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Workflow enabling deepscale immunopepti-
dome, proteome, ubiquitylome, phospho-
proteome, and acetylome analyses of
sample-limited tissues
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Hannah B. Taylor 1, Susan Klaeger 1, Charles Xu1, Eva K. Verzani1,
C. Jackson White1, Hilina B. Woldemichael1, Maya Virshup1, Meagan E. Olive 1,
MyrandaMaynard1, Stephanie A. Vartany1, JosephD. Allen 1, Kshiti Phulphagar1,
M. Harry Kane 1, Suzanna Rachimi1, D. R. Mani 1, Michael A. Gillette 1,2,
Shankha Satpathy 1, Karl R. Clauser1, Namrata D. Udeshi 1 &
Steven A. Carr 1

Serial multi-omic analysis of proteome, phosphoproteome, and acetylome
provides insights into changes in protein expression, cell signaling, cross-talk
and epigenetic pathways involved in disease pathology and treatment. How-
ever, ubiquitylome and HLA peptidome data collection used to understand
protein degradation and antigen presentation have not together been serial-
ized, and instead require separate samples for parallel processing using dis-
tinct protocols. Here we present MONTE, a highly sensitive multi-omic native
tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I
and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome,
and acetylome from the same tissue sample.Wedemonstrate that the depth of
coverage and quantitative precision of each ‘ome is not compromised by
serialization, and the addition of HLA immunopeptidomics enables the iden-
tification of peptides derived from cancer/testis antigens and patient specific
neoantigens. We evaluate the technical feasibility of the MONTE workflow
using a small cohort of patient lung adenocarcinoma tumors.

The use of patient samples in biological research is critical for under-
standing the molecular pathways driving disease progression. These
investigations routinely leverage deep-scale, multi-omic characteriza-
tions to broadly survey diverse biological pathways, such as cell sig-
naling, protein degradation, and antigen presentation in hopes of
discovering disease biomarkers or putative therapeutic targets.
Because patient samples are generally available in limited amounts,
decisions may have to be made as to which ‘omic analyses are most

desirable and feasible. Mass spectrometry–based proteomics is a
proven technology for parallel analyses that involve the characteriza-
tion of cell surface immunopeptidomes along with intracellular
proteins and their post-translational modifications (PTMs)1–10. Tech-
nological advances to collect immunopeptidome, proteome, phos-
phoproteome, ubiquitylome, and acetylome datasets have often been
made using parallel workflows. However, while parallel multi-omic
analyses have yielded important biological insights, they are often
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reduced to the analysis of one or two post-translational modifications
due to the requirement of larger amounts of sample (relative to pro-
teome) necessary to achieve deep coverage. Therefore, workflows that
facilitate a shift from parallel to serial multi-omic data collection are
advantageous for large-scale discovery efforts in patient cohorts, as
they result in comprehensive datasets that enable holistic insights into
cellular pathways that may not have been possible with the sample
input requirement of parallel multi-omic protocols11,12.

One of the main ways to overcome the restricted availability of
patient tissue has been to serialize sample processing such that the
flow-through of one enrichment step is used as the input for the next
enrichment step. Current serial enrichment workflows for measuring
‘omes at high multiplex leverage isobaric reagents such as TMT13–17 or
iTRAQ18,19, and have successfully serialized the collection of the pro-
teome, phosphoproteome, and acetylome. However, immunopepti-
dome and ubiquitylome (i.e. anti-K-ɛ-GG antibody enrichment)
methods have only been performed together in parallel to these other
‘omes. This is because immunopeptidomics and ubiquitylomics pro-
tocols have specific requirements: immunopeptidome enrichment is
done prior to sample digestion and enrichment of ubiquitylated pep-
tides occurs prior to TMT labeling3,10,20,21. In settings where there are
inadequate sample amounts for parallel processing protocols, the
ability to concomitantly identify cancer driver signatures and detect
changes in PTM-mediated signaling networks and HLA peptide pro-
cessing and presentation is hindered.

There are additional complications that preclude adding immu-
nopeptidome analysis into current serial processing strategies. For
example, sample preparation for immunopeptidomics is distinct from
conventional proteomics: immunopurification (IP) of HLA molecules
requires the use of native lysis buffer containing mild detergent to
maintain protein conformations and solubilize membrane-bound HLA
proteins. In contrast, current serial proteome and PTM-ome enrich-
ment protocols denature proteins using urea or SDS prior to tryptic
digestion preventing upstream HLA peptide complex enrichment.
Furthermore, more sample input has typically been used for immu-
nopeptidomics than for proteomics and PTM-omics to enable detec-
tion of low-abundant, clinically relevant antigens such as
neoantigens2,6,22–24. For immunopeptidomics workflows that attempt
to directly identify neoantigens, a separate aliquot of tissue, usually
500–1000mg of wet weight tissue or up to 1 billion cells2,6,22,25,26, is
needed compared to 25–50mg for serial, multiplexed proteomics,
phospho-, and acetyl-peptidomics13–16,19. Although multiple efforts are
ongoing to decrease the input amounts for discovery immunopepti-
dome experiments with the goal of neoantigen identification24,27–31

these reports donot leverage theHLAenrichedflow-through formulti-
omic analyses, and if the proteome is performed, it is performed in
parallel with a separate aliquot of cells30,32. Recently, we33 and Nagler
et al.34 reported the first serial proteome from HLA-I enriched flow-
through, yet neither of these studies implemented downstream serial
PTM-ome analyses.

To overcome the challenges of serializing deep-scale immuno-
peptidome and ubiquitylome workflows together with proteome,
phosphoproteome, and acetylome profiling from a single tissue sam-
ple, we have developed an integrated proteomics workflow that we
termMONTE (Multi-Omic Native Tissue Enrichment). MONTE extends
recently published methods for isolation and analysis of immunopre-
cipitated HLA peptide complexes from clinical specimens7,8,35,36 by use
of recent improvements in MS instrumentation, off-line fractionation,
and gas-phase separation using FAIMS24 to increase immunopepti-
dome yield, enabling use of as little as 50mg wet weight tissue. The
flow-through of the HLA immunopeptidome purification contains the
intact cellular proteomethat is subjected toSDS-based lysis and tryptic
digestion to make the post–HLA enrichment flow-through compatible
with the current multiplexed, serialized multi-proteomics workflow37.
The resulting protein digest is then processed and analyzed by

the UbiFast workflow for multiplexed ubiquitylation profiling using
anti-K-ɛ-GG antibodies and on-antibody TMT labeling3,38. The peptide
flow-throughs of the UbiFast enrichment step containing unlabeled,
non-K-ɛ-GG peptides are further processed for deep-scale and highly
multiplexed measurement of the proteome, phosphoproteome, and
acetylome data collection.

Here, we systematically evaluate each step of the serial MONTE
workflow and apply the optimizedmethod in a proof-of-concept study
of primary patient lung adenocarcinoma (LUAD) tumors. The results
demonstrate that the depth of coverage and quantitative precision of
each of the ‘omes is not compromised by adding HLA peptidome and
ubiquityl-peptide enrichments in serial with proteome, phosphopro-
teome, and acetylome analysis. HLA immunopeptidomics of these
pilot samples identifies peptides derived from annotated cancer/testis
antigens and patient specific neoantigens. We also provide a publicly
available data viewer https://proteomics.broadapps.org/CPTAC-
MONTE2022/ that enables researchers to visualize and explore this
multi-omic dataset. Here we show that the MONTE workflow over-
comes prior limitations of parallel processing workflows that have
prevented concordant readout of the immunopeptidome, proteome,
and PTM-omes from a single sample, thereby enabling new insights
into cancer and other disease biology.

Results
Serialized immunopeptidome, proteome, and PTM-ome
enrichment
To address the challenge of deeply characterizing clinically relevant
samples with limited cellular input, we serialized HLA-I and HLA-II
immunopeptidomics with ubiquitylome, proteome, phosphopro-
teome, and acetylome profiling workflows. The Multi-Omic Native Tis-
sue Enrichment (MONTE) is represented in Fig. 1. Four changes were
made to previously reported serial multi-omic enrichment
protocols3,4,15,16,18,19, each of which was evaluated to ensure that each
proteomic data type was not significantly impacted. First, we incorpo-
rated UbiFast-based K-ɛ-GG peptide enrichment before serial, multi-
plexed proteome, phosphoproteome, and acetylome collection;
previously, UbiFast had only been done in parallel with PTM-ome
workflows17. Second, we optimized and added serial HLA-II and HLA-I
immunopeptidome enrichment steps prior to the downstream multi-
omics analyses. Herewe incorporated a broad set of protease inhibitors
specific to each proteome and PTM-ome, used a pan anti–HLA-DR, -DP,
and -DQ antibody mixture selected because it performed the best in a
duplicate comparison study (Supplementary Data 1), and reversed the
IP order relative to prior publications39–41, opting to enrich HLA-II fol-
lowed by HLA-I to prevent HLA-II peptide contamination in HLA-I data
that is length filtered to canonical 8–11mers. Third, we replaced 8M
urea cell lysis with SDS denaturation and digestion on an S-Trap to
facilitate removal of detergents present in the native lysis buffer used
for HLA IP and confirmed the S-Trap method recovered the most
unique proteins in a single shot proteome analysis (Supplementary
Data 1). Fourth, to enable higher throughput and reproducibility, we
incorporated an optimized version of a semi-automated, 96-well
plate–based HLA immunopeptidomics workflow that enabled parallel
desalting of serial HLA-II and HLA-I IP elutions39. We selected the semi-
automated serial HLA enrichment39 instead of previously reported fully
automated enrichments40,41 to enable the immunopurification to occur
with end-over-end incubation at 4 °C because the stability of HLA-
peptide complexes is impactedby temperature42.We also implemented
automated phosphopeptide enrichment43 and UbiFast K-ɛ-GG peptide
enrichment38 workflows for downstream processing. Evaluation and
optimization of each step of the MONTE workflow is detailed below.

Ubiquitylomics in serial with multi-omic sample processing
We first sought to integrate the ubiquitylomics UbiFast workflow
in serial with our well-established TMT-multiplexed proteome,
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phosphoproteome, and acetylomeworkflow, asUbiFast hadonly been
carried out in parallel with these other ‘omics workflows4,18,19. For this,
we created the workflow shown in Fig. 2A that starts with the UbiFast
method for enrichment and on-antibody TMT labeling of K-ɛ-GG
peptides3,38. After UbiFast processing, flow-throughs from the anti-
body enrichment step that contain unlabeled, non-K-ɛ-GGpeptides are
subsequently TMT labeled and used as input to generate proteome,
phosphoproteome, and lysine acetylome datasets.

The addition of UbiFast was evaluated using tumors isolated from
breast cancer patient–derived xenograft (PDX) models, representing
Basal (WHIM2) and Luminal (WHIM16) subtypes3,19,44. WHIM2 and
WHIM16 PDX models were selected because we previously showed
that we obtain >14,000 distinct K-ɛ-GG-peptides from these samples
starting with 0.5mg peptide input per TMT channel3,38. Unlabeled
peptide flow-throughs from K-ɛ-GG antibody captures corresponding
to 0.25mg input peptide per TMT channel were subsequently labeled
with TMTPro and combined for serial proteome, phosphoproteome,
and lysine acetylome analyses. LC-MS/MS showed expected coverage
of theproteome, phosphoproteome, and acetylomewith 9,402human
proteins, 28,523 human phosphorylation sites and 6,294 human lysine
acetylation sites identified and quantified from the UbiFast flow-
through samples (Fig. 2B, Supplementary Data 2). The overlap of
proteins, phosphorylation, and acetylation sites between experiments
with and without serial UbiFast processing was high (87.3% proteome,
63.0% phosphoproteome, 54.9% acetylome) (Fig. 2C). Pearson corre-
lations of TMT ratios between intraplex replicates for UbiFast flow-
throughs were high with median correlations of 0.96 for both Basal
and Luminal subtypes in the proteome, 0.90 and 0.91 for Basal and
Luminal subtypes in the phosphoproteome, and 0.84 and 0.83 for
Basal and Luminal subtypes in the acetylome, indicating that UbiFast
preprocessing does not negatively affect reproducibility in any of the
‘omes (Fig. 2B, D). Basal vs. Luminal protein, phosphosite, and

acetylation site TMT ratios measured in UbiFast flow-through samples
andnon-UbiFast samples correlatedwell (R2 = 0.89proteome,R2 = 0.73
phosphoproteome, R2 = 0.73 acetylome). Median correlation values
were similar for samples processedwith andwithout UbiFast, however
we note a minor increase in correlation spread for phosphoproteome
data acquired from UbiFast flow-through samples (Fig. 2D). The
number of regulated proteins, phosphorylation sites and acetylation
sites in Basal vs. Luminal samples was very similar with and without
UbiFast. In samples with no UbiFast, 8,462 (92%) of proteins, 24,373
(87%) of phosphorylation sites and 4867 (81%) of acetylation sites were
significantly different in Basal vs Luminal samples using a moderated
two-sample t-test (adj. pval = 0.05). For samples where UbiFast was
implemented, 8,601 (91%) of proteins, 24,366 (85%) of phosphoryla-
tion sites, and 5012 (80%) of acetylation sites were significantly dif-
ferent in Basal vs Luminal samples (adj. pval = 0.05). We found that
UbiFast does not affect the coverage of phosphoserine, phospho-
threonine or phosphotyrosine peptides. For both + /- UbiFast samples,
87% of phosphopeptides harbored at least one phosphoserine, 16%
harbored at least one phosphothreonine and 1% at least one phos-
photyrosine. These results demonstrate that the incorporation of
UbiFast does not affect the depth or distribution of phosphosites
detected.

Unsupervised hierarchical clustering of proteome, phosphopro-
teome, and acetylome samples shows the expected separation of
samples by breast cancer subtype with much smaller separation by
experiment (Fig. 2E). In addition, Gene Set Enrichment Analysis (GSEA)
of proteins, phosphorylation sites, and acetylation sites shows that
gene sets associated with basal and luminal breast cancer subtypes are
appropriately regulated in data acquired with and without initial
enrichment of ubiquitylated peptides using UbiFast (Fig. 2F, Supple-
mentary Data 2)45. Site-centric PTM Signature Enrichment Analysis
(PTM-SEA)46 was also performed on regulated phosphorylation sites
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Fig. 1 | Schematic Overview of the MONTE workflow. The Multi-Omic Native
Tissue Enrichments (MONTE) workflow for serial HLA immunopeptidome (label-
free), ubiquitylome (label-free enrichment and on-antibody TMT labeling),

proteome (TMT), phosphoproteome (TMT), and lysine acetylome (TMT). Black
lines indicate the use of the flow-through from each subsequent step.
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Fig. 2 | Comparison of the proteome and phosphoproteome of PDX samples
with and without UbiFast for pre-enrichment of ubiquitylated peptides.
A Experimental design used to analyze K-ɛ-GG peptides, proteins, and phospho-
peptides from the same luminal and basal PDX breast cancer samples. The results
for PDX samples processed directly for proteome and phosphoproteome were
compared with samples initially enriched for ubiquitylated peptides using UbiFast
and the flow-through of the UbiFast enrichment then used for proteome and
phosphoproteome; 250 µg peptide input was used per TMT state.B Summary table
reporting the numbers of proteins and phosphorylation sites detected and regu-
lated from non–UbiFast-enriched (No UbiFast-orange) and UbiFast-enriched (Ubi-
Fast-blue) PDXsamples. Regulated sites determinedusing amoderated two-sample
t-test (adj. pval = 0.05). Pearson correlation values are also reported. C Venn

diagrams showing the overlap of proteins and phosphorylation sites for
non–UbiFast-enriched and UbiFast-enriched samples. D Pearson correlation
between Luminal and Basal PDX replicates (n = 8 luminal, n = 8 basal process
replicates) for proteome, phosphoproteome and acetylome data. Boxplots depict
upper and lowerquartiles, with themedians shown asa solid line.Whiskers show 1.5
interquartile range. E Unsupervised hierarchical clustering of proteome, phos-
phoproteome, and acetylome samples shows the expected separation of samples
by breast cancer subtype.FGene set enrichment of proteins, phosphorylation sites,
and acetylation sites show that gene sets associated with basal and luminal breast
cancer subtypes are appropriately regulated in data acquired with and without
initial enrichment of ubiquitylated peptides using UbiFast (also see Supplementary
Data 2). Source data for B, D, and F are provided as a Source Data file.
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and the top gene sets show the same trends (Supplementary Data 2).
Taken together, these results support the feasibility of incorporating
multiplexed ubiquitylation profiling usingUbiFast up front and serially
with multiplexed proteome and PTM profiling workflows.

To further evaluate the effect of UbiFast on serially enriched
phosphoproteomes, we used a single TMT experiment to compare
phosphopeptide enrichment by IMAC with and without prior UbiFast
processing. For this experiment, all phosphopeptide enrichment
samples were derived from either Basal or Luminal PDX models and
measured in the same TMTpro16 plex (Basal: n = 4 with UbiFast and
n = 4 noUbiFast; Luminal: n = 4withUbiFast and n = 4without UbiFast)
to quantify potential differences on exactly the samephosphopeptides
between +/− UbiFast processed samples (Supplementary Fig. 1A). We
identified 45,051 human phosphorylation sites of which only 3.2%
showed significantly reduced intensity (>2-fold change and adj. pval <
0.05) in samples where UbiFast was incorporated in the workflow
(Supplementary Fig. 1B, Supplementary Data 3). The majority of the
depleted phosphopeptides are short (Supplementary Fig. 1C) and
hydrophilic and are likely depleted by the extra desalting step fol-
lowing UbiFast processing and prior to TMT labeling and phospho-
peptide enrichment. UbiFast does not significantly affect replicate
correlation (Supplementary Fig. 1B) or unsupervised hierarchical
clustering of phosphoproteome data by breast cancer subtype (Sup-
plementary Fig. 1D).

Evaluating HLA-II and HLA-I enrichment in serial workflow
We evaluated the impact of adding serial HLA-II and HLA-I enrichment
prior to serial multi-omic enrichment workflow using ten cryopre-
served primary LUAD tumors from the CPTAC cohort14 (Supplemen-
tary Data 4). Human tumor samples are more relevant than tumor
samples derived from immunocompromised mice, and in our initial
testing, we found that the yield of HLA-I and HLA-II immunopepti-
domes from the PDX breast cancer tumor models was too low to
derive meaningful conclusions (Supplementary Data 5). LUAD tumors
were selected because lung tissue is known to have HLA-I and HLA-II
expression47,48 and one LUAD primary tumor has been profiled suc-
cessfully using serial HLA-II and HLA-I immunopeptidomics36. This set
of LUAD samples was chosen to represent important biological dif-
ferences of high relevance to lung adenocarcinoma, as five samples
were driven by KRAS mutations and five by EGFR mutations. Each
driver mutation subset included samples from both men and women
and both Asian and Western/Caucasian ethnicity were represented;
none of these previously characterized tumors were from the
immune hot cluster14. The human LUAD tumors (50-86mg cryo-
pulverized tissue) were processed with and without initial serial HLA
enrichment (Fig. 3A). In both cases, S-Trap–based protein digestion37

was used instead of 8M urea digestion following HLA enrichment
because we have previously shown that serial HLA immunopepti-
dome and downstream whole-proteome analysis required the
removal of detergents present in the native lysis buffer used for HLA
enrichment33.

Label-free, antibody-based, serial HLA enrichment identified a
median of 11,387 HLA-I (8278–13,727) and 5,263 HLA-II (1123–9726)
bound peptides from each of these ten LUAD tumors (Fig. 3B). Our
depthof >10,000HLA-I peptides fromas little as 50mgcryopulverized
tumor corresponding to ~2mg protein lysate was encouraging and
clearly indicated that the method would likely be usable with even
smaller amounts of input tumor material. We confirmed that the
observed HLA-I and HLA-II peptides had the expected length dis-
tributions (Fig. 3C, D) and HLA-I binding characteristics (Fig. 3E, F)
using a motif analysis and the HLA-I presentation predictor
HLAthena7,8. Patient C3N-01416 had a larger representation of 8mers in
the HLA-I immunopeptidome, which was expected because of the
known preference for 8mers presented by HLA-B*18 alleles. We also
confirmed that HLA-II immunopeptidomes contained motifs

consistent with patient HLA-II alleles called from RNA-Seq data by
arcasHLA49 (Supplementary Fig. 2).

The protein flow-throughs from HLA immunopeptidome enrich-
ments were next digested with Lys-C and trypsin using S-Traps in
parallel with half of each LUAD tumor that was not HLA enriched. A
summary of the resulting depths of these head-to-head proteomes,
ubiquitylomes, phosphoproteomes, and acetylomes is shown in
Fig. 4A (Supplementary Data 7). The proteome and ubiquitylome
results demonstrate that similar numbers of canonical humanproteins
(11,028 vs.10,729) and K-ɛ-GG peptides (9516 vs. 9419) were identified
and fully quantified between the non–HLA-enriched (“No HLA”) and
HLA-enriched (“HLA FT”) samples, respectively. A 16% decrease in the
total number of phospho-sites (~8% phosphorylated proteins) was
observed when using the HLA-enriched samples (No HLA: 26,627
phosphosites, 6745 phosphoproteins; HLA FT: 22,339 phosphosites,
6235 phosphoproteins), suggesting that the phosphatase inhibitors
added to our lysis buffer may be losing their activity during the pro-
tein-level, HLA immunopeptidome enrichment. The number of lysine
residues observed to be acetylated on internal lysine residues (i.e., not
at the N- or C-terminus of the peptide) increased by 45% in the HLA-
enriched samples (No HLA: 3702; HLA FT: 5380 internal K-acetylsites).
The relative yield of acetylated peptides (i.e., the percentage of K-Ac
peptides relative to the total peptides identified in the sample) in the
HLA-processed samples was significantly higher (75% vs. 55%). Given
that the protein lysates were incubated at 4 °C for 6 h during HLA
enrichment, we sought to rule out possible non-enzymatic
acetylation50. Acetylome analysis of A375 melanoma cells with and
without the 6 h HLA IP incubation conditions yielded a similar number
of acetylated peptides when compared to no HLA incubation condi-
tions (Supplementary Data 6), suggesting the addition of the HLA IP
did not cause non-enzymatic acetylation. We speculate that the
increased yield of acetylation sites could bedue to pre-clearing of non-
specifically binding components in the complex tissue lysates by HLA-
and K-ɛ-GG antibodies.

The MONTE workflow recapitulates expected biological signals
To assess potential differences between HLA-enriched and non–HLA-
enriched samples, we analyzed the ten LUAD tumor proteomes, ubi-
quitylomes, phosphoproteomes, and acetylomes using a principal
component analysis (PCA) (Fig. 4B, Supplementary Data 7). PCA shows
that samples cluster by LUAD tumor, not by the processing method
used, demonstrating that biological differences among the samples
are stronger than technical variation between these serial workflows.
The acetylomes of HLA-enriched and non–HLA-enriched samples were
somewhat less well correlated. The total number of proteins identified
and quantified from HLA-enriched and non–HLA-enriched samples
were shown to have a 93% overlap (Fig. 4C, D). Slightly fewer proteins
(3%) were identified from the HLA enrichment flow-throughs. We
looked into the proteome data for depletions in HLA-I and HLA-II
chaperone proteins to confirm our serial HLA-II and HLA-I immuno-
purification is not depleting known HLA protein binding partners. We
didnot observeproteomedepletionofHLA-I chaperonesCALR,CANX,
or TAPBR or HLA-II chaperones HLA-DM and HLA-DO. The highly
polymorphic natureofHLAmoleculesmakes these proteins difficult to
quantify by proteomics as digestion with trypsin does not always
produce unique, LC-MS/MS detectable peptides suitable for differ-
entiating one HLA allele from another in the sample. It is also plausible
that HLA protein is present after the w6/32 enrichment, as this anti-
body is sensitive to the amino terminus of human beta2-
microglobulin51, and not all HLA proteins are in mature HLA-peptide
complexes. Hence, HLA proteins were not used in this evaluation.
Regardless, the observation that known HLA-I and HLA-II chaperones
are not depleted suggests the addition of the serial HLA immunopur-
ification does not have a negative impact on the downstream pro-
teome analysis.
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Fig. 3 | LUAD tumor HLA-I and HLA-II immunopeptidome profiling using
MONTE. A Schematic overview of the head-to-head serial multi-omic enrichment
vs. MONTE workflows used to characterize ten cryopulverized primary LUAD
tumors. B Table summarizing the tumor input and resulting HLA-I and HLA-II
peptides mapping to human source proteins detected from ten LUAD patients.
C Length distributions of HLA-I peptides from the LUAD cohort. D Length

distributions of HLA-II peptides from the LUAD cohort. E Example HLA-I pep-
tide binding motifs and the alleles expressed by LUAD Patient C3N-00579.
F Example HLA-I peptide-allele assignments to individual HLA-A, -B, -C alleles or
combinations of these alleles obtained using the presentation predictions from
HLAthena for three LUAD patients7,8. Source data for C, D, and F are provided as a
Source Data file.
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The overlap between HLA-enriched and non–HLA-enriched pro-
tein lysates was 60% for ubiquitylation sites, 72% for ubiquitylated
proteins, 63% for phosphorylation sites, and 78% for phosphorylated
proteins, which is an expected result using multiplexed, data-
dependent LC-MS/MS methods for highly similar processing
workflows19 (Fig. 4C, D). A 16% loss of total phosphosites was observed

in the HLA enriched lysates, which we attribute to the combination of
the losses from the extra desalting step in UbiFast and the possible
decrease of phosphatase inhibitor activity over the 6 h serial HLA
enrichment. To improve this in future studies, we plan to implement a
second addition of phosphatase inhibitors between the HLA-II and
HLA-I enrichments. The lowest overlap across experiments was
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observed for acetylome data because 45% more acetylated peptides
were observed in theHLA enriched samples. Overall, the HLA-enriched
samples capture a similar depth of coverage observed in non–HLA-
enriched samples, and adding HLA enrichment up front in a serial
workflow does not introduce considerable bias in downstream pro-
teome, ubiquitylome, phosphoproteome, and acetylome data
collection.

We next investigated known oncogenic and tumor suppressor
proteins. Oncogenes EGFR and KRAS and tumor suppressor genes RB1
and STK11 were detected across multiple ‘omes, with similar patterns
of protein and PTM site levels observed in both HLA-enriched and the
non–HLA-enriched samples (Supplementary Figure 3; also available
using the data viewer: https://proteomics.broadapps.org/CPTAC-
MONTE2022/). For example, patient C3N-00199 showed the highest
level of total EGFR ubiquitinylation across 10 of the 11 sites identified in
both MONTE experiments, and patient C3N-00547 had the highest
level of total RB1 phosphorylation. The high level of EGFR and RB1
protein expression is likely driving these high levels of total PTMs in
these patients. The tumor suppressor protein TP53 had variable
detection (7/10) in the “Discovery” dataset14, whichmay have led to the
lack of detection in both the HLA-enriched and non–HLA-enriched
TMTplexes (Supplementary Fig. 4; also available using the data viewer:
https://proteomics.broadapps.org/CPTAC-MONTE2022/). We also
observed HLA-I peptides fromwild-type EGFR (8/10), KRAS (3/10), RB1
(10/10), TP53 (9/10), and STK11 (1/10) across the LUAD patient cohort
(Supplementary Data 8). Conversely, HLA-II peptides within expected
nested sets (Supplementary Data 8) were only detected from EGFR (7/
10), which is endocytosed upon activation allowing it entry into the
HLA-II processing and presentation pathway. No clear trends between
HLA-I andHLA-II peptide presentation and drivermutation status were
detectable in this set of oncogenes and tumor suppressors. Never-
theless, the detection of these oncogenic and tumor suppressor pro-
teins across multiple ‘omes from samples that underwent HLA
enrichment demonstrates that known biological signals can be
recovered using the MONTE workflow.

Mutated, noncanonical, and CT antigen-derived HLA peptides
MONTE immunopeptidomes were analyzed using a personalized
database containing canonical human proteins, noncanonical proteins
from novel or unannotated open reading frames (nuORFs)52, and
patient-specificmutations (Fig. 5A, Supplementary Data 9). Initially, we
looked in the LUAD immunopeptidomes for peptides derived from
cancer/testis antigen (CTA) source proteins reported in the CTA
database and observed peptides from 45 unique source proteins53,54.
Across the set of LUAD tumors, peptides derived from seven CTA
source proteins previously reported in lung cancer54 were detected,
including two from theMAGE family (Fig. 5B).Most peptides fromCTA
source proteins were presented by HLA-I except for TEXT101 and
ACTL8, which were presented by HLA-II. Surprisingly, two unique HLA
peptides derived from the bromodomain testis-specific protein
(BRDT) were presented by 6/10 tumors in our LUAD set (Supplemen-
tary Data 9). To confirm BRDT protein expression, we leveraged our
proteomedata and the transcriptomedata publishedbyGillette et al.14.
BRDT was detected in the transcriptome and proteome data,

suggesting that this protein is expressed, making it a candidate for
future immunogenicity investigations.

Next, we sought to detect peptides in our LUAD HLA immuno-
peptidomes derived from nuORFs whose translation has been sup-
ported by ribosome profiling using a recently published nuORF
database52 (Fig. 5C). High-confidence HLA-I and HLA-II peptide identi-
fications derived from nuORFs were found across 9/10 patients.
Because nuORFs represent rare observations within a large dataset,
after false discovery rate (FDR) thresholding on the aggregate data set,
we applied more stringent subset-specific FDR thresholding (see
Methods). A majority of nuORF peptides also had predicted retention
times that correlated well with their observed retention times, further
increasing the confidence of detection (Supplementary Fig. 5). HLA-I
immunopeptidomes contained far more unique nuORF source pro-
teins than HLA-II, and the overall ranking of patients by number of
unique nuORF source proteins did not correlate between HLA-I and
HLA-II immunopeptidomes. The average representation of nuORF
source protein categories per sample also differed between HLA-I and
HLA-II, as a higher proportion of HLA-II nuORFs mapped to pseudo-
genes (19%) and few mapped to out-of-frame ORFs (5%), while the
reverse was true for HLA-I, where the total percentage of pseudogenes
and out-of-frame ORFs were 3% and 21%, respectively. These obser-
vations align with recent studies suggesting that the HLA-I pathway is
more likely to sample less stable, shorter proteins, while the HLA-II
pathway is more likely to sample stable source proteins36,55. The con-
trasting nuORF representations also highlight the differences in non-
canonical source protein presentation between HLA-I and HLA-II
pathways that are not yet fully understood but could be improved
upon from data obtained on larger patient cohorts across diverse tis-
sue types, as each tissue type may have unique nuORF expression
characteristics.

We then assessed if the LUAD immunopeptidome depth enables
the detection of HLA peptides containing patient-specific mutations
(neoantigens). Historically, detection of neoantigens by LC-MS/MS
has required enrichment fromeither billions of cells or gram levels of
tissue, as neoantigens can represent only 0.01% of all unique peptide
identifications in data dependent discovery experiments2,22,56. To find
HLA-presented neoantigens, we analyzed the immunopeptidomes
for peptides containing somatic mutations57–59. Two of the ten
patients (20%) had at least one detected neoantigen in their HLA-I
immunopeptidomes, of which four contained point mutations and
one a frameshift deletion mutation (Fig. 5D, Supplementary Fig. 6).
Neoantigen peptide identifications were supported using both
retention time prediction and experimental comparisons of themass
spectra with synthetic peptides (Supplementary Figs. 5, 6). Most
neoantigens were derived from mutations not shared across patient
populations with the notable exception of the KRASG12V neoantigen
detected in patient C3N-00547. The KRAS G12V 10mer is a shared
neoantigen that has been previously confirmed to be presented on
HLA-A1160,61. We also detected two neoantigens bound to the less
abundantly expressed HLA-C alleles, perhaps aided by the very
similar binding specificity of the patient’s two alleles C*08:01,
C*12:03. In general, we observed that patients with high mutation
burden and immunopeptidome depth (>10,000 peptides) weremost

Fig. 4 | Evaluation of data depth between serial multi-omic enrichment with
and without HLA enrichment. A Summary table reporting the numbers of pro-
teins and PTM-containing peptides detected from non–HLA-enriched (No HLA IP)
andHLA-enriched (HLA IP FT) LUAD tumors; FT= flowthrough (n = 10 LUADpatient
tumors). B Principal component analysis of LUAD tumors (n = 10) for all human
proteins and PTM sites quantified in all TMT channels in both No HLA IP (orange)
and HLA IP FT (blue) conditions. C The total number of quantified human proteins
and PTM site identifications illustrated as ‘UpSet’ plots93. Vertical bars depict the
number of uniquely or jointly detected features as indicated by the layout matrix

below. Darker colored bars represent unique proteins in the proteome and unique
PTM sites in each PTM-ome. Lighter colored nested bars represent the number of
unique modified proteins in each PTM-ome. D Stacked bar chart showing pro-
portional overlap for No HLA IP and HLA IP FT conditions by unique proteins in the
proteome and by PTM sites or modified proteins for each PTM-ome. E Log10 total
intensity distributions of all humanproteins and PTMsites fromNoHLA IP andHLA
IP FT samples (n = 10 LUAD patient tumors). Boxplot depicts upper and lower
quartiles with the median shown as a solid line. Whiskers show 1.5 × interquartile
range. Source data for C, D, and E are provided as a Source Data file.
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likely to have LC-MS/MS detectable neoantigens when using data
dependent acquisition. These results suggest that detection of
neoantigens by immunopeptidomics should, at present, be focused
on tumor types with relatively high mutational burden, high HLA
expression levels, and only the most highly optimized LC-MS/MS
methods should be used.

Evaluating HLA-peptide source protein presentation by MONTE
An advantage of the MONTE workflow is that the resulting multi-omic
data is derived from each single sample, enabling robust data inte-
gration. Thus, we evaluatedwhether integration ofMONTE data would
reveal insights into antigen processing and presentation. We first
looked at how well HLA-I and HLA-II source proteins overlapped with
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both the proteins detected in the proteome and ubiquitylome data
(Fig. 6A). 78% of proteins identified in the proteome were also identi-
fied asHLA-I source proteins. In contrast, 30% of HLA-I source proteins
were not observed in the proteome. For HLA-II, a 33% overlap between
the proteins in the proteome and HLA-II source proteins was observed
with 21% of HLA-II source proteins not detected in the proteome. The
lower overlap of HLA-II source proteins and proteome is likely due to
differences in biological sampling of source proteins by the HLA-I and
HLA-II pathways. The HLA-II pathway primarily samples proteins that
are degraded in the endosomal/lysosomal and autophagy pathways
while the HLA-I pathway primarily samples proteins that are degraded
by the proteasome. A higher proportion of ubiquitylated proteins,
89%,weredetected asHLA-I sourceproteins, compared to 49% asHLA-
II source proteins. This was expected because ubiquitylated proteins
are a key source of proteasome-processed peptides that are HLA-I
peptide precursors. Conversely, we noted only 26% of HLA-I source
proteins were identified as ubiquitylated, suggesting that additional
ubiquitylome datasets are required to capture all possible ubiquity-
lated proteins that enter the HLA-I processing and presentation path-
way. BecauseHLA-I sourceprotein expression levels and their ability to
be processed by the proteasomal pathway are important factors for
presentability7, both proteome and ubiquitylome datasets are likely
useful for incorporation into HLA-I prediction algorithms.

To better understand the variable levels of HLA-I and HLA-II
peptides recovered in the LUAD immunopeptidomes, we looked at the
trends of B2M and CD74 expression and PTMs across the ‘omes with
patients sorted from low to high ESTIMATE immune
scores62(Supplementary Fig. 7; also available using the data viewer:
https://proteomics.broadapps.org/CPTAC-MONTE2022/). As expec-
ted, patients C3L-01632 and C3N-00199 with low mRNA and protein
levels of B2M, a subunit of HLA-I complexes, had the lowest ESTIMATE
immune scores and overall low HLA-I immunopeptidome depth. We
also observed HLA-I peptides derived from B2M in 9/10 samples
excluding patient C3L-01632. Next, we investigated CD74, a protein
essential for HLA-II assembly and stabilization and the source of the
CLIP peptides. We observed that the patients with the lowest HLA-II
immunopeptidome depth, C3N-01024 and C3L-02549, did not have
the lowest CD74 expression, and that the protein and RNA expression
levels do not always correlate. Instead, these twopatients had themost
unique ubiquitination sites on CD74, suggesting that CD74 may be
degraded at a higher rate in these patients. Understanding both the
expression levels and PTM status of proteins involved in antigen pre-
sentation, such as B2M and CD74, may not directly correlate with HLA
immunopeptidome depth, yet such analyzes do provide insights into
the HLA presentation machinery in tumors.

We also investigated the representation of nuORFs in the MONTE
proteomes and PTM-omes compared to those detected in the immu-
nopeptidomes (Fig. 6B) and observed that the representation of
nuORF categories52 in HLA-I immunopeptidomes and phosphopro-
teomes were themost diverse compared to all other ‘omes. In general,
a higher proportion of pseudogenes were detected in the proteome
and PTM-omes when compared to HLA-I and HLA-II immunopepti-
domes. We also noted that the representation of nuORF categories
varied across the different ‘omes, with the acetylome and

ubiquitylome having the highest proportion of lincRNAs and non-
canonical RNA processed transcripts, respectively, while the HLA-I
immunopeptidome contained the most out-of-frame ORFs. The HLA-I
immunopeptidome yielded detection of >5 times more nuORFs than
any other ‘ome. Hence, while many nuORFs are translated and may be
capable of becoming antigens, some are post-translationally modified
and therefore may be involved in regulating cellular pathways.

We next asked if mutations resulting in LC-MS/MS detectable
neoantigens were present in MONTE proteomes. None of the muta-
tions contained within detected HLA-I neoantigens (Fig. 5D) were
detectedwithin tryptic peptides from the proteome. Given that 5/10 of
the LUADpatient samples analyzed carry a KRASG12Xmutation that is
containedwithin the tryptic peptide LVVVGAXGVGK, we examined the
overlap in KRAS mutation detection between the immunopeptidome
and proteome (Fig. 6C). We noted that three patients with KRAS G12V/
D/C mutations (C3N-00169, C3N-00547, and C3L-02549) expressed
HLA-I alleles that have been validated to present KRASneoantigens60,61.
Only the KRAS G12V 10mer was detected in HLA-A11 homozygous
patient C3N-00547, which is more likely than the G12C and G12D var-
iant to be presented (HLAthena %rank 0.08 vs. 0.31 and 1.32, respec-
tively). Although our MONTE immunopeptidomes were not able to
capture all validated KRAS neoantigens found using targeted mass
spectrometry of an overexpression system and a cell line endogen-
ously expressing KRASG12V60, this lack of detectability will diminish as
more sensitive MS instrumentation and data generation approaches
are introduced. Surprisingly, tryptic peptides containing the KRAS
G12V mutation were not detected by LC-MS/MS in the MONTE pro-
teome data or in our earlier 111-patient LUAD study fromwhich the ten
patient samples analyzed here were obtained14. Overall, 32/111 patients
in the study had KRAS G12Xmutations, of which only G12C, G12D, and
G12S were detected as tryptic peptides (SAAV/SNV: 4/16, 2/7, and 2/2
patients respectively), while G12A and G12V were not detected (SAAV/
SNV: 0/2 and 0/5 patients respectively). The lack of KRAS G12V tryptic
peptide detection in the proteome suggests that low source protein
expression was likely overcome by strong HLA-I binding and stability
resulting in neoantigen detection.

The immunopeptidomes were also searched for PTM-modified
peptides. We observed HLA-I and HLA-II phosphopeptides (fully loca-
lized) made up 0.11% and 0.3%, respectively, and acetylpeptides made
up 0.08% and 0.10%, respectively, of total unique peptides (Supple-
mentary Data 9). Prior studies have shown that position four in HLA-I
peptides is the residue most often phosphorylated63–65. Consistent
with these studies, we find most HLA-I phosphorylation sites (54%) on
the fourth amino acid. However, acetylation appeared only 10% in the
fourth position andmore often in the first position (31%). As expected,
HLA-I phosphopeptide detection was more likely to occur in patients
with HLA-I alleles that contain proline in their binding motifs that
correspond to the kinase substrate motifs of MAPK and CDK63,66. We
next evaluated if the abundance of phospho- or acetyl-sites (Fig. 6D)
and corresponding phospho- or acetyl-proteins detected in the tryptic
proteome (Fig. 6E) impacts HLA-I and HLA-II peptide presentation.
Whilemany of the PTM-containing source proteins were also observed
in their corresponding PTM-ome (HLA-I: phospho 87%, acetyl 50%;
HLA-II: phospho 42%, acetyl 43%), we observed that few of the specific

Fig. 5 | Analysis of HLA peptides presented by LUAD tumors derived from CT
antigen, nuORF, and mutation-containing source proteins. A Summary of
unique HLA-I and HLA-II peptides (dark gray), total somatic single nucleotide var-
iants (SNVs; green), peptides mapping to source proteins from the CTdatabase
(light gray), peptides mapping to lung cancer–specific54 CTA source proteins (red),
and neoantigens containing patient-specific somatic mutations (blue) from ten
LUAD tumors. The primary y-axis (left) shows counts of CTAs, lung CTAs, and
neoantigens. The secondary y-axis (right) shows the total number of somatic SNVs
and the immunopeptidome depth per LUAD patient. B Summary table reporting
the number of LUAD patients presenting at least one HLA-I or HLA-II peptide from

CTA source proteins reported by Djureinovid et al.54. CMirrored stacked bar plots
showing the number of unique nuORF source proteins that are presented by HLA-I
(right) and HLA-II (left) colored by the nuORF category52 across ten LUAD tumors.
D Summary table of HLA-I neoantigens detected in primary LUAD patient tumors
(top) accompanied by annotated MS/MS spectra for KRAS G12V (bottom, left) and
the RBM14 frameshift (bottom, right) neoantigens. See Supplementary Fig. 6 for
annotated MS/MS spectra of the others and synthetic peptide spectra. Leucine (L)
and Isoleucine (I) cannot be distinguished by the MS instrumentation employed.
Source data for A and C are provided as a Source Data file.
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PTM sites presented by HLA were detectable in the tryptic phospho-
proteomes and acetylomes (HLA-I: phospho 42%, acetyl 13%; HLA-II:
phospho 10%, acetyl 17%). This may be due to the sequence context of
HLA-presented PTMsites not being amenable to generating detectable
tryptic peptides in the corresponding PTM-ome or the low abundance
of these PTM sites that may be sampled by the HLA pathways. Of the

PTM sites that were observed in both the immunopeptidome and
corresponding PTM-ome, we found that PTM-containing source pro-
teins in the top abundance quartiles are most likely to result in HLA
presentation. Thus, source proteins and PTM site abundance and the
sequence context allowing for HLA binding are factors that should be
evaluated in future PTM HLA peptide prediction efforts.
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Discussion
Discovery analyses that leverage patient tissue samples with limited
input amounts face obstacles to deep and broad proteomic char-
acterization. TheMONTEworkflowdirectly addresses this challengeby
enabling serial HLA-II and HLA-I immunopeptidomics followed by
ubiquitylome, proteome, phosphoproteome, and acetylome data
collected from the same sample aliquot. After implementing HLA-II
and HLA-I immunopeptidome and ubiquityl enrichment into an
established serial proteome and PTM enrichment workflow, we
observed high correlation between the proteomes, ubiquitylomes,
phosphoproteomes, and acetylomes in both our breast cancer xeno-
graft and LUAD datasets, showing that additional data layers can be
acquired without prejudicing data quality and demonstrating the uti-
lity of the MONTE workflow. The order of ‘omic analyses was deter-
mined by the biochemical requirements of each enrichment and
previously established serial enrichment workflows.We anticipate that
additional ‘omes, such as phosphotyrosine peptide enrichment, could
be incorporated into the MONTE workflow, and that these enhance-
ments should be mindful of the compatibility of enrichment reagents
and minimization of desalting steps to maximize peptide recovery.
The current MONTE workflow can also be tailored to include or
exclude enrichments based on the specific biological questions being
addressed, demonstrating the flexibility of serial enrichment work-
flows. Overall, the MONTE workflow represents a path forward to
deeply characterizing each single patient sample that was only possi-
ble previously with parallel processing of multiple tissue aliquots.

In proteogenomic studies of human tumor samples to date, ubi-
quitylomics has just begun to be used in parallel with the other ‘omes17

and HLA immunopeptidomics has not been routinely employed.
Layering HLA-I and HLA-II immunopeptidomes on these other data
types provides a window into the antigen landscape and improves our
understanding of the rules that govern antigen processing and pre-
sentation. For example, patient C3N-00169 had a truncationmutation,
E269*, in the proteasomal subunit PSMB7. We noted this patient
expressed an HLA-A11 allele that has a lysine residue in the C-terminal
anchor position. This observation could suggest that tryptic protea-
somal subunits like PSMB7may be under selection pressure in patients
with HLA-I alleles that favor tryptic-like peptides. However, this
hypothesis is based on just a single patient sample from the small
cohort studied andwill require additional studies in a larger sample set
to validate. Furthermore, immunopeptidome and proteome datasets
from the same sample could enable more accurate neoantigen and
noncanonical HLA peptide prediction methods, as having both HLA
presentation and protein expression data can be used to improve
epitope prediction algorithms7,8,67–70. Although we demonstrate the
usefulness ofMONTE in a small LUAD cohort that expressed bothHLA-
I and HLA-II and where at least 50mg of cryopulverized tissue was
available, this workflowcanbe extended to other tumor typeswith less
available tissue, low HLA expression, and unknown HLA-II expression.
In these scenarios, performing the HLA serial enrichments will likely
result in lower immunopeptidome depth, but will not prevent the

downstream multi-omic analyses, as these require less input material
(25mg wet weight or less) than the HLA enrichment. Even in cases
where the HLA expression in tumors is low, useful information such as
which HLA alleles are expressed and presenting peptides can be
directly determined and leveraged to better understand changes in
tumor HLA peptide presentation.

As noted with the KRAS G12V neoantigen and nuORF derived
HLA peptides, epitope prediction based on tryptic proteome detec-
tion alone would likely under-represent the full neoantigen and
noncanonical peptide repertoires. As such, MONTE immunopepti-
dome and proteome datasets from larger cohorts are required to
fully understand how best to integrate tryptic proteome level
mutation detection into epitope prediction workflows. Similarly,
PTM-ome data combined with immunopeptidomics can uncover
dependencies, such as PTM site abundance, that can be used to
improve prediction of difficult to detect phosphorylated and acety-
lated HLA peptides. We remain intrigued by the observation that a
majority of the PTM sites detected in unenriched immunopeptidome
samples are not present in global phosphoproteome and acetylome
data. It is possible that HLA-I and HLA-II immunopeptidomes may
reveal undiscovered PTM sites because of their privileged access to
rapidly degraded proteins and the autophagy and endosomal-
lysosomal pathways, as well as access to regions of proteins not
easily characterized using tryptic digestion. We envision that as the
sensitivity of PTM enrichment improves, HLA immunopeptidomes
can also be subjected to PTM enrichments in a serial fashion. More-
over, integrated MONTE datasets are likely to provide information
regarding tumor immune cell infiltration status and dysregulation of
signaling, degradation, and epigenetic pathways that can inform
therapeutic intervention.

There are limitations to this study. Although it demonstrates the
feasibility and utility of a workflow incorporating HLA-I and HLA-II
immunopeptidomics and UbiFast ubiquitylomics into a serialized
proteomic workflow using a clinically relevant sample set, its pilot-
level scale precludes the statistically robust analyses, deep explora-
tions of biology, or compelling assessments of the interplay between
characterized ‘omes that the approach is intended to facilitate. Rather
than highlighting such underpowered and speculative results, we
chose to focus on the added value and interpretable results provided
by immunopeptidomic characterization of tumor samples. Recent
large-scale cancer proteogenomics analyses have made a compelling
case that the integration of proteomic, ubiquitylomic and especially
phosphoproteomic data with genomic data helps to functionalize
genomic aberrations, providing new perspectives on cancer biology
and nominating potential therapeutic vulnerabilities11. Integration of
diverse ‘omics data types remains challenging, as each data type has
distinct scaling, normalization, and transformation requirements to
enable multi-omic interpretation. Missing values in each ‘ome is also a
limitation, as it may not be the case that genes of interest, their PTMs,
or corresponding HLA-I and HLA-II peptides are observable due to
stochastic sampling or for biological reasons. It also remains to be

Fig. 6 | Integration of LUAD MONTE immunopeptidome data with whole pro-
teome and PTM-omes. A The total number of proteins detected in proteome,
ubiquitylome (ubiquityl-proteins), and immunopeptidome (source proteins) illu-
strated as ‘UpSet’ plots93. Vertical bars depict the number of uniquely or jointly
detected features, as indicated by the layout matrix below. Color of vertical bars
corresponds to each combination of sets. B Stacked bar chart showing proportion
of detected nuORF source proteins by nuORF type52 across the HLA-I and HLA-II
immunopeptidomes (top) and tryptic proteomes, and PTM-omes (bottom).
CTableof patient-specificKRASmutations and their detection indifferent datasets,
including: tryptic proteome of large cohort study of LUAD14, MONTE tryptic pro-
teome, and MONTE HLA-I immunopeptidome. KRAS neoantigens previously
identified by LC-MS/MS60 are shown as well as predictions for presentation for the
best scoring HLA-I allele using HLAthena8. The wild-type KRASG12 peptide was not

detected in theMONTEproteomesof this small subset of the LUADpatient samples
with or without initial HLA IP, but it was detected in 23/25 LUAD TMT-10 plexes
covering 102/111 patients in the original study14. D Stacked bar charts showing
overlapofphosphorylatedand acetylatedHLAbindingpeptideswith sites detected
and unambiguously localized in the phospho- and acetyl-proteomes. Color indi-
cates precursor ion intensity quartile of detectedmodification in the PTM-ome (1 =
highest, 4 = lowest) with gray indicating that the site was uniquely detected in the
immunopeptidome. EMarbleplots show relative abundance of PTMsites identified
in the immunopeptidome as detected in the phospho- or acetyl-proteome, as well
as the abundance of corresponding phospho- or acetyl-proteins as detected in the
proteome. Size of points encodes number of sites and color encodes combination
of precursor intensity quartiles of PTM-ome and proteome. Source data for
A, B, D, and E are provided as a Source Data file.
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shown that the integration of additional layers of data, such as the
immunopeptidome, will continue to provide interpretable, and
actionable insights. The MONTE workflow, when applied to samples
from a suitably sized patient cohort, provides the means to test if the
integration of the immunopeptidome, proteome, and PTM-omes will
yield valuable biological insights.

High-throughput multi-omic data generation has proven to be a
useful resource for understanding disease biology and identifying
potential therapeutic targets13,16,71–78. By combining serial multi-ome
enrichments with HLA-I and HLA-II immunopeptidomics into a single
workflow, we have provided a method to understanding connections
among antigen presentation, protein expression, signaling, protein
degradation, and epigenetic regulation based on deep characteriza-
tion of each single sample, which was only previously possible using
parallel workflows that required multiple tissue samples. We also
provide a publicly available multi-omic data viewer to enable
researchers to explore these data and ask questions using a single or
multiple gene names of interest. Further improvements to theMONTE
workflow that address its current limitations will likely include
decreasing the sample input further by incorporating low-input pro-
teomic sample processing advances79–82 and the incorporation of fully
automated sample processing steps for all ‘omes in the context of
clinical trials. In addition to cancer, the MONTE workflow can be
applied to the study of other disease states such as autoimmune and
infectious diseases, and we anticipate that it will enable a compre-
hensive view of disease biology.

Methods
PDX and human tumor samples and cell lines
All experiments with live mice were performed according to institu-
tional and national regulations and approved by the Institutional Ani-
malCare andUseCommittee atWashingtonUniversity in St.Louis,MO.
Patient-derived xenograft (PDX) tumors from established basal
(WHIM6) and luminal (WHIM20) breast cancer subtypes were raised
subcutaneously in 8-week-old NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJmice
(Jackson Labs, Bar Harbor, ME)44,83. Tumors from each animal were
harvested by surgical excision at 1.5 cm3, below the maximum volume
established by the animal committee.

LUAD samples were collected as part of the NIH/NCI CPTAC
consortium (https://proteomics.cancer.gov/programs/cptac) with
protocolsmandated by the CPTACprogramoffice. Data collection and
analysis in this study was performed in accordance with the Declara-
tion of Helsinki and Institutional review boards at tissue source sites
reviewed protocols and consent documentation adhering to the
CPTAC guidelines. Clinical data were obtained from tissue source sites
and aggregated by an internal database called the CDR (Comprehen-
sive Data Resource) that synchronizes with the CPTAC DCC (https://
cptac-data-portal.georgetown.edu/). Clinical data can be accessed and
downloaded from the DCC (Data Coordinating Center). Details about
these samples have been published previously14. Information on par-
ticipant compensation is not available to the investigators. This set of
LUAD samples (n = 10) was chosen to represent important biological
differences of high relevance to lung adenocarcinoma, as five samples
were driven by KRAS mutations and five by EGFR mutations. Each
driver mutation subset included samples from both men and women
and both Asian and Western/Caucasian ethnicity were represented.
Sex/gender was determined by self-reporting, and it was not con-
sidered for study design.

A375 cells were obtained from ATCC (ATCC ® CRL-1619). A375
cells were grown in ATCC-formulated Dulbecco’s Modified Eagle’s
Medium (Catalog No. 30-2002) with fetal bovine serum to a final
concentration of 10%usingATCCguidelines. A375 cells were harvested
by trypsinization (Trypsin-EDTA 0.25%, Gibco™ 25200056), pelleted
and rinsed in PBS twice. Pellets were snap frozen and stored at −80 °C.

Processing of PDX tumor tissue (CompRef)
WHIM2 and WHIM16 patient-derived xenografts (PDX) underwent
denaturing lysis in SDS to prepare for S-Trapdigestion. Cryopulverized
PDX samples were lysed in 500 µL SDS lysis buffer (5% SDS, 50mM
TEAB pH 8.5, 2mM MgCl2, 2 µg/ml Aprotinin, 10 µg/mL Leupeptin,
1mM PSMF, 50 µM PR-619 (Lifesensors, SI9619: PR-619), 1mM Chlor-
oacetamide,10mM NaF,1:100 dilution of Protease Inhibitor Cocktail 2
(Sigma-Aldrich, P5726), 1:100 dilution of Protease Inhibitor Cocktail 3
(Sigma-Aldrich, P0044), 10mM Sodium Butyrate, 10mM Nicotina-
mide). The samples were disrupted by gentle vortexing and incubated
at room temperature for ~15min. Samples were treated with 3 µL
250units/μLBenzonase (ThomasScientific, E1014-25KU) to shearDNA,
mixed again, and incubated at room temperature for another ~15min.
The lysates were cleared by centrifugation for 15min at 15,000× g and
the supernatant was prepared for S-Trap digestion. Protein con-
centration was estimated using a BCA protein assay. Disulfide bonds
were reduced in 5mMDTT for 30min at 25 °C and 1000 rpm shaking,
and cysteine residues alkylated in 10mM IAA in the dark for 45min at
25 °C and 1000 rpm shaking. Lysates were then transferred to a 15mL
conical tube to prepare for protein precipitation. 12% phosphoric acid
was added at a 1:10 ratio of lysate volume to acidify, and proteins were
precipitated with 6× sample volume of ice-cold S-Trap buffer (90%
methanol, 100mM TEAB). The precipitate was transferred in succes-
sive loads of 3mL to a S-Trap Midi (Protifi) and loaded with 1min
centrifugation at 4000 × g, mixing the remaining precipitate thor-
oughly between transfers. The precipitated proteins were washed 4×
with 3 mL S-Trap buffer at 4000× g for 1min. To digest the deposited
protein material, 350 µL digestion buffer (50mM TEAB) containing
both trypsin and LysC, each at 1:50 enzyme:substrate, was passed
through eachS-Trapcolumnwith 1mincentrifugation at 4000× g. The
digestion buffer was then added back atop the S-Trap and the car-
tridges were left capped overnight at 25 °C.

Peptide digests were eluted from the S-Trap, first with 500 µL
50mM TEAB and next with 500 µL 0.1% FA, each for 30 s at 1000 × g.
The final elution of 500 µL 50% ACN/0.1% FA was centrifuged for 1min
at 4000 × g to clear the cartridge. Peptide concentration of the pooled
elutionswas estimatedwith a BCA assay. For the experiments shown in
Fig. 2 and Supplementary Fig. 1, 0.5mg aliquots of WHIM2 and
WHIM16 peptides were created.

Automated UbiFast K-ε-GG enrichment from CompRef tissue
Enrichment of K-ε-GGpeptides using0.5mgof peptideper samplewas
performed using the automated UbiFast method3,38 Briefly, peptide
aliquots were reconstituted in 250 µL HS bind buffer (Cell Signaling
Technology) w/ 0.01% CHAPS. All remaining steps for UbiFast enrich-
ment excluding labeling and final bead collection contained 0.01%
CHAPS. Reconstituted peptides were added to 5 µL PBS-washed HS
anti-K-ε-GG antibody bead slurry with proprietary antibody amounts
(Cell Signaling Technology, #59322) and incubated at 4 °C for 1 hour in
a foil sealed KingFisher plate with end-over-end rotation. The plate
containing peptides and anti-K-ε-GG antibody beads was then pro-
cessed on the KingFisher. Briefly, bead-bound enriched peptides were
washedwith 50%ACN/50%HSwashbuffer andwashed again with PBS.
K-ε-GGpeptides were labeled on-beadwith 400 µg TMTpro in 100mM
HEPES (prepared immediately before run) for 20min and labeling was
quenchedwith 2% hydroxylamine. Finally, the beadswerewashedwith
a HS wash buffer before being deposited into 100 µL PBS. All sixteen
wells were combined, the supernatant was removed, and enriched
peptides were eluted from the beads with 2 × 10min 0.15% TFA. The
eluate was desalted with a C18 stagetip, frozen, and dried in a vacuum
centrifuge. For LC-MS/MS analysis, the K-ε-GG peptides were recon-
stituted in 9 µL 3% ACN/0.1% FA and 4 µL were injected twice onto a
Orbitrap Exploris 480 mass spectrometer(Thermo Fisher Scientific)
with FAIMS.
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UbiFast flow-through serial processing from CompRef tissue
For the proteome analysis shown in Fig. 2, peptides were acidified and
desalted using a 50mg tC18 SepPak cartridge. Eluateswere frozen and a
vacuum centrifuge was used to dry peptides. Peptides were recon-
stituted in 30% ACN, peptide concentration was determined using a
BCA assay and peptides were dried again. Peptides corresponding to
0.25mg from each sample (eight replicates of WHIM2 and eight repli-
cates of WHIM16), were labeled with 0.5mg TMTpro reagents in 20%
ACN, 50mMHEPES for 1 h. The TMT labeling reactionwas quenched by
adding 4 µL 5% hydroxylamine for 15min at room temperature while
shaking. Samples were combined into a 15mL conical tube, frozen at
−80 °C and dried in a vacuum centrifuge. The combined sample was
desalted using a 200mg tC18 SepPak cartridge and the eluate was snap
frozen then dried in a vacuum centrifuge. Offline bRP fractionation was
performed19. Briefly, peptides were separated over a 96min gradient
with a flow rate of 1ml/min. The bRP solvent A was 5mM ammonium
formate, 2% ACN and solvent B was 5mM ammonium formate, 90%
ACN. 96 fractions were concatenated into 24 fractions for proteome
analysis. For proteome analysis, 5% of each of the 24 fractions were
transferred into HPLC vials, frozen and dried in a vacuum centrifuge.

For the experiment in Supplementary Fig. 1, UbiFast flowthrough
peptides were acidified and desalted using a 50mg tC18 SepPak car-
tridge. Eluates were frozen and a vacuum centrifuge was used to dry
peptides. Peptides were reconstituted in 30% ACN, peptide con-
centration was determined using a BCA assay and peptides were dried
again. UbiFast flowthrough peptides corresponding to 0.25mg from
each sample (four replicates ofWHIM2 and four replicates ofWHIM16)
and non-UbiFast peptides (four replicates of WHIM2 and four repli-
cates of WHIM16), were labeled with 0.5mg TMTpro reagent in 20%
ACN, 50mM HEPES for 1 h. The TMT labeling reaction was quenched
by adding 4 µL 5%hydroxylamine for 15minat room temperaturewhile
shaking. Samples were combined into a 15mL conical tube, frozen at
−80 °C and dried in a vacuum centrifuge. The combined sample was
desalted using a 200mg tC18 SepPak cartridge and the eluatewas snap
frozen thendried in a vacuumcentrifuge.Offline bRP fractionationwas
performed19. Briefly, peptides were separated over a 96min gradient
with a flow rate of 1ml/min. The bRP solvent A was 5mM ammonium
formate, 2% ACN and solvent B was 5mM ammonium formate, 90%
ACN. 96 fractions were concatenated into 12 fractions and frozen
before drying down in a vacuum centrifuge in preparation for phos-
phoproteome analysis.

Automated IMAC phosphopeptide enrichment of CompRef
tissue
For the experiments shown in Fig. 2, the remaining 95% of each bRP
fraction was concatenated into 12 fractions and dried down before
reconstituting to a final concentration of 80% ACN/0.1% TFA. For the
experiment in Supplementary Fig. 1, the 12 concatenated fractions
were reconstituted to a final concentration of 80% ACN/0.1% TFA.
Phosphopeptides were enriched using the Agilent “AssayMAP Phos-
phopeptide Enrichment v2.1” protocol on an Agilent Bravo system.
Briefly, 200 µL of sample was loaded onto AssayMap Fe(III)-NTA car-
tridges (Agilent, G5496-60085) at 5 µL/min. For the experiments
shown in Fig. 2, the flow-through was collected and frozen for down-
stream acetyllysine enrichment. The cartridges were washed 3× with
80% ACN/0.1% TFA and phosphopeptides were eluted from the car-
tridges with 20 µL fresh 1% ammonium hydroxide into a plate con-
taining 2.5 µL neat FA. Phosphopeptides were transferred to HPLC
vials, frozen and dried in a vacuum centrifuge. For LC/MS-MS analysis,
peptides were reconstituted in 9 µL 3% ACN/0.1% FA and 4 µL were
injected from each of the 12 fractions.

Acetyl-lysine immunoaffinity enrichment of CompRef tissue
Acetyl peptide enrichment was performed using the published
protocol14 with minor variations described below. Acetylated lysine

peptides were enriched with 25 uL of PTMScan® Acetyl-Lysine Motif
[Ac-K] immunoaffinity bead slurry with proprietary antibody amounts
(PTMScan® Acetyl-Lysine Motif Kit #13416). Phosphopeptide-depleted
IMAC flow-throughs were concatenated from 12 to 4 fractions
(∼750μg peptides per fraction) and dried down using a SpeedVac
apparatus. Prior to enrichment, antibody beads were washed 4x with
IAP buffer (5mM MOPS pH 7.2, 1mM sodium phosphate [dibasic],
5mMNaCl). Peptides were reconstituted with 1.4mL of IAP buffer per
fraction, added to washed beads, and incubated for 2 h at 4 °C. Bead-
bound acetyl-enriched peptideswerewashed 4 timeswith ice-coldPBS
followed by two elutions with 100 µLl of 0.15% TFA. Eluents were
desalted using C18 stage tips, eluted with 50% ACN/0.1% FA, and dried
down. Acetylpeptides were reconstituted in 7 µL of 3% ACN/0.1% FA
and 4 µL were injected from each of the 4 fractions for LC-MS/MS
analysis.

LC-MS/MS analysis of CompRef tissue
All peptide samples were separated on an online nanoflow EASY-nLC
1200 UHPLC system (Thermo Fisher Scientific) and analyzed on an
Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific)
using Xcalibur 4.0. 1 µg of each proteome and fifty percent of each
phosphopeptide, acetyl-lysine andK-ε-GGpeptide samplewas injected
onto a capillary column (Picofrit with 10 µm tip opening/75 µm dia-
meter, New Objective, PF360-75-10-N-5) packed in-house with 25 cm
C18 silica material (1.9 µm ReproSil-Pur C18-AQ medium, Dr. Maisch
GmbH, r119.aq). The UHPLC setup was connected with a custom-fit
microadapting tee (360 µm, IDEX Health & Science, UH-753), and
capillary columns were heated to 50 °C in column heater sleeves
(PhoenixST) to reduce back pressure during UHPLC separation. For
proteome and phosphoproteome samples, injected peptides were
separated at a flow rate of 200 nL/min with a linear 85min gradient
from 100% solvent A (3% acetonitrile, 0.1% formic acid) to 30% solvent
B (90% acetonitrile, 0.1% formic acid), followed by a linear 10min
gradient from30% solvent B to 90% solvent B. For ubiquitin and acetyl-
lysine samples, injected peptides were separated at a flow rate of 200
nL/min with a linear 120min gradient from 100% solvent A (3% acet-
onitrile, 0.1% formic acid) to 35% solvent B (90% acetonitrile, 0.1%
formic acid), followedby a linear 10mingradient from35%solvent B to
90% solvent B. Data-dependent acquisition was obtained using Xcali-
bur 4.4 software in positive ionmode at a spray voltage of 1.80 kV.MS1
Spectra were measured with a resolution of 60,000, an AGC target of
50% and amass range from 300 to 1800m/z. Up to 20MS2 spectra per
duty cycle were triggered at a resolution of 45,000, an AGC target of
300%, an isolation window of 0.7m/z and a normalized collision
energy of 34. Peptides that triggered MS2 scans were dynamically
excluded from further MS2 scans for 20 s. For ubiquitin samples a
FAIMS Pro Interface (Thermo Fisher Scientific) was in line with the
mass spectrometer. The FAIMS device was operated in standard
resolution mode at 100 °C, utilizing the compensation voltages (CVs)
of –40, –60, and –80 for the first injection followed by a second
injection with CVs of –40, –50, and –70.

Data analysis of CompRef tissue
Mass spectrometry data was processed using Spectrum Mill v 7.08
(proteomics.broadinstitute.org). For all samples, extraction of rawfiles
retained spectra within a precursor mass range of 800-6000Da and a
minimum MS1 signal-to-noise ratio of 25. MS1 spectra within a reten-
tion time range of +/−45 s, or within a precursor m/z tolerance of
+/−1.4m/z were merged. MS/MS searching of PDX samples was per-
formed against a human and mouse RefSeq database with a release
date of June 29, 2018 and containing 72,908 entries. Digestion para-
meters were set to “trypsin allow P” with an allowance of 4 missed
cleavages. The MS/MS search included fixed modification of carba-
midomethylation on cysteine. For TMT quantitation experiments
TMTpro16 was searched using the full-mix function. Variable
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modifications were acetylation of the protein N-terminus, oxidation of
methionine, cyclization to pyroglutamic acid, deamidation, pyr-
ocarbamidomethylation of cysteine and hydroxylation of proline. For
PTM datasets, hydroxylation of proline was removed as a variable
modification, and additional variable modifications were searched:
phosphorylation of serine, threonine and tyrosine residues for IMAC
enriched samples; diglycine modification of lysine residues for K(GG)
enriched samples; lysine-acetylation for acetyl-lysine enriched sam-
ples. Restrictions for matching included a minimum matched peak
intensity of 30% and a precursor and product mass tolerance
of +/−20 ppm.

Peptide-spectrummatches were validated using amaximum false
discovery rate (FDR) thresholdof0.8% forprecursor charges 2 through
4 within each LC-MS/MS run, and 0.4% for precursor charges 5 and 6
within each directory of runs. TMTpro16 reporter ion intensities were
corrected for isotopic impurities in the SpectrumMill protein/peptide
summary module using the afRICA correction method which imple-
ments determinant calculations according to Cramer’s Rule. For pro-
teome analysis, we required 2 or more fully quantified unique human
peptideswith a ratio count of 2 ormore for protein identification and a
ratio count of 2 or more for protein quantification. For PTM analysis,
we filtered for fully quantified human proteins.To assign regulated
proteins and PTM-sites we used the Proteomics Toolset for Integrative
Data Analysis (Protigy, v0.9.1.3, Broad Institute, https://github.com/
broadinstitute/protigy) to calculatemoderated t-test P values. P values
were adjusted for multiple hypothesis testing using the
Benjamini–Hochberg method. Median/MAD normalization was per-
formed on each TMT channel in each ‘ome to center and scale the
aggregate distribution of protein-level or PTM site–level log ratios
around zero. Single sample Gene Set Enrichment Analysis (ssGSEA)45

and site-centric PTM Signature Enrichment Analysis (PTM-SEA)46 were
performed as described in https://github.com/broadinstitute/
ssGSEA2.0. Proteins, phosphorylation sites and acetylation sites were
enriched using standard methods published by Subramanian et al.45.
The C2: curated gene sets database from MSigDB84 was used for
enrichment.

Serial Immunoprecipitation of HLA-I &HLA-II from LUAD tumor
Half of each of the ten cryopulverized LUAD patient tumors went
through the HLA serial immunoprecipitation prior to multi-omic ana-
lysis. Each tumor was lysed with 4 °C lysis buffer (20mM Tris pH 8.0,
100mM NaCl, 6mM MgCl2, 1mM EDTA, 60mM Octyl β-d-glucopyr-
anoside, 0.2mM Iodoacetamide, 1.5% Triton X-100, 1× Complete Pro-
tease Inhibitor Tablet-EDTA free, 1mM PMSF, 10mM NaF, 1:100
dilution of Protease Inhibitor Cocktail 2 (Sigma-Aldrich, P5726), 1:100
dilution of Protease InhibitorCocktail 3 (Sigma-Aldrich, P0044), 50μM
PR-619 (Lifesensors, SI9619: PR-619), 10mM Sodium Butyrate (Sigma,
B5887), 2μM SAHA (Sigma,SML0061), 10mM Nicotinamide (Sigma,
N3376) obtaining a total of 1.2ml lysate per tumor. Each lysate was
moved into an Eppendorf tube, incubatedon ice for 30minwith 2 µLof
Benzonase (Thomas Scientific, E1014-25KU) to degrade nucleic acid
and inverted after 15min. The lysateswere then centrifuged at 15,000x
g for 20min at 4 °C and the supernatants were transferred to another
set of Eppendorf tubes containing ~37.5 µL pre-washed Gammabind
Plus Sepharose beads (Millipore Sigma, GE17-0886-01). The beads and
lysate were rotated at 4 °C for one hour in order to preclear hydro-
phobicmolecules and non-specifics thatmay interfere with theHLA IP.

The bead-lysatemixtures were centrifuged at 1500 × g for 1min at
4 °C and each lysate was transferred to a tube containing ~37.5 µL pre-
washed beads and 15 µg of HLA-II antibody mix (9 µg TAL-1B5 (Abcam,
ab20181), 3 µg EPR11226 (Abcam, ab157210), 3 µg B-K27 (Abcam,
ab47342)). The HLA complexes were captured on the beads by incu-
batingona rotor at 4 °C for 3 h. Following the incubation all tubeswere
centrifuged at 1500 × g for 1min at 4 °C and the lysates were

transferred from to new Eppendorf tubes containing ~37.5 µL pre-
washed beads and 15 µg of HLA-I antibody (W6/32) (Abcam, ab22432).
The HLA-I antibody-bead-lysatemixture rotated for 3 h at 4 °C andwas
spun at 1500 × g for 1min at 4 °C. The unbound lysates were trans-
ferred tonewEppendorf tubes andflash frozenwith liquid nitrogen for
multi-omic downstream analysis.

During HLA complex capture, a 10 μm PE fritted plate (Agilent,
S7898A)was cut in half, placed on aWaters Positive PressureManifold,
and washed using 1mL acetonitrile and 3 × 1mL room-temperature
PBS. After each liquid addition, positive pressure of <5 psi was applied
to the plate to achieve liquid movement. Immediately following each
HLA capture, beads were resuspended in 1mL cold PBS and trans-
ferred to one half of the pre-washed 10 μm PE fritted plate. Each tube
was then rinsed with 500 µL cold PBS and remaining beads were
transferred to the correct well. In total, four wash steps were per-
formed to remove nonspecifically bound material: two washes with
2mL of cold complete wash buffer (20mMTris pH 8.0, 100mMNaCl,
1mMEDTA, 6mMOctyl β-d-glucopyranoside, 0.2mM Iodoacetamide)
and two washes with 2mL of 10mM Tris pH 8.0 buffer. The 10 μm PE
fritted plate with dry HLA-II beads was wrapped with parafilm and
stored at 4 °Cuntil all HLA-I beadswerewashed on the other half of the
plate and all samples were simultaneously prepared for mass spec-
trometry analysis via desalting.

Desalt of HLA peptides using a positive pressure manifold
HLA peptides were eluted and desalted frombeads as follows: 20wells
of the tC18 40mg Sep-Pak desalting plate (Waters, Milford, MA) were
activated with 2 × 1mL of methanol (MeOH) and 500 µL of 99.9%
acetonitrile (ACN)/0.1% formic acid (FA), then washed with 4 × 1mL of
1% FA. The two halves of the 10μmPE fritted filter plate containing the
beads were put together and placed on top of the Sep-Pak plate. To
dissociate peptides from HLA molecules and facilitate peptides bind-
ing to the tC18 solid phase, 200 µL of 3% ACN/5% FA was added to the
beads in the filter plate. 100 fmol internal retention time (iRT) stan-
dards (Biognosys SKU: Ki-3002-2) was spiked into each sample as a
loading control and pushed through both the filter plate and 40mg
Sep-Pak plate. Following sample loading there was one wash with
400 µL of 1% FA. Beads were then incubated with 500 µL of 10% acetic
acid (AcOH) three times for 5min to further dissociate bound peptides
from the HLA molecules. The beads were rinsed once with 1mL 1% FA
and the filter plate was removed. The Sep-Pak desalt plate was rinsed
with 1mL 1% FA an additional three times. The peptides were eluted
from the Sep-Pak desalt plate using 250 µL of 15% ACN/1% FA and
2 × 250 µL of 50% ACN/1% FA. HLA peptides were eluted into 1.5mL
micro tubes (Sarstedt, Nümbrecht, Germany), frozen, and dried down
via vacuum centrifugation. Dried peptides were stored at −80 °C until
microscaled basic reverse phase separation.

Briefly, peptideswere loadedon Stage-tipswith 2 punches of SDB-
XC material (Empore 3M). HLA-I and HLA-II peptides were eluted in
three fractions with increasing concentrations of ACN (HLA-I: 5%, 10%,
and 30% in 0.1% NH4OH, pH 10; HLA-II: 5%, 15%, and 40% in 0.1%
NH4OH, pH 10)24. Peptides were reconstituted in 3% ACN/5% FA prior
to loading onto an analytical column (35 cm, 1.9 µm C18 (Dr. Maisch
HPLC GmbH), packed in-house PicoFrit 75 µm inner diameter, 10 µm
emitter (New Objective)). Peptides were eluted with a linear gradient
(EasyNanoLC 1200, Thermo Fisher Scientific) ranging from 6–30%
Solvent B (0.1% FA in 90% ACN) over 84min, 30–90% B over 9min and
held at 90% B for 5min at 200 nl/min. MS/MS data were acquired on a
Orbitrap Exploris 480 mass spectrometer(Thermo Fisher Scientific)
equipped with (HLA-I) and without (HLA-II) FAIMS (Thermo Fisher
Scientific) in data-dependent acquisition. FAIMS compensation vol-
tages (CVs) were set to −50 and −70with a cycle timeof 1.5 s per FAIMS
experiment.MS2 fill timewas set to 100ms; collision energywas 30CE
for HLA-I and 34 CE for HLA-II.
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Serial ubiquitylome, proteome, phospho- and acetyl-ome
of LUAD
Each set of 10 replicate tumors underwent denaturing lysis in SDS to
prepare for S-Trap digestion. Flow-throughs of the HLA-I IP, at this
point in native HLA lysis buffer and stored as flash-frozen unbound
lysates, were briefly thawed on ice for ~15min. Once thawed, 10% SDS
was added for a final concentration of 2.5% SDS to denature the lysate,
resulting in a final volume of ~1.5mL lysate which was prepared for
S-Trap digestion.

Replicates of the HLA-depleted samples were lysed from cryo-
pulverized tissue in 1mL 5% SDS buffer (5% SDS, 50mM TEAB pH 8.5,
2mM MgCl2). The samples were disrupted by pipette mixing and
gentle vortexing and incubated at room temperature for ~10min.
Samples were treated with 2 μL benzonase to shear DNA, mixed again,
and incubated at room temperature for another ~20min. Finally,
non–HLA-depleted lysates were homogenized with a probe sonicator
for 30 s and left to lyse again for ~10min. The lysates were cleared by
centrifugation for 15min at 15,000 × g and the supernatant was pre-
pared for S-Trap digestion.

In both sets of LUAD tumors, all further processing steps were
executed identically. Protein concentrationwas estimated using a BCA
assay for scaling of digestion enzymes. Disulfide bonds were reduced
in 5mM DTT for 30min at 25 °C and 1000 rpm shaking and cysteine
residues were alkylated in 10mM IAA in the dark for 45min at 25 °C
and 1000 rpm shaking. Lysates were then transferred to a 15mL con-
ical tube to prepare for protein precipitation. 27% phosphoric acid was
added at a 1:10 ratio of lysate volume to acidify and proteins were
precipitated with 6× sample volume of ice cold S-Trap buffer (90%
methanol, 100mM TEAB). The precipitate was transferred in succes-
sive loads of 3mL to a S-Trap Midi (Protifi) and loaded with 1min
centrifugation at 4000× g, mixing the remaining precipitate thor-
oughly between transfers. The precipitated proteins were washed 4×
with 3 mL S-Trap buffer at 4000× g for 1min. To digest the deposited
protein material, 350 µL digestion buffer (50mM TEAB) containing
both trypsin and endopeptidase C (LysC), each at 1:50 enzyme:sub-
strate, was passed through each S-Trap column with 1min cen-
trifugation at 4000 × g. The digestion buffer was then added back atop
the S-Trap and the cartridges were left capped overnight at 25 °C.

Peptide digests were eluted from the S-Trap, first with 500 µL
50mMTEAB and next with 500 µL 0.1% FA, each for 30 sec at 1000 × g.
The final elution of 500 µL 50% ACN/0.1% FA was centrifuged for 1min
at 4000 × g to clear the cartridge. Peptide concentration of the pooled
elutions was estimated with a BCA assay, divided into 750 µg peptide
aliquots for K-ε-GG enrichment, snap frozen, and dried in a vacuum
centrifuge.

Automated UbiFast K-ε-GG enrichment of LUAD
Peptides containing the K-ε-GG tryptic remnant of ubiquitin/ubiquitin-
like small protein modifications were enriched using an adaptation of
the UbiFast protocol for the Thermo KingFisher automation
platform38. Briefly, 750 µg peptide aliquots were reconstituted in
250 µL CST HS bind buffer with 0.01% CHAPS. All following steps for
UbiFast enrichment excluding labeling and final bead collection con-
tained 0.01% CHAPS. Reconstituted peptides were added to 5 µL PBS-
washedHS anti-K-ε-GG antibody bead slurry with proprietary antibody
amounts (Cell Signaling Technology, #59322) and incubated at 4 °C for
1 h in a foil sealed KingFisher plate with end-over-end rotation. Fol-
lowing removal of the beads from the incubation by the KingFisher
robot, the incubation plate containing non-TMT labeled, K-ε-
GG–depleted peptide flow-through was sealed and frozen for down-
stream proteome, phosphoproteome, and acetylproteome proces-
sing. Briefly, bead-bound enriched peptides were washed with 50%
ACN/50% CST HS wash buffer and washed again with PBS. K-ε-GG
peptides were labeled on bead with 400 µg TMT 10 reagent in 100mM
HEPES (prepared immediately before run) for 20min and labeling was

quenchedwith 2% hydroxylamine. Finally, the beadswerewashedwith
a CST HS wash buffer before being deposited into 100 µL PBS con-
taining no CHAPS buffer. Each well containing each TMT channel was
combined by 10-plex, the supernatant was removed, and enriched
peptides were eluted from the beads with 2 × 10min 0.15% TFA. The
eluate was desalted with a C18 stagetip, frozen, and dried in a vacuum
centrifuge. For LC-MS/MSanalysis, the unfractionatedK-ε-GGpeptides
were reconstituted in 9 µL 3% ACN/0.1% FA and 4 µL was injected twice
back-to-back for each sample.

TMT labeling of UbiFast flow-through for serial proteome
Non-TMT labeled, K-ε-GG-depleted peptide flow-throughs of the K-ε-
GG IPs were acidified with neat formic acid to a final concentration of
1% FA and desalted with 100mg tC18 SepPak cartridges. Eluates were
frozen and dried in a vacuum centrifuge. Peptides were reconstituted
in 30%ACN/0.1% FA, peptide concentrationwas estimated using a BCA
assay, and peptides were aliquoted for downstream processing and
dried again. 300 µg of each sample was reconstituted in 60 µL 50mM
HEPES and labeledwith 300 µg TMT 10 reagent at a final concentration
of 20% ACN for 1 h at 25 °C and 1000 rpm. Each tumor replicate was
assigned the same TMT channel in its corresponding TMT 10-plex for
an identical experimental design. Labeling reactions were diluted to
2.5mg/mL with 50mM HEPES. Complete labeling and balancing of
input material were confirmed. TMT labeling was quenched with 3 µL
5% hydroxylamine for 15min and each TMT 10-plex was combined,
frozen, and dried. Dried, labeled, and combined peptides were
reconstituted with 3mL 1% FA and desalted with a 200mg tC18 Sep-
Pak. The eluate was snap frozen and dried in a vacuum centrifuge.

Offline bRP fractionation was performed as described previously
and above19. Briefly, peptides were separated over a 96-minute gra-
dient with a flow rate of 1ml/min. Solvent A was 5mM ammonium
formate/2% ACN and solvent B was 5mM ammonium formate/90%
ACN. 96 fractions were concatenated into 24 fractions for proteome
analysis. 5% of each of the 24 fractions were transferred into HPLC
vials, frozen, and dried in a vacuum centrifuge for analysis. The
remaining 95% of each fraction was concatenated into 13 fractions for
phosphopeptide enrichment. Proteome fractions were reconstituted
in 3% ACN/0.1% FA and 500 ng at 0.25 µg/µL from each of the 24 frac-
tions was injected for LC-MS/MS analysis.

LUAD Automated IMAC phosphopeptide enrichment
IMACenrichment of phosphopeptideswas performedusingAssayMap
Fe(III)-NTA cartridges (Agilent, G5496-60085). Concatenated fractions
were solubilized with 80 µL 50% ACN/0.1% TFA in a bath sonicator for
5min followed by addition of 120 µL 100% ACN/0.1% TFA for a final
concentration of 80% ACN/0.1% TFA. Peptide solution was clarified by
centrifugation at 6000× g for 5min and 160 µL was transferred to a 96
well plate for enrichment. The remaining 40 µL was set aside for re-
enrichment. The Agilent “AssayMAP Phosphopeptide Enrichment v2.1”
protocol was used. Briefly, the syringes were rinsed with HPLC water
and primedwith 50% ACN/0.1% TFA. Cartridges were equilibratedwith
80% ACN/0.1% TFA.160 µL of sample was loaded at 5 µL/min and the
phosphopeptide-depleted flow-through was collected and frozen for
downstream acetyl-lysine enrichment. The cartridges were washed 3×
with 80% ACN/0.1% TFA to remove nonspecific peptides. Enriched
phosphopeptides were eluted from the cartridges with 20 µL fresh 1%
ammonium hydroxide at 5 uL/min into a plate containing 2.5 µL neat
FA. Phosphopeptide-enriched eluates were transferred to HPLC vials,
frozen, and dried in a vacuum centrifuge. For LC/MS-MS analysis,
peptides were reconstituted in 9 µL 3% ACN/0.1% FA and 4 µL was
injected from each of the 12 fractions.

Acetyl-lysine immunoaffinity enrichment of LUAD and A375
Acetyl peptide enrichment was performed using the published
protocol14 with minor variations described below. Acetylated lysine
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peptides were enriched with 25 uL of PTMScan® Acetyl-Lysine Motif
[Ac-K] immunoaffinity bead slurry with proprietary antibody amounts
(PTMScan® Acetyl-Lysine Motif Kit #13416). For the unfractionated
A375 acetyl-lysine enrichments, 25 uL of beads was used per sample.
For the LUAD samples, phosphopeptide-depleted IMAC flow-throughs
were concatenated from 12 to 4 fractions (∼750μg peptide per frac-
tion) and dried down using vacuum centrifugation. Prior to enrich-
ment, antibody beadswere washed 4xwith IAP buffer (5mMMOPS pH
7.2, 1mM sodium phosphate [dibasic], 5mM NaCl). Peptides were
reconstituted with 1.4mL IAP buffer per fraction, added to washed
beads, and incubated for 2 h at 4 °C. Bead-bound acetyl-enriched
peptides were washed 4× with ice-cold PBS followed by two elutions
with 100 µL 0.15% TFA. Eluents were desalted using C18 stage tips,
eluted with 50% ACN/0.1% FA, and dried down using vacuum cen-
trifugation. Acetylpeptides were reconstituted in 7 µL of 3% ACN/0.1%
FA and 4 µL was injected from each of the 4 fractions for LC-MS/MS
analysis.

LC-MS/MS data acquisition of LUAD samples processed
by MONTE
Online separation was done with a nanoflow Proxeon EASY-nLC 1200
UHPLC system (ThermoFisher Scientific). In this set up, the LC system,
column, and platinumwire used to deliver electrospray source voltage
were connected via a stainless steel cross (360mm, IDEX Health &
Science, UH-906x). The column was heated to 50 °C using a column
heater sleeve (Phoenix-ST). Each sample was injected onto an in-house
packed 27 cm× 75 µm internal diameter C18 silica picofrit capillary
column (1.9mm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH,
r119.aq; Picofrit 10 µm tip opening, New Objective, PF360-75-10-N-5).
Mobile phase flow rate was 200 nL/min, comprising 3% acetonitrile/
0.1% formic acid (Solvent A) and 90% acetonitrile/0.1% formic acid
(Solvent B). The same LC and column setup were used for ubiquity-
lome, proteome, phosphoproteome, and acetylproteome analyses.
Each LC-MS/MS method consisted of a 10min column-equilibration
procedure, a 20min sample-loading procedure, and the following
gradient profiles (min:%B): ubiquitylome (154min) = 0:2, 2:6, 122:35,
130:60, 133:90, 143:90, 144:50, 154:50; proteome/phosphoproteome
(110min) = 0:2, 1:6, 85:30, 94:60, 95:90, 100:90, 101:50, 110:50; acet-
ylome (260min) = 0:2, 1:6, 235:30, 244:60, 245:90, 250:90, 251:50,
260:50. The flow rate of the last two steps of each gradient was
increased to 500 nL/min.

For ubiquitylome, proteome, phosphoproteome, and acet-
ylproteome analysis, samples were analyzedwith aOrbitrap Exploris
480 mass spectrometer(Thermo Fisher Scientific) with Xcalibur 4.0
equipped with a NanoSpray Flex NG ion source. Data-dependent
acquisition was performed using Orbitrap Exploris 480
V2.0 software in positive ion mode at a spray voltage of 1.8 kV.
MS1 spectra were measured with a resolution of 60,000, a normal-
ized AGC target of 300% for proteome/phosphoproteome and 100%
for ubiquitylome/acetylome, a maximum injection time of 10ms,
and a mass range from 350 to 1800 m/z. The data-dependent mode
cycle was set to trigger MS/MS on up to the top 20 most abundant
precursors per cycle at an MS2 resolution of 45,000, an AGC target
of 30% for proteome/phosphoproteome and 50% for ubiquitylome/
acetylome, an isolation window of 0.7m/z, a maximum injection
time of 105ms for proteome/phosphoproteome and 120ms for
ubiquitylome/acetylome, and an HCD collision energy of 34%. Pep-
tides that triggered MS/MS scans were dynamically excluded from
further MS/MS scans for 20 s in proteome/phosphoproteome/ubi-
quitylome and for 30 s in acetylome, with a ±10 ppmmass tolerance.
Theoretical precursor envelope fit filter was enabled with a fit
threshold of 50% and window of 1.2m/z. Monoisotopic peak deter-
mination was set to peptide and charge state screening was enabled
to only include precursor charge states 2–6 with an intensity
threshold of 5.0e3. Advanced peak determination (APD) was

enabled. “Perform dependent scan on single charge state per pre-
cursor only” was disabled.

LUAD MONTE LC-MS/MS data interpretation
MS/MS spectra from all ‘omes were interpreted using Spectrum Mill
(SM) v 7.08 (proteomics.broadinstitute.org) to provide identification
and relative quantitation at the protein, peptide, and PTM-site (ubi-
quityl, phospho, and acetyl) site levels.

Variant calls
Individual variant/indel.vcf files for each of the 10 LUADpatients in this
study were extracted from the CPTAC Pancancer Harmonized Callset
v1.1 which is the harmonized result of processing whole exome
sequencing data from 10 CPTAC cancer cohorts independently
through the variant calling pipelines of the Getz laboratory at the
Broad Institute and the Ding laboratory atWashington University in St
Louis. The Getz laboratory pipeline consists of GATK (v4.1.4.1) for DNA
sequence data quality control and somatic copy number analysis,
MuTect57 Manta+Strelka v285,86 for discovery of somatic and germline
SNVs and INDELs, DeTiN v1.8.987 and GATK4 Funcotator ver GATK
4.1.4.1 for post-discovery filtering followed by merging of adjacent
somatic SNPs into DNPs, TNPs, and ONPs. The Ding laboratory
employed the Somaticwrapper pipeline v1.6 (https://github.com/ding-
lab/somaticwrapper), which includes four different callers: Strelka
v.285,88, MUTECT v1.757, VarScan v.2.3.889, and Pindel v.0.2.590. Rare
mutations with VAF of [0.015, 0.05) in cancer driver genes were res-
cued based on the gene consensus list reported by Bailey et al.91.
COCOON (https://github.com/ding-lab/COCOONS) was used to com-
bine adjacent SNVs into DNPs.

Personalized sequence database
For searching with LC-MS/MS datasets from all ‘omes, we generated a
personalized protein sequence database starting with a base human
reference proteome to which we appended somatic and germline
variants and indels for each of the 10 LUAD patients. The base pro-
teome consisted of the human reference proteome Gencode 34
(ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_34/)
with 47,429 non-redundant protein coding transcript biotypes map-
ped to thehuman reference genomeGRCh38, 602 common laboratory
contaminants, 2043 curated smORFs (lncRNA and uORFs), 237,427
novel unannotated ORFs (nuORFs) supported by ribosomal profiling
nuORF DB v1.052, and 4,167 TCGA shared mutations from 26 tumor
types (https://www.cancer.gov/tcga) for a total of 355,028 entries
which yield 16,973,937 distinct 9-mers. The nuORFs alone yield
8,612,372 distinct 9-mers and thus increase the peptide search space
by only a factor of ~2. The personalized protein sequence entries were
prepared by processing each individual patient’s somatic and germline
variant calls from whole exome sequencing data, described above,
using QUILTS v357–59 with no further variant quality filtering using a
Ensembl v100 reference proteome and reference genome for
sequence identifiers consistent with the variant calling. Gencode v34 is
a contemporaneous subset of Ensembl v100 (March 2020). Using the
SM Protein Database utilities, the base reference proteome and indi-
vidual patient proteomes were combined and redundancy removed to
produce a cohort-level protein sequence database and a variant sum-
mary table to enable subsequent mapping of sequence variants iden-
tified in TMT-multiplexed LC-MS/MS datasets back to individual
patients.

Spectrum quality filtering
Using the SM Data Extractor module for HLA-I and HLA-II immuno-
peptidomes, spectral merging was disabled, the precursor MH+
inclusion range was 600–4000, and the spectral quality filter was a
sequence tag length >1 (i.e., minimum of three peaks separated by the
in-chain masses of two consecutive amino acids). For non-HLA ‘omes,
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similar MS/MS spectra with the same precursor m/z acquired in the
same chromatographic peak were merged, the precursor MH+
inclusion range was 800–6000, and the spectral quality filter was a
sequence tag length > 0.

MS/MS search conditions
Parameters for the SM MS/MS search module for HLA-I and HLA-II
immunopeptidomes included: no enzyme specificity; precursor and
productmass tolerance of ±10 ppm;minimummatched peak intensity
of 30%; ESI-QEXACTIVE-HCD-HLA-v3 scoring; fixed modification: car-
bamidomethylation of cysteine; variable modifications: cysteinylation
of cysteine, oxidation of methionine, deamidation of asparagine,
acetylation of protein N-termini, and pyroglutamic acid at peptide
N-terminal glutamine; and precursormass shift range of −18 to 81 Da. A
second round search of remaining unassigned spectra was done with
revised variable modifications to also allow for acetylation of lysine
and phosphorylation of serine, threonine, and tyrosine with a pre-
cursor MH+ shift range of −18 to 125Da.

For non-HLA ‘omes, parameters included: “trypsin allow P”
enzyme specificity with up to 4 missed cleavages, precursor and pro-
duct mass tolerance of ±20 ppm, and 30% minimum matched peak
intensity (40% for acetylome). Scoring parameters were ESI-QEX-
ACTIVE- HCD-v2 for whole proteome datasets and ESI-QEXACTIVE-
HCD-v3 for phosphoproteome, acetylome, and ubiquitylome datasets.
Allowed fixed modifications included carbamidomethylation of
cysteine and selenocysteine. TMT labeling was required at lysine, but
peptide N-termini were allowed to be either labeled or unlabeled.
Allowed variable modifications for whole proteome datasets were
acetylation of protein N-termini, oxidized methionine, deamidation of
asparagine, hydroxylation of proline in PG motifs, pyro-glutamic acid
at peptide N-terminal glutamine, and pyro-carbamidomethylation at
peptideN-terminal cysteinewith a precursorMH+ shift range of −18 to
97Da. For all PTM-omes, variable modifications were revised to omit
hydroxylation of proline and allow deamidation only in NGmotifs. The
phosphoproteome was revised to allow phosphorylation of serine,
threonine, and tyrosine with a precursor MH+ shift range of −18 to
272Da. The acetylome was revised to allow acetylation of lysine with a
precursor MH+ shift range of −400 to 70Da. The ubiquitylome was
revised to allow diglycine modification of lysine with a precursor
MH+ shift range of −375 to 70Da.

PTM site localization
Using the SM Autovalidation and Protein/Peptide Summary modules,
the PTM-ome dataset results were filtered and reported at the ubi-
quityl, phospho, and acetyl site levels. When calculating scores at the
variable modification (VM) site level and reporting the identified VM
sites, redundancy was addressed in SM as follows: a VM site table was
assembled with columns for individual TMT-plex experiments and
rows for individual VM sites. PSMswere combined into a single row for
all non-conflicting observations of a particular VM site (e.g., different
missed cleavage forms, different precursor charges, confident and
ambiguous localizations, and different sample-handling modifica-
tions). For related peptides, neither observations with a different
number of VM sites nor different confident localizations were allowed
to be combined. Selecting the representative peptide for a VM site
from the combined observations was done such that once confident
VM site localization was established, higher identification scores and
longer peptide lengths were preferred.While an SM PSM identification
score was based on the number of matching peaks, their ion type
assignment, and the relative height of unmatched peaks, the VM site
localization score was the difference in identification score between
the top two localizations. The score threshold for confident localiza-
tion, >1.1, corresponded to at least 1 b- or y-ion located between two
candidate sites that has a peak height > 10% of the tallest fragment ion
(neutral losses of phosphate from the precursor and related ions as

well as immonium and TMT reporter ions were excluded from the
relative height calculation). The ion type scores for b-H3PO4, y-H3PO4,
b-H2O, and y-H2O ion types were all set to 0.5. This prevented inap-
propriate confident localization assignment when a spectrum lacked
primary b- or y-ions between two possible sites but contained ions that
could be assigned as either phosphate-loss ions for one localization or
water-loss ions for another localization.

Protein grouping of PSMs, peptides, and PTM sites
Using the SM Autovalidation and Protein/Peptide summary modules,
results were filtered and reported at the protein level. Identified pro-
teins were combined into the same protein group if they shared a
peptide with sequence length >8. A protein group could be expanded
into subgroups (isoforms or family members) when distinct peptides
were present that uniquely represent a subset of the proteins in a
group. For the proteome dataset, the protein grouping method
“expand subgroups, top uses shared” (SGT) was employed, which
allocates peptides shared by protein subgroups only to the highest
scoring subgroup containing the peptide. For the PTM-ome datasets,
the protein grouping method “unexpand subgroups” was employed,
which reports a VM site only once per protein group allocated to the
highest scoring subgroup containing the representative peptide. The
SM protein score is the sum of the scores of distinct peptides. A dis-
tinct peptide is the single highest scoring instance of a peptide
detected through anMS/MS spectrum.MS/MS spectra for a particular
peptide may have been recorded multiple times (e.g., as different
precursor charge states, in adjacent bRP fractions, modified by dea-
midation at Asn or oxidation of Met, or with different phosphosite
localization), but are still counted as a single distinct peptide.

Peptide-spectrum match filtering and false discovery rates
Using the SM Autovalidation module, peptide-spectrum matches
(PSMs) for individual spectra were confidently assigned by applying
target-decoy based FDR estimation to achieve <1.0% FDR at the PSM,
peptide, VM site, and protein levels. For HLA-I and -II immunopepti-
domes, PSM-level thresholding was done with a minimum peptide
length of 7, minimum backbone cleavage score of 5, and <1.0% FDR
across all three fractions. Allowed precursor charges were HLA-I: 1–4,
HLA-II: 2–6. Immunopeptidomics data were further filtered to remove
non-human contaminants, peptides that match peptides identified in
blank bead negative control IPs7,8, and tryptic contaminant peptides.
Phospho and acetyl HLA peptides were quality filtered to include
matches with scores >6 and scored peak intensity >60%; HLA-I data
included only 8–11mers.

For the whole proteome dataset, thresholding was done in three
steps: at the PSM level, at the protein level for each TMT-plex, and at
the protein level for the cohort of two TMT-plexes obtained with and
without initial HLA IP. For the PTM-omes (ubiquitylome, phospho-
proteome, and acetylome), dataset thresholding was done in two
steps: at the PSM level for each TMT-plex and at the VM site level for
the cohort of two TMT-plexes. In step 1 for all datasets, PSM-level
autovalidation was done first and separately for each TMT-plex
experiment using an auto-thresholds strategy with a minimum
sequence length of 7, automatic variable range precursor mass filter-
ing, and with score and delta Rank1-Rank2 score thresholds optimized
to yield a PSM-level FDR estimate for precursor charges 2–4 of <0.8%
for each precursor charge state in each LC-MS/MS run. To achieve
reasonable statistics for precursor charges 5–6, thresholds were opti-
mized to yield a PSM-level FDR estimate of <0.4% across all runs per
TMT-plex experiment (instead of per each run), since many fewer
spectra are generated for the higher charge states.

In step 2 for the PTM-ome datasets, VM site polishing auto-
validation was applied across both TMT-plexes to retain all VM site
identifications with either aminimum ID score of 8.0 or observation in
both TMT-plexes. The intention of the VM site polishing step is to
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control FDR by eliminating unreliable VM site–level identifications,
particularly low-scoring VM sites that are only detected as low-scoring
peptides that are also infrequently detected across both TMT-plexes in
the study. Using the SMProtein/Peptide Summarymodule tomake VM
site reports, the ubiqiuitylome and acetylome datasets were further
filtered to removepeptides endingwith the regular expression [^K][^K]
k since trypsin and Lys-C cannot cleave at a ubiquitylated or acetylated
lysine. The [^K] means retain if unmodified Lys present in one of the
last two positions to allow for amissed cleavage with ambiguous PTM-
site localization.

In step 2 for the whole proteome dataset, protein polishing
autovalidation was applied separately to each TMT-plex experiment
to further filter the PSMs using a target protein–level FDR threshold
of zero. The primary goal of this step was to eliminate peptides
identified with low-scoring PSMs that represent proteins identified
by a single peptide, so-called “one-hit wonders.” After assembling
protein groups from the autovalidated PSMs, protein polishing
determined themaximumprotein level score of a protein group that
consisted entirely of distinct peptides estimated to be false-positive
identifications (PSMs with negative delta forward-reverse scores).
PSMs were removed from the set obtained in the initial peptide level
autovalidation step if they contributed to protein groups that had
protein scores below themaximum false-positive protein score. Step
3 was then applied, consisting of protein polishing autovalidation
across both TMT-plexes together using the protein groupingmethod
“expand subgroups, top uses shared” to retain protein subgroups
with either a minimum protein score of 25 or observation in both
TMT-plexes. The primary goal of this step was to eliminate low-
scoring proteins that were infrequently detected in the sample
cohort. As a consequence of these two protein polishing steps, each
identifiedprotein reported in the study comprisedmultiple peptides,
unless a single excellently scoring peptide was the sole match and
that peptide was observed in both TMT-plexes.

FDR filtering for neoantigens, nuORFs, and somatic variants
All MS/MS spectra of neoantigens were manually inspected and
labeled spectra areprovided in Fig. 5D andSupplementary Fig. 6.While
the aggregate FDR for each dataset was set to <1%, as described above,
FDR for certain subsets of rarely observed classes (<5% of total) of
peptides, PTM sites, and proteins required more stringent score
thresholding to reach a suitable subset-specific FDR < 1.0%. To this
end, we devised and applied subset-specific filtering approaches.

Subsets of nuORF types were thresholded independently in the
HLA and PTM-ome datasets using a two-step approach. First, PSM
scoring metric thresholds were tightened in a fixed manner for all
nuORF PSMs so that nuORF distributions for each metric improved to
meet or exceed the aggregate distributions. For all ‘omes, the fixed
thresholds were: minimum score: 7, minimum percent scored peak
intensity: 50%, precursor mass error: ± <5 ppm. For HLA ‘omes, mini-
mumbackbone cleavage score (BCS): 5, sequence length: 8–12 (HLA-I),
9–50 (HLA-II). For PTM-omes, these fixed thresholds were: minimum
score: 7,minimumbackbone cleavage score (BCS): 4, sequence length:
7–50. Second, individual nuORF type subsets with FDR estimates
remaining above 1% were further subject to a grid search to determine
the lowest values of BCS (sequence coverage metric) and score (frag-
ment ion assignment metric) that improved FDR to <1% for each ORF
type in the dataset for each ‘ome.

The subset of peptides containing single amino acid variants
(SAAVs) and indels observed in theproteomewas extracted after step 1
of PSM filtering described above using the SM Protein/Peptide Sum-
mary module to create a proteogenomics (PG) site report with quan-
titation normalized to nullify the effect of differential protein loading
using the aggregate protein-level normalization factors from the fully
filtered proteome dataset. The PG site report was manually filtered to

the final subset of somatic SAAVs and indels by retaining those in
which the TMT ratios were extremely high only for the patients in
which the corresponding SNV or indel was observed.

Quantitation using TMT ratios
Using the SMProtein/Peptide Summarymodule, a protein comparison
report was generated for the proteome dataset using the protein
grouping method “expand subgroups, top uses shared” (SGT). For the
PTM-ome datasets—ubiquitylome, phosphoproteome, and acetylome
—VM site comparison reports limited to either ubiquityl, phospho, or
acetyl sites, respectively, were generated using the protein grouping
method “unexpand subgroups.” Relative abundances of proteins and
VM sites were determined in SM using TMT reporter ion log2 intensity
ratios from each PSM. TMT reporter ion intensities were corrected for
isotopic impurities in the SM Protein/Peptide Summary module using
the afRICA correction method, which implements determinant calcu-
lations according to Cramer’s Rule and correction factors obtained
from the reagent manufacturer’s certificate of analysis (https://www.
thermofisher.com/order/catalog/product/90406) for TMT-10 lot
number UA280170. Eachprotein-level or PTM site–level TMT ratio was
calculated as the median of all PSM-level ratios contributing to a pro-
tein subgroup or PTM site. PSMs were excluded from the calculation if
they lacked a TMT label, had a precursor ion purity <50% (MS/MS has
significant precursor isolation contamination from co-eluting pep-
tides), or had a negative delta forward-reverse identification score (half
of all false-positive identifications). Using the SM Process Report
module, non-quantifiable proteins and PTM sites (e.g., unlabeled
peptides containing an acetylated protein N-terminus and ending in
arginine rather than lysine) were removed and median/MAD normal-
ization was performed on each TMT channel in each ‘ome to center
and scale the aggregate distribution of protein-level or PTM site–level
log ratios around zero in order to nullify the effect of differential
protein loading and/or systematic MS variation. Within subsets of an
‘ome (e.g., nuORFs or SAAVs), the TMT ratios were normalized using
the normalization factors for the aggregate distribution of the
corresponding ‘ome.

HLA peptide prediction using HLAthena
HLA peptide prediction was performed using HLAthena8. Unless
otherwise specified, peptides were assigned to an allele using a per-
centile rank cutoff ≤ 0.5.

Synthetic peptide analysis of LC-MS/MS detected neoantigens
Synthetic peptides were purchased from Vivitide, LLC (Gardner, MA)
for the MS/MS spectra comparisons shown in Supplementary Fig. 6.
Synthetic peptides were analyzed at 10, 50, and 100 fmol/µL without
background and at 5 fmol/µL spiked into an HLA-I immunopurifica-
tion of 25million A375 cells that was prepared and analyzed using the
methods described above with the following deviations. The syn-
thetic peptide data were collected on a Orbitrap Exploris 480 mass
spectrometer(Thermo Fisher Scientific) equipped with a NanoSpray
Flex NG ion source. All experimental and synthetic peptides had a
similar abundance with the exception of ISNDLYLTL that was an
order of magnitude lower in intensity when compared to the
synthetic.

Retention Time Prediction using DeepLC
The retention times of HLA-I peptides were predicted using DeepLC92

and compared to the measured retention times in Supplemen-
tary Fig. 5.

Principal component analysis (PCA) using ProTIGY
The PCA analysis shown in Fig. 4 were generated using ProTIGY,
v0.9.1.3. (https://github.com/broadinstitute/protigy).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original mass spectra and the protein sequence database used for
searches have been deposited in the public proteomics repository
MassIVE (http://massive.ucsd.edu) and are accessible under the
accession code MSV000090437. The published LUAD discovery
dataset14 can be found on the CPTAC program website, which details
program initiatives, investigators, and datasets at https://proteomics.
cancer.gov/programs/cptac. Specifically, the proteomic data can be
found in the public proteomics repository MassIVE (http://massive.
ucsd.edu) and are accessible under the accession code
MSV000086793. The genomic data can be found at the Genomic Data
Commons (https://portal.gdc.cancer.gov/) via dbGaP Study Accession
phs001287.v5.p4. The analyzed LUAD discovery sample annotations,
processed and normalized data files are provided as Tables S1–S3 in
ref. 14. Source data are provided with this paper.
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