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PepQuery2 democratizes public MS
proteomics data for rapid peptide searching

Bo Wen 1,2,3 & Bing Zhang 1,2

We present PepQuery2, which leverages a new tandem mass spectrometry
(MS/MS) data indexing approach to enable ultrafast, targeted identification of
novel and known peptides in any local or publicly available MS proteomics
datasets. The stand-alone version of PepQuery2 allows directly searchingmore
than one billion indexed MS/MS spectra in the PepQueryDB or any public
datasets from PRIDE, MassIVE, iProX, or jPOSTrepo, whereas the web version
enables users to search datasets in PepQueryDB with a user-friendly interface.
We demonstrate the utilities of PepQuery2 in a wide range of applications
including detecting proteomic evidence for genomically predicted novel
peptides, validating novel and known peptides identified using spectrum-
centric database searching, prioritizing tumor-specific antigens, identifying
missing proteins, and selecting proteotypic peptides for targeted proteomics
experiments. By putting public MS proteomics data directly into the hands of
scientists, PepQuery2 opens many new ways to transform these data into
useful information for the broad research community.

Tandemmass spectrometry (MS/MS)-based shotgun proteomics is the
workhorse for protein identification and quantification in biomedical
research. Thousands of shotgun proteomics datasets with billions of
MS/MS spectra have been generated and deposited into public data
repositories such as PRIDE1, MassIVE, iProX2, jPOSTrepo3, and Pro-
teomics Data Commons (PDC). However, it remains challenging to put
thesepublicMSproteomicsdata directly into the hands of scientists to
address their research questions, an important step to unleash the full
potential of these data.

One way to democratize the use of these public data is to allow
users to query peptide or protein sequences of interest against MS/MS
spectra in a public data repository to identify high-quality peptide-
spectrum matches (PSMs), similar to BLASTing a DNA sequence of
interest against a genomic sequence database to identify sequences of
high similarity. PSMs identified from the public MS/MS data may pro-
vide evidence to support novel peptide predictions4–7, to prioritize
putative tumor-specific antigens8, to uncover “missing” proteins9,
among other applications7,10. Many tools, such as MaxQuant11, MS-
GF + 12, Comet13, Open-pFind14, and MSFragger15, have been developed
to search MS/MS data against a prespecified protein database to

identify PSMs, but the common goal of these tools is to comprehen-
sively interpret all observedMS/MS spectra in a study. These spectrum-
centric tools are not suitable for peptide-centric analysis that aims to
identify one ormore peptide or protein sequences of interest, because
most of the computational time is spent on evaluating peptide-
spectrum pairs irrelevant to the query sequences. Moreover, they
typically lack rigorous quality control for individual PSMs.

To complement the spectrum-centric approaches, we have pre-
viously developed PepQuery, a peptide-centric search engine for MS/
MS data analysis16. PepQuery allows users to query a novel sequence of
interest against an MS/MS spectra database to identify statistically
significant PSMs. By focusing on only the query sequence of interest,
PepQuery bypasses all unnecessary computations, leading to vastly
reduced space and time complexity. Moreover, due to increased time
efficiency, PepQuery further enables the comprehensive examination
of peptide modifications to reduce false discoveries. Most studies
using the spectrum-centric database searching tools for peptide
identification consider only a small number of protein modifications.
As a consequence, false discoveries arise when a spectrummatched to
one peptide has a better match to another peptide with amodification
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not considered in data analysis. This problem is well recognized in
novel peptide identification17, and it is also common in normal peptide
identification15. Comprehensively considering all types of natural and
artificial protein modifications, PepQuery has been shown to
be highly effective in reducing false discoveries in novel peptide
identification16,18. PepQuery was implemented both as a stand-alone
tool and a web application. The stand-alone version supports
the analysis of local proteomics datasets. The web version enables
web-based analysis of public proteomic datasets available in Pep-
QueryDB, but the analysis is limited to one query sequence and one
dataset at a time, and there is no support for direct analysis of MS/MS
data in the major proteomics data repositories.

Here we introduce PepQuery2, which leverages a new MS/MS
indexing approach and cloud storage to enable ultrafast, targeted
identification of both novel and known peptides. The stand-alone
version of PepQuery2 allows users to searchmore than one billionMS/
MS data indexed in the PepQueryDB fromany computerswith internet
access. It also supports direct analysis of user-provided MS/MS data,
any public datasets in PRIDE, MassIVE, iProX, or jPOSTrepo, or Uni-
versal Spectrum Identifiers (USIs)19 from ProteomeXchange (Fig. 1).
Meanwhile, we have extended the web version to include public pro-
teomics datasets from all flagship CPTAC studies, leading to a total of
48 datasets. We demonstrate the utilities of PepQuery2 in detecting
proteomic evidence for genomically predicted novel peptides, vali-
dating novel or known peptides identified from spectrum-centric
database searching, prioritizing tumor-specific antigens, identifying
missing proteins, and selecting proteotypic peptides for targeted
proteomics experiments.

Results
An overview of PepQuery2
One of the fundamental improvements in PepQuery2 is the new MS/
MS spectrum indexing by leveraging the cloud storage service
(Methods, Supplementary Fig. 1). In brief, MS/MS spectra from a
dataset with similar precursor mass after mass binning are stored in a
single compressed file on the cloud storage so that candidate spectra
matched to a query peptide can be retrieved quickly from large-scale
datasets. This new indexingmethod notonly enables ultrafast peptide-
spectrum matching but also greatly reduces data storage space com-
pared with the previous SQL-based indexing. More than one billion
MS/MS spectra have been indexed and are available in the PepQuer-
yDB, which includes data from 48 large-scale human proteomics
datasets of more than 1500 tumors covering 14 types of cancers, 375
cell lines, and more than 30 types of normal tissues (Fig. 1, Supple-
mentary Data 1).

Another major improvement in PepQuery2 enables using known
peptide or protein sequences, in addition to novel sequences, as a
query sequence (Fig. 1). This is particularly useful for hunting for
missing proteins, validating unexpected but interesting identifica-
tions, such as tumor-associated antigens, selecting proteotypic pep-
tides for targeted proteomics experiments, and validating peptides
identified from small-scale MS experiments, such as affinity
purification–mass spectrometry (AP-MS) experiments, inwhichquality
control of protein identification remains challenging. Moreover, in
addition to peptide validation, PepQuery2 has been expanded to
support PSM validation. This new feature allows users to use the
peptide-centric analysis as a complementary approach to validate
interesting PSMs identified in spectrum-centric analysis and classify
them into seven different categories (c1-c7, Fig. 1, Methods). C1 (exact
ref match) includes input PSMs for which the peptide has an exact
match to a sequence in the reference database. This is only applicable
to novel peptide validation, and PSMs in this category are essentially
invalid novel identifications. This could happen when the input PSMs
are identified using a different database than the selected reference
database in PepQuery2 analysis. C2 (no candidate spectrum) includes

input PSMs for which the peptide has no candidate spectrumbased on
the peptide mass and allowed mass error tolerance. C3 (low score)
includes input PSMs with a PepQuery2 computed PSM score lower
than a prespecified threshold (Methods). These low-quality matches
are excluded from further analysis to save time. C4 (equal or better ref
match) includes input PSMs for which the spectrumcan bematched to
a referencepeptidewith an equal or better PSM score. C5 (insignificant
score) includes input PSMs failing the statistical evaluation based on
randomly shuffled peptides (Methods). C6 (better mod ref match)
includes input PSMs for which the spectrum can be better matched to
a reference peptide with a modification that is not considered in the
spectrum-centric analysis. Input PSMs passing all these filtering steps
are considered as C7, or confident identifications.

Detecting proteomic evidence for genomically predicted novel
peptides
To demonstrate the utility of PepQuery2 in identifying proteomic
evidence from public data to support genomically predicted novel
peptides, we queried the KRASG12Dpeptide (LVVVGADGVGK) against
12 CPTAC global proteomics datasets indexed in PepQueryDB,
including 210,282,541 MS/MS spectra from one label-free experiment
and 11 tandem mass tag (TMT) experiments spanning 10 cancer types
(Methods).We identified28PSMs fromfive cancer types inwhichKRAS
G12D somatic mutation is frequently reported (Fig. 2a, Supplementary
Data 2), and a representative MS/MS spectrum identifying the mutant
peptide in a pancreatic cancer sample is shown in Fig. 2b. Among the
28 PSMs, 22 were from samples with corresponding genomic muta-
tion, two were from samples without genomic sequencing data, three
were from samples with a KRAS G13D mutation, and one was from a
sample with anHRAS G12Dmutation. Of note, the HRAS G12D peptide
is the same as the KRAS G12D peptide, and the KRAS G13D
peptide (LVVVGAGDVGK) is hard to distinguish from the KRAS G12D
peptide (LVVVGADGVGK) based on MS/MS spectrum since there is
only a minor difference between the two sequences. These data sug-
gest high specificity of the PepQuery2 analysis despite the huge search
space, including >210 million MS/MS spectra. Meanwhile, among the
75 tumor samples with the KRASG12Dmutation detected at DNA level,
41 (55%) had protein evidence from the PepQuery2 analysis (Fig. 2a).
The sensitivity of 55% (41/75) is outstanding considering the well-
recognized low sensitivity of MS proteomics in detecting mutant
peptide20. Importantly, the whole analysis took less than four minutes
on a Linux server with 40 threads, or five minutes on a Mac computer
using eight threads. With the spectrum-centric approach, the same
task would take several days for data downloading, customized data-
base preparation, and database searching.

Validating novel peptide identifications
Another utility of PepQuery2 is to validate novel peptides identified in
customized database-based spectrum-centric analysis, in which false
discovery is a major concern17,18. We illustrated this feature by vali-
dating novel peptides resulted from tryptophan-to-phenylalanine
codon reassignment (W> F), which has recently been reported to
occur frequently in human cancer21. In the original study21, a total of
473 peptides with W> F substitution were matched to 3011 spectra
from the CPTAC lung squamous cell carcinoma (LSCC) dataset22 using
a customized database searching strategy. Strikingly, only 9.2% of the
PSMs reported in the original study passed PepQuery2 validation (C7
group in Fig. 3a, Supplementary Data 3), corresponding to a 13.5% (64
out of 473) validation rate at the peptide level. The group of PSMs
passing PepQuery2 validation (C7) had significantly higher PSM scores
(i.e., PeptideProphet probability scores) in the original study com-
pared with the other groups except for C1 and C2 (Fig. 3b). Peptides in
the C1 group had exact matches to sequences in the reference data-
base used in the PepQuery2 analysis. These are high-quality identifi-
cations as indicated by excellent PeptideProphet probability scores,
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Fig. 1 | Overview of the PepQueryDB, PepQuery2 workflow, and some possible
applications. The workflow involves five major steps as described in the previous
publication (ref. 16): (1) peptide preparation and initial filtering; (2) candidate
spectra retrieval and PSM scoring; (3) competitive filtering based on reference

sequences; (4) statistical evaluation based on shuffled peptides; and (5) competi-
tive filtering based on unrestricted modification searching. Query peptides and
PSMs are classified into seven categories (C1-C7) on the basis of query results.
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but they do not qualify as novel peptides because they can bemapped
to reference sequences in GENCODE. The C2 group included only 0.2%
of the PSMs for which PepQuery2 failed to retrieve candidate spectra
based on the pre-specifiedmass error tolerance. The C3 andC5 groups
accounted for 11% of the previously reported PSMs, and they failed
PepQuery2 validation due to low and insignificant PSM scores,
respectively (Methods). The C4 group, in which the spectra had better
matches to a reference peptide when considering both fixed and
variable modifications specified in the original search, included 36.9%
of the PSMs, and for an additional 36.7% (C6 group), the spectra had
bettermatches to a reference peptidewithmodifications thatwere not
considered in the original database searching. Within the C4 group,
48% had better matches to a reference peptide containing an amino
acid W (Fig. 3c-d, Supplementary Fig. 2), and these potential false
identifications from the original study can be attributed to the lack of
competition from peptides containing amino acid W because in the
customized database used in the original study, all Ws were replaced
with an F without keeping a version of the unaltered sequence. Using
Delta RT, the absolute difference between observed retention time
(RT) and deep learning-predicted RT of the same peptide, as an addi-
tional evaluation metric18, we further showed that the PSMs passing
PepQuery2 validation had significantly lower delta RT compared with
those failing validation (Fig. 3e). Repeating the spectrum-centric ana-
lysis using a customized database including human reference proteins
downloaded from UniProt (Methods) reduced the total number of
candidate peptides with W> F substitution from 473 to 240 (1024
PSMs) and the proportion of the C4 group in PepQuery2 validation to
27% (Supplementary Fig. 2b). Despite these improvements, there were
still many candidate PSMs failing PepQuery2 validation, including 510
PSMs (50%) for which the spectrum was matched to a reference pep-
tide with a modification not considered in the spectrum-centric ana-
lysis (C6). Together, these results demonstrate PepQuery2 as an

effective tool for identifying mistakes in customized database con-
struction (a task not required for PepQuery2 analysis) as well as
potential false positives among the novel peptides identified in
spectrum-centric analysis.

Validating known peptide identifications
False discoveries are not unique to novel peptide identifications. For
example, validation of known peptide identifications using alternative
computational algorithms is very useful for small-scale MS experi-
ments, such as AP-MS. Due to limited number of proteins present in an
MS sample in these experiments, the normally used target-decoy-
based strategy23 may not be able to provide accurate false discovery
rate (FDR) estimation. The peptide-centric analysis in PepQuery2 does
not rely on the traditional target-decoy strategy used for global FDR
estimation and thus provides a statistically unrelated method for
validating spectrum-centric analysis results. With the new improve-
ment that allows using known peptide or protein sequences as a query
sequence, such validation is now possible in PepQuery2. To illustrate
this utility, we applied PepQuery2 to validate prey proteins identified
when HDAC1 was used as the bait in AP-MS experiments performed on
the 293T cell line in the BioPlex 3.0 project24. Using PepQuery2 to
query the 86 prey proteins identified in the original study against MS/
MS data available in MassIVE, 85 passed the validation but one failed.
CHD5 is the prey protein failing PepQuery2 validation, and the original
identification was based on one unique CHD5 peptide. All spectra
associated with the originally reported PSMs identifying this peptide
had equal or better match to a peptide from CHD4 with deamination
(Fig. 4a, Supplementary Fig. 3), a modification not considered in the
original analysis. CHD4, but not CHD5, is a known component in
HDAC1-containing protein complexes in the CORUMdatabase, such as
the nucleosome remodeling and deacetylation complex (Fig. 4b), and
80 spectra from the same AP-MS experiments were matched to 25

Fig. 2 | KRAS G12D variant peptide identification. a Identification of a novel
peptide resulted from the KRAS G12D mutation in 10 CPTAC cohorts. b A repre-
sentative MS/MS spectrum identifying the mutant peptide in a pancreatic cancer

sample. The TMT reporter ion of the sample with KRASG12Dmutation evidence at
DNA level (highlighted in red) shows much higher intensity than those from sam-
ples without this mutation. Source data of 2a are provided as a Source Data file.
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unique peptides from CHD4. These data suggest that CHD5 is likely to
be a false identification in the original analysis. In addition to the
HDAC1 experiment, AP-MS experiments performed on the 293T cell
line in the BioPlex 3.0project for 11 other bait proteins identifiedCHD5
as a prey protein. Ten out of these 11 identifications failed PepQuery2
validation for the same reason.

Even in large-scale MS experiments where peptide identification
FDR can be well controlled, further validation is still useful, especially
for unexpected identifications with important biological or clinical
implications. As an example, PGK2 was identified and quantified in the
CPTAC lung adenocarcinoma (LUAD) global proteome dataset both in
the original publication25 using the SpectrumMill search engine and in
an independent analysis using FragPipe. PGK2 was initially assumed to
be a pseudogene but was later found to have highly specific expression

in testis26. The detection of PGK2 in the LUAD cohort was unexpected.
Moreover, a peptide (AVVLMSHLGRPDGVPMPDK) supporting the
detection of PGK2 was identified in all samples with high abundance
(Fig. 4c), and the abundance in tumors was significantly higher than
in adjacent normal tissues (p < 2.2e-16, two-sided Wilcoxon Rank
Sum test, Fig. 4c-d), suggesting PGK2 as a possible cancer/testis (CT)
antigen and a putative immunotherapy target for lung cancer treat-
ment. To further investigate this intriguing finding with potential
clinical significance, we used PepQuery2 to validate all 239 PSMs
reported by FragPipe for PGK2. Remarkably, 94% (224) of the
PSMs, including all 102 PSMs identifying the highly abundant peptide,
failed the validation (Fig. 4c). The spectra matched to the peptide
AVVLMSHLGRPDGVPMPDK by FragPipe were found by PepQuery2 to
have a better match to another peptide SVVLMSHLGRPDGVPMPDK

Fig. 3 | Validation of novel peptide identifications. a PepQuery2 classified pre-
viously reported PSMs supporting novel peptides resulted fromWto F substitution
into seven categories as described in Fig. 1, and only C7 PSMs passed the validation.
b PeptideProphet probability distributions for different categories of the PSMs.
cThepercentages of PSMs (C4) fromW2Fpeptides inwhich the spectrummatched
equally or better to a reference peptide with or without containing amino acid W.
d The spectrum originally matched to a W2F peptide has better match to a

reference peptide containing amino acid W in PepQuery2 validation. e Delta RT
distributions for PSMs passing or failing PepQuery2 validation. The p-value was
calculated using two-sided Wilcoxon rank sum test. For boxplots, centerline indi-
cates the median, box limits indicate upper and lower quartiles, whiskers indicate
the 1.5 interquartile range. Source data of 3a, 3b, 3c and 3e are provided as a Source
Data file.
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Fig. 4 | Validation of known peptide identification. a An originally reported
spectrum identifying CHD5 in an AP-MS experiment using HDAC1 as the bait was
found by PepQuery2 to have a better match to a peptide from CHD4 with deami-
dation. b A protein complex containing both HDAC1 and CHD4 in the CORUM
database. c PepQuery2 classified previously identified and quantified PGK2 pep-
tides intodifferent categories. Only thepeptides highlighted inblue font hadoneor

more PSMs passing PepQuery2 validation. d Protein abundance correlation
between PGK1 and PGK2. emRNA abundance correlation between PGK1 and PGK2.
For d and e, only samples with non-missing and non-zero values in both samples
were considered when calculating the spearman correlation. Source data of 4c, 4d,
and 4e are provided as a Source Data file.
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from the homologous protein PGK1 (Supplementary Fig. 4). Further
investigation showed that the PGK2 protein abundance quantified by
FragPipe is highly correlatedwith thePGK1protein abundance (Fig. 4d),
whereas the PGK2 mRNA abundance does not correlate with PGK1
mRNA abundance in the same tumor cohort, and all tumors had very
low PGK2 mRNA abundance, including more than half with no PGK2
mRNA detection (Fig. 4e). PGK2 identification was also reported in a
colon cancer study27, where the supporting PSMs also failed PepQuery2
validation because the associated spectra had an equal or better match
to PGK1 peptides (Methods, Supplementary Fig. 5). PGK2 is not an
exception. As another example, NAA11, a protein shown restricted
expression in reproductive tissues in Human Protein Atlas, was also
identified by FragPipe in the CPTAC LUAD dataset. All PSMs from this
protein failed PepQuery2 validation because the associated spectra had
equal or better match to a homologous peptide from NAA10, and
correlation analyses between NAA10 and NAA11 at protein and mRNA
levels provided further evidence to confirm the invalidity of the NAA11
identification and quantification (Supplementary Fig. 6). These results
demonstrate the power of PepQuery2 as a validation tool to safeguard
the quality of unexpected normal peptide identifications to prevent
unnecessary downstream experimental and clinical investigations.

Prioritizing tumor-specific antigens
In addition to validating peptide identifications using publicly available
data from the same study, PepQuery2 can also be used to search inter-
estingpeptides identified fromone study inotherpublic datasets togain
new insights. A recent cancer immunopeptidomics study identified
major histocompatibility complex (MHC) bound peptides from 576
novel or unannotated open reading frames (nuORFs) in cancer immu-
nopeptidomics data28. These nuORFs greatly expand the cancer antigen
repertoire and putative immunotherapy targets. To test their cancer
specificity, we queried these nuORFs against a published heathy tissue
dataset containing proteomics data (68,225,841MS/MS spectra) from 31
heathy tissues29. Among the 576 nuORFs, 201 (35%) were detected in at
least one and 83 (14%) in two or more healthy tissues (Fig. 5, Supple-
mentary Data 4). Thus, PepQuery2 quickly narrowed down the list of
nuORFs for further investigation as candidate neoantigens.

Hunting for missing proteins
In the humanproteome project (HPP), humanproteins in the neXtProt
database are classified into different categories based on the strength
of supporting evidence9. A total of 1343 proteins are still classified as
“missing proteins” due to the lack of experimental evidence at the
protein level, and an important goal of the HPP is to hunt for the
missing proteins in human proteome9. To look for MS-based experi-
mental evidence for the 1343missing proteins from public proteomics

data,weused PepQuery2 to query theseproteins against all datasets in
PepQueryDB, including >1 billion MS/MS spectra. Following the HPP
guideline formissing protein identification30, 48missing proteins were
identified with two or more unique peptides detected in at least one
dataset, and all of them had peptide evidence in multiple datasets
(Fig. 6, Supplementary Data 5,Methods). These proteins could serve as
candidates for further validation using targeted proteomics with syn-
thetic peptides or functional studies. This quick analysis brought the
missing protein search a step closer to completion.

Guiding the selection of proteotypic peptides for targeted
proteomics
In targeted proteomics experiments, one of the critical steps is pro-
teotypic peptide selection for the proteins of interest31. Analyzing
public proteomics datasets could provide valuable empirical data to
guide the selection of proteotypic peptides. Because public PTM
proteomics data can also be included in the search, such analysis may
also identify PTMpeptides for targeted proteomics. As an example, we
applied PepQuery2 to identify peptides specific to two protein iso-
forms of the gene XBP1 (X-box binding protein 1), the conventionally
spliced isoform XBP1u and the non-conventionally spliced isoform
XBP1s. Importantly, unconventional splicing of XBP1mRNA by IRE1α is
an indicator of unfolded protein response and plays an important role
in several diseases, including cancer32,33. We searched the two protein
isoforms against all the datasets available in PepQueryDB anddetected
four peptides from XBP1u, five peptides from XBP1s, and 19 peptides
sharedby the two isoforms (Fig. 7). Interestingly, all four peptides from
XBP1uwere detected fromglobal proteomedatasets, whereas four out
of thefive peptides fromXBP1swere detected fromphosphoproteome
datasets. Thus, our analysis not only identified isoform-specific pep-
tides but also showed that including phosphorylated peptides as tar-
getsmay increase the chanceof detectingXBP1s. In addition to guiding
peptide selection, the identified spectra by directly searching MS/MS
data also provide valuable information for transition list generation in
multiple reaction monitoring (MRM)-based targeted assays. Since
PepQuery2 not only enables searching more than one billion MS/MS
spectra from a diverse collection of cancers, cell lines, and normal
tissues in PepQueryDB but also allows searching other MS/MS data in
public proteomics data repositories such as PRIDE, the large volumeof
MS/MS data in these repositories could be readily used to guide tar-
geted experiment design for proteins of interest.

Discussion
Oneof themost importantmilestones in proteomics is the Amsterdam
Principles34, which require mandatory raw MS/MS data deposition to
promote broad reuse of the data. However, because of the challenges

Fig. 5 | Prioritization of tumor-specific antigens. a Summary of identification results for querying 576 nuORFs against a public proteomics dataset on 31 healthy tissues.
b The distribution of nuORF identifications across different healthy tissues. Source data are provided as a Source Data file.
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involved in understanding, downloading, analyzing, and interpreting
MS/MS data, investigation and reuse of these public data are largely
restricted to computational proteomics researchers. By enabling rapid
identification of any known or novel peptide sequences of interest in
any local or publicly available MS-based proteomics datasets in a tar-
geted manner, PepQuery2 provides a practical solution that makes
public MS/MS data easily useful to the general research community.

Recently, there is an increasing trend of reusing public pro-
teomics data, especially in the context of searching for proteomic
evidence of novel peptides and proteins with important biological and
clinical implications. Unfortunately, usage complexity and often-
overlooked inherent limitations of the spectrum-centric database
searching tools may lead to false discoveries in such studies, as
exemplified in the recently reported identification of W> F sub-
stitutants from previously published CPTAC MS/MS data21 (Fig. 3). We
further showed that false discoveries are also common in the identi-
fication of known proteins (Fig. 4). Our peptide-centric analysis com-
plements the spectrum-centric database searching algorithms and
provides an efficient framework for validation of important findings.

Both PepQuery and PepQuery2 use stringent criteria for novel
peptide validation. When a candidate novel peptide and a reference

peptide have equal matching score to a spectrum, the spectrum is
preferentially associated with the reference peptide based on the
consideration that the prior probability of observing a novel peptide is
much lower than a reference peptide. The competitive filtering step
based on unrestricted modification searching further excludes the
possibility that the spectrum has a bettermatch to a reference peptide
sequence with a modification not considered in the spectrum-centric
analysis. When two peptides have equal or close scores to the same
spectrum, it is very useful to manually check the matches. The web
server of PepQuery2provides annotated spectra for visual checkof the
matches. For the standalone version, details required for manual
checking can be exported for visualization using PDV35. In this study,
we also identified independent evidence to supportPepQuery2 results.
For the W2F peptide validation, we used a metric derived from
retention time prediction to evaluate the quality of the results. For the
cases of PGK2 and NAA11, we made use of paired mRNA data to sup-
port PepQuery2 results. For CHD5, we used prior knowledge about
protein complex. Such analyses are very helpful in evaluating matches
with equal or similar scores.

The new MS/MS data indexing method implemented in PepQu-
ery2 enables retrieving candidate spectra from a large-scale

Fig. 6 | Missing protein identification. The distribution of missing protein identifications across differentMS/MS datasets in PepQueryDB. Source data are provided as a
Source Data file.
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proteomics dataset for a single peptide in seconds (Supplementary
Fig. 1). In conjunction with cloud-based data storage technology, this
new method makes it possible to conveniently query more than one
billion indexed MS/MS spectra in PepQueryDB from any computer
with internet connection. This radically increased the scalability and
usability compared with the previous version of PepQuery. The
indexing technology should have wide applications in other compu-
tational tools for MS proteomics data analysis. Moreover, it can be
equally applied to other MS-based omics technologies, such as meta-
bolomics, to enable fast, targeted data analysis.

We have demonstrated the utility of PepQuery2 in a wide range of
applications, but its potential is not limited to these applications. By
putting publicMSproteomicsdata directly into the handsof scientists,
PepQuery2 will open many new ways to transform these data into
useful information for the broad research community.

Methods
MS/MS data indexing and the construction of PepQueryDB
Instead of the SQL-based MS/MS indexing method, which was used in
the previous version of PepQuery, a completely redesigned indexing
scheme was used in PepQuery2. Specifically, for each MS/MS dataset,
MS/MS spectra with similar precursor mass after mass rounding and
binning are stored in a single compressedMGF file on cloud storage or
local storage so that the spectra matched to a query peptide can be
retrieved quickly even for large datasets (Supplementary Fig. 1). By
default, precursormass binning of 0.1 Da was used. For example, after
mass rounding and binning, MS/MS spectra with precursor mass
1000.11 Da and 1000.12 Da are stored in the file named “10001.mgf.gz”
file. The file name after removing the file suffix (.mgf.gz) is the pro-
cessed mass after mass rounding, and all MS/MS spectra in the same
file have the same processed mass. If precursor charge is not available

for a spectrum, charge 2+ and 3+ will be considered by default in the
indexing process. With this indexing scheme, for a query peptide
sequence, the peptide masses after considering possible fixed and
variable modifications were rounded using the same way, then the
candidate spectra could be retrieved quickly using the processed
peptide mass (Supplementary Fig. 1).

We reconstructed the PepQueryDB using this new indexing
method and expanded the database to include more than one billion
MS/MS spectra from more than 40 datasets. The expanded database
includes all public large CPTAC proteomics datasets. All indexed MS/
MS datasets are stored in a public cloud repository. The indexed
datasets can be accessed through both the PepQuery2 command line
version and the web server version. For each indexed dataset, the
parameters used for MS/MS matching are predefined in PepQuery2
based on the experimental protocol for data generation. This removes
the requirement to setMS/MS searching parameters by users and thus
makes the data usable to amore general audience, including scientists
who are not familiar with proteomics experiments and informatics.

Searching MS/MS data in public proteomics data repositories
Any MS/MS datasets publicly available at PRIDE, MassIVE, jPOSTrepo,
or iProX, or USIs from ProteomeXchange, can be directly used by the
command line version of PepQuery2. Specifically, for a given dataset
with a dataset identifier from these databases, the data files recognized
by a specified pattern (such as “.mgf” or “cell_line.*.mgf”) are auto-
matically downloaded and indexed. Then the indexedMS/MS data are
used for peptide identification in PepQuery2. MS/MS data files in the
format of mgf, mzML, mzXML, and raw MS/MS are supported. If the
MS/MS data files are raw MS/MS data, ThermoRawFileParser36 is used
to convert the rawMS/MS data to either mgf ormzML format data for
MS/MS indexing.

Fig. 7 | Protein isoform identification. The distribution of XBP1 isoform-specific and shared peptide identifications across different MS/MS datasets in PepQueryDB.
Source data are provided as a Source Data file.
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Support for the search of known peptides or proteins
The previous version of PepQuery only supports the analysis of novel
peptides, and PepQuery2 allows using known peptide or protein
sequences as a query sequence. In the mode of searching for a
known peptide, the peptide is allowed to be present in the reference
protein database used by PepQuery2. After digestion of the reference
protein database, the query peptides are removed and all other pep-
tides are used for competitive filtering based on reference sequences
and competitive filtering based on unrestricted post-translational
modification searching16. All other processing steps are the same as the
novel peptide search workflow.

In themode of searching for a known protein, the query protein is
removed from the reference database. The new reference database
without the query protein is then used by PepQuery2. Thus, the query
protein is treated as a novel protein and the same workflow for novel
protein analysis is used for the search. Only peptides that are unique to
the query protein are considered in the search.

Support for PSM validation
A new mode was implemented in PepQuery2 to support PSM valida-
tion. In this mode, both query peptide sequence and the associated
spectrum identifiers are required as input. For each query peptide,
only the spectra with the specified identifiers are retrieved and scored
in PepQuery2. The input PSMs are classified into seven categories on
the basis of PepQuery2 identification results, including C1) exact ref
match, which means that the query peptide has an exact match to a
sequence in the reference database used by PepQuery2. This is only
applicable to novel peptide validation; C2) no candidate spectrum,
which means there is no spectrum that can be matched to the query
peptide based on the peptide mass and allowed mass error tolerance;
C3) low score, which indicates that the PSM score computed by Pep-
Query2 is lower than the prespecified threshold (12 is the default); C4)
better ref match, which means that the spectrum can be matched to a
peptide in the reference database with an equal or better score. This
category is generated based on the result from the competitive filter-
ing based on reference sequences (step 3 in Fig. 1); C5) insignificant
score, which means that the PSM fails to pass the statistical evaluation
(step 4 in Fig. 1) based on shuffled peptides; C6) better mod refmatch,
whichmeans that the spectrum can bematched to a reference peptide
with amodification that is not typically considered in spectrum-centric
database searching. This category is generated based on the result
from the competitive filtering through unrestricted modification
searching (step 5 in Fig. 1), as described previously16. Briefly, all mod-
ifications from Unimod are considered in the search. If a spectrum has
a better match to a modified peptide from the reference protein
database than to the target peptide, the original identification is clas-
sified as C6; and C7) confident, which includes PSM passing all the
filtering steps as shown in Fig. 1.

PSM scoring
PepQuery2 uses the same peptide spectrummatch (PSM) scoring and
statistical evaluation algorithms as described in the original PepQuery
publication16. In brief, two PSM scoring algorithms, Hyperscore37 and
MVH38, were implemented. For statistical evaluation of each PSM,
randomly shuffled sequences derived from the peptide in the PSM are
used to evaluate the statistical significance of the match. The default
threshold for p-value filtering is 0.01 for peptides longer than 8 and
0.05 for peptides with length equal or shorter than 8.

Identifying novel peptides resulted from the KRAS G12D
mutation
TheKRASG12Dmutationpeptide LVVVGADGVGKwas searched against
the global proteome datasets from 10 CPTAC cancer cohorts (CPTAC-
BRCA, CPTAC-CCRCC, CPTAC-COAD, CPTAC-GBM, CPTAC-HNSCC,
CPTAC-LSCC, CPTAC-LUAD, CPTAC-OV, CPTAC-PDAC and CPTAC-

UCEC). A total of 210,282,541 MS/MS spectra were included in the
datasets. The protein database from the GENCODE Human release 34
was usedas the referencedatabase. Thepredefinedparameters for each
dataset in PepQuery2 were used in the analysis. The KRAS mutations
detected at the DNA level for tumor samples analyzed in these datasets
were downloaded from LinkedOmics [http://linkedomics.org]. Because
one TMT sample included multiple tumor samples, a PSM was con-
sidered to be supported by genomics data if the KRAS G12D mutation
was detected at the DNA level in any of the tumor samples included in
the TMT experiment from which the PSM was identified.

Validating novel peptides with W to F substitution
A total of 473 novel peptides with amino acidW to F substitution were
collected from a recent publication21. These novel peptides were
identified in the CPTAC LSCC global proteome dataset22, in which 3011
PSMs supporting these novel peptides were reported21. The PSM level
data was obtained through personal communication with the authors
of the original study. These PSMs were validated using PepQuery2.
Based on the original study21, the following parameters were used in
PepQuery2 validation: Fixed modifications, Carbamidomethyl (C) and
TMT 10-plex (K); Variable modifications, Oxidation (M), TMT 10-plex
(N-term), TMT 10-plex (S) and Acetylation of peptide N-term; Pre-
cursor ion mass tolerance, 20 ppm; MS/MS mass tolerance, 0.05Da;
Enzyme specificity, trypsin; maximum missed cleavages, 2; The range
of allowed isotope peak errors, −1,0,1,2,3. The protein database from
GENCODE Human release 34 was used as the reference database.

To further assess the quality of peptide identification, the metric
derived frompeptide retention timeprediction based onAutoRT18 was
used. As described in our previous publication25, an RT prediction
model was trained for each run of MS experiment based on the iden-
tified peptides from known reference proteins. The training data was
generated based on the PSM level identification result from theCPTAC
LSCC global proteome dataset in the original study21. Only the variable
modificationsOxidation (M) andTMT 10-plex (S)were considered. The
modifications Carbamidomethyl (C), TMT 10-plex (K) and TMT 10-plex
(N-term) were considered as fixed modification in AutoRT model
training. Any peptides without the modification TMT 10-plex (N-term)
were discarded in RT model training and prediction. For a peptide
form with multiple spectra identified, the average RT of these spectra
was used as the RT for the peptide form. Inmodel training and testing,
any peptides forwhich the differencebetween themaximumobserved
RT and minimum observed RT was > 3min were removed. In model
training, the base size was set to 64 and a maximum of 40 epochs was
used. Early stopwas also used inmodel training. After RTmodels were
trained, for each PSM fromanovel peptide, theRTof thenovel peptide
was predicted based on the RT model trained using the data from
the run of MS experiment in which the spectrum was identified. Then
the absolute difference between the predicted RT and observed RT,
i.e., delta RT, was calculated and used as a metric to assess the quality
of peptide identification.

A reanalysis was performed by searching the CPTAC LSCC global
proteome dataset against a new customized databasewhich contained
the customized database used in the original study as well as human
reference proteins downloaded from UniProt (downloaded on 12/19/
2022, 103,830 proteins). The searching was done through FragPipe
(v18.0) powered by the MSFragger15 (v3.4) search engine and the Phi-
losopher toolkit39 (v4.4). The parameters were set based on descrip-
tions in the original study21. PepQuery validation was performed with
the same parameters as described above.

Known protein validation in small size of MS/MS data
The data for bait protein HDAC1 in AP-MS experiments performed on
the 293 T cell line in the BioPlex 3.024 project was accessed from
MassIVE through the accession numberMSV000088555. A total of 86
prey proteins identified from the experiments were downloaded
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from https://bioplex.hms.harvard.edu. To validate these prey pro-
teins using PepQuery2, for each protein, all protein isoforms from
the UniProt human reference proteome database (04/26/2022) were
validated together using PepQuery2. After in silico enzymedigestion,
only the peptides uniquely mapped to these protein isoforms were
included in the validation, and any peptides that could bemapped to
any other proteins were discarded. A peptide shared by different
isoforms from the same pray protein but not shared by any other
proteins were included in the validation. The following parameters
were used in PepQuery2 validation: Variable modifications, Oxida-
tion of M; Precursor ion mass tolerance, 50 ppm; MS/MS mass tol-
erance, 0.05 Da; Enzyme specificity, trypsin; maximum missed
cleavages, 2; The range of allowed isotope peak errors, 0,1. The
UniProt human reference proteome database (04/26/2022) was used
as the reference database.

Known protein validation in large size of MS/MS data
Protein identification and quantification results for PGK1, PGK2,
NAA10, and NAA11 in the CPTAC LUAD global proteome dataset based
on both the original publication25 and a reanalysis using the FragPipe
pipeline [https://fragpipe.nesvilab.org/] were downloaded from Lin-
kedOmics. mRNA quantification for these genes in the same samples
were also downloaded from LinkedOmics. The PSMs identifying PGK2
and NAA11 were retrieved and validated by PepQuery2 using the fol-
lowing parameters: Fixed modifications, Carbamidomethyl (C) and
TMT 10-plex (K); variable modifications, Oxidation (M), TMT 10-plex
(N-term), TMT 10-plex (S); Precursor ion mass tolerance, 20ppm; MS/
MS mass tolerance, 0.05 Da; Enzyme specificity, trypsin; maximum
missed cleavages, 1; The range of allowed isotope peak errors,
−1,0,1,2,3. The protein database fromGENCODEHuman release 34 was
used as the reference database.

The MS/MS data from the proteome of metastatic cells in color-
ectal cancer27 was accessed from MassIVE through the accession
number MSV000088431. The reanalysis result of this dataset was
downloaded from MassIVE through the accession number
RMSV000000617. ThePSMs identified fromPGK2were retrieved from
this reanalysis and validated using PepQuery2 using the following
parameters: fixed modifications, Carbamidomethyl (C); variable
modifications, Lysine 13C(6), Arginine 13 C(6), Oxidation of M, Dea-
midation of N; Precursor ion mass tolerance, 50ppm; MS/MS mass
tolerance, 0.6Da; Enzyme specificity, trypsin; maximum missed clea-
vages, 2. The protein database from GENCODE Human release 34 was
used as the reference database.

Identification of nuORFs in healthy tissue data
A total of 576 nuORFs identified in cancer immunopeptidomics data
were collected fromaprevious study28. The protein sequences of these
nuORFs were downloaded from MassIVE through the accession num-
berMSV000084787. The rawMS/MSdata froma previously published
proteomic study analyzing 31 healthy human tissues29 were down-
loaded from PRIDE through the accession number PXD010154.
Downloaded MS/MS data were indexed and included in the Pep-
QueryDB. The nuORFs were searched against this MS/MS dataset. The
predefined parameter set was used. The reference protein database
from the previous study was used as the reference database.

Missing protein identification
The missing proteins were downloaded from neXtProt [https://www.
nextprot.org/, 04/14/2022]. The missing proteins classified as PE2
(evidence only at transcript level), PE3 (inferred from homology) or
PE4 (proteins inferred to exist) were searched against all MS/MS
datasets in PepQueryDB. The predefined parameter set for each
dataset was used. In PepQuery2 analysis, all amino acid substitutions
from theUniMod databasewere considered. Thiswas used to filter out
any spectra matched to a missing protein but could also be matched

equally or better to any other non-missing proteins with an amino acid
substitution. Any unique peptides passing the validation of both
scoring algorithms (Hyperscore andMVH) implemented in PepQuery2
were included in downstream analyses. A missing protein was con-
sidered to be confidently identified if: (1) at least two unique non-
nested peptides with length equal or greater than 9 amino acids were
identified in the same dataset; and (2) the missing protein was identi-
fied in at least twodatasetswith at leastoneuniquepeptidewith length
equal or greater than 7 amino acids.

Protein isoform identification
The two protein isoforms of gene XBP1 (XBP1u and XBP1s) were
downloaded fromUniProt. The isoformXBP1u (P17861-1) is also known
as unprocessed XBP1, whereas the isoform XBP1s (P17861-2) is also
known as processed XBP1. The two isoforms were searched against all
MS/MSdatasets in PepQueryDB. Thepredefinedparameter set for each
dataset was used. The SwissProt human protein database, including
protein isoforms (05/17/2022) was used as the reference database.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 48 MS/MS datasets indexed in PepQueryDB were downloaded
from PDC, PRIDE, or MassIVE. Detailed dataset information, including
hyperlinks to access the datasets, is available in Supplementary Data 1.
The KRAS mutations detected at the DNA level for CPTAC tumor
samples were downloaded from LinkedOmics. The human reference
proteins used in the reanalysis of the CPTAC LSCC global proteome
datasetwere downloaded fromUniProt on 12/19/2022. TheAP-MSdata
from BioPlex 3.024 was downloaded from MassIVE through the acces-
sion number MSV000088555. The human reference proteins used in
the analysis of the AP-MS data were downloaded from UniProt on 04/
26/2022. The MS/MS data from the proteome of metastatic cells in
colorectal cancer27 was accessed from MassIVE through the accession
number MSV000088431, and the protein database from GENCODE
Human release 34 was used as the reference database for this analysis.
The protein sequences of the nuORFs were downloaded fromMassIVE
through the accession number MSV000084787. The raw MS/MS data
from the analyzing 31 healthy human tissues were downloaded from
PRIDE through the accession number PXD010154. The missing pro-
teins were downloaded from neXtProt (04/14/2022). For the XBP1
analysis, the SwissProt human protein database, including protein
isoforms (05/17/2022)was used as the reference database. Source data
are provided with this paper.

Code availability
Both the command line version and the web version of PepQuery2 are
available at [http://www.pepquery.org]. The source codeof PepQuery2
is available at [https://github.com/bzhanglab/PepQuery]. Scripts used
in the manuscript are available at https://github.com/wenbostar/
pepquery2_manuscript.
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