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Comparative analysis of dimension reduc-
tion methods for cytometry by time-of-
flight data

Kaiwen Wang 1, Yuqiu Yang 1,2, Fangjiang Wu 2, Bing Song 2,
Xinlei Wang 1,3,5,6 & Tao Wang 2,4,6

While experimental and informatic techniques around single cell sequencing
(scRNA-seq) are advanced, research around mass cytometry (CyTOF) data
analysis has severely lagged behind. CyTOF data are notably different from
scRNA-seq data inmany aspects. This calls for the evaluation anddevelopment
of computational methods specific for CyTOF data. Dimension reduction (DR)
is one of the critical steps of single cell data analysis. Here, we benchmark the
performances of 21 DRmethods on 110 real and 425 synthetic CyTOF samples.
We find that less well-known methods like SAUCIE, SQuaD-MDS, and scvis are
the overall best performers. In particular, SAUCIE and scvis are well balanced,
SQuaD-MDS excels at structure preservation, whereas UMAP has great
downstream analysis performance. We also find that t-SNE (along with SQuad-
MDS/t-SNE Hybrid) possesses the best local structure preservation. Never-
theless, there is a high level of complementarity between these tools, so the
choice of method should depend on the underlying data structure and the
analytical needs.

Recently developed single cell profiling technologies hold the promise
to provide critical insights into the cellular heterogeneity in tissues of
various biological conditions, developmental trajectories of single
cells, and how cells communicate with each other. Researchers in the
field of genomics and proteomics have separately developed single
cell profiling technologies, mainly single cell RNA-sequencing (scRNA-
seq) and flow cytometry, and their variants. Mass cytometry1–4, or
CyTOF (Fluidigm), is a recent variation of flow cytometry, in which
antibodies are labeled with heavy metal ion tags rather than fluor-
ochromes. CyTOF captures much higher numbers of protein markers,
compared with traditional flow cytometry, and has minimum spillover
effect, unlike regular flow cytometry5. Compared with scRNA-seq,
CyTOF profiles the proteomics makeup of the single cells and is more
relevant for understanding clinical phenotypes than scRNA-seq.

CyTOF can additionally capture post-translational modifications6,
which is beyond the reach of scRNA-seq. CyTOF is becoming increas-
ingly popular, at an exponential rate similar to scRNA-seq (Supple-
mentary Fig. 1).

There are key differences between CyTOF and scRNA-seq data,
which makes it questionable to directly translate scRNA-seq analytical
methods for use on CyTOF data. For example, scRNA-seq usually
profiles several thousand genes’ RNA expression for several thousand
cells, while CyTOF can profile up to 120 proteins’ expression for
potentially 10 to 100 timesmore cells. The largenumber of cells enable
CyTOF to capture the rare populations that may be missed by scRNA-
seq data. CyTOF data uniquely suffers from time-dependent signal
drift during the generation of data by the CyTOF machine. But CyTOF
ismostly free from the drop-out issue that is commonly seen in scRNA-
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seq data7–9. Furthermore, while scRNA-seq data are integer count
observations, CyTOF data are often regarded as continuous observa-
tions (despite that raw CyTOF data are still counts, but have a much
larger range than those of scRNA-seq and will be preprocessed in
various steps, which loses their discrete count nature). On the other
hand, more and more studies are now trying to generate matched
CyTOF and scRNA-seq data for the single cells from the same research
subjects10–12. These two data types are of different nature, and thus are
highly complementary with each other. Therefore, analysis processes
should verify that findings and conclusions generated from combining
CyTOF and scRNA-seq data are consistent/concordant. Unfortunately,
these issues have not been addressed thoroughly by researchers,
resulting in difficulties for valid interpretation of CyTOF data.

The first step of single cell data analysis is data exploration, which
is usually achieved through Dimension Reduction (DR), and followed
by visualization, clustering, cell type assignment, differential expres-
sion analyses, etc. Proper DR is fundamental to all downstream ana-
lyses. For example, if DR incorrectly places some cells in the wrong
place in the reduced space, these cells could bemistakenly labeled as a
“new” differentiation stage of another irrelevant cell type instead of
their actual cell types. Traditional linear DR algorithms such as Prin-
cipal Component Analyses have existed for decades. With the rise of
scRNA-seq, numerous new DR algorithms, such as tSNE13, UMAP14,
SAUCIE15, ZIFA16, PHATE17, scvis18, Diffusion mapp19, and SQuaD-MDS20

have been developed or applied to capture the complicated non-linear
relationships in the high-dimensional data. However, it’s unclearwhich
of these DR methods is the best for CyTOF. Researchers have focused
on benchmarking DR methods for scRNA-seq data in previous
works21,22. However, the best DR methods for scRNA-seq data may not
necessarily extrapolate to CyTOF.

To fill in this void, we review 24 two-dimensional DR
methods (Supplementary Data 1) and systematically compare the
performances of 21 DR methods for CyTOF, based on 110 real and
425 simulated samples. To the best of our knowledge, this is the first
study that has comprehensively reviewed and benchmarked DR
methods for CyTOF data. We also include 10 Imaging CyTOF/mass
cytometry (IMC) samples23, which is an expansion of mass cytometry
that enables the capturing of the spatial information of the cells
(Supplementary Fig. 2). Overall, our results rebut the common thinking
in the field that tSNE and UMAP, the top performers for scRNA-seq
data, are also optimal for CyTOF data. We find significant com-
plementarity between DR tools, and we postulate that the choice
of method should depend on the underlying data structure and
the analytical needs. Our evaluation highlights some challenges for
current methods, and our evaluation strategy can be useful to spear-
head the development of new tools that effectively perform DR for
CyTOF data.

Results
Overall study design
We collected a total of 24 DR methods published by various
researchers (Supplementary Data 1, and Fig. 1a), including those
general-purpose DR methods and those developed specifically for
single cell type of data. Among these methods, 21 were practically
executable. We benchmarked them on a total of 110 real CyTOF sam-
ples from 11 studies (Fig. 1b, and Supplementary Data 2), including
both peripheral blood and solid tissues, and also 425 simulated CyTOF
samples of diverse characteristics, using our Cytomulate algorithm24

(Fig. 1c). Real data samples range from 5024 to 604,081 cells and from
13 to 41 protein channels. For simulation datasets, we systematically
varied the parameters, resulting in cell counts from 10,000 to
600,000 and protein channels from 30 to 60. Following the recom-
mendations by its authors, scvis was benchmarked using subsampled
CyTOF data for training the neural network. However, we also chose to
test scvis (Full) by using full CyTOF samples.

For scoring the accuracy of theDRmethods, we chose a total of 16
metrics in 4 main categories, characterizing different aspects of the
performances of the DR methods. These 4 main categories are (1)
global structure preservation, (2) local structure preservation, (3)
downstream analysis performance, and (4) concordance of DR results
withmatched scRNA data.We provided a detailed description of these
metrics in Supplementary Data 3 and the “Method” section. Some of
the most important metrics were visually demonstrated in Fig. 1d. In
our study, the DR methods were assessed and ranked mainly by these
metrics focusing on the accuracy. But we also assessed and reported
their scalability with respect to the number of cells and protein mar-
kers, stability of the DR after re-sampling the datasets and also para-
meter tuning; and the usability of the tools in terms of software and
documentation (Fig. 1a, and Supplementary Data 3). More details
about each assessment criterion will be given later. Employment of a
similar set of metrics has also been adopted in other bioinformatics
benchmark studies, such as Huang et al.22 and Saelens et al.25.

To operationalize our benchmarking framework, we gathered
both publicly available and in house real datasets (Supplementary
Data 2), which provided a gold standard in terms of biological impli-
cations, and also generated synthetic datasets, which offer the most
comprehensive and controllable coverage of different characteristics
of CyTOF data. These real datasets come from a variety of organisms,
dynamic processes, and types of trajectory topologies. In particular,
while CyTOF has been applied for peripheral blood by immunologists
mostly, we included CyTOF data from solid tissue experiments. In our
real datasets, we also included 10 Imaging CyTOF datasets from one
cohort created on breast cancer tissues (the BC cohort of Supple-
mentary Data 2). For simulation of CyTOF data, we developed
Cytomulate24 (“Method” section), which to the best of our knowledge is
the first formal simulation tool that is able to well mimic the behaviors
of CyTOF data for general-purpose usage. Prior works, like LAMBDA26,
have created specialized procedures to generate simulated CyTOF
data in the context of model-based clustering. Such ad hoc simulation
procedures cannot be used to test methods developed for other pur-
poses (e.g. DR), whereas Cytomulate aims to support all facets of
CyTOF research and methodological development with flexibility.

We also developed the CyTOF DR Playground webserver to help
future users of DR methods visualize our benchmark results of these
535CyTOFdatasets, and choose the optimal DRmethods for their own
datasets (Fig. 1e). This app allows users to query the results of this
evaluation study, including filtering of datasets and customized
selection of evaluation metrics for final ranking. We also offer our
unified implementation pipeline for homogenized input/output of the
DR methods and the benchmark metrics (Fig. 1e, CyTOF DR Package),
so that future users can easily execute DR and the benchmark metrics
for their owndata.Users can refer toCyTOFDRPackage andCyTOFDR
Playground to decide the best DRmethod for their datasets of interest
(Fig. 1f and Supplementary Note 1). The user can either take a data-
driven approach to run their dataset through all chosen DR methods
based on their chosen evaluationmetrics using CyTOF DR Package. Or
the user can choose a prior-knowledge driven approach to query the
best DR method from CyTOF DR Playground and make decisions
based on similarity of the characteristics of their CyTOF dataset with
those of the datasets we evaluated in this study. As another important
deliverable of our work, we also packaged our CyTOF data simulation
algorithm into Cytomulate, and shared it through cytomulate.r-
eadthedocs.io (Fig. 1e) for researchers to performother CyTOF-related
research.

Accuracy of DR methods
We found that the topmethods in terms of accuracy depend highly on
the real CyTOF datasets and their characteristics, such as their tissue
and disease types, suggesting the lack of a uniformly most accurate
method that fits the need for all users with any CyTOF datasets (Fig. 2
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Fig. 1 | Overview of several key aspects of this benchmark study. a The datasets,
DR methods, validation metrics, and deliverables of this study. b Synopsis of the
real CyTOF datasets used for evaluation in this study. Elements in this panel were
created with BioRender.com. c The simulation algorithm for CyTOF data.
d Diagrams explaining several of the most important validation metrics in the
accuracy category. Elements in this panel were created with BioRender.com.
eDeliverables of this study, including, a complete set of guidelines for choosing DR

methods based on data characteristics and user preferences (CyTOF DR Play-
ground), our streamlined pipeline for implementation of the DR methods and
evaluation metrics (CyTOF DR Package), and the Cytomulate tool. f A complete set
of guidelines for users of DR methods to choose the best method for their CyTOF
data. Elements in this panel were created with BioRender.com. The R logo was
licensed under CC-BY-SA 4.0 by The R Foundation (https://www.r-project.org/
logo/).
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and Fig. 3a; the meanings of the accuracy metric abbreviations are
provided in Supplementary Data 3). The differences of the top DR
methods in terms of ranking is particularly obvious across different
cohorts. UMAP is one of the best DRmethods for scRNA-seq data, and
UMAP also performed decently well on CyTOF data (Fig. 3a). But it is
somewhat surprising that less well-known or less used methods, such
as SAUCIE, SQuaD-MDS Hybrid, and scvis, out-performed UMAP on
many datasets (Wilcoxon Signed Rank Tests on overall accuracy:
SAUCIE-UMAP FDR<2:07× 10�9, SQuaD-MDS Hybrid-UMAP
FDR<10�15, and scvis-UMAP FDR≈0:0084). tSNE and DiffMap are also
popular scRNA-seq DR methods. On CyTOF data, tSNE’s performance
is good with particularly strong performance in the Breast cancer (BC)
Imaging CyTOF cohort, but lags slightly behind topmethods in others.
DiffMap is one of the bottom-rankingmethods for CyTOF data. On the
Covid CyTOF datasets, PHATE is surprisingly one of the leading
methods along with UMAP.

We also examined the different categories of the accuracymetrics
and identified even stronger complementarity between the DR meth-
ods (Fig. 3b). For the purpose of this analysis, the performances of the
metrics on all real CyTOF samples were averaged. We found that
SAUCIE tends to perform generally well on most categories. SQuaD-
MDS is also good overall except for a few submetrics in the down-
stream analysis performance. Scvis and UMAP are better at down-
stream analysis needs involving clustering and cell type assignment
and achieving concordance with the matched scRNA-seq data via
gating concordance. tSNE and SQuad-MDS, the latter of which is based
on both MDS and tSNE, are unequivocally the strongest in local

performance and overall concordance with matched scRNA-seq data-
sets. PHATE also has decent performances on many metrics, but not
including global structure preservation, which is rather poor. Further,
there have been some hot debates regarding the global and local
structure preserving capabilities of tSNE and UMAP27,28. We found, in
the context of CyTOF data, tSNE is better at both global and local
structure preservation than UMAP (Wilcoxon Signed Rank Test
p≈ 1:23× 10�6 for global and p≈ 2:43× 10�5 for local), but they are
both inferior to SAUCIE in global structure preservation (Wilcoxon
Signed Rank Test p< 10�10 for both local and global comparisons
between SAUCIE and UMAP and tSNE). This seems to conform to the
results of Huang et al.22, who benchmarked several DR methods in
scRNA-seq data, and also found that the global preservation perfor-
mance of UMAP and tSNE is suboptimal. Finally, tSNE’s downstream
performance is mixed: while its RF and DBI metrics are favorable as
compared to other methods, it lags behind in terms of other down-
streammetrics. Thismixed result suggests that while local structure as
a strength for tSNE is important for some downstream tasks such as
classification, other characteristics of the embeddings play a role
as well.

To more accurately evaluate how the performances of the DR
methods vary as a function of the characteristics of the CyTOF data-
sets, we generated 425 simulated CyTOF datasets with the Cytomulate
tool. We varied the numbers of cells, protein markers, independent
cellular trajectories (#trees), and cell types in the simulated CyTOF
datasets. We benchmarked the accuracy of the DR methods on these
simulated data with the same criteria (Fig. 3c). The overall ranking of
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SAUCIE Python SAUCIE Single Cell No
SQuaD-MDS Hybrid Python SQuaD-MDS General No
scvis (Full) Python scvis scRNA Yes
UMAP Python umap-learn General/Single Cell Yes
scvis Python scvis scRNA Yes
tSNE (sklearn) Python sklearn General No
tSNE Python openTSNE General/Single Cell Yes
SQuaD-MDS Python SQuaD-MDS General No
PHATE Python phate Single Cell No
PCA Python sklearn General Yes
GrandPrix Python grandprix Single Cell No
Isomap Python sklearn General Yes
KPCA Poly Python sklearn General No
ICA Python sklearn General Yes
KPCA RBF Python sklearn General No
NMF Python sklearn General No
ZIFA Python ZIFA scRNA No
FA Python sklearn General No
DiffMap R destiny General/Single Cell No
LLE Python sklearn General Yes
Spectral Python sklearn General No

Fig. 2 | Overviewof themain results of this benchmark study. aTheDRmethods
reviewed in this study, their basic characteristics described in text, and their per-
formances in terms of accuracy, scalability, stability, and utility. Results for the real
and the simulation data were averaged for each of the four sub-categories. The DR
methods were ranked based on the overall accuracy, averaging across all four sub-
categories. All bars shown are calculated using ranks. Darker shaded bars within
each column correspond to the better performance and therefore longer bars.
Different colors are used to distinguish between different categories. Com-
plementarity of the DR methods, evaluated on the real+simulated CyTOF datasets

(b), the real CyTOF datasets (c), and the simulated datasets (d). We define com-
plementarity as the likelihood of obtaining a top-performing method for a given
dataset by choosing a specificDRmethod. The short vertical red lines represent the
baseline. The red points represent the resulting likelihood of obtaining a topmodel
by adding the best method that has not been previously added. The gray points
show the resulting likelihoods if othermethods are chosen insteadof the remaining
best one. Small random noises are added to the y-axis to differentiate the gray
points. Source data are provided as a Source Data file.
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the DR methods in the simulation data is mostly consistent with their
ranking in the real data (Supplementary Fig. 3). Most methods’ per-
formances increase as a function of the number of cells, except for
SAUCIE, which is mostly stable. Both tSNE variants and both scvis
versions are sensitive to cell types as their performances are better
withmore cell types.Mostmethods’ performances are relatively stable
with respect to the number of protein markers in the CyTOF data and
the number of independent cellular differentiation trajectories. One
exception is that both tSNE variants have decreased performances
when the number of trajectories is large.

The variability of the topmethods fromdifferent samples suggest
complementarity between the DR methods (Fig. 2b-d). To quantify
complementarity, we calculated the likelihood of obtaining a top DR
result by using an increasing set of top DR methods. In real and
simulated CyTOF data combined (Fig. 2b), we observed that using a
single method (SAUCIE) for DR of CyTOF data can only generate “top”
results ~30% of the time. Adding a secondmethod can guarantee a top
result ~45%of times, and top4methods yield 72%. Considering all top 7
methods together can lead to a close to 88% chance of obtaining a top
result. Analysis on the real CyTOF data (Fig. 2c) and the simulated
CyTOF data alone (Fig. 2d) also revealed strong complementarity
between these different DR methods. Consequently, our results pro-
vide good evidence that users should not adopt a one-and-done
approach. Instead, it is advisable to fit a number of topmethods to not
only maximize their likelihood of reproducing the original data more
accurately, but also make decisions based on the advantages of each
method tested (further summarized in the Discussion section) as an
ensemble approach.

Visual assessment of DR accuracy
Data visualization is an important downstream task contingent on DR.
We embedded the Levine32 cohort with five top and popular DR
methods in Fig. 4a. The scatter plot of cells in the DR space are shown
along with cell types and select metrics in terms of ranks. In Fig. 4a, we

chose to display three accuracy metrics for comparison purposes:
COR, KNN, and ARI, to represent the Global, Local, and Downstream
categories (more details in the “Methods” section and Supplementary
Data 3). The topmethods, in general, place the sameor related types of
cells in close proximity (e.g. CD8+ T Cells and CD4+ T cells), which is a
desirable characteristic overall. However, when examined in greater
details, SQuaD-MDS Hybrid and tSNE render some of the cell types
mixed and hard to distinguish from one another. These two methods
have superb local structure preservation, whichmay help explain their
placement of small clusters and the tight rendering of clusters, but
their downstream performance, which relies on distinguishing
between clusters and cell types, is not as impressive.

In light of its popularity and good downstream performance
across many datasets, UMAP was further compared with SAUCIE by
examining the different stages of B cells and several key marker genes
in this dataset. In Fig. 4b, the expression level of HLA.DR is highlighted
in both embeddings for the B cells. Previous research has shown that B
cells develop inmany stages andhavemoreof a continuous gradient in
cellular developmental progress, rather than discrete stages. HLA.DR
(as are other MHC class II genes) is an important marker of the pro-
gression of B cells through these different stages29,30. In the SAUCIE
embedding, HLA.DR-high B cells are clustered together towards the
left side, whereas UMAP placed these cells at three distinct places
pointing to different directions. Next, we examined CD22, which is a
surface molecule expressed early during the ontogeny of B cells31. We
found that B cells with high CD22 expressions are clustered towards
the bottom cluster in the SAUCIE embedding. However, these cells are
clustered at the outer rim of one of the clusters of cells in the UMAP
embedding, which is counterintuitive (Fig. 4c). A similar pattern could
be observed for CD19 (Fig. 4d). Finally, we examined CD45, which is
also an important marker of B cell development32. In the left panel of
Fig. 4e with SAUCIE embedding, the expression forms a continuous
gradient fromthebottom (highCD45) to the top (lowCD45). However,
in the UMAP embedding, the cluster that represents plasma B cells
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cates worse performance. All submetrics of the accuracy criterion were averaged.
“*” indicates that forced 10% downsampling was performed for training in the case
that the methods aborted because of sample size. “scvis” is always performed on
10% down-samples per authors’ recommendation. Small blue dot indicates error.
b The accuracy performances of the DR methods for each accuracy category.

Results for all real CyTOF datasets were averaged, and the results for each detailed
sub-metric of accuracy was shown. Orange color indicates better performance,
while blue color indicates worse performance. c The accuracy performances of the
DR methods on the simulated CyTOF data. The performances were visualized as a
function of the characteristics of the CyTOF datasets. Orange color indicates better
performance, while blue color indicates worse performance. All submetrics of the
accuracy criterion were averaged. “*” Indicates that 10% downsampling was per-
formed. Source data are provided as a Source Data file.
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(there are two small clusters above the big cluster on the right, the first
small cluster on the left) is separated from the rest of the B cells far
away, but has cells of both very high and very low expression of CD45,
which is not optimal. A more sensible embedding would cluster cells
with high CD45 from this small cluster together with other cells with
highCD45 in the big clusters. Alternatively, the small cluster as awhole
should be connected with other cells, rather than forming a separate
cluster.

B cell development forms a complicated continuous gradient,
supported by the gradient changes of the marker genes we showed in
Fig. 4b–e. SAUCIE’s embedding is more concordant with the current
literature showing a smooth continuum in theDR space.WhileUMAP’s
embedding with various clusters and elongated shapes may be more
visually attractive, SAUCIE seems to better capture the true underlying

biological processes. In fact, this case study suggests that DR for
CyTOF data is more nuanced than simple visual inspections. Rather,
empirical accuracymetrics combinedwith biological insights and side-
by-side comparisons as a holistic approach yield the most productive
use of DR results.

We conducted a second case study on the BC cohort, which
consists of imaging CyTOF samples. The various types of cells in the
tumor microenvironment should form a spatial gradient33. For exam-
ple, the tumor cells in one region could be more differentiated, and it
could become more and more de-differentiated when the tumor cells
grow towards another region. We calculated pairwise spatial distances
between cells from the same clusters. Then, we examined the corre-
lation between spatial distances between cells and the distances
between these same cells in terms of protein expression. Our rationale

Fig. 4 | Visualizing DR results for the Levine32 dataset. a Visualization of the DR
results of several top and popular methods on the Levine32 dataset, with cells
colored by their cell types. The COR, KNN and ARI accuracy metrics, for each
method,were also labeled beside eachplot.b, eVisualizationof theDR results from

SAUCIE and UMAP, for the B cells only. In each panel, the cells were colored by the
expression of HLA.DR (b), CD22 (c), CD19 (d), and CD45 (e). Red refers to higher
expression and yellow refers to lower expression. Source data are provided as a
Source Data file.
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is that if the DR space is more accurate, the clustering in the DR space
would be more likely to yield clusters that are indeed more homo-
geneous in terms of cell types. Then the correlation (spatial vs.
expression) would likely be higher, influenced more by the spatial
gradient in protein expression. But if the DR space is not accurate,
making the clustering also inaccurate, this correlationwill be confused
by the abrupt changes in protein expression due to the mixture of cell
types, and the correlation will be likely lower. Indeed, we found that
SAUCIE is overall the best, in terms of achieving the highest positive
correlation overall (Supplementary Note 1).

Scalability of DR methods
As one of CyTOF’s unique advantages over other sequencing-based
technologies, samples and cohorts often contain expressions of at
least half a million cells, and the throughput of data is likely to further
increase with development of the protocol and its rising popularity
among researchers. Depending on the limitations of algorithms and
their original purposes, not all methods are designed to handle such
large datasets at this scale efficiently or at all. We provide a discussion
on the theoretical efficiency and scalability of the top DR methods,
with respect to the sample size dimensionality of CyTOF datasets, in
Supplementary Discussion 1. To assess their scalability empirically, we
also benchmarked each method with respect to their runtime and
memory consumption using datasets up- and down-sampled from the
Oetjen cohort34 (Fig. 5a, b). Overall, runtime (Fig. 5a) and memory
usage (Fig. 5b) seem to be highly correlated overall (Spear-
man’s ρ =0:63).

In terms of both runtime and memory usage, we found that the
scalability of most methods was overall poor. Comparatively, SAUCIE,
FA, ICA, PCA, NMF aremost favorable in termsof runtime andmemory
usage in general. The most surprising result is SAUCIE’s efficiency, as
neural networks typically are computationally intensive. Inspecting its
architecture, we found that SAUCIE used a feedforward neural network
with 7 layers: a 3-layer encoder, an embedding layer, and a 3-layer
decode. This straightforward formulation ensures the efficiency of
SAUCIE. UMAP, tSNE, SQuaD-MDS, and SQuaD-MDS Hybrid are in the
next groupofmethodswith slightly less efficient–but still reasonable–
runtime and memory usage characteristics. The other methods are in
the third tier with up to ~100 times more consumption of runtime and
memory. The runtimes of these methods in our various experiments
can be as much as 12 h like scvis and thememory usage can be as large
as 700GB. Scvis scales poorly with numbers of cells in terms of run-
time. But its runtime plateaus with large numbers of cells at around
12 h. Curiously, scvis’s memory consumption is low, and very com-
parable with the first tier of methods (SAUCIE, etc).

Due to the scalability issue of many of these methods, sub-
sampling the whole CyTOF datasets is sometimes necessary for some
of these DR methods. For example, a number of methods, including
Diffmap, Isomap, KPCA Poly/RBF, LLE, and Spectral, all tend to abort
with increasing sample sizes. On the other hand, the original publica-
tions of some DR methods (e.g. scvis, UMAP, and PHATE) have
demonstrated the robustness of their results with regard to sub-
sampling. For the purpose of observing the overall cell state space of
the cells (such as major cell populations and their relationships),
subsampling, up to a certain extent, will probably not negatively
impact the conclusions to be drawn. But all downstream analyses will
have to be limited to the subsampled cells and rare cell populations
may be missed in the down-sampled subset, which is the detrimental
effect of subsampling. So whether to adopt subsampling or not also
depends on the purpose of the analyses.

To address the scalability issue encountered while benchmarking
the accuracy of DR methods, we took a two-pronged approach in our
benchmark studies. For all accuracy benchmarks (e.g. results in Figs. 2
and 3), we did not allow subsampling unless a given method has a
mapping function to produce an embedding with all cells. Under this

setting, LLE and Isomap were the only methods that needed to
downsample and had the capability ofmapping newdata: we used 10%
subsampled data in select samples if they aborted on original samples,
and the rest of the data were mapped onto the embedding for eva-
luation. For other inefficient methods without a mapping function, we
scored these methods as NAs when they aborted, so that there would
be no bias in our evaluationdue to sample size differences. In addition,
we conducted a separate benchmark to evaluate the performance of
DR methods on all subsampled data. We found that the results are
nearly identical to our main findings (Supplementary Note 1). The
exact sampling mechanism and evaluation procedure with sub-
sampling are detailed in the “Method” section. One exception to the
aforementioned downsampling scheme is the inclusion of both scvis
and scvis (Full) in our benchmarks. As recommendedby its authors,we
evaluated scvis on both the full CyTOF datasets and also down-
sampled datasets with the mapping function.

Given the multitudes of implementations and optimizations of
tSNE13,35–37, we tested and observed that different tSNE implementa-
tions can have as much as a 10-fold difference for large samples
(Fig. 5a). Specifically, our reference implementation with fast Fourier
transform (FFT) as implemented by openTSNE (named tSNE in this
work unless otherwise noted), which is a relatively recent develop-
ment, vastly outperforms the standard Sklearn version using the
Barnes-Hut (BH) algorithm as sample sizes grow. Investigating further
with more popular tSNE implementations, we again observed the
overall runtime advantage of the FFT variants from “tSNE” and “tSNE
(FIt-SNE Original)” (Supplementary Fig. 4). Surprisingly, the BH
implementation from openTSNE outperforms all other implementa-
tions when sample sizes are small, while falling not far behind the FFT
tier for large samples. With the large sample sizes of CyTOF data, it
makes sense to always use FFT-based tSNE, but BH still offers some
value for small samples and when the FFT variants are not easily
accessible. The memory usage is more similar among these tSNE
implementations, but still with several folds of differences.

On the other hand, we also benchmarked the scalability of the DR
methods with respect to the dimensionality of the numbers of protein
features. In the above experiments, we have a total of 34 protein
markers in the CyTOF data (from the original Oetjen dataset), which is
typical for most current CyTOF datasets. In consideration of the pos-
sibility that future iterations of the CyTOF technology could incorpo-
ratemoreproteinmarkers, we up-sampled theOetjen dataset to create
up to60proteinmarkerswhilefixing the cell number at 100,000. Then
we performed the same benchmark study in terms of runtime (Fig. 5c)
and memory usage (Fig. 5d). Our benchmark analyses show that most
methods do not vary too much with respect to the number of protein
markers in the CyTOF datasets, alleviating concerns for increased
runtime/memory usage for future CyTOF data with more protein
markers.

Finally, we also noticed, during our DR benchmark practices
above, that some of these DR methods will abort with errors due to
increasing dimensionality. To explicitly quantify the dimensionality
threshold, we recorded whether the DR methods would abort while
performing the scalability benchmarks of various dimensionalities.
Specifically, the methods that produced errors in Fig. 5a, b and c, d
were recorded in Fig. 5e and f, respectively. Since sample dimension
and the scalability are of interest, we did not allow subsampling for any
method here. Our analyses show that Diffmap, Isomap, KPCA Poly/
RBF, LLE, and Spectral start to abort with errors with an increasing
number of cells, whereas GrandPrix often fails to converge (Fig. 5e).
These behaviors are consistent with our observations in other bench-
marks. With increasing numbers of protein markers, our analysis for
error occurrences shows that Spectral and GrandPrix sporadically
abort (Fig. 5f), and that Diffmap were unable to complete any of the
runs (of this particular scalability benchmark dataset) due to their
inherent sample size limitations.
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Synthesizing all our scalability analysis results, it is obvious that
the number of cells, but not number of protein markers, in the CyTOF
data is the driving-factor in determining each method’s scalability and
thus becomes an important consideration for end users. But unfortu-
nately, CyTOF data inherently profiles at least an order of
magnitude more cells than scRNA-seq data. Therefore, optimizing
methods for data throughput should be one of the top priorities for
researchers.

Stability of DR methods
While the accuracy of DR methods reflects their ability to reproduce
each sample faithfully in the embedding space, a crucial part of
assessing their performance is also to ask whether each method can
produce good results consistently. To test the stability of each
method, we executed each method on 100 bootstrap samples of the
Oetjen cohort’s Sample A (with the same tuning parameters), and
calculated the stability of the DR methods, across different bootstrap

Fig. 5 | Detailed results on the scalability performances of theDRmethods.The
runtime (a, c) andmemory usage consumption (b, d) of the DRmethods. In (a) and
(b), theDRmethodswereevaluated basedon increasingnumbersof cells. In (c) and
(d), the DR methods were evaluated based on increasing numbers of protein

features. e, fWhether theDRmethods abortwith error during the runtime/memory
benchmarking analyses in each cell number group (e) and protein feature number
group (f). Source data are provided as a Source Data file.
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datasets. Stability is defined as the average Earth Mover’s Distance
(EMD) between pairwise distance measures from the embedding
from the original sample and the bootstrap samples’ embeddings. This
is a measure of overall structural difference globally using the
difference in distribution, and the details of implementation are
included in the “Methods” section. Smaller EMD values suggest
that the DRmethod produces similar embedding under perturbations
of the input. We found that most methods, except for PHATE and
LLE, are relatively stable (Fig. 6a). The top methods that have the
best stability performances are tSNE (sklearn) and NMF (average
EMD shown in Fig. 6a; Wilcoxon Rank Sum test FDR≈0:65
between tSNE and NMF, and FDR<10�5 for all other pairwise tests
between tSNE and less stable methods; all pairwise tests FDR< 10�5

between NMF and less stable methods). The second tier of methods
includes tSNE, ICA, KPCA (RBF), and Isomap. The DR methods
that have the best accuracy (Fig. 2) unfortunately do not possess
the best stability performances. Among methods with decent
accuracy, both tSNE variants are the most stable, which is not
surprising because they both use PCA as initialization. Interestingly,
SQuaD-MDS Hybrid (a tSNE-based method) is not as stable as
other vanilla tSNE despite its accuracy advantage. SAUCIE, UMAP, and
scvis’s stability performances are in the middle, suggesting future
improvements to these methodologies are needed from method
developers in this regard.

Another important aspect of the DR methods related to the sta-
bility of computation is howmuch the results will vary as a function of
their tuning parameters, given the same input data. Sometimes, it may
be preferable that the DR results do not vary too much even given
different parameters. But in other times, the data analytics practi-
tioners may prefer that parameter tuning will lead to more diverse
results given different parameters, so that they can choose a para-
meter setting that yields the optimal DR results. While we leave the
choice of preference to the practitioners, we performed a study of
parameter tuning. For several top DR performers (SQuaD-MDS,
PHATE, SAUCIE, scvis, tSNE, andUMAP), we tuned their parameters, as
is shown in Supplementary Data 4. We found that (Fig. 6b) all tuned
methods benefit from careful selection of tuning parameters. tSNE,
SQuaD-MDS, and scvis overall as well as the Global score of SAUCIE
noticeably benefit the most in terms of percent rank improvement in
accuracy, which is defined as the increase of ranks from the top con-
figuration (as compared to the default) divided by the total number of
configurations for each method. From the right panel of Fig. 6b, we
observed that the default configuration oftentimes is a decent starting
point, especially for UMAP and PHATE, and some accuracy categories
of SAUCIE. While the default settings can often achieve above-average
ranks in all settings tested, there is still room for improvement for
every method. According to our analyses, we present the optimal
configuration setting for each major category of accuracy in

(a) (b)

(c)
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Fig. 6 | Detailed results on the stability and usability performances of the DR
methods. a The stability of the DR methods. We calculated the stability of the DR
methods, across different bootstrap datasets generated from the Oetjen cohort’s
Sample A. b The impact of parameter tuning on the accuracy of the DRmethods, in
comparison with the default settings. In the left panel, we showed the optimal
settings’ (among all tested settings, Supplementary Data 4) increases in ranks (over
default settings’ ranks) divided by the total number of configurations for each
method and each category. The right panel shows the relative performance of the

default settings (with respect to the optimal settings), quantified by the ranks of the
default settings dividedby themaximum ranks achieved by the optimal settings for
each method. c Usability scoring for the DR methods. All detailed usability criteria
were displayed for all DR methods, in the format of a heatmap. Teal shading
represents the presence of a feature in the heatmap and better overall usability in
the bar graph, whereas orange shading indicates the lack of a feature and poorer
usability. Source data are provided as a Source Data file.
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Supplementary Data 4, so that future users may choose to use these
settings as the starting point for DR of their own CyTOF data. In gen-
eral, we recommend using more training steps for SAUCIE while not
changing any regularization coefficients. tSNE benefits from large
perplexity, whereas using small minimum distance between points
yields good results for UMAP. For SQuaD-MDS, using more iterations
and a larger learning rate can offer improvements, especially Local
performance. We do not recommend performing extensive parameter
sweep for scvis, as the potential gain is small and also because scvis
already performs well.

Usability of DR methods
While not directly related to the accuracy of DR, it is also important to
closely inspect each method’s implementation and evaluate methods
based on both optimal user experience and quality of software. Based
on our own experience working with each DRmethod, we employed a
clearly defined checklist to score each method’s usability, which
includes documentation, automated testing and integration, regular
update, cross-platform compatibility, capability of accepting general
matrix input, etc (Supplementary Data 3 and “Method” section). As
shown in Fig. 6c, we found that popular methods and traditional
methods, which were mostly implemented by well-known libraries
such as sklearn, offer exceptional usability with not only class-leading
documentation but also free of any quirks. However, working with
some less well-knownmethods proved to be more difficult, especially
when we were resolving installation issues, which stemmed from lack
of software updates. Specifically, SAUCIE, scvis, and GrandPrix all
depend on out-of-date tensorflow versions (1.x), which do not have
support for recent versions of Python (3.8 and later). In this case, users
have to resort to legacy software for thesemethods with questionable
future support. Installation of ZIFA requiresmanual intervention but is
relatively easy. Scvis is command-line-only and thus cannot be flexibly
invoked inRor Python, and the official implementation ofDiffMap is in
R only. Finally, we note that there are several methods that are capable
of mapping new data onto existing DR embeddings (e.g. scvis, tSNE
and UMAP), which could be very convenient in handling continuously
generated data. Overall, some topmethods like SAUCIE and scvis have
very good performances for CyTOF data according to the accuracy
criteria, but our work suggests that the field should consider improv-
ing their usability to maximize their benefit for CyTOF researchers.

Discussion
In this work, we present a comprehensive review and benchmark of
popular and domain-specific DR methods across many different
CyTOF datasets. The performances of the DRmethods on the real and
simulated CyTOF data are overall comparable, indicating the validity
of our evaluation results as well as the simulation approach. Previous
comparative works in the field of scRNA-seq have supported the
notions that tSNE and UMAP are the top performers in general and
even linear methods are well-suited for certain workflows21,38,39. Few
attempts at tackling this issue for CyTOF data have beenmade and the
field seems to think in general that the best methodologies for scRNA-
seq data can be directly applied on CyTOF data. However, we found
that for CyTOF data, SAUCIE, SQuaD-MDS Hybrid, and scvis (Full) are
the overall top runners, proving the need for a CyTOF-specific
benchmark study of DR methods. But at the same time, none of DR
methods is perfect and there is a large degree of complementarity
between them. On the other hand, our comparative results echo some
of the previous conclusions regarding the performanceofDRmethods
on scRNA-seq data. For example, previous studies have shown that
tSNE performs better than UMAP in terms of local structure pre-
servation on general and scRNA-seq data22,40,41. Our analyses on real
and simulated CyTOF data demonstrate the same in general.

From the perspective of a practitioner working on CyTOF data,
our results provide a set of good guidelines and conclusions. SAUCIE

and scvis are all-rounders that perform admirably across all categories
withoutmajorflaws, but SAUCIE is farmore efficient than scvis. Thus, it
is reasonable to use SAUCIE as part of the general workflow. The one
caveat with SAUCIE is its questionable usability: while we would have
easily recommended SAUCIE for rapid prototyping given its efficiency,
the effort needed to set up SAUCIE renders it inferior to other efficient
methods like PCA for this purpose. SQuaD-MDS Hybrid combines the
local performance advantage of tSNE with the global performance of
SQuaD-MDS, making it an overall excellent method for structural
preservation. However, its downstream performance has some weak-
nesses, especially regarding cell type cluster concordance. On the
other hand, UMAP excels in downstream analyses with clustering
workflows, but it sacrifices Global structure performance in return.We
still recommend UMAP for tasks such as cell typing, clustering, and
others that rely on tight and distinct clusters. Both tSNE variants have a
unique set of strengths, but given the performance advantage of
SQuaD-MDS Hybrid, we would recommend the latter instead for users
who seek local accuracy. One key advantage of tSNE is its usability and
cross-platform compatibility, which again highlights the inherent
advantage of a more established method as compared to newer
methods. PHATE is potentially good for some other downstream tasks
that involve cell differentiation. On the occasions when Global struc-
ture is of concern, linearmethods like NMFand PCA still make a strong
case, but these methods are not as useful for downstream analyses.
Overall, these results suggest that no one method dominates: users
should be aware of each’s strengths and limitations. A holistic
approachwill be to start with a top and efficientmethod like SAUCIEor
SQuaD-MDS Hybrid and then select some other methods for specific
tasks and validation (e.g. UMAP for cell typing).

Among these DRmethods, we observed a polarized phenomenon
that those popular DRmethods usually have exceptional software and
superior documentation, whereas some more accurate but less
famous ones are severely lacking in this regard. The latter’s poor
usability further aggravates the situation by discouraging practitioners
from trying themout, which in turndemotivates the improvement and
optimization of suchmethods. The current prevalentmethods, such as
UMAP and tSNE, turn out a result of amix of outstanding performance,
great usability, and good scalability. Their success, however, highlights
the necessity to strike a balance between strong methodological
research and user-oriented development. In light of these observa-
tions, we urge researchers to take end-user experiences and the
increasing sample sizes of CyTOF into consideration and to develop
competitive methods that shine on both theoretical performance and
practical user experience. For example, SAUCIE is a neural network,
which theoretically should have the capability of mapping new data
points into an existing DR space. However, no such mapping func-
tionality is provided in its software implementation yet.

Some researchers seem to analyze CyTOF in the sameway as how
flow cytometry data have been traditionally analyzed, using commer-
cial software offering simplistic functionalities. They ignore the fact
that CyTOF is a much more advanced technique that offers capturing
of a lot more protein channels, but has minimum spill-over effects5.
They also ignore all the sophisticated algorithms developed in recent
years for cytometry data (flow cytometry, CyTOF, etc)42 and also for
scRNA-seq data, which might be applied for analyzing CyTOF data.
These new algorithms could reveal complicated biological insights
that cannot be afforded by standardized commercial software. For
example, it might be of interest to evaluate in the future whether the
pseudotime inference algorithms that work well for scRNA-seq data
are also suitable for pseudotime inference of CyTOF data25. On the
other hand, we envision the DR benchmark results we obtained for
CyTOF data in this study could be applicable for traditional flow
cytometry data as well, including spectral flow cytometry43, which
measures a number of protein markers that is on par with CyTOF, has
higher cell throughput, but also still possesses higher spillover.
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One curious observation we made is that, while SAUCIE and scvis
are less well known than tSNE and UMAP for DR of scRNA-seq data,
these two methods turn out to be among the top tier of methods for
DR of CyTOF data. This may in part be due to the fact that they are
based on deep learning (DL) techniques, and their great performance
for CyTOF data could be owing to the tremendous success of DL for
handling big data (CyTOF captures much more number of cells than
that for scRNA-seq data). Further, SAUCIE’s conventional autoencoder
and scvis’s variational autoencoder both assume an underlying latent
variable model with smaller dimension for features. CyTOF has much
lower dimensionality, in terms of numbers of genes/proteins, which
might have rendered this latent space inferred by SAUCIE and scvis
more appropriate for capturing the true structure of CyTOF data.
Beyond SAUCIE and scvis, many other methods (e.g. UMAP and tSNE)
fall under the class of methods that are based on neighbors and opti-
mizing distance measures, rather than DL approaches. Although the
range of protein/gene features from CyTOF to scRNA-seq poses no
computational concerns for these methods, the curse of dimension-
ality (e.g. the appropriateness of distance measures like Euclidean
distance44) can still play a role in accuracy. Their overall lackluster
Global performance compared toDL-basedmethods indicate the need
for further theoretical considerations.

The fields of genomics and proteomics have been developing
mostly independently. The ability to combine both approaches will be
extremely powerful. There has been a growing number of studies
generating single cell datasets with both scRNA-seq and CyTOF
data10–12,45. The creation of such matched datasets calls for the devel-
opment of dedicated analytical methodologies to integrate these two
types of data. First, one should ensure that the conclusions drawn from
each of the proteomics and genomics modalities are overall con-
sistent, as we reviewed in this work. Second, robust and innovative
statisticalmethods should be developed for the integrative analyses of
CyTOF and scRNA-seq data, to maximize the potential of each tech-
nology. In this regard, CITE-seq46, which allows capture of the RNA
transcriptomes and cell surface protein expression for the same cell, is
unlikely to replace CyTOF (matchedwith regular scRNA-seq). CITE-seq
can capture much less number of cells than CyTOF, and CITE-seq can
only profile the expression of protein surface markers, while CyTOF is
capable of capturing the expression of both intracellular and cell sur-
face proteins47. CITE-seq also suffers from drop-outs in the protein
expression measurements by the UMI counting approach48,49, while
CyTOF is relatively free from this caveat.

CyTOFpossesses amuchhigher potential of being developed into
a clinically applicable diagnostic/prognostic/predictive tool, com-
pared with scRNA-seq, due to its cheaper per-cell cost, shorter work-
flow, and directmeasurement of proteomics changes. Our study of the
performances of DRmethods on CyTOF data urges the field to rethink
analytical strategies for CyTOF data and to develop state-of-the-art
tools to address this key gap. This effort should ultimately lead to
effective translational application of the CyTOF technology for per-
sonalized medicine.

Methods
Benchmark environment
All compute- and memory-intensive benchmarking exercises were
performed on server nodeswith dual Intel Xeon E5-2695 v4CPUs. Each
node has 36 physical cores and was allocated 200 Gigabytes (GB) of
RAM, except for all scalability benchmarks, where nodeswith the same
CPUs but 732 GB of RAM were assigned. All jobs were run in CentOS
Linux and managed with Slurm with no GUI to ensure reproducibility.
Each computation job was allowed to run for up to 7 days if necessary.
Since no method exceeded this time limit, all errors and exceptions
reported in the paper resulted from either out-of-memory errors or
other unforeseen implementation reasons that we could not control.
Statistical analyses, preprocessing, and other workflows for this paper

were performed in R 4.0.4 with various consumer-grade hardware
running Windows and Ubuntu.

DR method implementation details
The benchmark pipeline was implemented mostly in Python (3.7 and
3.8) for its extensive support for DR methods and command-line
operability. If available, Sklearn 0.24 implementations were used, as
they are not only well maintained and but oftentimes also the default
choice for Python users. For other DR methods, we utilized the
implementations of the original authors if possible, with the exception
of tSNE, which will be further discussed. Additional Python DR
packages used are: openTSNE 0.6, umap-learn 0.5, zifa 0.1, PHATE 1.0,
scvis 0.1, SAUCIE (the version on GitHub https://github.com/
KrishnaswamyLab/SAUCIE), GrandPrix 0.1, and SQuaD-MDS (the ver-
sion on GitHub https://github.com/PierreLambert3/SQuaD-MDS-and-
FItSNE-hybrid). One notable method to mention here is Diffmap since
its reference implementation is available only in R (“destiny” 2.15.0
with R 3.6.3). As a convenient wrapper, our pipeline and our CyTOFDR
Package offer interfaces for most methods. In our package and all
analyses in this study, except for the parameter-tuning section, we
used all default settings for tuning parameters to ensure fairness
across all methods. But multicore optimizations (e.g. the “n_jobs”
option in sklearn methods), if available, were enabled to utilize all
cores on our server for efficiency.

“tSNE” in themain figures refers to the openTSNE implementation
of FIt-SNE. Works such as Kobak et al.50 have called for using FIt-SNE in
the genomics field, because its computation efficiency is comparable
with UMAP. So we choose this as our reference implementation. tSNE
(FIt-SNE Original), which is the original authors’ implementation,
technically offers faster speed and better memory efficiency, but it
comes at a cost of usability with no discernable embedding improve-
ment. Thus, openTSNE is a reasonablecompromise that both improves
upon efficiency as compared to BH and offers a user-friendly interface
with good documentation. We also included “tSNE (sklearn)” in our
main figures and benchmark study as it is one of the most popular
choices with BH implementation. Other methods included in Supple-
mentary Fig. 4 serve as a scalability-only benchmark for users to
understand the differences between the various choices.

For popular as well as top methods from our benchmark, we
identified their tuning parameters and performed extensive parameter
tuning. We list all the parameters in Supplementary Data 4, and for
eachmethod, we performed a grid search of all combinations. SAUCIE
has the most parameters for both regularization (Lambda C and
Lambda D) and optimization (Steps, Learning Rate, and Batch Size),
yielding a staggering 1,125 total configurations. On the other hand, the
authors of scvis have already tuned parameters and found that scvis is
not sensitive to changes of settings. We thus validated their claims by
tuning regularization coefficient, perplexity, and the number of neu-
rons on layer 1 and 2.

Clustering methods
For all CyTOF samples benchmarked in the study, we used FlowSOM51

for clustering in both the original space and the embedding space.
FlowSOMhas been the recommended algorithm for CyTOF becauseof
its accuracy and efficiency52,53. To ensure comparisons of DR methods
are fair, we used the same original space clustering labels for each
sample during all benchmarks. FlowSOM requires an estimated num-
ber of clusters to be provided by the user. For cohorts with provided
cell typing information by their authors, we used the number of cell
types as prior knowledge. For other cohorts, we determined the esti-
mated number of clusters empirically using cluster variance and the
elbow rule. Since FlowSOM also performs a meta-clustering step to
consolidate clusters if necessary, we provide a larger number of clus-
ters than the baseline obtained from the above methods (10-20 more
clusters than the number of baseline clusters. The end results after
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consolidation are generally robust regardless of the choice of this
number of clusters). Our approach aims to preserve the granularity of
rare cell types while allowing the meta-clustering step to find the
optimal clustering. All other settings were kept as default. Our study
also includes a fewmatched scRNA-seq samples from theTuProcohort
and theOetjen cohort. In these cases, we used the clustering algorithm
provided by the Seurat54–57 pipeline as per the standard workflow for
scRNA-seq data analyses. The number of clusters were determined
automatically by the Seurat algorithm.

Admittedly, choosing different clustering algorithms and differ-
ent tuning parameters could inevitably lead to a somewhat different
benchmark result. This could happen no matter which algorithm and
what set of tuning parameters we chose. Therefore, to ensure max-
imum fairness in good faith, we chose FlowSOM for CyTOF data as
FlowSOM has been the recommended algorithm for CyTOF data ana-
lyses, and the clustering algorithmprovided inSeurat, per the standard
workflow for scRNA-seq data analyses. These two choices of clustering
algorithms are likely themost common choices for CyTOF and scRNA-
seq data users.

Accuracy overview
Our main evaluation framework assesses the accuracy of each DR
method’s embeddings. The framework consists of four major cate-
gories: global structure preservation (Global), local structure pre-
servation (Local), downstream analysis performance (Downstream),
and scRNA-seq concordance. Downstream and scRNA-seq Con-
cordance have sub-categories to reflect different, equally weighted
aspects of the major categories. For each method, we utilized the
original space expression data, the reduced space embeddings, clus-
terings before and after DR, assigned cell types, and, if available, the
corresponding scRNA-seq data to execute each individual evaluation
metric under major and sub-categories. The details and implementa-
tions of these methods are described later on in each of their own
sections.

For each dataset, we first ranked all the methods based on each
individual metric. Methods that aborted for whatever reason are
ranked last for all metrics because they were unable to produce an
embedding at all. In our weighting scheme for all metrics, we ensured
that all major categories, all sub-categories, and all individual metrics
within categories have the same weight (i.e. metrics at the same level
are equally weighted). In practice, we first averaged the ranks of indi-
vidual metrics under each sub-category if applicable. Then, the scores
for each sub-category are averaged again as the scores for each major
category. TheGlobal and Local Category hasno sub-category, and thus
we directly averaged their respective metrics’ ranks. Finally, we aver-
aged the scores of major categories to form a final accuracy score. The
exact weight of each individual metric as part of its corresponding
major category is detailed in the Category Weight column of Supple-
mentary Data 3.

Given the rank-based nature of the accuracy scores, we compared
and averaged scores across datasets from different cohorts, including
both real and simulation data (Fig. 2). For accuracy-related figures
(Figs. 2, 3 and Supplementary Fig. 3), we ordered the methods
according to the overall accuracy, combining all four sub-categories, in
a descending order. Based on accuracy, we defined complementarity
as the likelihood of obtaining a most accurate method if practitioners
choose a subset of methods. In practice, we tallied the top-ranking
methods for all real and simulation datasets and counted the number
of times they were the top performer in terms of accuracy. Then, we
calculated the observed proportion of each method being on top by
dividing the number of times that each method ranked on top by the
total number of datasets. A large likelihood means that the method is
more often the best as compared to others, while 0 means that it was
never the best in our benchmarks. We selected seven most accurate
methods according to overall accuracy (Fig. 2a) and showed the

increasing likelihood of obtaining a topmethod for a given dataset by
adding each of the seven methods one by one in the order of overall
accuracy (Fig. 2b-d).

Accuracy—global structure preservation
This category aims to assess the degree to which each embedding
preserves the structure of the original, high-dimensional data on a
large scale. In practical terms, we aim to evaluate the relationship
between each cell with not only its neighbors but also other cells that
are vastly different from themselves. Metrics under this category are
critical in helping practitioners decide whether the overall structure
present in an embedding, such as the spatial relationship between a
few clusters, is interpretable or significant.

Previous research21 has called for using pairwise distances in the
original and dimension-reduced space to capture the relationship
between all cells. The problem of implementing this for CyTOF data-
sets is that the memory complexity is OðN2Þ, which is prohibitively
expensive and practically impossible even using state-of-the-art ser-
vers. Thus, we implemented the Point-Cluster Distance (PCD) for all
main benchmarks in this study. Instead of computing and storing the
full pairwise distance vectors, we utilized the original space clustering
of each sample to calculate the centroid of all clusters. Suppose there
are C clusters with each cluster denoted as c. Then, we computed the
Euclidean distance between each individual cell and each cluster cen-
troid. This approach preserves both the granularity of each individual
cell’s location and the overall structure of the data while also reducing
the memory complexity to OðNÞ with an N ×C matrix. Alternatively,
another approach is to downsample the CyTOF datasets and to com-
pute the accuracy scores within these subsets, which yields similar
results as PCD. We included a further discussion on these two
approaches in Supplementary Note 1.

Spearman’s correlation. This metric measures the Spearman’s cor-
relation of the original and dimension-reduced space using PCD. The
PCD matrices from the original and DR space are flattened, and the
correlation (ρ) coefficient is computed between the vectors. By uti-
lizing ranked-based correlation, we no longer require the normality
assumption on PCDs. The resulting ρ is an indication of how well the
ranks are preserved, and a large, positive ρ is preferred, suggesting
that cells that are relatively far apart in the original space remain
relatively far apart and vice versa.

EarthMover’s Distance (EMD). EMD58measures structural differences
between two distributions. Intuitively, earth mover refers to the
amount of work needed to change one distribution to another, as if
they are two piles of dirt. Here, we treat PCDs (of the original space
data and DR embedding space data, respectively) as empirical one-
dimensional distributions: in practice, we flatten the N ×C matrices
into vectors to represent observations from distributions that encap-
sulate the underlying global structure. Following the procedure of a
previous usage of EMD as a global metric21, we perform min-max
normalization of each vector to account for the difference in scale
(original space PCDs can be on a different scale than embedding space
PCDs). Subsequently, EMD is calculated after normalization. Thus
using this metric, we are measuring the overall distributional differ-
ences between the original space PCDs and DR embedding space
PCDs. In contrast with Spearman’s correlation, which captures the
granularity of each cell’s positional change in terms of ranks, EMD
treats the PCD distributions as a whole, providing insights on whether
the embedding resembles the original data overall. To compute this
metric, we used the SciPy implementation of theWasserstein Distance
with default parameters, which computes the distances between
empirical cumulative distribution functions of the two vectors.

EMD and COR metrics are complementary to each other in the
global category. Specifically, COR utilizes each individual cell’s
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relationshipwith all theothers afterDR,which is oneperspective of the
Global structure. On the other hand, EMD offers a zoomed-out per-
spective by treating all the distances as a distribution rather than dis-
tinguishing among each one of them individually. In practice, we
believe that both approaches are important and highly com-
plementary with each other.

Accuracy—local structure preservation
We focus on neighbors for local metrics. Namely, we aim to assess
whether each cell’s neighbors in the original space are still neighbors
after performing DR. This category is important for not only clustering
and cell type assignment but also understanding relationships
between cells. The conventional approach of finding neighbors using
BallTree or KDTree in sklearnproves to bequite slow for large datasets
in the case of CyTOF. To realistically benchmark numerous methods
on a large number of samples while also offering a quick interface for
end users, we chose an approximate but fast algorithm called
Approximate Nearest NeighborOh Yeah (ANNOY, github.com/spotify/
annoy). It utilizes a locality-sensitive hashing algorithm59 to approx-
imate distances along with using trees to divide data into subspaces,
which are represented by a random sample of points, for fast nearest
neighbor computations. As with the case of PCD, ANNOY offers a
good, practical compromise for CyTOF data in terms of efficiency and
accuracy. In our benchmarks, we found that the number of neighbors,
k = 100, works well in general: it accounts for the large sample size of
CyTOF without adding a significant amount of computation time.

K-Nearest neighbors (KNN). For each cell in the original and embed-
ding space, we found k-nearest neighbors using ANNOY, excluding the
cell itself. We define neighborhood preservation by calculating the
percentage of neighbors thatoverlap in both sets. Specifically, for each
cell, we took the intersection of the two neighborhood sets from the
original and embedding space, and the percentage of preserved
neighborhood was calculated by dividing the cardinality of the inter-
section set by k. The resulting percentage was subsequently averaged
across all cells. A larger KNN score close to 1 indicates nearly perfect
alignment of neighbors, whereas a relatively small score shows poor
neighborhood preservation. Importantly, here we are not using the
machine learning algorithm of KNN to define cell types or cell clusters,
as in the RandomForest Cluster Predictionmetric below. So it is not to
be confused with the RFmetric below, which is a downstream analysis
performance metric.

Neighborhood proportion error (NPE). As proposed by Konstorum
et al.60, NPE measures how many of the neighboring cells of the same
class are preserved. This metric takes into consideration the classifi-
cation of cells in neighborhoods, which are useful indications of
whether clusters are well-separated after embedding. We imple-
mented NPE in house using the following algorithm:
1. We defined k = 100 neighbors for each cell in the original and

embedding space.
2. For each cell, we found the number of neighboring cells that

belong to the same cluster. We used the original space clustering
in this step, and again assume that there areC clusters. This results
in two vectors of length N, one for the embedding space and one
for the original space, where each element is the count of neigh-
boring, same-cluster cells.

3. The two count vectors in Step 2 were divided by k = 100 to obtain
the proportion normalized with the neighborhood size.

4. For cells belonging to each cluster c, we performed the following:
a. We subsetted in the normalized count vectors with the

corresponding cells. This yields subsetted vectors of length
Nc, where Nc is the number of cells in the given cluster.

b. Using similar notations with the original authors, we found
the kernel density estimates of the vectors from Step 4a,

which we call Pc and Qc respectively, where subscript c
indexes cluster. In the rare cases that Pc and Qc are ines-
timable point mass, this cluster is skipped, and we con-
tinued to Step 4a for the next cluster.

c. Finally, we calculated the the Total Variation Distance
between the distribution for each cluster using the for-
mula supa2½0,1�∣PcðaÞ � QcðaÞ∣.

5. The total variational distances were then averaged across all
clusters to produce the NPE metric.

As a distance-based metric, smaller NPE indicates less error,
meaning that each cell’s neighboring cells have similar composition in
the original and embedding space. This method belongs to Local
instead of Downstream, because it is focused on neighborhoods of
individual cells instead of clusterings and cell types on a larger scale.

KNN focuses on whether the exact cells in the neighborhood of
each cell are preserved between the original data and the DR space,
while NPE focuses on whether the neighborhood of each cell in the DR
space consists of cells of the same type as this cell, with the “type” or
“cluster” of cells defined in the original data. Roughly speaking, KNN
operates at the cell level, while NPE works at the cluster/cell type level.
They are very complementary with each other overall.

Accuracy—downstream analysis performance
A common first step of the downstream analysis pipeline is clustering
and subsequently cell type assignment. The Downstream category
specifically examines how each DR method affects the clustering
performance, which will in turn affect other downstream workflows.
Downstream has three sub-categories: Cluster Reconstruction mea-
sures how well original space clustering performs on the embedding
space data; Cluster Concordance examines clusterings of the original
space and the embedding space at the same time; and Cell Type-
Clustering Concordance compares manually assigned cell types and
embedding-space clustering. For the latter two sub-categories, the
same metrics are used, but their purposes, inputs, and interpretations
differ.

Cluster reconstruction. Custer Reconstruction consists of four
metrics to assess how the original space clustering performs after DR.
While a clustering algorithmoptimizes for the original data, the results
should be reasonable if a DR method faithfully captures the structure
of the original. This is often how such clusterings are visualized. In this
sub-category, there are four equally weighted metrics: the first three
measure the clustering quality itself whereas the last utilizes the clus-
tering as a practical metric.

Silhouette Score15 is ameasure of how cells are similar, in terms of
Euclidean distance, to other cells in the same cluster as comparedwith
the cells in other clusters. A large score close to 1 indicates a good
clusteringwith tight clusters,where on the other hand a negative score
means that the cells in clusters are more similar to other cells than
those in the same cluster. Davies–Bouldin Index61 measures the aver-
age maximum ratio of intra-cluster distance over inter-cluster dis-
tance. A good clustering with a good embedding should result in
clusters that are both tightly-formed and distinctly far apart, thus
resulting in a small score. Calinski-Harabasz Index (CHI) measures
variance instead of distance. Specifically, CHI is proportional to the
ratio of inter-cluster variance as computed with cluster centroids and
the centroid of the dataset over the intra-cluster variance computed
with points in the cluster and each cluster centroid.

We also incorporated Random Forest Cluster Prediction (RF) to
assess howwell a random forest classifier can predict the cluster labels
using embedding space data. As proposed by Becht et al.28, the pre-
diction accuracy is a practicalmetric to assesswhetheroriginal clusters
aredistinguishable.We split the embeddingdata into 67% trainingdata
and 33% testing data. For each DRmethod, we trained a random forest
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classifier using sklearn and recorded the prediction accuracy using the
testing set. Obviously, a higher accuracy is desired.

Cluster concordance. Instead of focusing on original space cluster-
ing, the Cluster Concordance sub-category uses Adjusted Rand Index
(ARI)62 and Normalized Mutual Information (NMI)63 to measure how
clusterings of the original and DR space align. Given two clustering
labels, a pair confusionmatrix canbe formedby considering every pair
of data. The original Rand Index simply finds the ratio of correctly
aligned results—the sum of true positive and true negative—over the
total number of observations. The ARI adjusts the Rand Index with
expected values. Intuitively, a higher ARI close to 1 means that the two
clustering results are well aligned, suggesting that DR has lost little
information. NMI, on the other hand, treats two clustering results as
distributions, and the mutual information between them is computed.
The resultingmutual information is then normalized by the entropy of
the marginal. For NMI, a larger value close to 1 is preferred, whereas
NMI of 0 means that the two clustering results are independent.

Cell type—clustering concordance. While cluster concordance
measures the efficacy of clustering after DR, a valid concern is whether
such clustering is concordant with true cell types instead of arbitrary
cluster labels. In this sub-category, we utilized cell types provided by
the original authors when available as an independent source of true
labels. If not, we manually assigned cell types using original space
clustering. For good embeddings,we expect that cells of the same type
are also clustered together, which also suggests that if practitioners
use embedding space clusterings for cell type assignment, they will
likely obtain reasonable results. We applied ARI and NMI to cell types
and embedding space clusterings for eachmethod. The algorithms are
the same as the ones described in Cluster Concordance but with dif-
ferent inputs.

Accuracy—scRNA-seq concordance
For datasets with matched CyTOF and scRNA-seq samples, analyzing
these samples in conjunction is a great asset. One critical task in both
workflows is DR, and as one would expect, DR results from matched
samples need to reasonably be concordant. This will allow practi-
tioners to not only employ a unified workflow for both but also make
conclusions based on the same methods and assumptions. Further,
many DR methods have indeed been used indiscriminately across
different technologies. In this major category with three equally
weighted sub-categories, we assessed the versatility of DR methods
across technologies.

For this category, we assigned cell types for CyTOF samples using
embedding space data produced by each DR method. scRNA-seq cell
types were assigned with original space data after preprocessing. The
goal is to assess which DR method’s results are the most concordant
with the reference scRNA-seq data of the same sample.

Cluster distance. Thismetricmeasures how the relationships between
common cell types change between CyTOF and scRNA-seq samples.
For example, if there are two closely related cell types with similar
expressions, we expect them to be close to each other in both settings.
To operationalize this concept, we first computed the centroid of each
cell type for both CyTOF embeddings and scRNA-seq data, and only
common cell types between two datasets are retained. Using permu-
tation, we found all pairs of cell type centroids. Let an arbitrary pair be
cell type a and cell type b. Then, pairwise distance between a and all
other centroids was computed and ranked. The rank of the distance
between a and bwas then normalized by the number of cell types and
recorded. A small rank means that cell type b is close to the cell type a
from the vantage point of a. The process is repeated for all pairs and
for both the CyTOF embedding of interest and the scRNA-seq refer-
ence. One thing to note here is that the rank is not necessarily

symmetric because, although the Euclidean distance between any a
and b pair is symmetric, the rank obtained in this case depends on
neighboring cell types. For example, If a has numerous neighboring
cell types, whereas b is a lone outlier, the ranked distance between
them from the vantage of a is large. But from b’s perspective, the rank
can be much smaller. With each DR method, we have two resulting
distance vectors of length m, where m is the number of permutations
of cell type pairs. Define X as the vector from a given CyTOF embed-
ding and Y as the vector from the reference scRNA-seq sample. We
then defined Cluster Distance as the L1 distance between X and Y.

Given that Cluster Distance is a distance-based metric, the inter-
pretation is simple. A smaller value means that the relationships
between cell types are well preserved. Specifically, relationship means
the rank distance between cell types. The actual value of the Euclidean
distance is not really meaningful given the different nature of CyTOF
and scRNA data, but the rank captures the overall structure. This
metric was implemented in house and available in CyTOF DR package.

EMD. Analogous to the contrast between Spearman’s correlation and
EMD in Global, here the role of EMD is the same. In this metric, we use
the same definitions of pairs of cell types as obtained from permuta-
tion. Instead of using only centroids, we calculate the distances
between cell type a and all cells in cell type b, which are subsequently
ranked and normalized by sample size. The same procedures are
performed on both the CyTOF embedding of interest and the scRNA-
seq reference. This more fine-grained approach is possible due to the
fact that EMD compares two distributions. Using the same notation as
Cluster Distance, here we compute the EMD between X and Y.

We prefer a smaller EMD to suggest good cell type relationship
preservation on a global scale. In this case, the distribution of ranks is
being measured X and Y. As with EMD in Global, this metric offers a
good sense of whether the overall structures of cell types as clusters
are well preserved using a DR method in CyTOF.

Gating concordance. Gating concordance is a validation metric to
ensure that the cell type assignment inCyTOFmakes sense for eachDR
method. Specifically, we manually assigned cell types using both ori-
ginal and embedding space data. For the latter, cell types were
assigned using clusterings based on embeddings of each DR method.
As with other concordance categories, we used ARI and NMI to assess
whether embedding space cell types align well with original space cell
types. This sub-category is warranted in the scRNA-seq concordance
category because the quality of embedding space cell type assignment
is critical. If Gating Concordance is poor, then the results of EMD and
Cluster Distance are not as meaningful by assumption. Thus, for a
method to have good scRNA-seqConcordance, we expect it to excel in
all three categories.

Stability
We define stability as whether a certain method’s embeddings remain
similar while executed on similar datasets. We bootstrapped Sample A
of the Oetjen cohort 100 times and then executed all DR methods on
the 100 bootstrapped samples (N = 147,570). For the reference
embedding from the original dataset and all the embeddings from
bootstrapped datasets, we computed the PCD for each. As previously
described, the PCD algorithm results in a N ×C distance matrix, where
K is the number of clusters or cell types. For the stability measure, we
treated each PCD matrix as a single distribution by flattening it to
become a vector of length NC. Without loss of generality, we denote
these vectors as P and Q. To account for the scale difference across
different DRmethods, we performed min-max normalization to P and
Q. We then used the EMD to measure the difference in distribution to
quantify the structural difference via difference in distribution, which
can be written as EMDðminmaxðPÞ,minmaxðQÞÞ. In essence, P is the
reference embedding for each method, whereas each Q from the
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bootstrapped iterations is compared against the reference P. For each
DR method, the computed distance from the 100 iterations were
averaged to form an overall stability measure. Smaller EMD indicates
that a given method’s embedding is structurally similar to the original
embedding fromrun to run, and viceversa.DiffMap reported errorson
all runs of this benchmark, likely due to the resampling scheme.
Spectral was unable to run on the original dataset.

Scalability
We measured each method’s runtime and memory consumption to
assess scalability in a two-faceted experiment. To best assess perfor-
mance on real datasets in a controlled manner, we used Sample B and
H of the Oetjen cohort with 34 protein markers as the basis. Then, we
employed random up- and downsampling to comprehensively simu-
late both the number of cells and the number of different protein
markers. By fixing the number of markers at 34, we subsampled
without replacement 2000, 5000, 8000, 10,000, 20,000, 30,000,
40,000, 50,000, 100,000, 150,000, 200,000, 300,000, 500,000,
750,000, and 1,000,000 cells. For the number of protein markers, we
sampled 10, 20, 30, 40, 50, and 60 features, while fixing the number of
randomly sampled cells at 100,000. In the latter case where up-
sampling is needed, we utilized the original 34 markers as is and then
randomly sampled the remaining markers from these 34 markers with
some added randomnoise. No furthermethod-based subsamplingwas
allowed in this benchmark because doing sowould defeat the purpose
of assessing scalability fairly across all methods. For methods that
would abort at sample size of 100,000, which is a reasonable sample
size froma typical CyTOFcohort,we couldonly report error in the case
of protein marker benchmark (Fig. 5f).

We performed all scalability benchmarks on the server with the
same hardware configuration as detailed in the “Benchmark environ-
ment” section. Runtime and memory usage were measured on the
Operating System level with the “/usr/bin/time -v” command in Linux.
Weused the “Elapsed (wall clock) time” as themeasurement of runtime
and “Maximumresident set size” asmemory usage. Eachmeasurement
consists of the benchmark for one method on one dataset configura-
tion, and all runs were sequential to allow methods to utilize as much
system resource as possible without aborting. All other variables, such
as file input and output, were kept the same across all runs and their
impact was overall negligible. We then calculated and reported run-
time in minutes and memory in GB for convenience.

Usability
We defined usability with 13 criteria in five categories related to code
quality and user experience. For each method, we manually inspected
the quality of documentation, level of software support, the interface
available to users, and implementation details that would benefit
practitioners. All information is gathered from their websites, GitHub
repositories, in-software docstrings and examples, and our own
benchmark processes. We scored all methods using a binary scoring
system: if a criterion is met, the method receives a score of 1; other-
wise, it receives 0. Under circumstances where ambiguity may occur,
such as whether the package has been updated as needed, we gen-
erally give such edge cases the benefit of the doubt unless clear
incompatibility or lack of support is present. The final ranking of
usability is based on the sum of scores received by each method
(Fig. 6b). The exact usability criteria are detailed below.

Documentation: (1) Examples: The project repository or website
provides examples for users to follow. (2) Website: The method has a
dedicated website for detailed documentation.

Implementation: (1) CLI: The method has a command-line inter-
face that is capable of directly running the DR. (2) Cross platform: The
method is easily performed in both R and Python. Installation of
packages and alternative implementations are allowed. (3) Import: The
package can be imported within its respective software environment.

This allows users to integrate methods into their existing workflow
without resorting to custom command-line scripts. (4) Matrix: The
method takes a general expression matrix or array as input instead of
requiring a specific data structure.

Maintenance: (1) CI/CD: The package has an automated workflow
to test codeswith newdevelopment. (2) Update: Thepackage hasbeen
updated within the past year or as needed.

Publication: (1) Built-in: The implementation of themethod is built
into R or Python without needing any installation. (2) Open Source:
The package is open source. (3) Published Package: The package has
been published on a standard package repository, such as PyPI, CRAN,
or conda.

Usage: (1) Mapping: The method has a mapping function that can
mapnewdata onto existing embeddings. (2) Robust: Themethoddoes
not produce unexpected exceptions or errors, except for sample size
limitations.

Real CyTOF datasets used in this study
We accessed a total of 11 cohorts of 110 real CyTOF samples for this
benchmark study (Supplementary Data 2). These include the TuPro
cohort10, the Oetjen cohort34, the CyAnno cohort64, the LG cohort65, the
Brain cohort66, the BC cohort67, the Levine32 cohort68, the Levine13
cohort68, the Samusik cohort69, the Lung cancer cohort70, and the Covid
cohort (CyTOF_00000000000001 to CyTOF_00000000000012 on
DBAI). For all datasets, we either obtained their cell typing results from
the original publications, or performed cell typing ourselves based on
clustering of the cells followed by manual assignment. We showed the
manual cell typing results of the Lung cancer cohort, in Supplementary
Fig. 5, as an example. Matched scRNA-seq data are available for the
TuPro and Oetjen datasets. For the BC dataset, there were too many
samples. To avoid biasing our benchmarking results, we selected the top
14 datasets with more than 5000 cells.

For all samples, we deployed our standardized preprocessing
pipeline (included as part ofCyTOFDRPackage) unless they have been
preprocessed beforehand by the original authors. Our pipeline
includes identifying lineage channels, ArcSinh transformation with a
co-factor of 5, gating to remove debris using instrument channels, and
bead normalization. In general, we did not perform cross-batch nor-
malization to avoid any bias introduced by such algorithms. For the
cases where the data have been previously processed, such as the
CyAnno cohort, we manually inspected the data and applied specific
steps of the pipeline on an as-needed basis: if cell types have already
been assigned, we did not gate to remove debris; when not all bead
channels were available, we assumed that bead normalization had
already been performed on instrument. For all samples, we cross-
checked the preprocessing results with DR embeddings of the cells
labeled with their cell types.

CyTOF data simulation (Cytomulate)
We devised a probabilistic simulation model that captured the key
features of the arcsinhð:=5Þ-transformed CyTOF data. Suppose that the
desired resulting dataset contains m= 1, � � � ,M protein markers,
n= 1, � � � ,N cell events, and p= 1, � � � ,P cell types. Let the probability of
observing the pth cell type be πp. Then, for the nth cell event, we can
construct a cell type indicator variable Πn ∼ CategoricalðπÞ, where
π = ½π1, � � � ,πP � is a P-by-1 probability vector.

Given the cell type p for the nth cell event, we assume that,
without cell differentiation or background noise, the expression level
for the mth marker is Xm ∼Nðμp

m,ðσp
mÞ2Þ. Since a cell type typically

expresses a set ofmarker genes, to furthermimic the characteristics of
CyTOF data, we associate, with each cell type p, a set Aϕ,p = {m: themth
marker is not expressed in cell type p}. Then, given Aϕ,p, we
set μp

m = σp
m =0,8m 2 Aϕ,p.

To simulate cellular lineage, we assume that the underlying cell
lineage is composed of several non-overlapping cell differentiation
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trees, where cell type p differentiates into zp “children” pc1 , � � � ,pczp .
From themth marker of each cell type p to themth marker of each of
its “children” pc, we construct a differentiation path Gp!pc

m : ½0,1� 7!R,
such that Gp!pc

m ð0Þ=0, and Gp!pc

m ð1Þ=μpc

m � μp
m, where μp

m and μpc

m are
the mean expression levels of the mth marker of cell type p and cell
type pc, respectively. We also assume that Gp!pc

m is a stochastic pro-
cess, whose realization is denoted as gp!pc

m .
With these setups, the simulated expression level for the nth cell

event is calculated following these steps: (1) Generate a cell typep from
Categorical ðπÞ. (2) If the cell type p has “children”, we randomly select
from them a cell type pc. (3) For each markerm, we generate a sample
xm from Nðμp

m,ðσp
mÞ2Þ, a “pseudotime” tpm from Beta ð0:4,1Þ, and a

background noise e fromNð0,σ2Þ. (4) The final expression level for the
mth marker is then calculated as Yp

m = xm + gp!pc

m ðtpmÞ+ e.

Subsampling for selected DR methods
In all accuracy benchmarks, we employed two strategies when a
method fails due to large sample size. (1) If such a method has a
mapping function to accommodate newdata (e.g. LLE and Isomap), we
initialized and trained themethod with 10% subsampled data and then
mapped the rest onto the embedding; (2) If a method has no mapping
function and aborts duringbenchmarking,we treated suchmethods as
“Error”, and they will be ranked last. This approach ensures that all
evaluations are based on full samples rather than amixof sample sizes.
In a separate benchmark, we also executed allmethods on subsampled
data: if a method fails in this case, no further subsampling was allowed
and they were treated as “Error”. For all subsampling in these bench-
marks, we randomly sampled 10% of cells from each sample without
replacement.

Although scvis does not have a memory constraint like LLE and
Isomap, its authors recommend training the model using a small
sample, as a unique feature of scvis. Thus, we performed scvis both
with (denoted as scvis) and without subsampling (denoted as scvis
(Full)). With the help of its mapping function, all evaluations were
performed with complete samples.

Development of the CyTOF DR playground webserver
We developed an online web tool for displaying the results of bench-
marking DR algorithms on CyTOF data. The technical stack includes
HTML, CSS, JavaScript and DataTables. The visualization table to dis-
play the benchmarking results of the real and the simulation datasets
in this web tool was created with the DataTables jQuery plugin. This
table provides searching, sorting and pagination features and pro-
gressive bars to visualize the performances of the DR methods
according to differentmetrics. There are twomain features in this web
tool. The first one is to search for DR results based on multiple input
conditions (left column). And the other is to dynamically calculate the
average of the performance scores for the user-chosen metrics and to
rank the chosen DR methods based on the average scores (top row).
This web tool is hosted on the Database for Actionable Immunology
(DBAI) website (https://dbai.biohpc.swmed.edu/)48,49,71.

Statistics and reproducibility
Computations were mainly performed in the R (3.6.3 and 4.1.3) and
Python (3.7 and 3.8) programming languages. All statistical tests were
two-sided unless otherwise described. We used the nonparametric
Wilcoxon Signed Rank Test with “wilcox.test” and “pairwise.-
wilcox.test” procedures in R for testing ranking differences between
samples in terms of accuracy. All pairwise tests’ p-values were adjusted
with the Benjamini–Hochberg Procedure to control the false discovery
rate (FDR). For correlation,weused Spearman’s rank-based correlation
coefficient.

For all rank-based metrics and results, higher ranks indicate
superior performance. In case of tied ranks, we employed the max-
imum rank to allow tied values to all have the highest rank among

them. The highest possible rank is 21 while the lowest is 1, unless
otherwisenoted such as in the case of parameter tuning. Decimal ranks
are results of the weighting scheme of our evaluation framework.

No statistical method was used to predetermine sample size.
We used all CyTOF samples from the original sources, except for the
Imaging CyTOF cohort. There were toomany samples in this cohort.
So to avoid biasing our benchmarking results, we selected the top 14
datasets with more than 5000 cells. This study was not a clinical
trial, so the experiments were not randomized. The investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The public CyTOF and scRNA-seq data used in this study were from
citations10,12,34,65–70,72–74 and described in Supplementary Data 2, with
more details on data accession documented in this table. The in house
COVID-19 vaccine CyTOF datasets are available from DBAI (https://
dbai.biohpc.swmed.edu/), under accession codes
“CyTOF_00000000000001 to CyTOF_00000000000012 [https://
dbai.biohpc.swmed.edu/cytof-database.php]”. Source data are pro-
vided with this paper.

Code availability
The CyTOF simulation model is available at: cytomulate.readthedocs.
io. The CyTOF DR Package webserver is available at CytofDR.
readthedocs.io. The CyTOF DR Playground webserver is available at
dbai.biohpc.swmed.edu/cytof-dr-playground.
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