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Explainable multi-task learning for multi-
modality biological data analysis

Xin Tang 1,2,6, Jiawei Zhang3,6, Yichun He 1,2,6, Xinhe Zhang 1, Zuwan Lin 4,
Sebastian Partarrieu 1, Emma Bou Hanna1, Zhaolin Ren1, Hao Shen 1,
Yuhong Yang3, Xiao Wang 2,5, Na Li1, Jie Ding 3 & Jia Liu 1

Current biotechnologies can simultaneously measure multiple high-
dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the
same cells. A combination of different analytical tasks (e.g., multi-modal
integration and cross-modal analysis) is required to comprehensively under-
stand such data, inferring how gene regulation drives biological diversity and
functions. However, current analytical methods are designed to perform a
single task, only providing a partial picture of the multi-modal data. Here, we
present UnitedNet, an explainable multi-task deep neural network capable of
integrating different tasks to analyze single-cell multi-modality data. Applied
to various multi-modality datasets (e.g., Patch-seq, multiome ATAC+ gene
expression, and spatial transcriptomics), UnitedNet demonstrates similar or
better accuracy in multi-modal integration and cross-modal prediction com-
pared with state-of-the-art methods. Moreover, by dissecting the trained
UnitedNet with the explainable machine learning algorithm, we can directly
quantify the relationship between gene expression and other modalities with
cell-type specificity. UnitedNet is a comprehensive end-to-end framework that
could be broadly applicable to single-cell multi-modality biology. This frame-
work has the potential to facilitate the discovery of cell-type-specific regula-
tion kinetics across transcriptomics and other modalities.

Recent advances in single-cell biotechnology make it possible to
simultaneously measure gene expression along with other high-
dimensional modalities for the same cells1–3. For example, the patch-
seq technique simultaneously measures cell gene expression and
intracellular electrical activity4, and the multiome ATAC + gene
expression technique jointly measures cell gene expression and DNA
accessibility5. Such multimodal omics data provide direct and com-
prehensive views of cellular transcriptional and functional processes
simultaneously. However, methods developed for analyzing single-
modality biological data cannot be directly applied to multi-modality
data6. Compared with single-modality analysis, recent studies have

identified more tasks for multi-modality analysis7 such as (i) identifi-
cation of biologically meaningful groups from different modalities,
enabling a deeper biological understanding of cellular identities and
functions for different biological systems, and (ii) cross-modal pre-
diction among different modalities, inferring the information of cells
that cannot be easily or simultaneously measured. Moreover, the
multi-modality data generated for the same type of cells provides
the opportunity to discover cell-type-specific relationships between
gene expression and other modalities, helping to uncover the reg-
ulatory mechanisms underlying the biological condition of interest. A
method that can simultaneously address these different tasks and
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automatically quantify cross-modal relevance is needed to fully utilize
the potential of multi-modality datasets.

Several methods of multi-modality analysis have been developed
to address each task separately or to identify the cross-modal feature-
to-feature relevance relationships. For the joint group identification
task,multi-modality data integrationmethods have been developed to
fuse different modality measurements into joint representations8,
which are then used for unsupervised or supervised classification to
identify cell types and states or tissue regions2,8–10. For the cross-modal
prediction task, autoencoder-based neural networks have been
developed to predict across different modalities11–16. For the relevance
discovery across modalities, Schema represents state-of-the-art multi-
modal integration methods that can identify the features in a user-
defined primary modality that are important to other modalities17.
More recently, GrID-NET has also been proposed to identify genomic
loci that mediate the regulation of specific genes in multiome
ATAC+ gene expression datasets18.

Compared with the above methods, an approach that can
address all tasks within a unified framework, quantify the cell-type-
specific, cross-modal relevance, and do so without prior knowledge
can streamline data analyses, potentially improve each task perfor-
mance, and help gain biological insights from single-cell multi-
modality data19. Still, combining multiple tasks into a single
framework can be challenging for the following two reasons. First,
each modality measurement has unique statistical characteristics
(e.g., heterogeneous distributions and noise levels), requiring dif-
ferent statistical assumptions. While there have been several statis-
tical models developed for different modalities (e.g., gene
expression measurements20–22), a method that can accommodate
unknown distributions of simultaneouslymeasuredmodalities is still
lacking. Second, joint group identification and cross-modal predic-
tion typically represent separate objectives. Specifically, the objec-
tive of joint group identification is to penalize wrong group
assignments of cells, whereas that of cross-modal prediction is to
minimize the gap between predicted reconstruction and ground
truth measurement. Thus, a strategy to integrate the different
objectives needs to be designed to avoid performance degradation.
Moreover, when no prior knowledge is given, it also remains a major
challenge to find relevance relationships between gene expression
and other modalities in certain cell types. If simply iterating all pos-
sible combinations of feature sets, the identification and quantifica-
tion of the co-varying set of features will be computationally
intractable for high-dimensional data. An efficient method is desired
to first identify the set of features from multiple modalities that are
important for a specific biological condition of interest (e.g., cell
type) and then, quantify the relationship across these features.

Here, we introduce an explainablemulti-task deep neural network
to address the above challenges for multi-modality data analysis. This
network has an encoder-decoder-discriminator structure and is
trained by alternating between two tasks: joint group identification
and cross-modal prediction. Specifically, this encoder-decoder-
discriminator structure does not presume that the data distributions
are known and instead implicitly approximates the statistical char-
acteristics of each modality23–25. We have found that alternating train-
ing between joint group identification and cross-modal
prediction maintains or improves the performance for both tasks. In
addition, we applied explainable machine learning to dissect the
trained network and quantify the cell-type-specific, cross-modal
feature-to-feature relevance. We have applied this network to various
multi-modality datasets (Fig. 1a), including (i) simulated multi-
modality data with ground truth labels26,27, (ii) simultaneously
measured transcriptomics and intracellular electrophysiology28,29

(multi-sensing data), (iii) simultaneously profiled transcriptomics and
DNA accessibility5,7 (multi-omics data), and (iv) spatially resolved
transcriptomics and proteomics30,31 (multimodal spatial-omics data).

The results show higher performances in both tasks, achieving similar
or better unsupervised and supervised joint group identification
and cross-modal prediction compared with other state-of-the-art
methods. Moreover, we show that this approach recapitulates sev-
eral previously published cell-type-specific feature-to-feature rele-
vance relationships.

Results
UnitedNet: an explainable multi-task learning model for multi-
modality biological data analysis
In this paper, we have developed UnitedNet, an explainable multi-task
learning model to address the challenges discussed in the Introduc-
tion. Specifically, for joint group identification, UnitedNet uses
encoders to obtain modality-specific codes (low-dimensional repre-
sentations) and then fuses these codes into shared latent codes using
an adaptive weighting scheme32 (see “Methods”). The model then
assigns the group labels, such as cell types, to each cell through
unsupervised or supervised group identification networks, where the
latter task is also known as annotation/label transfer2,9,10 (Fig. 1b and
Supplementary Fig. 1a). For cross-modal prediction, UnitedNet uses
the encoder to obtain the source-modality-specific code and then
predicts the data of the target modality through the target-modality
decoder (Fig. 1b and Supplementary Fig. 1b). The discriminator net-
works are trained to distinguish between the data from the true
modality and those reconstructed from the prediction, competing
with the encoders and decoders in an adversarial manner to improve
the accuracy of cross-modal prediction23–25.

UnitedNet is trained using an overarching loss that consists of (i)
an unsupervised clustering loss or a supervised classification loss that
separates and closely packs shared latent codes in different clusters to
better assign group labels32,33, (ii) a contrastive loss that aligns the
different modality-specific latent codes of the same cell and further
separates the latent codes fromother cells of different clusters33,34, (iii)
a reconstruction loss that compares the reconstruction from the
encoders and decoders with the original data so that the latent
code better represents the cell15, (iv) a prediction loss that measures
the performance of cross-modal predictions15, (v) a discriminator loss
that distinguishes the original and reconstructed data in the target
modality23–25, and (vi) a generator loss that pushes the decoded data to
resemble the original data23–25 (Fig. 1c). During the training, we opti-
mize the network parameters by alternately training between the joint
group identification and cross-modal prediction tasks, which
are linked in the shared latent space (Fig. 1d, e).

In addition, as a trained UnitedNet combines information for
both multimodal group identification and cross-modal prediction,
dissecting it using post hoc explainable machine learning methods
can reveal the cell-type-specific, cross-modal feature-to-feature
relevance, which can help to facilitate the identification of biologi-
cal insights frommultimodal biological data. To do this, we apply the
SHapley Additive exPlanations35 algorithm (SHAP, see “Methods”),
commonly used to interpret deep learning models, to dissect the
trained UnitedNet. During the explainable learning, we can identify
features that show higher relevance to specific groups (Fig. 1f) and
then quantify the cross-modal feature-to-feature relevance within
these groups (Fig. 1g).

UnitedNet with multi-task learning exhibits robust and superior
performance
To evaluate the performance of UnitedNet, we used a simulated
dataset containing four modalities (DNA, pre-mRNA, mRNA, and pro-
tein) with their ground truth labels from Dyngen, a multi-omics bio-
logical process simulator26 (Fig. 2a and see “Methods”). We first
benchmarked the unsupervised joint group identification perfor-
mance of UnitedNet against several state-of-the-art multi-modal inte-
gration methods, including Schema17, Multi-Omic Factor Analysis
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(MOFA)36, totalVI16, and Weighted Nearest Neighbor (WNN)8. We
applied the Leiden clustering37 method to cluster the integrated joint
representations from these methods and used single-modality Leiden
clustering as the performance baseline. As a result, UnitedNet con-
sistently exhibits similar or better unsupervised joint group identifi-
cation accuracy compared with the single-modality Leiden clustering
and other state-of-the-art methods (Fig. 2b and “Methods”). We then
performed an ablation analysis by removing the cross-modal predic-
tion task in UnitedNet. Notably, we found that the unsupervised group
identification accuracy decreased without multi-task learning (Fig. 2b

and “Methods”). Similarly, we evaluated the cross-modal prediction
performance of UnitedNet through an ablation analysis. The results
show that the ablation of either the multi-task learning or the dis-
criminator (termed dual-autoencoder) reduced the average prediction
accuracy of the network (Fig. 2c, “Methods”). Together, these bench-
mark studies and ablation analysis demonstrate the effectiveness of
implementing the encoder-decoder-discriminator network structure
and multi-task learning scheme for multi-modality data analysis.

We then studied why multi-task learning can improve the
performance of both tasks. Based on the previous designation of
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shared-latent space inmulti-modal andmulti-task learning (Fig. 1b), we
hypothesized that the joint training of joint group identification and
cross-modal prediction tasks would reinforce each other through the
shared latent space (Fig. 2a). To test this, we compared the shared
latent codes learned from single-task training with multi-task training
by UnitedNet using the simulated four-modality Dyngen dataset. The
results show that compared with single-task learning (Fig. 2e, f), multi-
task learning better aligned the modality-specific codes and better
separated the clusters of the shared codes in the latent space (Fig. 2d).
Together, they improved group identification efficiency and cross-
modal prediction accuracy upon the model trained with single-task
learning (Supplementary Fig. 2).We further quantified the relationship
between the joint group identification and cross-modal prediction
tasks throughout the training procedure. The results show that the
performances of both tasks improved as the distance between the
modality-specific codes decreased (Fig. 2g, h). Overall, the perfor-
mances of group identification and cross-modal prediction tasks
exhibit a positive correlation (Fig. 2i).

In addition, we demonstrated the robustness of UnitedNet when
handling datasets with modality-specific noise. In applications, noises
arising from different sources, such as the sequencing dropout effect
and feature measurement error in multi-modality biological datasets,
typically affect the network’s performance. To address this challenge,
UnitedNet applied an adaptive weighting scheme32 to automatically
assign lower weights to the modalities with more noise, reducing their
impact on the group identification results (Supplementary Fig. 3a). To
test the effectiveness of the adaptive weighting scheme in UnitedNet,
we used simulated datasets with controllable dropout levels. Specifi-
cally, following a previous study27, we simulated datasets with normal
morphologymodality data and noisy transcriptomicsmodality data at
different controlled dropout levels27 (Supplementary Fig. 3b) and
applied UnitedNet to these datasets. The results showed that the
modality weight of the transcriptomics modality increased as we
decreased its dropout level, enabling a similar performance compared
with the state-of-the-art methods (Supplementary Fig. 3c, d). Mean-
while, in the simulated four-modality Dyngen dataset without noises,
the modality-specific weights were similar across four modalities
(Supplementary Fig. 3e).

UnitedNet provides accurate three-modality neuron type iden-
tification and cross-modal prediction for multi-sensing data
To demonstrate the ability of UnitedNet to analyze realistic multi-
modality biological data, we applied it to the Patch-seq GABAergic
neuron dataset, which measured morphology (M), electrophysiology
(E), and transcriptomics (T) in the same neurons29. UnitedNet allowed
for simultaneous unsupervised joint group identification and cross-
modal prediction to identify cell types and predict modality-specific
features, respectively (Fig. 3a).

We first benchmarked the unsupervised group identification
performance of UnitedNet by combining cell electrophysiological
and morphological features to identify transcriptomic cell

types29,38. Compared with other state-of-the-art cell typingmethods
including MOFA, totalVI, Schema, WNN, and Leiden clustering
using single modality data, the performance of cell typing results
by UnitedNet demonstrates improvement in terms of cell type
separability and identification accuracy (Supplementary Fig. 4). We
then benchmarked the cross-modal prediction performance
between electrophysiology and transcriptomics modality by com-
paring UnitedNet with Coupled Autoencoder (CplAE), a deep
neural network with an encoder-decoder structure11,12. UnitedNet
achieved a similar or better performance in all directions of cross-
modal prediction than CplAE with different hyperparameters
(Supplementary Fig. 5).

Next, we performed simultaneous unsupervised joint group
identification analysis and cross-modal prediction on the
morphological-electrophysiological-transcriptomic (MET) datasets.
By directly fusing the three modalities together and assigning the
label for each cell, UnitedNet identified the cellMET-typeswith a high
degree of congruence (ARI = 0.82) and a roughly diagonal corre-
spondence (ARI = 0.41) between the major MET-types and subtle
MET-types compared with the previously reported results
(Fig. 3b–d). Furthermore, we benchmarked the performance of Uni-
tedNet by comparing the results of MET-types clustering using
Schema17, MOFA36, totalVI16, and WNN9 and Leiden clustering37 using
single modality data. The benchmarking results showed that Uni-
tedNet performed similarly or better in terms of group identification
accuracy compared to these methods (Supplementary Fig. 4). We
also visualized learned modality-specific weights and found that
the weights of gene expression were higher than other modalities in
the Patch-seq dataset, which aligns with the previous understanding
that gene expression is a more informative modality in the Patch-seq
dataset29.

For the cross-modal prediction task, previous methods such as
coupled autoencoder were limited for the prediction between two
modalities since they used an alignment loss function designed
between two modalities, which cannot be directly applied to this
three-modality dataset. In contrast, UnitedNet does not require
explicit loss functions for modality alignment, thus allowing for the
inclusion of multiple number of modalities as inputs. UnitedNet
enabled the prediction of individual measurements across three
modalities with high fidelity (Fig. 3e, Supplementary Fig. 6). We fur-
ther examined the learned latent space of three modalities by the
UnitedNet and found strong alignment between the transcriptomics
and electrophysiology modalities (Supplementary Fig. 7a, b), which
aligns with previous studies11. In addition, we found that the mor-
phology modality was also aligned with the transcriptomics and
electrophysiology modalities, with a relatively less level of alignment
for the Pvalb neurons (Supplementary Fig. 7c). This relatively less
level of alignment further supported the previous finding that,
although Pvalb neurons have a similar gene expression profile, they
exhibit both electrophysiological homogeneity and morphological
diversity39.

Fig. 1 | Multi-task learning of multi-modality biological data by UnitedNet.
a Schematics of representative multi-modality biological data: (i) simultaneously
measured transcriptomics and intracellular electrophysiology (multi-sensing data),
(ii) integratively profiled transcriptomics and DNA accessibility (multi-omics data),
and (iii) spatially resolved transcriptomics and proteomics (spatial omics data).
b Schematics of designation of the shared-latent space. Different modality mea-
surements from the same cell can be projected to a shared latent space as latent
codesbyencoders. The latent codes canbeprojectedback to themodality spaceby
decoders. In the latent space, latent codes representing different modalities from
the same cell can be integrated as a unimodal shared latent code used for joint
group identification. c Schematics showing the network structure of UnitedNet

based on the shared-latent space designed in (b). d, e Schematics showing the
multi-task learning between joint group identification (d) and cross-modal pre-
diction (e) byUnitedNet for analyzingmulti-modality data. f, g Schematics showing
the application of explainable learning methods to dissect the trained UnitedNet
for identifying group-to-feature relevance (f) and the cross-modal feature-to-
feature relevance (g). First, anexplainable learningmethoddissects the encodersof
a trained UnitedNet to identify the most relevant input features to each group (f).
Then, within the grouped input features from (f), the explainable learning method
further dissects the encoders and decoders of the trained UnitedNet to identify
group-specific cross-modal feature-to-feature relevance (g). The drawings in panel
a were created with BioRender.com.
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UnitedNet indicates the neuron-type-specific, cross-modal
feature-to-feature relevance relationship
We then dissected the trained UnitedNet using post hoc explainable
learning, SHAP, to indicate the feature relevance in the Patch-seq
GABAergic neuron datasets. Specifically, we used SHAP to assign the

importance value, known as the Shapley value, to each input feature
with respect to any givenmodel output such as a certain identified cell
group or the cross-modality prediction of a certain feature35. By defi-
nition, features with high Shapley values are influential. Therefore,
we chose features based on their ranking of the Shapley values.
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To validate the robustness and effectiveness of this identification
approach, we conducted the following experiments.

To evaluate the robustness, we considered (i) the inherent ran-
domness of the SHAP method and (ii) the randomness introduced by
training the UnitedNet model on different data, which are two major
sources of randomness in the explainable learning outcomes. First, to
validate the robustness of SHAP with different hyperparameters, we
used the fixed Patch-seq GABAergic neuron dataset to train a Uni-
tedNet model. Then, we applied 10 folds cross-validation to the Patch-
seq GABAergic neuron dataset to calculate Shapley values. We then
counted the frequency of the top n features identified by Shapley
values in each cross-validation replication (n = 7 for each cell type in
the Patch-seq GABAergic neuron dataset). The results (Supplementary
Fig. 8) showed that the top 7 frequently selected features were con-
sistently identified across the 10 cross-validation replications, which
indicates the robustness of SHAP with respect to its inherent
randomness.

Then, to further validate the robustness of SHAP in UnitedNet, we
considered both the inherent randomness in SHAP and the random-
ness introduced by training UnitedNet on different data. Specifically,
we used explainable learning to dissect UnitedNet models trained on
different folds of cross-validation (Supplementary Fig. 9). Instead of
using the entire Patch-seq GABAergic neuron dataset to train a single
UnitedNet model, we divided the dataset into 10 folds, used every 9
folds to train a separate UnitedNet model and the remaining fold for
testing. We then applied SHAP to dissect each model using the same
methods described above. We counted the frequency of the top 7
features identified by Shapley values in each cross-validation replica-
tion. The results showed that explainable learning identified similar
sets of features despite the inherent randomness of the SHAP method
and the randomness introduced by training the UnitedNet model on
different datasets (Supplementary Fig. 10). Taken together, these
results support the robustness for dissecting the trained UnitedNet
with SHAP.

Next, we quantitatively evaluated the effectiveness of the Shapley
values and these SHAP-selected features (Supplementary Fig. 12). Given
that neuron-type-specific features identified by previous studies are
expected to be more biologically relevant, we hypothesized that the
Shapley values of these features would be higher than those of ran-
domly chosen features. Our results supported this hypothesis as we
found higher Shapley values for marker genes compared with ran-
domly chosen features in the Patch-seq GABAergic neuron dataset.
Furthermore, we used the Shapley values as a predictor for marker
genes. Our results showed that the marker features had higher pre-
dictability compared with randomly chosen features in the Patch-seq
GABAergic neuron dataset (marker feature accuracy =0.72 ± 0.07,
mean ± SD; randomly chosen feature accuracy = 0.51 ± 0.03, mean ±
SD, for 5 cell types * 3 modalities). These results demonstrate the

effectiveness of Shapley values in predicting group-specific features in
multi-modality biology.

Then, using the Pvalb neuron type as an example, we qualita-
tively validated the SHAP-selected relevance (Fig. 4). For the group-
to-feature relevance, SHAP successfully selected a subset of genes,
electrophysiological features, and morphological features that are
differentially expressed for Pvalb neurons (Fig. 4a, d–f). Investigating
the Pvalb-neuron-specific cross-modal feature-to-feature relevance
(Fig. 4b, c), we found that gene Lrrc38 showed a higher relevancewith
the electrophysiological feature of the Pvalb neuron average firing
rate during patch-clamp electrical stimulation using long square
current steps. This result agreed with previous studies showing
Lrrc38-related protein as one of the most crucial modulators for
big potassium (BK) channels, which are critical to neuronal firing
dynamics and neurotransmitter release40,41. These results suggested
that UnitedNet could be potentially used to facilitate the identifica-
tion of cell-type-specific gene-to-function relevance for Patch-
seq data.

The above experiments showed the robustness and effectiveness
of the Shapley value-based feature relevance identification. Based on
the ranking and robustness of the Shapley value for each feature
(Supplementary Figs. 9–10, see “Methods”), the final selected subset of
neuron-type-specific genes, electrophysiological features, morpholo-
gical features, and quantified neuron-type-specific, cross-modal
feature-to-feature relevance are shown in Fig. 4 and Supplemen-
tary Fig. 11.

UnitedNet enables accurate joint annotation transfer and cross-
modal prediction in multi-omics data
We applied UnitedNet to analyze large-scale datasets from multiple
batches of samples. These large-scale multi-omics datasets are typi-
cally generated to annotate cellmolecular types fromdifferent batches
of samples. For example, the single-cell transposase-accessible DNA
sequencing technique5 that combines gene expression and genome-
wide DNA accessibility (namely, multiome ATAC+ gene expression
data) has been used to profile diverse types of immune cells7. One
challenge in analyzing these datasets is using previously annotated
multi-modality datasets as references to analyze new measurements
from a different batch of the same biological system. Another chal-
lenge is the batch effect, which refers to differences between cells
causedby inter-sample variations. This batcheffectmakes it difficult to
use labeled multiome ATAC+ gene expression datasets as a reference
atlas to annotate other new datasets. We found that UnitedNet can
address these challenges in twoways. First, it canperform a supervised
group identification task (termed annotation transfer) that auto-
matically identifies cell types in new, unlabeled test samples based on
previously labeled training samples, while simultaneously enabling
cross-modal prediction. In addition, we found that UnitedNet can

Fig. 2 | Performance evaluation of UnitedNet on a simulated Dyngen dataset.
a Schematics of the optimization procedure of UnitedNet. x(D), x(pre), x(m), and x(Pro)

represent the simulated modality of DNA, pre-mRNA, mRNA, and protein, respec-
tively. Each modality measurement is encoded as a modality-specific code that is
then fused as shared-latent codes. The performance of both the joint group iden-
tification and the cross-modal prediction task is enhanced as the modality-specific
codes are aligned with each other. b, c Barplot reporting the performance com-
parison of joint group identification (b) and cross-modal prediction (c) of Uni-
tedNetwith those fromother ablations. The dual autoencoder (dual AE) consists of
two vanilla autoencoders without latent space alignment or discriminator. WNN,
totalVI, Schema, andMOFAare conducted for the fusion ofmultiplemodalities and
then Leiden clustering is used for joint group identification on the fused repre-
sentation. The dashed line in (b) represents the performance of group identifica-
tion using Leiden clustering on the simulatedmodality of pre-mRNA, protein, DNA,
andmRNA fromDyngen. n = 5 folds cross validation for panels (b) and (c). Data are
represented as mean± SD. d–f The latent space visualization by uniform manifold

approximation and projection (UMAP)62 of UnitedNet (d) and other ablation ver-
sions in which we remove the training of cross-modal prediction task (e) or joint
group identification task (f) with different training epochs for the Dyngen dataset
with fourmodalities. The latent codes are colored to represent different prediction
R2 values (second row), cell type labels (third row), and ground truth labels (fourth
row). Three representative codes in each of the modalities are highlighted in the
first row to show the alignment between modalities. As the training epoch increa-
ses, the modality-specific codes are aligned with each other in UnitedNet (d) while
in other ablations (e, f) the codes aremisaligned.gThe correlationplot between the
inter-modality distance of modality-specific codes and joint group identification
performance. p = 1.43 × 10−45. h The correlation plot between the inter-modality
distance of modality-specific codes and cross-modal prediction performance.
p = 5.96 × 10−146. i Correlation plot between cell typing performance and prediction
performance. p = 3.29 × 10−38. Line of best fit shown in deep red and translucent
bands around the regression line 95%confidence interval. Source data are provided
as a Source data file.
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effectively reduce batch effects among different biological sam-
ples (Fig. 5a).

We applied UnitedNet to multiome ATAC+ gene expression
datasetsmeasured from the bonemarrowmononuclear cells (BMMCs)
in 13 batches from different tissue sites and donors7. These datasets
contain 22 previously identified and annotated cell types (Fig. 5b i–ii

and Fig. 5c i–ii). We trained UnitedNet using data from 12 batches of
data with the corresponding cell type annotations serving as the labels
from the training samples.We then tested the performance on the 13th
batch. UnitedNet was able to successfully (i) integrate the 12-batch
reference datasets and learn the 22 annotated cell types, (ii) simulta-
neously map the unlabeled test dataset (the 13th batch) into the same
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Fig. 3 | Multi-modal analyses of a multi-sensing dataset by UnitedNet.
a Schematics illustrating the unsupervised joint group identification and cross-
modal prediction of a Patch-seq dataset by UnitedNet. The patch-seq experiment
simultaneously measures transcriptomics, electrophysiology, and morphology
from the same cells to jointly define cell types. b, c UMAP representations of the
shared codes in the shared latent space that are color-coded by the joint
morphology-electrophysiology-transcriptomics (MET)-types labeled by the refer-
ence (b) and identifiedbyUnitedNet (c), whereMETmajor cell type annotations are

in (i) and MET cell subtype annotations are in (ii). d Confusion matrices comparing
(i) joint major cell types and (ii) cell subtypes between the reference labels and
UnitedNet-identified labels. e Heatmap comparing cross-modal predicted gene
expression, electrophysiological, and morphological features averaged over
annotated major transcriptomics cell types with the ground truth. Source data are
provided as a Source data file. The drawings in panel a were created with
BioRender.com.

Relevance

a b c

d

e

f

Most relevant gene markers to Pvalb neuron

Most relevant ephys features to Pvalb neuron

Most relevant morphology features to Pvalb neuron

Gene markers Ephys features Morphology features

Fig. 4 | Explainable learning for UnitedNet trained with patch-seq GABAergic
neuron data. a Chord diagram showing the feature-to-group relevance for Pvalb
neurons. The relevance values aremin-max normalized to 0-1. The ‘Uni’ represents
the label predicted from UnitedNet. b, c Chord diagrams showing the gene-to-
electrophysiology relevance (b) and gene-to-morphology relevance (c). The fea-
tures used for cross-modal relevance analysis are from (a). The relevancevalues are

min-max normalized to 0-1. d–f UMAP representations of the shared codes of
patch-seq GABAergic neuron data in the shared latent space that are color-coded
by most Pvalb-neuron-relevant features from the modality of gene expression (d),
electrophysiology (e), and morphology (f). Source data are provided as a Source
data file.
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22 separated clusters, and (iii) reduce the batch effect (Fig. 5b iii–v and
Fig. 5c iii). We also visualized the learnedmodality-specific weights and
found that the weights of DNA accessibility and gene expression were
similar, indicating the similar importance of these two modalities with
respect to cell type identification (Supplementary Fig. 3f).

To understand howUnitedNet reduces batch effect, we conducted
additional ablation studies (Supplementary Fig. 13). These studies

showed that while the joint group identification task helped reduce the
batch effect through its classification loss function, it also led to over-
fitting of group identification. In contrast, the cross-modal prediction
task improved group identification, but it could also contribute to a
stronger batch effect. By combining both tasks in an alternating train-
ing approach, UnitedNet was able to leverage their strengths to reduce
the batch effect while maintaining group identification performance.
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Next, we used ablation studies to validate whether multi-task
learning can still achieve better performance in a supervised setting.
We compared UnitedNet with a state-of-the-art annotation transfer
method42 and an ablated version of UnitedNet that only involved one
task. We found that UnitedNet trained with supervised group identi-
fication and cross-modal prediction showed similar or better accuracy
in both tasks (Fig. 5d–f). Finally, we evaluatedwhether the cross-modal
prediction by UnitedNet could reconstruct cell-type-specific feature
patterns by comparing the gene expression and DNA accessibility
patterns across cell types between the ground truth and predicted
results.We found a high degree of similarity in the gene expression-to-
DNAaccessibility andDNAaccessibility-to-gene expressionprediction,
indicating the good performance of the cross-modal prediction
task (Fig. 5g).

UnitedNet indicates the relevance relationship between gene
expression and DNA accessibility with cell-type specificity
We further dissected the UnitedNet trained by the multiome ATAC +
gene expression data for cell-type-specific, cross-modal feature-to-
feature relevance (Fig. 6 and Supplementary Fig. 14).We examined the
effectiveness and robustness of our explainable learning in the similar
way as discussed above (See “Methods”). These results support the
effectiveness and robustness of our method for dissecting the trained
UnitedNet with SHAP (Supplementary Figs. 12 and 15).

We then explored the biological values of the explainable learning
in UnitedNet for the multiome ATAC+ gene expression dataset. Using
CD8+T major cell type (both CD8+T and CD8+T naive cells) as an
example (Fig. 6a), our results first identified a subset of genes (e.g.,
CD8A, A2M, LEF1, and NELL2) and DNA accessibility sites (e.g., CD8A,
DPP8, KDM2B, and KDM6B) that were differentially expressed for the
CD8+T major cell type (Fig. 6b, d, e). Within these genes and DNA
accessibility sites, theDNAaccessibility sitesPROS1, KDM2B, andKDM6B
exhibited stronger relevance to CD8+T cell-specific genes, suggesting
their critical roles in CD8+T cell functions (Fig. 6c). The results align
with the previous studies that the elevated expression level of PROS1 in
the CD8+T cell is a crucial regulatory signal that prevents overactive
immune responses43.Meanwhile, the lack ofKDM2B expression initiates
T-cell leukemogenesis44. Notably, a recent study finds that KDM6B, a
member of the same gene family as KDM2B, directly regulates the
generation of CD8+T cells by inducing DNA accessibility in effector-
associated genes45. Our results further suggest that KDM2B may also
potentially play an important role in regulating the generation of
CD8+T cells.

UnitedNet utilizes spatial information in spatial-omics data and
achieves high tissue region identification accuracy
Spatial omics is another important multimodal technology that allows
for the measurement of spatially resolved multi-omics information in
intact tissues46–48. However, spatial information is often not fully utilized

when analyzing spatial omics data for group identification tasks. Uni-
tedNet is flexible to integrate different modalities as inputs, including
spatial information. As demonstrated below, UnitedNet can utilize cell
niche information (neighborhood gene expression information of each
cell) as an additional modality to identify biologically meaningful
groups and potentiate cross-modal prediction (see “Methods”, Fig. 7a).

We first applied UnitedNet to a single-batch DBiT-seq embryo
dataset, which simultaneously mapped the whole transcriptome and
22 proteins on an embryonic tissue31. Specifically, we generated the
weighted average of RNA expression in the cell niche, which encodes
spatial information, as the third modality for analysis. UnitedNet then
combined gene expression, protein, and niche modalities for unsu-
pervised joint identification of tissue regions and cross-modal pre-
diction between gene expression and proteins. We benchmarked the
accuracy of tissue region identification by considering the anatomic
annotation of the tissue region from the original report as the ground
truth31. UnitedNet achieved a higher unsupervised group identification
accuracy comparedwith state-of-the-artmethods (Fig. 7b). In addition,
UnitedNet enabled the possibility of spatially resolved cross-modal
prediction between several representative genes and protein expres-
sions (Fig. 7c).

Next, we applied UnitedNet to an annotated multi-batch spatial-
omics dataset for simultaneous supervised joint group identification
and cross-modal prediction. We used a human dorsolateral prefrontal
cortex (DLPFC) dataset that spatially maps gene expression and H&E
staining onDLPFC brain slices from 12 batches30. Similarly, we used the
gene expression, H&E staining-based morphological features, and cell
niche modalities as inputs to UnitedNet. UnitedNet can successfully
annotate the unseen DLPFC slice (Supplementary Fig. 16) and achieve
higher or comparable accuracy than the other benchmarkingmethods
and an ablated version of UnitedNet that did not use the alternating
training scheme or the cell niche modality (Fig. 7d and Supplementary
Fig. 17). We also visualized learned modality-specific weights and
found that the weights of gene expression were higher than other
modalities in the spatial DLPFC dataset, which aligns with the previous
conclusion that gene expression is a more informative modality in the
DLPFC dataset30.

In addition, we explored whether UnitedNet can reduce the batch
effect in the spatial DLPFC dataset, in a similar way as the analyses for
the multiome ATAC+gene expression BMMC dataset. The results
showed that UnitedNet maintained both good separability in the latent
space and the ability to reduce the batch effect, enabling the higher or
comparable performance in the group identification task compared to
other ablation studies (Supplementary Fig. 18). Furthermore, UnitedNet
enabled the possibility of cross-modal prediction between several
representative genes and the H&E morphological features (Fig. 7e).

In summary, UnitedNet can extract spatial information as an input
modality to enable both supervised and unsupervised group identifi-
cation and cross-modal prediction for spatial-omics data.

Fig. 5 | Automated multi-modal annotation transfer and cross-modal predic-
tion of multi-omics datasets by UnitedNet. a Schematics of a multiome ATAC+
gene expression data analysis pipeline by UnitedNet. UnitedNet uses RNA and DNA
accessibility data along with their cell type annotation labels as inputs to train the
network. b Supervised joint group identification enabled by UnitedNet. The UMAP
latent space visualizations show DNA accessibility (i), RNA (ii), and shared latent
codes of UnitedNet (iii-v) of the 13-batch multiome ATAC+ gene expression data-
set. In this process, UnitedNet first fused the shared latent codes from two mod-
alities and grouped the codes basedon cell type annotations (iii). Then, it projected
the unlabeled query batch to the learned shared latent space (iv), transferring the
label of the reference to the shared latent codes of the unlabeled query (v). The
latent codes are colored by cell-type annotations. c Batch effect correction enabled
byUnitedNet. TheUMAP latent space visualizations showDNA accessibility (i), RNA
(ii), and shared latent codes (iii) as in (b). The latent codes are colored by different
batches. d Boxplots comparing the performance of UnitedNet and scANVI on joint

group identification of the multiome ATAC+ gene expression BMMCs dataset.
Note that the performance of UnitedNet with supervised group identification task
only and UnitedNet with cross-modal prediction task only are included as ablation
studies. scANVI42 is used for single-modality annotation transfer basedon the ATAC
or the gene expression modality. e, f Quantitative prediction results of UnitedNet
and other ablation studies on the multiome ATAC+ gene expression dataset. The
prediction from DNA accessibility to RNA (e) and the prediction from RNA to DNA
accessibility (f) are evaluatedby the coefficient of determination and the areaunder
the curve (AUC), respectively. Box, 75% and 25% quantiles. Line, median. Whisker,
the maxima/minima or to the median ± 1.5× inter quartile range (IQR). n = 13 folds
cross validation for panels (d–f). g Heatmap comparing cross-modal predicted
gene expression and DNA accessibility features with the ground truth. The values
are averaged, and min-max scaled over annotated cell types. Source data are pro-
vided as a Source data file. The drawings in panel a were created with
BioRender.com.
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Discussion
We have demonstrated that UnitedNet can effectively integrate mul-
tiple tasks, such as the joint group identification and cross-modal
prediction tasks and enable cross-modal relevance discovery through
explainable multi-task learning for multi-modality data analysis.
Through extensive ablation and benchmarking studies, we have vali-
dated that multi-task learning can achieve similar and better perfor-
mance than single-task learning, single-modality analysis, and other
state-of-the-artmethods inbothunsupervised and supervised settings.
UnitedNet is applicable to a wide range of single-cell multi-modality
biological datasets, including but not limited to multi-modality simu-
lation data, multi-sensing data, multi-omics data, and spatial omics
data. Moreover, the trained UnitedNet, which integrates multi-modal
group identification and cross-modal prediction information, can be
dissected by post hoc explainable learning methods to potentially
uncover biological insights such as cell-type-specific, cross-modal
feature-to-feature relevance from multi-modality biological data. The
success of UnitedNet in analyzing multi-modality biological data will
expand our ability to chart and predict cell states via combined multi-
modality information in heterogeneous biological systems.

We envision several directions where UnitedNet could be used for
data-driven scientific discoveries. In the group identification task,

UnitedNet can adaptively and effectively integrate multiple modalities
measured from the same cells, potentially improving current cell
typing systems to discover cell types that may not be identified using
single-modality methods and helping to infer cell-type-specific phe-
notypes and functions49. For the cross-modal prediction task, Uni-
tedNet may be able to predict end-point modality (e.g., gene
expression) from continuous measurements of other modalities (e.g.,
electrical activity and bioimaging50). The enhanced performance of
UnitedNet could enable the construction of a reliable predictive
model, allowing for the use of continuous prediction to generate
biological insights. Last but not least, UnitedNet could be used to
suggest the most likely relevance relationships from presented multi-
modal data, providing useful guidance for downstream wet-lab vali-
dation and potentially reducing time-consuming experiments.

Although the UnitedNet performed well for different multi-
modality datasets, a number of improvements may be explored in the
future, such as automatic searching for the optimal network config-
uration (e.g., the number of neuron nodes in each layer) and hyper-
parameter (e.g., the learning rate that controls the optimization level in
each training iteration) for deep neural networks. Moreover, there are
some remaining questions such as whymulti-task learning can improve
multi-modal data analysis19, how to reduce randomness in the neural
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Fig. 6 | Explainable learning for UnitedNet trainedwithmultiomeATAC+gene
expression data. a UMAP representations of the shared codes of multiome
ATAC+ gene expressiondata in the shared latent space that are color-codedby the
cell types identified by UnitedNet. The dashed line indicates the location of the
CD8+ T and CD8+T naive cells in the latent space. b Chord diagram showing the
feature-to-group relevance for CD8+ T cells. The relevance values are min-max
normalized to 0-1. c Chord diagram showing the DNA accessibility-to-gene

expression relevance. The features used for cross-modal relevance analysis are
from (b). The relevance values are min-max normalized to 0-1. d, e UMAP repre-
sentations of the shared codes of multiome ATAC+ gene expression data in the
shared latent space are color-coded bymost predicted cell types (c), most CD8+T
cells-relevant gene expression value (d), and DNA accessibility sites value (e). The
dashed line indicates the locationof theCD8+T andCD8+Tnaive cells in the latent
space. Source data are provided as a Source data file.
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network training, how to design other loss functions to integrate more
tasks (e.g., single-cell trajectory inferencing), and how to design wet lab
experiments to validate the indicated cross-modal relevance. We envi-
sion that future mechanistic studies, including ablation experiments
and theoretical analysis, could help address these questions.

Methods
UnitedNet
UnitedNet features both cross-modality prediction and joint group
identification. The above two tasks are accomplished based on learned
joint low-dimensional representations of different modalities, which
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Fig. 7 | Unsupervisedgroup identification, joint annotation transfer, and cross-
modal prediction of spatial-omics datasets by UnitedNet. a Schematics of
spatial-omics data analysis pipeline by UnitedNet. Spatial omics simultaneously
measure spatially resolved multi-omics data in intact tissue networks. UnitedNet
extracts the cell neighborhood information asanadditionalmodality togetherwith
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modal prediction. b The performance comparison between UnitedNet and other
methods for tissue region group identification on the DBiT-seq embryo dataset.
c Results of cross-modal prediction between representative genes and proteins.
d Boxplots comparing the performance of UnitedNet, scANVI, SpatialDE, and

Pseudobulk on tissue region identification of the DLPFC dataset. Note that Spa-
tialDE and Pseudobulk results are from the original DLPFC paper30. Performance of
UnitedNet trained with supervised group identification task only and trained with
cross-modal prediction task only is included as ablation studies. scANVI is used for
single-modality annotation transfer based on the gene expression modality. Box,
75% and 25% quantiles. Line, median. Whisker, the maxima/minima or to the
median ± 1.5× IQR. n = 12 folds cross validation. e Prediction results of repre-
sentative genes, and morphological features from the DLPFC dataset. Source data
are provided as a Source data file.
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contain the essential information of the cells (Fig. 1b). Suppose that
there are V different modalities. Let n denote the number of cells and
p vð Þ denote the number of features in the v th modality. Let XðvÞ 2
Rn×p vð Þ ðv= 1, . . . ,V Þ denote the data from modality v where its i th row
x vð Þ
i corresponds to the cell i. For the prediction frommodality v1 to v2,

UnitedNet predicts x
v2ð Þ
i from the latent code (low-dimensional repre-

sentation) obtained from x
v1ð Þ
i . For group identification, UnitedNet first

fuses the latent codes of x 1ð Þ
i , . . . ,x Vð Þ

i . Next, based on the shared latent
codes, it returns a group index ki 2 f1, . . . ,Kg.

UnitedNet consists of encoders, decoders, discriminators, and a
group identification module. It is trained based on a within-modality
prediction loss, a cross-modality prediction loss, a generator loss, a
discriminator loss, a contrastive loss, a clustering loss (for unsu-
pervised group identification), and a classification loss (for supervised
group identification). The details about the components and losses of
UnitedNet are as follows.

Encoders
For eachmodality v= 1, . . . ,V , UnitedNet has one encoder Enc vð Þð�Þ that
maps the features of each cell i ði= 1, . . . ,nÞ to amodality-specific latent
code z vð Þ

i containing the most essential information of the data:

z vð Þ
i =Enc vð Þ x vð Þ

i

� �
: ð1Þ

The low-dimensional representations from different modalities
are required to have the same number of components.

Decoders
The decoder Dec vð Þð�Þ takes modality-specific latent codes as the
input and maps them to the features of modality v. We denote the
cross-modality predicted features from modality v1 to v2 (where
v1 ≠ v2) by

exi
v1 ,v2ð Þ =Dec v2ð Þ zðv1Þi

� �
, ð2Þ

and the within-modality predicted features of modality v by

ex vð Þ
i =Dec vð Þ z vð Þ

i

� �
: ð3Þ

Discriminators
Discriminators assist the training of the generator that consists of the
encoders and decoders. The discriminator Dis vð Þð�Þ of modality v
takes either the within-modality predicted features exi

ðvÞ or original
features xðvÞ

i as the input and outputs a binary classification result,
aiming to distinguish between exi

ðvÞ and xðvÞ
i . The encoders and

decoders improve their performance by increasing the error rate of
the discriminators.

Joint group identification module
Denote thenumberof groups tobeK . The group identificationmodule
takes the modality-specific codes from all modalities ðzð1Þi , . . . zðV Þi Þ as
the input and assigns it to one of the K groups. It first fuses the data:

zi =
XV
v= 1

ηvz
vð Þ
i , ð4Þ

where η1, . . . ,ηV are nonnegative trainable weights with
PV

v= 1ηv = 1.
Next, the fused representation zi is passed through a fully connected
layer: hi = layer1 zi

� �
. Then, to obtain the soft assignment of the group

index, the intermediate output hi is processed by another fully con-
nected layer:

αi = layer2 hi

� �
= M1 hi

� �
, . . . ,MK hi

� �� �T , ð5Þ

where

Mk hð Þ= exp Wkh
� �

PK
t = 1exp Wth

� � , ð6Þ

and Wk (k = 1, . . . ,K) is a vector of model coefficients. The group iden-
tification module assigns the group index ki = argmaxk = 1,...,K MkðhiÞ to
cell i.

Clustering loss
The clustering loss consists of three components. The first two com-
ponents are adopted from the Deep Divergence-based Clustering
(DDC)32,33. They ensure that the obtained groups are separable and
compact. The third component is based on the self entropy51. It avoids
trivial solutions wheremost of the cells are assigned to a small portion
of the total number of groups.

Component 1. Component 1 reduces the two-by-two correlations
between the cluster probability assignments (soft assignments) of
different groups. It increases the group separability since those cor-
relations are positively related to the similarity between different
groups. Define the matrix S 2 Rn×n with matrix element
si,j = exp �jjhi � hjjj22= 2σ2

� �� �
, where i= 1, . . . ,n, j = 1, . . . ,n, and σ is a

hyperparameter. It measures the similarity between different cells.
Denote Mk h1

� �
, . . . ,Mk hn

� �� �T by eαk , which is the soft assignments of
the group k for cells 1 to n. Then, the component 1 is calculated by

Lc1 =
K

2

� ��1 XK�1

k = 1

XK
l>k

eαT
k SeαlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieαT

k Seαk eαT
l Seαl

q , ð7Þ

where eαT
k Seαl is an estimate of

R
Mk hð ÞMlðhÞdh, and it is minimized

when Mk hð Þ is orthogonal to MlðhÞ. Accordingly, Lc1 requires the
values Mk �ð Þ and Mlð�Þ ðk ≠ lÞ to have low correlation.

Component 2. The component 2 pushes the soft assignment values of
different groups to distinct corners of the simplexes in RK , which also
increases the group separability. Let ek 2 RK denote a vector with its k
th element be one and other elements be zero. Therefore, ek
k = 1, . . . ,Kð Þ is the k th corner of the simplex. Recall that αi is the
output from layer2 in the group identification module. Let mk 2 Rn

with its i th element be exp �jjαi � ek jj22
� �

, which measures the dis-
tance between the soft assignments αi and simplex corner ek . The
component 2 is defined by

Lc2 =
K

2

� ��1 XK�1

k = 1

XK
l>k

mT
k Smlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mT
k Smkm

T
l Sml

q : ð8Þ

It enforces the orthogonality between exp �jjαi � ek jj22
� �

and
exp �jjαi � el jj22

� �
. Therefore, the soft assignment output

M1 hð Þ, . . . ,MK hð Þ� �T will tend to get close to one simplex corner (e.g.,
ek) insteadof approachingmultiple of them (e.g., both ek and el) at the
same time. Consequently, the low-dimensional representation in the
same group will be compact and those from different groups will be
separated.

Component 3. Component 3 aims to avoid the trivial solution where
most of the cells are assigned to a small proportion of the total groups.
Let �α 2 RK denote the averaged αi for i= 1, . . . ,n, with its k th element
denoted by �αkðk = 1, . . . ,KÞ. The third component is based on the
negative entropy of �α:

Lc3 =
XK
k = 1

�αk log �αk , ð9Þ
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which aims to assign each group index with equal probability (i.e.,
�α1 = , � � � , = �αk = 1=K). Therefore, it regularizes the groups by avoiding
the assignment to be a few subsets of total clusters.

Prediction loss
The within-modality prediction loss is defined by

LWpredict =
1
nV

Xn
i = 1

XV
v= 1

exi
vð Þ � x vð Þ

i

			 			
2
, ð10Þ

which measures the distance between the within-modality predicted
features exi

vð Þ and the original features x vð Þ
i : The cross-modality

prediction loss is defined by

LCpredict =
1

n v
2

� �Xn
i= 1

X
v1<v2

exi
v1 ,v2ð Þ � x

v2ð Þ
i

			 			
2
, ð11Þ

which measures the distance between the cross-modality predicted
features frommodality v1 to v2 and the original features frommodality
v2. When the low-dimensional representation captures the essential
information of the data, both LWpredict and LCpredict are expected to be
small. Whenmodality has binary observations (e.g., DNA accessibility),
following aprevious study13, we replace equations 10 and 11with binary
cross-entropy loss.

Generator loss and discriminator loss
The generators and discriminators are trained by the least-squares
loss25. We assign the within-modality predicted features exi

ðvÞ with label
one and the original features xðvÞ

i with label zero. The generator loss is
defined by

LGen =
1
nV

Xn
i = 1

XV
v= 1

Dis vð Þ exi
vð Þ� �

� 1
			 			2

2
, ð12Þ

which is minimized when Dis vð Þ ex vð Þ
i

� �
= 1 for i= 1, . . . ,n and v= 1, . . . ,V ,

namely, when the discriminator incorrectly classifies all the within-
modality predicted features to one. The discriminator loss is defined
by

LDis =
1
nV

Xn
i= 1

XV
v= 1

Dis vð Þ ex vð Þ
i

� �			 			2
2
+

1
nV

Xn
i = 1

XV
v= 1

Dis vð Þ x vð Þ
i

� �
� 1

			 			2
2
,

ð13Þ
which aims to make the discriminator classify the within-modality
predicted features to zero and original features to one. This set of
least-squares losses improves the quality of the trained generator,
since it matches the essential goal of the generator, which is
generating feature data with a distribution similar to that of the
original features.

Contrastive loss
We apply the contrastive loss32,34 to align the latent codes from dif-
ferent modalities. Define the cosine similarity by

s
v1v2ð Þ
i,j =

z
v1ð Þ
i

� �T
z

v2ð Þ
j

z
v1ð Þ
i

			 			
2
� z

v2ð Þ
j

			 			
2

, ð14Þ

where i,j = 1, . . . ,n. It is maximized when z
v1ð Þ
i and z

v2ð Þ
j are parallel. Let

l
v1v2ð Þ
i = � log

exp
s

v1v2ð Þ
i,i
τ

� �
P

s02Neg z
v1ð Þ
i ,z

v2ð Þ
i

� �exp s0
τ

� � , ð15Þ

where Neg z
v1ð Þ
i , z

v2ð Þ
i

� �
is obtained by sampling a fixed

number of elements from the set Ni = fs
v1v2ð Þ
i,j : j = 1, . . . ,n, j ≠ i, v1,

v2 = 1, . . . ,V , argmaxαi ≠ argmaxαjg, and τ is a hyperparameter. The

term exp s
v1v2ð Þ
i,i =τ

� �
aligns the modality-specific codes. For the

denominator, the set Ni contains all the cosine similarities
between the latent codes of cell i and those from the other cells
that are grouped into different groups. The contrastive loss is
defined by

LCon = δ � 1

n V
2

� �Xn
i = 1

X
v1<v2

lðv1 ,v2Þi , ð16Þ

where δ is a hyperparameter.

Classification loss
Define vector bi with its k th element be one and the other K � 1
elements be zero, where k is the observed class label of cell i. Let gi =
nk(i)/n where nk (k = 1,...,K) is the number of cells with cell type label
k. We assess the classification accuracy of the group identification
module by the cross-entropy:

Lentropy = � 1
n

Xn
i = 1

gi � log M1 hi

� �� �
, . . . , log MK hi

� �� �� �Tbi: ð17Þ

Training procedure
We first present the procedurewhere UnitedNet is trained without cell
labels for cross-modality prediction and unsupervised group identifi-
cation. It is trained iteratively with two steps: group identification
update step and prediction update step. In the group identification
update step, the encoder outputs the modality-specific codes and
feeds them to the group identification module. Then, the group
identification module fuses the modality-specific codes as shared
latent codes and obtains the K-dimensional soft cluster assignments.
The decoders output thewithin-modality predicted features ex vð Þ

i based
on the modality-specific codes. Next, the encoders and clustering
module are updated by the group identification loss:

Lgroup =Lc1
+Lc2 +Lc3 ð18Þ

The group identification step is repeated proportional to the modality
number. In the prediction update step, the encoders output the low-
dimensional representations from different modalities, feed them to
the decoders, and obtain the cross-modality predicted features exi

v1 ,v2ð Þ
togetherwithwithin-modality predicted features ex vð Þ

i . Then, thewithin-
modality predicted features are fed into the discriminators. The
discriminator is updated by the discriminator loss LDis . Next, the
encoder and decoder are updated by the sum of the within-modality
prediction loss, cross-modality prediction loss, generator loss, and
contrastive loss:

LPGC =LWpredict +LCpredict +LGen +LCon: ð19Þ

The above two training steps are summarized in Algorithms
1 and 2, respectively. We acknowledge that the inherent sto-
chasticity in the training of artificial neural networks, such as GPU
computation, may result in subtle differences in the outcomes.

To train UnitedNet for supervised classification, we modify the
group identification loss by:

Lgroup =Lentropy
: ð20Þ
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Explainable learning for feature relevance analysis using SHAP
To provide insights into the importance of different features, we
applied SHAP (SHapley Additive exPlanations)35,52,53, which is com-
monly used to interpret machine learning models. The idea of this
approach is to approximate the influence of a feature with respect to
the output by a linear function while fixing the other features, and the
function’s coefficient corresponds to the Shapley value. The advan-
tages of SHAP include its (1) theoretically based interpretability, (2)
wide application scope, and (3) calculation procedure without the
need to perturb the model or data, which is required by many other
feature importance methods. We will first present the calculation
procedure of the Shapley value and then explain about how it is
applied to UnitedNet.

Suppose that we want to assess the importance of a feature xj for
a function f ðxÞ, where x = x1, . . . , xQ

� �T and j 2 f1, . . . ,Qg. Let F denote
the set of features inx and S denote a subset of F . Let jFj and jSjdenote
the number of elements in the set F and S, respectively. The Shapley
value is calculated by

ϕj xð Þ=
X

S�Fnfjg

Sj j! Fj j � Sj j � 1ð Þ!
Fj j! f S∪ jf g xS∪ jf g

� �
� f S xS

� �h i
ð21Þ

where Fnfjg stands for dropping the j th feature from the set F, xS∪ jf g
is the elements from x whose feature variable belong to the union set
S∪ fig, f S xS

� �
is calculated by the taking the sample average of

f ðxS,x
ðiÞ
FnSÞ, xðiÞ

FnS is the i th observation of features that are not in S, and

f S∪ jf g xS∪ jf g
� �

is calculated in a similar way for the set S∪ j

 �

. The

Shapley value measures the importance of the j th feature by calcu-
lating a weighted average of the changes in f xð Þ after removing this
feature.

For neural network f xð Þ= f 1ð Þ � f 2ð Þ � � � � � f Lð Þ, denote the dimen-
sion of the output of the l th layer ðl = 1, . . . ,LÞ by LðlÞ, denote the q th
input feature of the l th layer by e lð Þ

q and its sample average by �e lð Þ
q . We

may estimate Sharpley value of the above model in a computationally
efficient way by Deep SHAP35 with the following recursive formula:

ϕq,r f l�1ð Þ � f lð Þ, e l�1ð Þ
� �

= e l�1ð Þ
q � �e l�1ð Þ

q

� �
�
XL l�1ð Þ

r l�1ð Þ = 1

m l�1ð Þ r l�1ð Þ,q
� �

�m lð Þ r, r l�1ð Þ
� �

,

ð22Þ
where ϕq,r f l�1ð Þ � f lð Þ, e l�1ð Þ

� �
is the Sharpley value that measures the

importance of e l�1ð Þ
q with respect to the r th element of the output of

f l�1ð Þ � f lð Þ,

m lð Þ r, r l�1ð Þ
� �

=ϕr l�1ð Þ ,r f lð Þ, e lð Þ
� ��

e lð Þ
r l�1ð Þ � �e lð Þ

r l�1ð Þ

� �
, ð23Þ

m l�1ð Þ r l�1ð Þ, q
� �

=ϕq,r l�1ð Þ f l�1ð Þ, e l�1ð Þ
� ��

e l�1ð Þ
q � �e l�1ð Þ

q

� �
: ð24Þ

Namely, we can compute the Sharpley value of f l�1ð Þ � f lð Þ by the
Sharpley values of f l�1ð Þ and f lð Þ.

To identify features with high relevance to a specific group, for
each cell, we calculated the Sharpley value of each input feature with
respect to the soft assignment of that group. Next, all Sharpley values
from the cells that are classified as this group are taken as absolute
values and used to calculate an average value. The top n features with
the highest averaged values are interpreted as having high relevance
with the group (n = 7 for the Patch-seq GABAergic neuron dataset and
n = 20 for the multiome ATAC +Gene expression BMMCs dataset). To
quantify the cross-modal feature-to-feature relevance within groups,
we considered the high-relevance features of this group selected in the
previous step. Next, we calculated the Sharpley value of each feature
with respect to each other features from another modality. Then,
the absolute values of the Sharpley values from different cells were
aggregated by averaging. The features with relatively large values were
viewed as important. The relevance relationship was visualized using a
chord diagram with a python package MNE-Connectivity54.

Robustness test of explainable learning using cross-validations
We tested the robustness of SHAP with respect to two sources of
randomness in the explainable learning outcomes: the inherent ran-
domness of the SHAP method and the randomness introduced by
training the UnitedNet model on different data.

For the inherent randomness,wefirst trainedUnitedNet on afixed
dataset to eliminate the randomness from model training. We then
used k folds cross-validation to the dataset to calculate the Shapley
values from the trained UnitedNet. The calculation of Shapley values
(using the Deep SHAP algorithm) requires a background dataset to
determine the reference output of the model and calculation data to
generate the Shapley value by comparing it to the background data35.
In the k folds cross-validation, we took each fold in turn as the calcu-
lation data and the remaining k−1 folds as the background data
(resulting in k cross-validation replications). We then counted the
frequency of the top n features identified by Shapley values in each
cross-validation replication. If the top n features are consistently
identified across different cross-validation replications (with high fre-
quency), we conclude that SHAP is robust with respect to its inherent
randomness. For extensive data (e.g., the multiome ATAC + gene
expression dataset) that require vast computing power, we used the
average of each cell type as background data and a subset of data as
the calculation data. We also tested the robustness of SHAP with
respect to both its inherent randomness and the training of UnitedNet.
The procedure is similar to the above one, except we retrained Uni-
tedNet on the k−1 folds of the data.
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Evaluation metrics
The unsupervised and supervised group identification performance is
evaluated by the adjusted rand index. The prediction performance is
evaluated by the coefficient of determination and area under the ROC
curve. The relationship of two tasks is evaluated by Pearson’s corre-
lation. All metrics are calculated by scikit-learn55. The details about
these metrics are as follows.

Adjusted rand index (ARI)
The adjusted rand index compares the clusters obtained from the
model with the one from the cell type labels. Let ak1

ðk1 = 1, . . . ,KÞ
denote the number of cells in the k1 th cluster from the model and
bk2

ðk2 = 1, . . . ,KÞ denote the number of cells in the k2 th cluster from
the observed cell type labels. Let nk1 ,k2

ðk1 = 1, . . . ,K , k2 = 1, . . . ,KÞ
denote the number of observations in both the k1 th cluster from the
model and k2 th cluster from the cell type labels. The adjusted rand
index is calculated by

ARI =

P
k1 ,k2

nk1 ,k2
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ARI is close to one when the clustering result from the model is
close to the one from theobserved cell type labels and close to zero for
a random guess.

Coefficient of determination (R2)
Let y and ey denote the observed data and predicted data, respectively.
Define �y to be the vector with the same length as y andey and each of its
elements equals the averaged value of y. The coefficient of determi-
nation is calculated by

R2 = 1� jjey� yjj22
jj�y� yjj22

: ð26Þ

It compares themean square error (MSE) of the prediction ey from
themodel with the MSE of the baseline that takes the constant value �y
as the prediction. It takes a value from ð�1, 1� and equals one
when ey= y.
Pearson’s correlation
Let �ydenote a vectorwith the same length asey and eachof its elements
equals the averaged value of ey: The Pearson’s correlation between y
and ey is calculated by

r =
ey� �y,y� �y
� �

jjey� �yjj2 � jjy� �yjj2
: ð27Þ

It takes a value in ½�1, 1� and equals one or negative one when the
prediction has positive or negative linear relationship with the
observed data, respectively. It equals zero when the prediction and
observed data have no linear relationship.

Area under the curve (AUC)
For modeling the multiome ATAC+ gene expression dataset, we have
binarized the DNA accessibility data. Thus, to evaluate the prediction
for those data, we adopt the area under the ROC curve, which was also
used in the previous study13. Let n0 and n1 denote the number of zeros
and ones from the observed data, respectively. Let p0,i ði= 1, . . . ,n0Þ
and p1, j ðj = 1, . . . ,n1Þ denote the model predictions for the two groups
of observations, respectively. The area under the ROC curve is

calculated by:

AUC=

Pn0
i= 1

Pn1
j = 1Ifp0,i<p1,j g

n0 � n1
, ð28Þ

where

Ifp0,i<p1,jg =
1, whenp0,i <p1,j,

0, otherwise:

�
ð29Þ

AUC takes values between zero andone, andone corresponds to a
perfect prediction.

Dataset used for multi-task learning in UnitedNet
The input of UnitedNet can be various multi-modality dataset. We
conclude that four major categories of such datasets include multi-
modal simulation datasets, multi-modal sensing datasets, multi-omics
datasets, and spatial omics datasets. The experimental details are
specified in the following sections.

Multi-modality datasets used for the demonstration of
UnitedNet
Dyngen simulated dataset. We use Dyngen26 to simulate the four-
modality dataset. Specifically, we generate 500 cells with simulated
DNA, pre-mRNA, mRNA, and protein modalities, each modality con-
taining 100 dimensions of features. Meanwhile, the ground truth cell-
type annotations are generated along with the dataset. For the para-
meter of the Dyngen simulator, we use the default setting of a linear
backbonemodel in the tutorial of Dyngenwith the functions including
backbone_linear, initialize_model, and generate_dataset.

MUSE simulated dataset. We apply the simulator in MUSE27 to simu-
late two-modality inputs to assess the robustness of UnitedNet with
one low-quality modality. We simulate 11 two-modality datasets with
1000 cells and 10 cell types. Each modality contains 500 modality-
specific features. For each of the 11 datasets, one of the modalities is
simulated with a controllable decay coefficient. We use 0.01, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 as different decay coefficients
when benchmarking with other methods.

Patch-seq GABAergic neuron dataset. We use a Patch-seq dataset
that simultaneously characterizes the morphological (M), electro-
physiological (E), and transcriptomic (T) features obtained from
GABAergic interneurons in themouse visual cortex29. We use the same
dataset after quality control of previous research11, in which 3395
neurons remain for E-T analysis and 448 neurons remain for M-E-T
analysis. We standardize the input matrices of each modality to make
themean value and the standard deviation of all features in each cell to
be 0 and 1, respectively.

Multiome ATAC+gene expression BMMCs dataset. We use a mul-
tiome ATAC + gene expression dataset that simultaneously combines
gene expression and genome-wide DNA accessibility obtained in
BMMC tissue from 10 donors and 4 tissue sites7. In addition to the
quality control in the previous study, we use the standard preproces-
sing procedure for the multiome ATAC+ gene expression BMMCs
datasets6. For the preprocessing of the gene expression modality, we
use median normalization and the log1p transform and standardiza-
tion and select the top4000most variablegenes through Scanpy56. For
the preprocessing of the DNA accessibility modality, we binarize the
data by replacing all nonzero values with a value of 1 and select the top
13,634 most variable DNA accessibility features through Scanpy. We
use the ChIPseeker57 and scanpy.var_names_make_unique to annotate
the DNA-accessibility peaks.
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UnitedNet on spatial omics datasets
Generating the niche expression modality. Using the measured
expression of RNAs of cells or spots, we incorporate the spatial
information of each cell or spot and generate a weighted average
expression of RNAs. With two-dimensional spatial coordinates (s1i , s

2
i )

andmodality vwith its i th row x vð Þ
i corresponding to the cell/spot i, we

compute the niche modality for modality v that is denoted by xðv nicheÞ

with ðv= 1, . . . ,V Þ. For cell/spot i, we compute x v nicheð Þ
i by:

x vnicheð Þ
i =

XJ

j = 1

x vð Þ
j �wij , ð30Þ

where j 2 f1, . . . , Jg denotes cells/spots that belong to the J-nearest
neighbors of cell/spot i, and wij is calculated by:

wij =
1=distance s1i , s

2
i

� �
, s1j , s

2
j

� �n o
PJ

j = 11=distance s1i , s
2
i

� �
, s1j , s

2
j

� �n o , ð31Þ

where distancef�g denotes the Euclidean distance between two vectors.

UnitedNet onDBiT-seq embryo dataset. We use theDBiT-seq embryo
dataset31, where the following threemodalities of 936 spots in DBiT-seq
are taken: mRNA expression, protein expression, and niche mRNA
expression. For modality of mRNA expression, we normalize the raw
count matrix using function scanpy.pp.normalize_total from scanpy and
select the top 568 differentially expressed genes. For the modality of
protein expression, we normalize the raw count matrix and used 22
kinds of proteins. The niche modalities are generated based on nor-
malized mRNA expression. For the first task of tissue region char-
acterization, ground truth tissue region labels are extracted from the
original research31 which is the anatomic annotation of major tissue
regions based on the H&E image. We compare clustering results from
UnitedNet with those from other state-of-the-art methods. We validate
their performance by adjusted rand index. For the parallel task of pre-
diction across modalities, although three modalities are used as inputs
to the UnitedNet model, we focus on prediction between the first and
second modalities: mRNA expression and protein expression. Since
there is only one batch in DBiT-seq public datasets, we split the total
936 spots in theDBiT-seq embryodataset into the trainingdataset (80%,
748 spots) and testing dataset (20%, 188 spots) for the prediction task.

UnitedNet on DLPFC dataset. We use the human adult dorsolateral
prefrontal cortex (DLPFC) datasets with 12 batches30. We use the fol-
lowing three modalities: mRNA expression, morphological features
extracted from theH&E staining images, and nichemRNA. Formodality
of mRNA expression, we normalize the raw count matrix and select the
top 2365 differentially expressed genes. We use a pre-trained convolu-
tional neural network58 to extractmorphological features from the H&E
staining images implemented by stLearn59. A 50-dimensional morpho-
logical feature is used as the second modality for each spot. For the
supervised group identification task, we use 11 batches with their tissue
region annotations to train a UnitedNet model. Then we apply the
trained model to the remaining batch to identify tissue region annota-
tion and perform the cross-modal prediction between the H&E image
features and mRNA expression. We compare the identification perfor-
mance of UnitedNet with SpatialDE PCA and pseudobulk PCA from the
original DLPFC paper30. After the identification task, we applied a
refinement step for the clustering result following SpaGCN with a
number of 35 spots in the nearest neighbors60.

Statistics and reproducibility
In total, experiments and analyses were conducted on 7 different
publicly available multi-modality datasets. No statistical methods
were used to pre-determine dataset number and sizes, but they are

similar to those reported in previous publications9,16,27,48. No data
were excluded from the analyses. Statistical comparisons were per-
formed using Python 3.7 and Scipy 1.7.3 with appropriate inferential
methods, as indicated in the figure legends. Graphs were created
using Python 3.7, matplotlib 3.5.1, and seaborn 0.11.2. Statistical
results in the figures are presented as exact P value. Cross-validation
was used to verify the performance on each dataset. Each fold of the
cross validation was randomly splitted from the dataset or used as
the existing biological group identities. The conclusions were drawn
from the analysis of multiple experiments. Blinding was not relevant
to the multi-modal data analyses because the datasets were not
divided into control and experimental groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Dyngen simulation data used in this study are available in the
https://github.com/dynverse/dyngen. The MUSE simulation data
used in this study are available in the https://github.com/
AltschulerWu-Lab/MUSE. The Patch-seq GABAergic neuron dataset
used in this study are available in the https://github.com/
AllenInstitute/coupledAE-patchseq and https://knowledge.brain-
map.org/data/1HEYEW7GMUKWIQW37BO/collections. The multi-
ome ATAC + gene expression BMMCs dataset used in this study is
available in the GEO database under accession code “GSE194122”.
The DBiT-dataset used in this study is available in the GEO database
under accession code “GSE137986”. The DLPFC dataset used in this
study is available in the OpenNeuro database under accession code
“ds002076”. All processed data used in this manuscript have been
deposited in Zenodo database under accession code “7708592”. All
other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request. Source
data are provided with this paper.

Code availability
Source code and demonstration code are made available at https://
github.com/LiuLab-Bioelectronics-Harvard/UnitedNet and https://doi.
org/10.5281/zenodo.770859261.
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