship with global
mean surface temperature is often assumed. For example, when
investigating the Siberian summer heatwave of 202022 and the south-
ern USA flooding inAugust 201623. This assumptionmay be invalid; the
relationship can be non-linear and vary regionally. For example, non-
linear interactions between soilmoisture and surface temperaturemay
affect the events24. Local forcings, such as aerosols or irrigation, may
influence specific regions leading to inaccuracies when applying one
method globally25,26. EVT assumes data points are independent; if local
decadal variability prevents this, it may affect the results27. The his-
torical recordsmaynot sample the full range of situations that give rise
to extremes. In these cases, extrapolation to the rarest events without
any additional knowledge of the physicalmechanisms involved in such

extremes may lead to inaccuracies. Despite these limitations, EVT is
considered the best practice for estimating extremes11,27.

Results
Western North America heatwave, June 2021
In June 2021, western North America experienced a record-breaking
heatwave. In Lytton, British Columbia, temperatures of 49.6 °C were
observed on June 29th, breaking the previous record by almost 5 °C28.
The heatwave was associated with an unusual circulation pattern, with
a blocking anticyclone leading to a stagnant warm air mass29.

A rapid attribution study found the event was so far beyond what
had been previously observed that it was deemed virtually impossible
without climate change30. In that study, the region assessed was cho-
sen based on the record-breaking event itself—so by definition will
appearparticularly rare. In this study,wewillmake a global assessment
of the risk of unprecedented heat. Therefore, we use a predetermined
set of regions31 (see Methods). As in30, we use ERA5, a reanalysis
dataset, as a proxy for observations10 (seeMethods). Data from 1959 to
2021 is assessed. For the June 2021 event, we use the region of Alberta,
Canada, as that region is shown tohave the largest extreme for the June
2021 event in terms of standard deviations from the mean2. As shown
in Fig. 1, we find TXx for 2021 (which occurred on June 29th) is beyond
the plausible range given by the EVT distribution—it would have been
deemed extremely unlikely prior to its occurrence, in agreement
with30. It should be noted that the distribution is shifted with a change
in globalmean surface temperature (GMST) rather than usingGMST as
a covariate.

We can investigate whether, prior to June 2021, the region
appeared particularly susceptible to such a record-breaking event
(Fig. 1c/d). The previous record event from 2018—now the second

Fig. 1 | Generalised Extreme Value (GEV) fit of an annualmaximumof observed
daily maximum temperature (TXx) for Alberta, Canada. Data from ERA510,
1959–2021. a The observed TXx plotted against global mean surface temperature
(GMST). The record event of 2021, shown in red, is not included in the fit line.
bReturnperiodplots adjusted to the current climatebasedonGMST= 1, calculated
excluding the 2021 event, the solid blue line is the GEV fit, and dashed lines indicate

the 5th to 95th percentile uncertainty range. The red line indicates the 2021 record
temperature. c as in (a), but with 2021 removed from observations, and the pre-
vious record, from 2018, shown in red and excluded from the fit line. d as in (b) but
with a red horizontal line indicating the 2018 record temperature. Source data are
provided as a Source Data file.
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hottest TXx in the reanalysis period after adjustment by global mean
surface temperature—is shown to have a 166-year return period. As
may be expected, this is much closer to the length of the observations
and is not a difficult record to exceed within this century, and society
and ecosystems have not been exposed to large extremes recently.
When applying an EVTfit to assess the returnperiodof a specific event,
it is normal practice that the event in question is excluded27. Usually,
that event is the final event chronologically, as the assessment is likely
triggered by the event itself11. Therefore, data from after the event
cannot be used as it is yet to happen. We use a slightly different
method, excluding only the record year (in this case, 2018) from the
data from 1959 to 2020. This allows us to include more information
about the distribution, thus giving a more accurate measure of the
return period. We note that this does add selection bias to the analysis
by excluding the record of records, but it helps to assess the sensitivity

of GEV fits to not sampling particularly strong extremes. This is
important as other feedback may enhance the larger extremes, thus
underestimating the tail shape when samples do not cover large
events.

Global assessment of reanalysis data
We can explore whether surprisingly extreme real-world events
beyond the statistically plausible maximum occur in other regions
globally or are unique to the western North America heatwave. This
allows us to investigate the limitations of using EVT to assess return
periods of extreme events and identify regions with low current
records in terms of the return period.

We assess uncertainties in the reanalysis data by comparing two
datasets—ERA5 and JRA55—and use only the regions where the
extremes are consistent between the two datasets in the satellite era
(1990 onwards), see Methods for further details10,32. The ERA5 data of
dailymaximum temperature, 1959–2021, are used to calculate aGEV fit
of TXx, with the record event excluded from the calculation. The
parameters of the GEV fit globally are shown in Fig. S1. Data from the
years after the record event are included, as this provides more
information about the true distribution.

For each region, we use the GEV fit to calculate a proxy for the
statistical maximum—which we define as the magnitude of a 1 in the
10,000-year event—and compare this to the 1959–2021 record for that
region (Fig. 2). Where possible we calculate the return period of the
record event – though in regions where the record event is statistically
implausible according to the GEV fit, as shown in Fig. 1b, no return
period can be calculated with this method. Those regions where the
current record events have lower return periods are at greater risk of
the new records as high extremes have not beenwell sampled andmay
be at risk of experiencing events far beyond the current records.

The 2021 western North America heatwave is exceptional, almost
2 °C beyond any other region (Figs. 2a, 3b). But it is not the only region
displaying a record event beyond the statistical fit; we find the current
record is exceptional in 41 of the 136 regions, ~31% of the land surface
(Fig. 2b). These implausible regions are spread across continents and
latitudes—there is no apparent spatial discrimination. The events are
also spread across the assessed time period but with more events in
the later decades, possibly caused by greater availability of satellite
data but potentially also by a non-linear signature of climate
change (Fig. 3).

There are some regions which have not experienced events
beyond 1-in-100-year eventswithin the 62-year record (Figs. 2b, 3a, and

Fig. 2 | Generalised Extreme Value (GEV) fit to calculate the return period of
record events globally. a The temperature difference between the statistical
maximum event calculated by a GEV fit excluding the record and the current
record. Grey regions indicate a lack of consistency between reanalysis datasets (see
Methods). b The return period of the current record, when calculated by a GEV fit
excluding the record. Red regions indicate where it is not possible to calculate a
return period because the event falls outside of the GEV fit. Regions from Stone
(2019)31. Source data are provided as a Source Data file.

Fig. 3 | Current record returnperiod vpopulation. aReturnperiod of the current
record against the current population of the region33 for the regions where a return
period can be calculated. The red cross indicates the values for the Alberta region
excluding the 2021 event (as in Fig. 1c, d). b Regions with statistically implausible

record events (where a return period cannot be calculated) plotted against the year
of the event. Red crosses indicate two neighbouring regions of the 2021 Western
North America heatwave. Source data are provided as a Source Data file.
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Table 1). These regions have had no need to adapt to such events and
so may be more susceptible to the impacts of extreme heat. Statisti-
cally, these regions are alsomore likely to experience record-breaking
extremes than other areas.

It is not only statistical likelihood which will affect the vulner-
ability of a region; this will also vary depending on socioeconomic
factors. Here we use population33 and economic development34 pro-
jections as indicators to enable the potential risk to be qualitatively
assessed (Fig. 3a). Regions with both a low return period and high
population will have greater exposure to the hazard—the Beijing
region of China has the highest population of all regions and is at risk
statistically.

In Table 1, we list the regions which are statistically most at risk of
a record heatwave. The table includes three developing regions, as
defined by the UNHumanDevelopment Index (https://hdr.undp.org/).
Afghanistan is the region of most concern as it is one of the least
developed countries globally, with the historical record showing a low
return period of ~80 years and steep projected population growth. The
countries of the Central American Integration System region: Guate-
mala, El Salvador, Honduras,Nicaragua,Costa Rica, and Panama, are all
developing countries. This region is vulnerable as, although the
population is not expected to increase as much as elsewhere, the
current record is further below the statistical maximum—suggesting
the region could experience a large jump in the record. This is also the
case for far eastern Russia (Khabarovsk region). Beijing, Hebei, and
Tianjin provinces of China andGermany, Netherlands, and Belgium are
vulnerable in terms of population number but, as developed countries,
are more likely to have heat plans to mitigate potential impacts.

Using large ensembles of climate models
Climate models are a useful tool for assessing extrememeteorological
events as, with multiple simulations possible, many times more data
are available than for the real world, and so much rarer events that
have been observed can be sampled35,36. The Coupled Model Inter-
comparison Project phase 6 (CMIP6) provides up to 50 ensemble
members of several global climate models37. EVT methods have been
used with climate models; for example, to compare return periods of
daily extremes from the CMIP5 and CMIP6 historical model simula-
tions, finding the two have no significant differences38.

We use two 50-member climate model ensembles of CanESM539

and MIROC640 to investigate if the same behaviour of record event
beyond the statistical fit is found. Since the models are not initialised
from an observed state, they do not show the actual extreme events as
have been observed. Instead, they model multiple realisations of the
current climate and, therefore, the plausible pathways that the world’s

weather could take, which may contribute to unprecedented
extremes.

We assess the large ensembles using two different methods,
described further in Methods. First, each ensemble member can be
treated individually with a separate GEV fit, or all ensemble members
can be merged into one single distribution (Fig. S2). It might be
expected that when merging all ensemble members into one dis-
tribution, less statistically implausible extremes would be found—as
the fit is better constrained with 50 times more information about the
extremes.

In the first method, each model realisation has the same amount
of information as is available for the real world. We find implausible
extremes in at least 1 realisation for every region globally, with up to
50% of realisations showing the behaviour in some areas. Overall, we
calculate GEV fits for over 10,000 distributions (50 realisations × 217
regions) and find exceptional—but meteorologically plausible—
extremes in 26% of the regions for CanESM5 and 24% for MIROC6.

Whenmerging all realisations to calculate just oneGEVfit for each
region, we find a similar proportion of exceptional extremes; 18 % of
regions for CanESM5 and 22% for MIROC6 (Fig. 4b). The regions with
implausible fits are different from the reanalysis, and only slightly
fewer regions despite a much larger event set (Fig. 2b). As with
observations, they are spread spatially across the world. This suggests
that any region is susceptible to experiencing an extreme beyond the
statistically fit—and it is not simply an artefact of the length of the
observational record.

Discussion
Regions which have, so far, not experienced a particularly extreme
eventmay be less prepared for the consequences of such an event. We
have identified the regions where the current records have the lowest
return periods (Table 1). In these regions, a record-breaking event is
not onlymore likely but also likely to have greater impacts due to a lack
of preparedness. Countries tend to prepare to the level of the greatest
event they have experienced within collective memory.

Our global assessment of reanalysis data shows that statistically
implausible extremes have occurred in 31% of regions between 1959
and 2021, with no apparent spatial or temporal pattern. It appears that
such extremes could occur anywhere and at any time. When using
climatemodel data to investigate further, we find 18–26% of regions in
the model have the same characteristics. This suggests that every-
where needs to be prepared for a heatwave so extreme it is deemed
implausible based on the current observational record. The June 2021
heatwave in western North America is shown to be exceptional in
terms of how far beyond the expected it was. Although we highlight

Table 1 | Regions where a record-breaking event is most likely

Region Return period of
record event (years)

Current
record (°C)

1-in-100
event (°C)

Record minus 1-
in-100 (°C)

Population (2020, in
millions)

Projected growth by
2050 (ssp5, %)

Russia, far eastern 70.6 32.4 32.9 0.5 1.43 1.01

Central Americaa 78.1 36.2 36.6 0.4 45.47 1.05

Afghanistan 83.9 37.8 37.9 0.1 38.76 1.46

Papua New Guinea 89.6 32.5 32.6 0.1 7.49 1.26

Central Europeb 91.4 36.6 36.9 0.3 110.28 1.15

Argentina,
northwestern

91.7 33.8 33.9 0.1 4.13 1.01

Australia, Queensland 94.2 44.2 44.3 0.1 0.40 1.66

China, Beijing 99.8 37.6 37.8 0.2 250.30 0.93

From the 136 regions where reanalyses datasets agree, the table lists the regions with a return period of a record below 100 years, that return period, the current record, adjusted to the present day
using global mean surface temperature (GMST), 1-in-100 event magnitude, and population data33. See methods for further details.
aRegion: Central American Integrated System, which includes Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama.
bRegion: European Economic Area (central), which includes Germany, the Netherlands, Belgium, and Luxembourg.
Note: Regions in bold are developing countries (defined by the United Nations Human Development Index34), values in bold are the more noteworthy.

Article https://doi.org/10.1038/s41467-023-37554-1

Nature Communications |         (2023) 14:2152 4

https://hdr.undp.org/


regionswherea record event is statisticallymore likely (Table 1), weare
not suggesting that these regions will experience events as extreme as
the June 2021 heatwave.

The vulnerability of a region to the impacts of heat is not only
dependent on the statistical likelihood of a record-breaking event.
Socio-economic factors will make a large difference to the prepared-
ness, with developing countries less likely to have adequate heat plans
in place. Countries with greater projected population growth may be
able to cope with current conditions but may find their health services
and energy supply overwhelmed if policymakers do not plan ade-
quately. We have highlighted some regions that may be most sus-
ceptible—with both a high statistical chance of a record and a rapidly
increasing population.

Although changing dynamics could be a factor in themore recent
events, we have shown extremes beyond the statistical fit, exceptional
extreme events, occur throughout the reanalysis time period—so this
does not fully explain the outliers. Further investigation into whether
the underlying statistics of the distribution are shifting, resulting in
past observations no longer being useful for assessing future, or even
current, risk of extremes, is needed. Increasing our understanding of

theprocesses inducing heatwaves andhowthesemaychange is vital to
allow the risks to be quantified.

As we show, many heat extremes are beyond the statistical dis-
tribution in both observations and themodel data; it is not possible to
estimate the most extreme plausible events using EVT. Further
research into the greatest plausible climatic extremes is essential to
allow policymakers to plan for possible future events. Alternative
methods for estimating the most extreme plausible events include
assessing large ensembles of climatemodels41 or finding regions which
can be used as proxies for a specific location to increase the
distribution1. Ensemble boostingmethods, reinitialising climatemodel
simulations of extreme events to find even more extreme plausible
events, can enhance understanding42. A better understanding of the
atmospheric dynamics causing the greatest extremes may also aid
knowledge of the physical maximum temperature in some regions.

We show that in many regions, there is a disagreement between
reanalysis products when assessing the most extreme days. These
regions of disagreement span all continents, though they are of par-
ticular note over Africa. Reanalysis products provide spatially com-
plete datasets of climate indicators globally, but in regions with less
observational data available, such as Africa, they will perform
worse43,44. Differences between reanalysis products have been pre-
viously identified45. Differences inmethodology in coastal regionsmay
have some impact, but this does not explain all regions43. Further
investigations into the differences in extremes in reanalyses, and the
causes, would be valuable.

Different heatwave metrics are more suited to different impacts,
but in this study only TXx is considered. In some regions, extreme
5-day mean temperature levels will have greater impacts than daily
extremes13. Heatwave metrics which incorporate humidity are useful
for human health impacts16, whereas temperature-only metrics are
useful for infrastructure impacts46. Some metrics are better suited to
specific regions due to, for example, land coverage.When assessing for
adaptation purposes, a more thorough investigation would ensure
findings are presented for policy-relevant timescales.

In conclusion, we have identified regions where record-breaking
heat extremes are statisticallymore likely to occur because the current
records do not sample the larger extremes well. Furthermore, these
regions may bemore susceptible to the impacts of such extremes due
to a lack of preparedness. Based on both observational data andmodel
data, we find that temperature extremes that appear statistically
implausible based on the current observational record could occur in
any region globally.

Methods
Data
We use reanalysis data and historical climate model simulations. The
reanalysis datasets provide spatially complete gridded climate data by
combining observational records with data from forecasting models
and data assimilation systems used to fill gaps where direct observa-
tions are unavailable. We use ERA5 and JRA55 within our analysis10,32.
Theuseof twodifferent reanalysis datasets increases confidence inour
results. Data are available from 1959 to the present (ERA5) and 1958 to
the present (JRA55). We use the heat index of the highest daily max-
imum temperature of the year (TXx), recommended by the World
Meteorological Organisation (WMO)13. To identify consistent regions,
we compare thedata from1990 to 2022only. For a region tobe classed
as consistent and included in our results, the record year from ERA5
must be in the top 5 years for JRA55. We use the global mean surface
temperature (GMST) from the National Aeronautics and Space
Administration (NASA) Goddard Institute for Space Science (GISS)
surface temperature analysis47,48.

Two large ensembles of global climate models, CanESM5 and
MIROC6, are used39,40, each having 50 realisations. We use historical
simulations, 1950–2014. CanESM5 is comprised of an atmospheric

Fig. 4 | Globalmap of records outside of Generalised ExtremeValue (GEV) fit in
climate model data. a For a 50-member ensemble of CanESM5, 1959–2015, cal-
culated using each ensemblemember separately howmanymembers show record
events outside the GEV fit. b Taking all ensemble members to fit a single GEV
distribution, the return period of the current record. Red regions indicate where it
is not possible to calculate a return period because the event falls outside of the
GEV fit. c As in (a), for a 50-member ensemble of MIROC6. d As in (b) for MIROC6.
Regions from Stone (2019)31. Source data are provided as a Source Data file.
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general circulation model with ~2.8° resolution, an ocean general cir-
culationmodel with ~1° resolution, a land surface scheme, explicit land
and ocean carbon cycle models, and a sea ice model39. MIROC6 is
comprised of an atmospheric model with a ~1.4° resolution, with land,
ocean, and sea ice model components40. Compared to other CMIP6
models, both CanESM5 and MIROC6 have a coarse resolution, this
allows a large ensemble to be producedmore readily. It is often shown
that as the resolution of models is increased, their performance
improves49. For daily maximum temperature, this has not been shown
—the CMIP6 ensemble shows no improvement compared to CMIP5,
despite the increased resolution20.

Regions
We must take care when the spatial scale assessed is appropriate—for
climatic extremes, results can differ vastly between spatial scales.
Information about localised extremes can be found in individual sta-
tion datasets, but this information is not available globally, and sta-
tions differ in quality and temporal coverage. Global-scale Earth
SystemModels simulate climate over relatively large grid boxes, which
must be considered if comparing observational data and model data.
Increasing the spatial scale will dampen the absolute magnitude of an
extreme—a balance must be reached. A study defined five sets of
regions31 designed for assessing climatic extremes at different spatial
scales from 0.1 to 10Mm2. The regions are based on societal impacts,
with political and economic boundaries used. This enables results to
be alignedwith policymaking. Similar sets of regions have beenused to
assess daily extremes already, for example, daily extremes in reanalysis
datasets using 2Mm2 scale regions50 and 0.5Mm2 in our earlier work2.
Using regions of 2Mm2 or smaller ensures extremes caused by mid-
latitude synoptic-scale weather systems will be included.

We use the predefined 0.5Mm2 regions; this scale corresponds to
an area with a diameter of ~800 km31. There are 237 regions in the
dataset, but because of theway, the regions are defined, using political
boundaries based on impacts, some areas of the world are excluded.
The main areas missed are Armenia, the Balkans, Bangladesh, most
Caribbean islands, Belarus, Georgia, Nepal, New Zealand and most
other Pacific Islands, North Korea, and Sri Lanka. We remove the
Antarctic regions, leaving 217 regions. This is further reduced to 136
regionswhen excluding regionswhere the two reanalyses products are
not consistent.

Extreme value theory
We use extreme value theory (EVT) to assess return periods. We use
blockmaxima—taking the highest dailymaximum temperature of each
year. Block maximum is better for temperature as a peak over the
threshold is heavily impacted by clustering27. When a heatwave spans
several days, it will get double-counted by a peak over the threshold.
Block maxima also take away any subjective choice over the threshold
limit to use.

We use the heat index of the highest daily maximum temperature
of the year (TXx). It is assumed that the scale and shape parameters of
the distribution are constant, as in other assessments of heat
extremes22,30. To allow for changes in the location parameter through
time due to warming globally, we calculate the linear relationship
between the regional extremes and GMST and adjust the regional data
to a GMST of 1 °C. This assumes global warming is the main factor
affecting the extremes beyond natural variability and leads to results
which are at approximately the current warming level (as in11,27).

We include all data except the record year in the calculation of the
GEV distribution. Commonly the data after the event are disregarded—
as it is often the most recent event that is being assessed, there will be
no later data to use anyway. If we were to exclude data from after the
record event, some regions where the record occurs early in the time
series might have a GEV fit based on very few data points leading to
large uncertainties. Including data from after the extreme makes the

regional results more comparable—every GEV fit is calculated from the
same number of years of data. Uncertainty in the GEV fit is included by
bootstrapping; we randomly select data from the distribution 100
times, recalculating the GEV fit each time. The 5th to 95th percentile
range is used to represent the uncertainty (as in Fig. 1b, d).

There has been discussion over whether the observed extreme
event should be included in the statistical fit27,30. The record event has
been observed and therefore adds knowledge to the distribution of
extremes, and without its inclusion, the return periods of extreme
events may be biased low. In most previous studies, the record event
has not been included in assessments as by including it, there may be
selection bias19,20,22,23. However, without the inclusion of the event in
question, some recent events have been so extreme they are beyond
the statistical maximum, defined in this paper as the 1-in-10,000-year
event calculated fromEVTwithout the event itself included. This is the
case for the western North American heatwave of June 202130.

The 1-in-10,000-year return level is taken as the statistical max-
imum. This value is taken as an approximation of the asymptote value
for the curve and is chosen as, by this point, the curve is approximately
horizontal; increasing beyondmakes little difference to the values. The
choice of 10,000 years—rather than anything longer—makes little dif-
ference to the value.

We apply GEV to fit historical simulations of climate models. For
each of the two models used, there are 50 ensemble members. We
adjust each model by its own ensemble mean GMST, thus dampening
internal variability and allowing for differences between the modelled
and observed trends. When applying the GEV fit, we use two different
techniques. The first takes each ensemble member individually to fit a
GEV distribution, providing 50 different fits for each of the 217 regions
globally. In the second technique, we use all 50 ensemble members to
calculate one fit—taking TXx from every year of every ensemble
member.

Data availability
ERA5 data for surface temperature was downloaded from the Eur-
opean Centre for Medium-Range Weather Forecasts (ECMWF),
Copernicus Climate Change Service (C3S) at Climate Data Store (CDS;
https://cds.climate.copernicus.eu/). The Japanese 55-year Reanalysis
(JRA-55-) data are available at the JRA project website (http://search.
diasjp.net/en/dataset/JRA55). CanESM5 andMIROC6 data are available
from the CMIP6 search interface (https://esgf-node.llnl.gov/search/
cmip6/). Population data are available from the UN Human Develop-
ment Report, 2022. (https://hdr.undp.org/). The shapefiles for the
regions used to assess globally are available in the supplementary data
of Stone, D.A.A. hierarchical collection of political/economic regions
for analysis of climate extremes. Clim. Change 10 (2019) (https://link.
springer.com/article/10.1007/s10584-019-02479-6). Source data are
provided in this paper.

Code availability
The code used to generate the figures in this paper and the Supple-
mentary Materials is available from Github and Zenodo https://doi.
org/10.5281/zenodo.7692244 and https://doi.org/10.5281/zenodo.
6325508. All data needed to evaluate the conclusions in the paper
are present in the paper and/or the Supplementary Materials.
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