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The CellPhe toolkit for cell phenotyping
using time-lapse imaging and pattern
recognition

Laura Wiggins 1,2, Alice Lord2, Killian L. Murphy 3, Stuart E. Lacy 3,
Peter J. O’Toole 1,2, William J. Brackenbury 1,2 & Julie Wilson 4

With phenotypic heterogeneity in whole cell populations widely recognised,
the demand for quantitative and temporal analysis approaches to characterise
single cell morphology and dynamics has increased. We present CellPhe, a
pattern recognition toolkit for the unbiased characterisation of cellular phe-
notypes within time-lapse videos. CellPhe imports tracking information from
multiple segmentation and tracking algorithms to provide automated cell
phenotyping from different imaging modalities, including fluorescence. To
maximise data quality for downstream analysis, our toolkit includes auto-
mated recognition and removal of erroneous cell boundaries induced by
inaccurate tracking and segmentation.We provide an extensive list of features
extracted from individual cell time series, with custom feature selection to
identify variables that provide greatest discrimination for the analysis in
question. Using ensemble classification for accurate prediction of cellular
phenotype and clustering algorithms for the characterisation of hetero-
geneous subsets, we validate and prove adaptability using different cell types
and experimental conditions.

Heterogeneity in whole cell populations is a long-standing area of
interest1–3 and previous studies have identified cell-to-cell phenotypic
and genotypic diversity even within clonally derived populations4. The
emergence ofmethods suchas single-cell RNA sequencing has enabled
characterisation of subsets within a population from gene expression
profiles5, yet these methods involve collection of data at discrete time
points, missing the subtle temporal changes in gene expression on a
continuous scale. Such methods exclude information on single-cell
morphology and dynamics, yet cellular phenotype plays a crucial role
in determining cell function6,7, disease progression8, and response to
treatment9. There remains a demand for quantitative and temporal
analysis approaches to describe the subtleties of single-cell hetero-
geneity and the complexities of cell behaviour.

Modernmicroscopy advancements facilitate the ability to produce
information-rich images of cells and tissue, at high-throughput and
of high quality. Temporal changes in cell behaviour can be observed

through time-lapse imaging and features describing the cells’behaviour
over time can be extracted for analysis. However, the task of identifying
individual cells and following them over time is an ongoing computer
vision challenge10,11. Initial processing requires segmentation, the
detection of cells as regions of interest (ROIs) distinguished from
background, and tracking, with each cell given a unique identifier that is
retained over subsequent frames. Recent work using the similarity
between cellmetrics on consecutive frames highlighted the importance
of accurate tracking to follow cell lineage12. Imaging artefacts vary
between experiments and issues such as background noise, inhomo-
geneity of cell size and overlapping cells are still challenges
for biomedical research13. Reliable cell segmentation protocols are non-
deterministic and experiment-specific14 but user-friendly software sys-
tems that use machine learning algorithms are emerging to provide
objective, high-throughput cell segmentation and tracking15,16. Recent
developments to TrackMate17 allow the results of various segmentation
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software to be integrated with flexible tracking algorithms and provide
visualisation tools to assess both segmentation and cell tracks.
Although the time series for certain cell properties, such as cell area and
circularity, can be displayed, the extraction and analysis of descriptive
time series is not within the scope of the TrackMate software. Com-
parison of the tracked cells behaviour is challenging as cells are tracked
for different numbers of frames with frames missing where cells leave
the field of view. This has meant that analysis of any extracted features
has been limited to visualisation. CellPhe interpolates the time series
and then calculates a fixed number of variables that characterise each
feature’s time series- the features of features!

Here we present CellPhe, a pattern recognition toolkit that uses
the output of segmentation and tracking software to provide an
extensive list of features that characterise changes in the cells’
appearance and behaviour over time. Customised feature selection
allows themostdiscriminatory variables for a particular objective to be
identified. These extracted variables quantify cell morphology, texture
and dynamics and describe temporal changes and can be used to
reliably characterise and classify individual cells as well as cell popu-
lations. To ensure precise quantification of cell morphology and
motility, and to monitor major cellular events such as mitosis and
apoptosis, it is vital that instances of erroneous segmentation and
tracking are removed from data sets prior to downstream analysis
methods18. Manual removal of such errors is heavily labour-intensive,
particularly when time-lapses take place over several days. To max-
imise data quality for downstream analysis, CellPhe includes the
recognition and removal of erroneous cell boundaries induced by
inaccurate segmentation and tracking. We demonstrate the use of
ensemble classification for accurate prediction of cellular phenotype
and clustering algorithms for identification of heterogeneous subsets.

We exemplify CellPhe by characterising the behaviour of
untreated and chemotherapy-treated breast cancer cells from pty-
chographic time-lapse videos. Quantitative phase images (QPI)19–21

avoid any fluorescence-induced perturbation of the cells but seg-
mentation accuracy canbe affectedby reduceddifferences in intensity
between cells and background in comparison to fluorescent labelling.
We show that our methods successfully recognise and remove a
population of erroneously segmented cells, improving data set quality.
Morphological and dynamical changes induced by chemother-
apeutics, particularly at low drug concentration, are oftenmore subtle
than those that discriminate distinct cell types andwedemonstrate the
ability of CellPhe to automatically identify time series differences
induced by chemotherapy treatment, with the chosen variables prov-
ing statistically significant even when not observable by eye.

The complexities of heterogeneous drug response and the pro-
blem of drug resistance further motivate our chosen application. The
ability to identify discriminatory features between treated and
untreated cells can allow automated detection of “non-conforming”
cells such as those that possess cellular drug resistance. Further
investigation of such features could elucidate the underlying biologi-
cal mechanisms responsible for chemotherapy resistance and cancer
recurrence. We validate the adaptability of CellPhe with both a dif-
ferent cell type and a different drug treatment and show that variables
are selected according to experimental conditions, tailored to prop-
erties of the cell type and drug mechanism of action.

CellPhe is available on GitHub as an R packagewith a user-friendly
interactive GUI that allows completely unbiased cell phenotyping
using time-lapse data from fluorescence imaging as well as ptycho-
graphy. A working example guides the user through the complete
workflow and a video demonstrating the GUI is also provided.

Results
Overview of CellPhe
CellPhe is a toolkit for the characterisation and classification of cellular
phenotypes from time-lapse videos, a diagrammatic summary of

CellPhe is provided in Fig. 1. Experimental design is determined by the
user prior to image acquisition where seeded cell types and pharma-
cology are specific to the user’s own analysis. Example uses are dis-
crimination of cell types (e.g, neurons vs. astrocytes), characterisation
of disease (e.g., healthy vs. cancer), or assessment of drug response
(e.g., untreated vs. treated). The user can then time-lapse image cells
for the desired amount of time, using an imaging modality of their
choice. Once images are acquired and segmentation and tracking of
cells are complete, cell boundary coordinates are exported and used
for calculation of an extensive list ofmorphology and texture features.
These together with dynamical features and extracted time series
variables are used to aid removal of erroneous segmentation by
recognition of error-induced interruption to cell time series. Once all
predicted segmentation errors have been removed from data sets,
feature selection is performed and only features providing separation
above anoptimised threshold are retained. This identifies a list ofmost
discriminatory features and allows the user to explore biological
interpretation of these findings. The extracted data matrices are then
used as input for ensemble classification, where the phenotype of new
cells can be accurately predicted. Furthermore, clustering algorithms
canbeused to identify heterogeneous subsets of cells within the user’s
data, both inter- and intra-class.

The remaining results exemplify the use of CellPhe with a biolo-
gical application, characterisation and classification of chemother-
apeutic drug response. We look at each of the CellPhe stages in detail
(segmentation error removal, feature selection, ensemble classifica-
tion and cluster analysis) and demonstrate that each step provides
interpretable, biologically relevant results to answer experiment-
specific questions and aid further research.

CellPhe application: characterising chemotherapeutic drug
response
The 231Docetaxel data set, obtained from multiple experiments
involving MDA-MB-231 cells, both untreated and treated with 30μM
docetaxel, is the main data set used to demonstrate our method. We
show that the same analysis pipeline can be applied to other data sets
by considering both a different cell line, MCF-7, in the MCF7Docetaxel
data set, and a different drug, doxorubicin, with the 231Doxorubicin
data set. In each case, we remove segmentation errors, as described in
Section 2.5, before using feature selection (Section 2.6) to identify
discriminatory variables tailored to the particular data set. We show
that different variables are chosendependingon the inherent natureof
the cell line and the effect of the drug in question. Using these features
in classification algorithms, we characterise and compare the beha-
viour over time of untreated and treated cells.

Segmentation error removal
We improve the quality of our data sets prior to untreated vs. treated
cell classification by automating detection of segmentation errors and
optimising the exclusion criteria of predicted errors.

Comparison of time series for cells with and without segmenta-
tion errors showedmany of our features to be sensitive to such errors,
motivating the need to remove these cells prior to treatment classifi-
cation. Size metrics, such as volume, were particularly affected by
segmentation errors as under- or over-segmentation could result in
halving or doubling of cell volume respectively (Fig. 2a, b). Such
noticeable disruption to the time series of several features suggested
that reliable detection of segmentation errors would be possible.

After excluding 62 instances identified as tracked cell debris, a
training data set for MDA-MB-231 cells (from the 231Docetaxel data
set), was obtained, consisting of 1701 correctly segmented cells and
241 cells with segmentation errors. The number of cells in the seg-
mentation error classwasdoubled using SMOTE and the resulting data
set with 2184 observations used for the classification of segmentation
errors as described in Section 2.5. The MDA-MB-231 cells (from
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231Docetaxel and 231Doxorubicin, both untreated and treated) that
were not used for training formed independent test sets (Table 1).

A total of 223 of the 1478 cells in the 231Docetaxel test set were
predicted to be segmentation errors. Of these, 217 were confirmed by
eye to be true segmentation errors, most of which were due to under-
or over-segmentation throughout their time series. Other segmenta-
tion issues observed included background pickup, cells swapping cell
ID, and cells repeatedly entering and exiting the field of view, all of
which result in problem time series (Fig. 2c, d). Of the remaining six
cells that were misclassified as segmentation errors, one was a large
cell and the other five were cells tracked before, during, and after
attempted mitosis. Further investigation showed that the removal of
these cells did not exclude an important subset from the data.

This classifier was also used to identify a further 78 segmentation
errors from the 955 cells in the 231Doxorubicin data set, all 78 were
confirmed by eye to be true segmentation errors (Table 1). It was
necessary to train a new classifier for MCF-7 segmentation error
detection due to differences between the cell lines. In this case, 308
correctly segmented cells and 192 segmentation errors were identified
by eye. After applying SMOTE to double the number of segmentation
error observations, a classifier was trained with the resulting 692
observations as described in section 2.5. 188 cells in the MCF7Doce-
taxel data set (848 cells in total) were classified as segmentation errors.
185 of these cells were confirmed by eye to be true segmentation
errors, the remaining three were large cells or cells tracked before,
during and after attempted mitosis.

As decision trees are used in the identification of segmentation
errors, our feature selection is not required. However, we still calcu-
lated separation scores for the MDA-MB-231 training data to investi-
gate the effect of such errors. As might be expected, volumewasmost

affected, with segmentation errors resulting in larger standard devia-
tion, ascent and maximum value. Other features with high separation
scores included area as well as spatial distribution descriptors with the
highest thresholds, features that detect the clustering of high intensity
pixels, characteristic of cell overlap and over-segmentation (Fig. 2e).
Analysis of the trained decision trees showed that a combination of
size, shape, texture and density variables frequently formed the most
important features for detecting segmentation errors with MDA-MB-
231 cells, see Fig. 2f for an example.

For the MCF7Docetaxel data set, velocity was found to be impor-
tant in determining whether or not a cell experienced segmentation
errors in addition to texture and shape variables. The cell centroid,
used to determine position and hence velocity, is affected by boundary
errors and so high velocity, uncharacteristic of MCF-7 cells, is a good
indication of segmentation error for these cells.

Feature selection
For the 231Docetaxel data set, the calculation of separation scores
identified variables that provided good discrimination between
untreated MDA-MB-231 cells and those treated with 30μM docetaxel.
As separation scores do not provide information on how these vari-
ables work in combination, we performed Principal Component Ana-
lysis (PCA) to explore relationships between discriminatory variables.

Differences in the appearance of MDA-MB-231 cells induced by
docetaxel treatment were observed by eye from cell time-lapses.
Untreated cells displayed a spindle-shaped morphology (a circular
cross-section with tapering at both ends), with contractions and pro-
trusions facilitating migration. Cells that received treatment were
generally dense and spherical, and increased in size following a failed
attempt at cytokinesis (Fig. 3a, b). Discriminatory features identifiedby

Fig. 1 | Summary of the CellPhe toolkit. Following time-lapse imaging, acquired
images are processed and segmentation and tracking recipes implemented. Cell
boundary coordinates are exported, features extracted for each tracked cell and
the time series summarised by characteristic variables. Predicted segmentation
errors are excluded and optimised feature selection performed using a threshold

on the class separation achieved. Finally, multiple machine learning algorithms are
combined for classification of cell phenotype and clustering algorithms utilised for
identification of heterogeneous cell subsets. This figure was created with
BioRender.com.
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a)

b)

d)

f)

c)

e)

Scale = 50μm

Fig. 2 | Characterisation of segmentation errors. a Volume time series for a
correctly segmented cell and b a cell experiencing segmentation errors, demon-
strating greater fluctuation in volumewhen a cell experiences segmentation errors.
Examples of test set cells classified as c correct segmentation and d segmentation
error. Note that the scale bar applies to all cell images in c, d. e Box and whisker
plots of features that are significant for identifying segmentation errors in the
231Docetaxel training set (****: p <0.0001). The median value is shown by the line

within the box representing the interquartile range (IQR), with lines at the 25th and
75th percentile, whiskers extend to the maximum and minimum values. p values
were calculated using a two-tailed, non-parametric Mann-WhitneyU test at the 95%
confidence interval. n = 1702 and 241 for correctly segmented cells and segmen-
tation errors respectively. f A representative 231Docetaxel trained decision tree,
demonstrating how size, shape, texture and density are used in combination to
make classifications. Source data for e, f are provided in the Source Data file.
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calculation of separation scores were consistent with differences
observed by eye, the 100 variables that achieved greatest separation
are shown in Fig. 3c. Texture, shape, and size variables provided
greatest discrimination of untreated and treated cells. Untreated cells
experienced increased elongation throughout the time-lapse and dis-
played irregular, spindle-shaped morphology in comparison to the
generally spherical appearance of treated cells. Furthermore, separa-
tion scores highlighteddifferences in the texture of cells,with intensity
quantile metrics characterising changes in granularity of cells induced
by drug treatment.

Principal Component Analysis (PCA) demonstrated that the main
variancewithin the data arises due to class differences, with separation
of classes observed across PC1which explains 66%of the total variance
(Fig. 3d). The dispersion of points within the scores plot illustrates
heterogeneity of cells both inter- and intra-class. The non-conformity
of some cells, for example, treated cells behaving as untreated cells, is
demonstrated by points clustering within the opposite class. Analysis
of PCA loadings highlighted increased ascent, descent, and standard
deviation for untreated cells, as canbeobserved fromthePCAbiplot in
Fig. 3e. Althoughdescent variables appear tohaveopposite loadings to
all other variables, in fact, this is only due to their negative values. As
the majority of untreated cells had negative PC1 scores we deduced
that greater standard deviation, ascent and descent of features for
untreated cells indicates that these cells experience increased fluc-
tuation throughout their time series. As treated cells mainly had
positive PC1 scores, they experience less fluctuation throughout their
time series and instead display greater stability. Identified differences
in feature time series are visualised in Fig. 3f.

We assessed the adaptability of our feature selection method by
calculating separation scores for both a different cell line and a dif-
ferent treatment, using PCA to evaluate the main sources of variance.

Table 1 | Segmentation error prediction on the test data

Data set TP FP

231Docetaxel (1478) 217 6

231Doxorubicin (955) 78 0

MCF7Docetaxel (848) 185 3

The number of correctly classified segmentation errors (True Positives, TP) and the number of
correctly segmented time series incorrectly classified as segmentation errors (False Positives,
FP) are shown. The number of cells in each test data before segmentation error removal is shown
in parentheses.
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Fig. 3 | Discrimination between treated and untreated cells for MDA-MB-231
with docetaxel. Images taken from cell time-lapses of a untreated MDA-MB-231
cells and b 30μM docetaxel treated MDA-MB-231 cells. Scale bar = 200μm.
Increased cell count at 49h post-treatment demonstrates healthy proliferation of
untreated cells. Static cell count at 49h for treated cells is a result of cell cycle arrest
and failed cytokinesis, leading to enlarged cell phenotype. c Features with the top
100 highest separation scores, colour-coded according to feature type. Texture,
shape, and size features provide greatest separation. d Principal Component Ana-
lysis (PCA) scores plot with points colour-coded according to true class label.
Observable separation of classes along PC1 demonstrates that the greatest source

of variance within the data arises due to class differences. Only features with the
100 highest separation scores were included in PCA. e PCA biplot demonstrating
how features with the 100 highest separation scores work in combination to dis-
criminate between untreated and 30M docetaxel-treated MDA-MB-231 cells.
Greater ascent and descent can be observed for untreated cells, indicating greater
activity across a range of features for untreated cells. f Representative feature time
series plots for untreated and 30μM docetaxel-treated MDA-MB-231 cells.
Untreated cells experience greater fluctuation within their time series in compar-
ison to treated cells where activity is more stabilised. Source data for c–e are
provided in the Source Data file.
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We compared MCF-7 cells treated with 1μM docetaxel with untreated
MCF-7 cells, and MDA-MB-231 cells that were treated with 1μM dox-
orubicin with untreated MDA-MB-231 cells and found that changes in
the morphology and motility of cells upon treatment were both drug
and cell-line specific with different variables selected (Fig. 4).

As was observed within the 231Docetaxel time-lapses, cells
increased in size due to failed cytokinesis. However, MCF-7 cells
maintained a polygonal, epithelial-like morphology following treat-
ment similar to that of the untreated population. Conversely,
remarkable differences in cellular dynamics were observed within the
231Doxorubicin data set, with motility of cells being severely hindered
following treatment, particularly after the 24-hour time point. Only
subtle differences in size and morphology of cells were observed by
eye, with doxorubicin treated cells appearing slightly enlarged as a
result of cell cycle arrest. Both untreated and treated sets contained
examples of cells in G1 and G2, hence varied cell morphology can be
observed within both (elongated and adherent cells in G1, round and
dense morphology of cells in G2.)

The 100 variables that achieved greatest separation for each of
theMCF7Docetaxel and 231Doxorubicin data sets are shown in Fig. 4c,
d. Density variables were highly discriminatory for untreated and
docetaxel treated MCF-7 cells, characterising decreased proliferation
and cell-cell adhesion induced by drug treatment. Size, shape and
texture variables were also identified as most discriminatory with
variables such as length, width and area characterising the enlarged
cell shape of treated cells. Spatial distribution variables were chosen
for several intensity thresholds, demonstrating differences in the
clusteringofpixels, followingdocetaxel treatment. Aswasobservedby
eye, movement features formed the majority of discriminatory vari-
ables for the 231Doxorubicin data set, with untreated cells having
greater velocity, tracklength and displacement than treated cells. Dif-
ferences inmovement were also described through density ascent and
descent, as cell density fluctuated more for untreated cells due to the
increased likelihood of passing neighbouring cells when migrating.
Subtle differences in cell shape and size observed by eye upon dox-
orubicin treatment were described by changes in rectangularity, width
and radius variables. Notably both data sets received lower separation
scores than the 231Docetaxel data set, with 231Doxorubicin having the
lowest. This effectively provides ameasure of class similarity, with high
separation scores for 231Docetaxel indicative of significant changes to
cells upon treatment and low separation scores for 231Doxorubicin
suggesting these changes are more subtle.

PCA scores plots obtained with the selected features are shown
in Fig. 4d. Differences between classes can be observed for the
MCF7Docetaxel data set, with separation of classes along PC1 (40% of
the total variance) and PC2 (13% of the total variance). The PCA scores
plot for 231Doxorubicin shows the greatest source of variance to be
due to class differences, with separation of classes along PC1 (49% of
the total variance). All PCA scores plots demonstrated the potential to
characterise untreated and treated cell behaviour, with feature-
selected variables providing good distinction of classes which was
improved by using variables in combination.

Classification of treated and untreated cells
We found that the distribution of separation scores differed for each
data set, with the 231Docetaxel set having the greatest number of
variables achieving high separation, followed by MCF7Docetaxel and
231Doxorubicingenerally havingmuch lower separation scores (Fig. 5a
& b). Optimal separation thresholds of 0.075, 0.025 and 0.025 were
obtained for 231Docetaxel, MCF7Docetaxel and 231Doxorubicin
respectively, resulting in 437, 539 and 442 variables (of a possible 1111)
being selected for classifier training.

Having chosen an optimal separation threshold, we trained an
ensemble classifier for each data set as described in Section 2.6.
Classification accuracy scores for training and test sets obtained using

our ensemble classifier are provided in Table 2. Through visual
inspection, we found that misclassifications formed subsets of cells
whose behaviour deviated from the behaviour of themain population,
we call this subset non-conforming. (Fig. 5c). For untreated cells, we
found that healthy, proliferating cells were correctly classifiedwhereas
less motile cells, cell debris or large, non-motile mutant cells were
instead classified as treated. For treated cells, we found that cells
experiencing the drug-induced phenotypic differences identified
through feature selection were classified as treated. However, treated
cells displaying behaviour similar to that of an untreated cell, such as
increased migration or fluctuation and elongation in cell shape, and
were classified as untreated (Fig. 5d).

We found that the proportion of non-conforming treated cells,
those classified as untreated, decreased as drug concentration
increased for all three data sets (Fig. 5e). To explore the connection
between the proportion of non-conforming treated cells and the
population drug response of each treated set, we considered the total
volume growth rate at each drug concentration in relation to the
percentage of cells predicted as untreated (Fig. 5f). We found that the
overall growth rate decreased with increased drug concentration due
to more cells responding at higher concentrations. This correlated
positively with the percentage of cells predicted as untreated, with a
greater percentage of cells predicted as untreated for high volume
growth rate with proliferation still occurring.

Subset identification
Classification accuracy scores for the untreated and treated cell
populationswere imbalanced across all three of the data sets (Table 2).
Imbalance of classification accuracy scores in binary classification is
often a result of hidden stratification22, where poor performance of
one class is a result of misclassifications of important, unlabelled
subsets. To investigate this phenomenon we performed hierarchical
clustering on 231Docetaxel treated cells and the obtained dendogram
is provided in Fig. 6a, b, with examples of cells from each cluster.

Figure 6 c shows thedistributionofmeanvolumes for each cluster
in comparison to the untreated MDA-MB-231 population. Clusters 1
and 2 span a similar range of volumes to the untreated set, whereas
clusters 3 and 5 have greater mean volumes. Cluster 4 is formed pri-
marily of cell debris as a result of cell death with mean volumes much
lower than those of the untreated set.

Cells in the same cluster share similar properties and morpholo-
gical differences between clusters of different cell cycle states can be
observed. For example cells in clusters 1 and 2 are much smaller and
brighter than cells in clusters 3 and 5 as the cells are heading towards
attempted mitosis, confirmed by visual inspection of cell time-lapses,
and hence resemble untreated mitotic cells. The PCA biplot in Fig. 6d
shows how variables work in combination to determine cell clusters.
Clusters 1 and 2 are generally bright and spherical, similar to amitotic-
treated cell, as these cells are tracked prior to failed cytokinesis. Cells
that have attempted to split, clusters 3 and 5, are larger, longer, wider
anddisplaygreater irregularity in shape. Thesecells become less dense
and are often multinucleated resulting in changes to texture features.
Cell debris is best distinguished by granularity, hence texture metrics
are fundamental in identifying these instances.

Clusters also spanned a range of mean cell volumes beyond those
of the untreated set when hierarchical clustering was repeated for
MCF7Docetaxel-treated cells. However, this was not the case for
231Doxorubicin-treated cells and therefore k-means clustering was
used to explore the connection betweenmisclassifications and hidden
subsets in the 231Doxorubicin treated cell test set. Two distinct clus-
terswere obtained (Fig. 6e), cluster 1 was formedof 33 cells and cluster
2 of 32 cells. We calculated classification accuracy scores for the two
clusters individually and found that 91% of cells in cluster 1 were cor-
rectly classified as treated but only 31% in cluster 2 (Fig. 6f). The
increased migration and fluctuation in shape of cells in cluster 2 mean
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these cells have greater similarity to the untreated population (Fig. 6g).
These non-conforming treated cells form the majority of treated cell
misclassifications in the 231Doxorubicin test set and highlight the
presence of heterogeneous subsets within a population.

Notably there was a greater number of misclassifications for
untreated MCF-7 cells in comparison to the docetaxel-treated set.
Cluster analysis demonstrated the presence of heterogeneous subsets
within the untreated population, with one cluster, in particular, con-
sisting mainly of misclassified cells (Supplementary Figure 1). Texture
metrics discerned this cluster from other untreated cell clusters,
containing several instances of cell debris that were understandably
classified as non-conforming. Other cells within this cluster shared
similarities in texture to cell debris.

Compatibility with fluorescence images and TrackMate
TrackMate-Cellpose17 was used to demonstrate the compatibility of
CellPhe with outputs obtained from alternative segmentation and
tracking software and show that CellPhe extends to fluorescence time-
lapse imaging. Ptychographic and fluorescence time-lapse images of
untreated and docetaxel-treated MDA-MB-231 cells stably expressing
dsRed were acquired in parallel (Fig. 7a). Cell segmentation from the
fluorescence images was performed using Cellpose and segmented
cells were then tracked using TrackMate resulting in 123 cell tracks of

greater thanor equal to 50 frames (Fig. 7b). The resulting folders of cell
ROIs and TrackMate feature tables were used as input for CellPhe to
extract single-cell phenotypic metrics to describe cell behaviour over
time. An optimal separation threshold of 0.3 was determined for dis-
crimination between untreated and treated cells, with 231 variables
achieving separation scores greater than the threshold (Fig. 7c). As
observed with the phase images, size, shape, and texture variables
provide the greatest separation, with cell density amongst the most
discriminatory variables. Good separation of untreated and treated
cells can be observed within the PCA scores plot in Fig. 7d, supporting
the use of CellPhe for cell phenotyping from fluorescence images.

Discussion
The CellPhe toolkit complements existing software for automated cell
segmentation and tracking, using their output as a starting point for
bespoke time series feature extraction and selection, cell classification
and cluster analysis. Erroneous cell segmentation and tracking can
significantly reduce data quality but such errors often go undetected
and can negatively influence the results of automated pattern recog-
nition. CellPhe’s extensive feature extraction followed by customised
feature selection not only allows the characterisation and classification
of cellular phenotypes from time-lapse videos but provides a method
for the identification and removal of erroneous cell tracks prior to
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Fig. 4 | Discrimination between treated and untreated cells for MCF-7 with
docetaxel and MDA-MB-231 with doxorubicin. Images taken from cell time-
lapses of a untreated and 1μM docetaxel treated MCF-7 cells and b untreated and
1μMdoxorubicin treatedMDA-MB-231 cells. Scale bar = 200μm. Differences in cell
count following treatment canbe observed for both due to cell cycle arrest induced
by docetaxel or doxorubicin respectively. Docetaxel treated MCF-7 cells display
enlarged cell phenotype at the 49h time point due to failed cytokinesis. In com-
parison, differences in morphology are more subtle for doxorubicin treated MDA-

MB-231 cells at the 49h time point. Features with the top 100 highest separation
scores, colour-coded according to feature type for c MCF7Docetaxel, where cell
density and texture provide greatest separation, and d 231Doxorubicin where
shape and movement features provide greatest separation. Principal Component
Analysis (PCA) scoresplotwithpoints colour-codedaccording to true class label for
e MCF7Docetaxel and for f 231Doxorubicin. Only features with the 100 highest
separation scores were included in PCA. Source data for c–e, f are provided in the
Source Data file.
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these analyses. Attribute analysis showed that different features
were chosen to identify segmentation errors for different cell lines.
For example, sudden increases in movement resulting from large
boundary changes can indicate segmentation errors for MCF-7 cells,

contrasting with their innate lowmotility. On the other hand, size and
texture variables provide better characterisation of the unexpected
fluctuations in cell size and clusters of high-intensity pixels induced by
segmentation errors for MDA-MB-231 cells. Current approaches for
removal of segmentation errors are subjective and labour-intensive,
requiring manual input of parameters such as expected cell size that
need to be fine-tuned for different data sets. CellPhe provides an
objective, automated approach to segmentation error removal with
the ability to adapt to new data sets.

For cell characterisation, we have shown that CellPhe’s feature
selectionmethod is able to adapt to different experimental conditions,
providing discrimination between untreated and treated groups of
two different breast cancer cell lines (MDA-MB-231 and MCF-7) and
two different chemotherapy treatments (docetaxel and doxorubicin).
The discriminatory variables identified here coincide with previously
reported effects of docetaxel or doxorubicin treatment and can be
interpreted in terms of the mechanism of action of each drug. Pre-
vious studies have identified a subset of polyploid, multinucleated

a) b) c)

d)

e)

f)

Scale = 50μm

Fig. 5 | Analysis of misclassified cells. a The number of variables with separation
scores above different thresholds. A greater number of variables achieve high
separation for 231Docetaxel in comparison to 231Doxorubicin andMCF7Docetaxel.
b Optimisation of separation threshold for each data set. Thresholds of 0.075,
0.025, and 0.025 were selected for 231Docetaxel, MCF7Docetaxel and 231Doxor-
ubicin respectively resulting in 437, 539 and 442 variables being used for classifier
training. c Sub-populations within each class, colour-coded according to the ideal
final classificationof each sub-population.Non-conformingcells for each class form
a subset of misclassified cells. d Examples of docetaxel treated MDA-MB-231 cells
misclassified as untreated. Time-lapse images demonstrate how these cells exhibit
an elongatedmorphology characteristic of migratory untreated cells, note that the
scale bar applies to all cell images. Time series plots for cell length demonstrate the

fluctuation in shape of these cells, typical of untreated cells. e The percentage of
cells predicted as untreated for a range of drug concentrations (log10 scale). For all
three data sets, this percentage decreases as drug concentration increases due to a
greater number of cells responding to treatment at higher concentrations. Lines
were fitted using asymmetric, five parameter, non-linear regression. f Positive
correlation between the total volume rate of growth and the percentage of cells
predicted as untreated, with higher volume growth rates associated with a higher
number of cells being predicted as untreated. Linear regression slopes were found
to be significant (p values shown). R2 correlation coefficients are also provided,
demonstrating positive correlation for each data set. p valueswere calculated using
an F-test with 6 degrees of freedom. Source data for a, b, e, f are provided in the
Source Data file.

Table 2 | Ensemble classification accuracy scores for each
data set

231Docetaxel MCF7Docetaxel 231Doxorubicin

Train Untreated: 98% Untreated: 100% Untreated: 100%

Treated: 100% Treated: 99% Treated: 100%

Overall: 99% Overall: 100% Overall: 100%

Test Untreated: 97% Untreated: 83% Untreated: 86%

Treated: 85% Treated: 90% Treated: 66%

Overall: 94% Overall: 85% Overall: 81%

All percentages have been rounded to the nearest whole number. Source data are provided in
the Source Data file.

Article https://doi.org/10.1038/s41467-023-37447-3

Nature Communications |         (2023) 14:1854 8



cells following docetaxel treatment due to cell cycle arrest and
occasionally cell cycle slippage23. Our findings support this with shape
and size variables providing the greatest separation for docetaxel
treatment in both MDA-MB-231 and MCF-7 cells. Many texture vari-
ables were also identified as discriminatory following docetaxel
treatment, providing label-free identification of the multiple clusters
of high-intensity pixels in treated cells, likely a result of docetaxel-
induced multinucleation. We found that at a higher, sub-lethal con-
centration of 1μM, migration of MDA-MB-231 cells was reduced
with variables associated with movement providing greatest dis-
crimination between untreated and doxorubicin treated cells. This is
supported by studies that have identified changes in migration of
doxorubicin-treated cells, noting that low drug concentrations in fact
facilitate increased invasion24,25.

We found an imbalance in untreated and treated classification
accuracy scores, with a greater proportion of treated cells mis-
classified for all three data sets. This consistent imbalance suggests

the misclassifications are in fact representative of a subset of non-
conforming, and potentially chemoresistant, cells. The concept of
hidden stratification, where an unlabelled subset performs poorly
during classification, has been described previously26 and poses a
challenge in medical research as important subsets (such as rare
forms of disease) could be overlooked. Here, the misclassified cells
could be of most interest and the ability to identify non-conforming
behaviour is precisely what is required from a classifier as treated
cells that display behaviour similar to untreated cells could indicate a
reduced response to drug treatment. The classification of cells
treatedwith a range of concentrations supported this hypothesis as a
greater proportion of cells were classified as untreated at lower drug
concentrations, demonstrating that our trained ensemble classifier
can be used to quantify drug response, at both single-cell and
populational level.

Cluster analysis revealed cell subsets that appear to represent
different responses to drug treatment. Heterogeneity of cellular drug
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31%

Fig. 6 | Cluster analysis of treated cells. a Dendogram obtained from hierarchical
clustering of 231Docetaxel treated cells, with 5 clusters coloured. b Examples of
cells from each cluster with background colours identifying the cluster, note that
the scale bar applies to all cell images. Cells within a cluster share similar properties
but differ to cells in other clusters. c Density plots of mean cell volume, colour-
coded according to cluster. The grey, dashed density plot represents 231Docetaxel
untreated cells for reference. Cluster 4 (cell debris cluster) has the greatest leftward
shift due to cells losing volume upon cell death. Clusters 1 and 2 primarily span the
same range of volumes as the untreated set as cells in these clusters have not yet
attempted cytokinesis. Clusters 3 and 5 have mean volumes greater than the
untreated set as cells in these clusters have continued to grow following failed
cytokinesis. d, e k-means clustering of 231Doxorubicin test set treated cells. Cells
are colour-coded according to which cluster they were assigned. f The number of
cells predicted as treated for each of the clusters. Cluster 1 was formed of suc-
cessfully treated cells with 91% (30/33) of cells correctly classified as treated,

whereas cluster 1 formed a subset of non-conforming treated cells, with only 31%
(10/32) correctly classified as treated. g Increased velocity and ascent in cell elon-
gation are characteristic of untreated cells. These metrics show extremely sig-
nificant decrease for cells in cluster 1 but no significant difference for cells in cluster
2. Extremely significant differences are observed between cluster 1 and cluster 2,
highlighting the presenceof subsetswithin the treated cell population (ns:p ≥0.05,
****: p <0.0001, dashed lines in violin plots are representative of the lower quartile,
median and upper quartile). Exact p valueswere as follows for comparison ofmean
velocity: Untreated vs. cluster 1: p = 1.5 × 10−12, cluster 1 vs. cluster 2: p = 1.8 × 10−9,
untreated vs. cluster 2: p =0.3368. Exact p valueswere as follows for comparison of
ascent in elongation: Untreated vs. cluster 1: p = 2 × 10−14, cluster 1 vs. cluster 2:
5 × 10−8, untreated vs. cluster 2: p =0.1983. p values were calculated using a two-
tailed, non-parametricMann–WhitneyU test at the 95% confidence interval. Source
data for a, c–e, g are provided in the Source Data file.
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response is a commonly reported phenomenon in cancer treatment,
yet mechanisms underlying this are not well understood27. Analysis of
cell volumes showed the mean volume of treated and untreated cells
to be comparable for doxorubicin reflecting the fact that this treat-
ment can induceG1, S or G2 cell cycle arrest28. However, for docetaxel-
treated cells, we found that clusters spanned a range of mean cell
volumes beyond those of the untreated set for both cell lines. Clus-
tering allowed identification of three general responses to docetaxel
treatment: pre–"cytokinesis attempt”, with cells having similar
volumes to the untreated MDA-MB-231 population; post-"cytokinesis
attempt”, where cells were tracked following failed cytokinesis and
therefore continued to grow to volumes beyond those of the late
stages of the untreated cell cycle; and cell death, with a final cluster,
composedprimarily of cell debris. Furthermore, giant cellmorphology
has been linked with docetaxel resistance, a potential cause of relapse
in breast cancer patients9 and through cluster analysis, wewere able to
identify a potentially resistant subset of very large, treated cells that
could be isolated for further investigation.

Our chosen application demonstrated the breadth of quantifica-
tion andbiological insight that can bemadeby following ourworkflow,
with characterisation of drug response and detection of potentially
resistant cells just two of many potential applications for CellPhe.
CellPhe offers several benefits for the quantification of cell behaviour
from time-lapse images. First, errors in cell segmentation and tracking
can be identified and removed, improving the quality of input for
downstream data analysis. This is particularly important with machine
learning where automation means that such errors can easily be mis-
sed, and algorithms consequently trained with poor data. Although
different cell lines have different properties that allow segmentation

errors to be recognised, we have shown that ground truth data for a
particular cell-line can be re-used for different experiments, in our
case, different drug treatments.

Second, cell behaviour is characterised over time by extracting
variables from the time series of various featureswhereasmany studies
explore temporal changes by collecting data at discrete time points
(for example, 0 and 24 hours post-treatment) and using metrics from
each static image, missing behavioural changes experienced by cells
on a continuous level. With CellPhe, changes over time in features that
provide information on morphology, movement and texture are
quantified not just by summary statistics but by variables extracted
from wavelet transformation of the time series allowing changes on
different scales to be identified.

Third, whilst most studies use a limited number of metrics,
assessed individually for discrimination between groups29,30, CellPhe
provides an extensive list of metrics and automatically determines the
combination that offers greatest discrimination. The bespoke feature
selection frequently found the most discriminatory variables to be
those with the ability to detect changes in cell behaviour over time.
Previous research in thisfieldhas focusedon identificationof cell types
from co-cultures31 for use in automated diagnosis of disease such as
cancer. Analysis methods for these studies are often cell-line specific
whereas CellPhe’s feature selectionmethod is successful in identifying
discriminatory variables tailored to different experimental conditions.

Finally, CellPhe uses an ensemble of classifiers to predict cell
status with high accuracy and we show that separation scores can be
used to identify the variables associated with different cell subsets
identified in cluster analysis to explore cell heterogeneity within a
population, evenwhen subtle differences are not readily visible by eye.

Fig. 7 | Application of CellPhe to fluorescence images. a Images taken from cell
time-lapses of untreated and 1μM docetaxel treated MDA-MB-231 cells stably
expressing dsRed. Phase and fluorescence images were acquired in parallel. Scale
bar = 200μm. b Representative image of Cellpose segmentation on a fluorescent
image of MDA-MB-231 cells stably expressing dsRed with cell tracks obtained from
TrackMate for untreated MDA-MB-231 cells stably expressing dsRed. Only cell
tracks greater than or equal to 50 frames are displayed. c Features with separation

scores greater than or equal to 0.3, the optimal separation threshold, colour-coded
according to feature type. Texture, density, shape and size features provide
greatest separation. d Principal Component Analysis (PCA) scores plot with points
colour-coded according to true class label. Observable separation of classes along
PC1 demonstrates that the greatest source of variance within the data arises due to
class differences. Only features with separation score greater than or equal to 0.3
were included in PCA. Source data for c, d are provided in the Source Data file.
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The interactive, interpretable, high-throughput nature of CellPhe
deems it suitable for all cell time-lapse applications, including drug
screening or prediction of disease prognosis. We provide a compre-
hensive manual with a working example and real data to guide users
through the workflow step-by-step, where users can interact with each
stage of the workflow and customise to suit their own experiments.
Here we demonstrated the abundance of information and insight that
can be made by following the CellPhe workflow to quantify cell
behaviour from QPI images. CellPhe can be used with tracking infor-
mation from multiple segmentation and tracking algorithms and dif-
ferent imaging modalities, including fluorescence, and would be
suitable for all time-lapse studies including clinical applications.

Methods
Cell Culture
MDA-MB-231 and MCF-7 cells (American Type Culture Collection
[ATCC] catalogue numbers HTB-26 and HTB-22, respectively) were a
gift from Prof. Mustafa Djamgoz, Imperial College London. MDA-MB-
231 cells and MCF-7 cells were cultured separately in Dulbecco’s
modified eaglemedium supplemented with 5% fetal bovine serum and
4mM L-glutamine32. Fetal bovine serum was filtered using a 0.22μm
syringe filter prior to use to reduce artefacts when imaging. Cells were
incubated at 37∘C in plastic filter-cap T-25 flasks and were split at a 1:6
ratio when passaged. No antibiotics were added to cell culture med-
ium. Cells were confirmed to bemycoplasma-free by 40,6-diamidino-2-
phenylindole (DAPI) method33. The molecular identity of MDA-MB-231
and MCF-7 cells was verified by short tandem repeat analysis34.
Authenticated cell stockswere stored in liquidnitrogen and thawed for
use in experiments. Thawed cells were sub-cultured 1–2 times prior to
discarding and thawing a new stock to ensure that the molecular
identity of cells was retained throughout. In cases where dsRed
expressing MDA-MB-231 cells were used, cells were sorted via FACS
prior to imaging to enrich for a transfected cell population.

To image the followingday, cellswere counted and then seeded in
a CorningCostar plastic,flat bottom24-well plate. Cellswere seeded at
a density of 8000 cells per well with a final volumeof 500μL in eachof
the 24 wells.

Pharmacology
Docetaxel (Cayman Chemical Company) was prepared as 5mg/mL in
DMSO and doxorubicin (AdooQ Bioscience) as 25mg/mL in DMSO;
both were then frozen into aliquots. Once thawed, docetaxel and
doxorubicin stock solutions were diluted in culture medium to give
final working concentrations. Docetaxel dose-response analysis
for both MDA-MB-231 and MCF-7 cells involved imaging eight wells
treated with the following concentrations of docetaxel: 0 nM, 1 nM,
3 nM, 10 nM, 30 nM, 100 nM, 300nM, 1 μM, with additional
concentrations 3 μM, 10 μM and 30 μM imaged for MDA-MB-231
cells. Doxorubicin dose-response analysis for MDA-MB-231 cells
involved imaging eight wells treated with the following concentra-
tions of doxorubicin: 0 nM, 10 nM, 30 nM, 100 nM, 300nM, 1 μM,
3 μM, 10 μM.

Medium was removed from wells selected to receive treatment
30mins prior to image acquisition, and 500μL of desired drug con-
centration was added to each well. Control wells received a medium
change and were treated with DMSO vehicle on the day of imaging to
maintain consistent DMSO concentration throughout.

Image acquisition and exportation
Cells were placed onto the Phasefocus Livecyte 2 (Phasefocus Lim-
ited, Sheffield, UK) to incubate for 30 minutes prior to image
acquisition to allow for temperature equilibration. One 500μm×
500 μm field of view per well was imaged to capture as many cells,
and therefore data observations, as possible. Selected wells were
imaged in parallel for 48 hours at ×20 magnification with 6-minute

intervals between frames, resulting in full time-lapses of 481 frames
per imaged well. Phase and fluorescence images were acquired in
parallel for each well.

For phase images, Phasefocus’ Cell Analysis Toolbox® software
was utilised for cell segmentation, cell tracking and data exportation.
Segmentation thresholds were optimised for a range of image
processing techniques such as rolling ball algorithm to remove back-
ground noise, image smoothing for cell edge detection and local pixel
maxima detection to identify seed points for final consolidation.

The Phasefocus software outputs a feature table for each imaged
well. Information on missing frames for tracked cells can be obtained
from this table which also provides descriptive features. However,
most features are calculated within CellPhe and we only utilise the
Phasefocus’ features that rely on phase information, these being the
volume of the cell and sphericity35.

For fluorescence images, the TrackMate-Cellpose ImageJ plugin
was used for cell segmentation and tracking. Cells were segmented
using Cellpose’s pre-trained cytoplasmmodel and image contrast was
enhanced prior to segmentation to improve detection of cell bound-
aries. Once complete, TrackMate feature tables and individual cell
ROIs were exported from ImageJ v2.9.0-153t. Prior to use with CellPhe,
it was necessary to interpolate TrackMate-Cellpose ROIs to obtain a
complete list of cell boundary coordinates. Interpolation of ROIs was
performed using a custom ImageJ macro.

Implementation of CellPhe
Using cell boundary information from Regions of Interest (ROIs)
produced by the Phasefocus software or TrackMate, a range of
morphological and texture features were extracted for each cell that
was tracked for at least 50 frames. Image data were imported into
CellPhe using the R package tiff v0.1-11. In addition to size and shape
descriptors calculated from the cell boundaries, a filling algorithm
was used to determine the interior pixels from which texture and
spatial features were extracted. The local density was also calculated
as the sum of inverse distances from the cell centroid to those of
neighbouring cells within three times the cells diameter. A complete
list of features together with their definitions is provided in Supple-
mentary table 1.

By considering the position of a cell’s centroid on subsequent
frames, variables describing the cell’s movement were extracted from
the images. The current speed of the cell estimated by considering its
position in consecutive frames, taking into account any missing
frames. The measure provided is proportional to rather than equal to
velocity as this would require the rate at which frames were produced
to be entered by the user for no gain in discriminatory power. The
displacement, or straight linedistance between the cell centroid on the
current frame and the frame it was first detected in, and the track-
length or total path length travelled by the cell up to the current frame,
are also calculated. To see how these vary, the quotient current
tracklength/current displacement is also calculated.

In addition to volume, calculated using phase information, the
size variables determined are cell area, as the number of pixels within
(or on) the cell boundary, the length, andwidth of the cell, determined
from the minimal rectangular box that the cell can be enclosed by36,
and the radius, as the average distance of boundary pixels from the cell
centroid.

We make use of an imported feature, sphericity, which requires
phase information for calculation, but extract a number of other shape
features within CellPhe. As well as determining the length and width
from the arbitrarily oriented minimum bounding box, we use this to
provide a measure of rectangularity as maxðx,yÞ=ðx + yÞ where x and y
are the length and width of the minimal bounding box37. We also
consider the shape of the cell by calculating the fraction of theminimal
box area that the cell area covers and by comparing the number of
pixels on the boundary with the total pixels within the cell37. Here the
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number of boundary pixels is squared in the quotient to avoid the
effect of cell size. We also calculate the variance on the distance from
the centroid to theboundary pixels, withmore circular cells having less
variance37 and anmeasure of boundary curvature based of the triangle
inequality38. Finally 4 shape descriptors are obtained from a polygon
fitted to the cell boundary, being the mean and variance of both edge
length and interior angle39.

Textural features of each cell are represented in terms of
three first order statistics calculated from the pixel intensities
within the cell: mean, variance and skewness40. For second order
texture features, we used grey-level co-occurrence matrices
(GLCMs)41 but, rather than consider the positions of pixels within
a cell, we calculated GLCMs between the image of the cell at
different resolutions to differentiate textures that are sharp and
would be lost at lower resolution from those that are smooth and
would remain. This was achieved by performing a two-level 2-D
wavelet transform42 on the pixels within the axis-aligned mini-
mum rectangle containing a cell. GLCMs were then calculated
between the original interior pixels and the corresponding values
from the first and second levels of the transform as well as
between the two sets of transformed pixels (levels 1 and 2). Sta-
tistics first described by Haralick43 were then calculated from
each GLCM. We use 14 of the 20 Haralick features described by
Löfstedt et al.44: Angular Second Moment, Contrast, Correlation,
Variance, Homogeneity, Sum Average, Sum Variance, Entropy,
Sum Entropy, Difference Variance, Difference Entropy, Informa-
tion Measure of Correlation 2, Cluster Shade, Cluster Prominence.
With three co-occurrence matrices, this gives 42 Haralick fea-
tures. We calculated spatial distribution descriptors to quantify
the uniformity or clustering of cell interior pixels at different
intensity levels. IQn is a measure of dispersion calculated for the
subset of interior pixels with intensities greater than or equal to
the (n × 10)th quantile. Based on a Poisson distribution, for which
the mean is equal to the variance, the measure is calculated as the
variance divided by the mean, calculated over the pairwise dis-
tances between pixels within the nth subset. IQn = 1 indicates a
random distribution whereas a value of IQn less than 1 indicates
that the pixels are more uniformly distributed and a value >1
indicates clustering.

Cell tracking provides a time series for each of the 74 features
extracted for a cell. The lengthof the time series dependsonhowmany
frames the cell has been tracked for and so differs between cells. In
order to apply pattern recognition methods, we extracted a fixed
number of characteristic variables for each cell from the time series for
each feature. Statistical measures (mean, standard deviation, and
skewness) summarise time series of varying length, but may not be
representative of changes throughout the time series. Therefore, in
addition to summary statistics, we calculated variables inspired by
elevation profiles in walking guides, that is, the sum of any increases
between consecutive frames (total ascent), the sum of any decreases
(total descent) and the maximum value of the time series (maximum
altitude gain). Similar variables were calculated for different levels of
the wavelet transform of the time series to allow changes at different
scales to be considered. The wavelet transform decomposes a time
series to give a lower resolution approximation together with different
levels of detail that need to be added to the approximation to restore
the original time series. Using the Haar wavelet basis45 with the mul-
tiresolution analysis of Mallat42 allows increases and decreases in the
values of the variables to be determined over different time scales.
WithHaarwavelets, a negative detail coefficient represents an increase
from one point to the next, and so we used the sum of the negative
detail coefficients to provide the equivalent to total ascent and the sum
of the positive detail coefficients as total descent. Rather than an
overall maximum, we use the maximum detail coefficient for the
transformed time series.

Occasionally the automated cell tracking misses a frame or even
several frames, for example when a cell temporarily leaves the field of
view. To prevent jumps in the time series, we interpolated values for
the missing frames, although these values were not used to calculate
statistics. After interpolation, the three elevation variables were cal-
culated from the original time series and three wavelet levels which,
together with the summary statistics, provided 15 variables for each
feature (Supplementary table 2). The 72 extracted features together
with the 2 imported features would have given 74 × 15 = 1110 variables
in total, but, as one feature, the tracklength or total distance travelled
up to the current frame, is monotonically increasing, the total descent
is always zero and therefore variables related to tracklength descent
were not used. Similarly, as the tracklength and displacement are the
same for the first frame and the displacement can never be greater
than the tracklength, themaximum value for their quotient will always
be 1 and this variable is also not used.

One further variable was introduced to summarise cellmovement
as the area of the minimal bounding box around a cell’s full trajectory.
This area will be large for migratory cells and small for cells whose
movement remains local for the duration of the time series. If, within a
cell’s trajectory, minX and minY are the minimal X and Y positions
respectively with maxX and maxY the corresponding maximal posi-
tions, then the trajectory area is defined as

trajectory area = ðmaxX �minX Þ× ðmax Y �min Y Þ: ð1Þ

Thus, a total of 1106 characteristic variables were available for analysis
and classification.

To improve characterisation of cellular phenotype, we only
included cells that were tracked for at least 50 frames in our analyses.
Whilst the majority of these cells were correctly tracked, others had
segmentation errors, with confusion between neighbouring cells,
missing parts of a cell or multiple cells included.

In order to increase the reliability of our results, we developed a
classification process to identify and remove such cells prior to further
analysis. Cells (both treated and untreated) were classified by eye to
provide a training data set. Due to class imbalance, with the number of
segmentation errors far less than the number of correct segmenta-
tions, the Synthetic Minority Oversampling Technique (SMOTE)46 was
performed using the smotefamily package v1.3.1 in R, with the number
of neighbours K set to 3, to double the number of instances repre-
senting segmentation errors.

The resulting data set with all 1111 variables was used to train a set
of 50 decision trees using the tree package v1.0-4.2 in R with default
parameters. For each tree, the observations from cells with segmen-
tation errors were used together with the same number of observa-
tions randomly selected from the correctly segmented cells to further
address class imbalance. For each cell, a voting procedure was used to
provide a classification from the predictions of the 50 decision trees.
To minimise the number of correctly tracked cells being falsely clas-
sified as segmentation errors, this class was only assigned when it
received at least 70% of the votes (i.e., 35). To add further stringency,
the training of 50 decision trees was repeated ten times and a cell only
given a final classification of segmentation error if predicted this label
in at least five of the ten runs.MDA-MB-231 cells that were not used for
training formed an independent test set. All cells either manually
labelled as segmentation error or predicted as such were excluded
from further analyses.

After removing segmentation errors, the remaining data were
used to form training and test sets for the classification of untreated
and treated cells. Training sets were balanced prior to classifier train-
ing to mitigate bias and data from cells in the independent test sets
were never used during training.

A separate classifier was trained for each cell line—treatment
combination, as shown in Table 3 and feature selection performed to
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determine the most appropriate variables in each case. Each variable
was assessed using the group separation, S = VB/VW, where VB is the
between-group variance:

VB =
n1ð�x1 � ��xÞ2 +n2ð�x2 � ��xÞ2

ðn1 +n2 � 2Þ
ð2Þ

and VW is the within-group variance:

VW =
ðn1 � 1Þs21 + ðn2 � 1Þs22

ðn1 +n2 � 2Þ : ð3Þ

Here n1 and n2 denote the sample size of group 1 and group 2
respectively, �x1 and �x2 are the sample means, ��x the overall mean, and
s1

2 and s2
2 are the sample variances. Themost discriminatory variables

were chosen for a particular data set by assessing the classification
error on the training data to optimise the threshold on separation.
Starting with a threshold of zero, the nth separation threshold was
minimised such that the classification error rate did not increase by
more than 2% from that obtained for the (n−1)th threshold. The aim
here was to reduce the risk of overfitting by only retaining variables
achieving greater than or equal to this threshold for the next stage of
classifier training.

Data were scaled to prevent large variables dominating the ana-
lysis and ensemble classification used to take advantage of different
classifier properties. The predictions from three classification algo-
rithms, Linear Discriminant Analysis (LDA), Random Forest (RF) and
Support VectorMachine (SVM)with radial basis kernel were combined
using the majority vote. Model performance was evaluated by classi-
fication accuracy, taking into account the number of false positives
and false negatives. All classification was performed in RStudio
V1.2.504247 using open-source packages. LDAwas performed using the
lda function from the MASS library48, SVM classification used the svm
function from the package e1071 v1.7-1249 with a radial basis kernel and
the package randomForest v4.7-1.150 was used to train random forest
classifiers with 200 trees and 5 features randomly sampled as candi-
dates at each split.

Both hierarchical clustering and k-means clustering were used to
investigate subgroups within single-class data sets (i.e. treated and
untreated cells separately). Data were scaled prior to clustering and
analyses performed inR.Hierarchical clusteringwas implementedwith
the factoextra package v1.0.751 using the hcut function to cut the
dendrogram into k clusters. Agglomerative nesting (AGNES) was used
with Ward’s minimum variance as the agglomeration method and the
Euclideandistancemetric to quantify similarity between cells. k-means
clustering was performed using the R stats package v4.1.3, with the
number of random initial configurations set to 50. The number of
clusters k was chosen to obtain clusters with meaningful interpreta-
tion. Similarities and differences between clusters were identified
through evaluation of separation scores to determine discriminatory
features, as well as through observation of cells within each clus-
ter by eye.

Statistics and reproducibility
All tests of statistical significance within this study were performed
using Graphpad Prism 9.1.0 (GraphPad Software, San Diego, CA).
Data were tested for normality using the D’Agostino & Pearson test.
Parametric tests (t tests and F tests) were used where suitable with
non-parametric Mann-Whitney U tests in place of t tests where data
did not follow a normal distribution. Results were considered sig-
nificant if p < 0.05. Levels of significance used: * < 0.05, ** < 0.01,
*** < 0.001, **** < 0.0001. Full details of statistical tests used for each
analysis are provided in the figure legend for the correspond-
ing figure.

Three data sets were used to demonstrate our pipeline for the
classification of untreated and treated cells. For brevity we use
abbreviations throughout to refer to each data set, for example,
231Docetaxel is a data set consisting of MDA-MB-231 cells, both
untreated and treated with 30μM docetaxel. This is the main data set
used to develop themethods, with a training data set compiled from 6
experiments performed on different days and an independent test
data set compiled from a further 3 experiments, also performed on
separate days and by a different individual.

We validate our methods using two further data sets, the
231Doxorubicin and MCF7Docetaxel data sets, details of which are
given in Table 3. This table also includes details of the number of cells
within each training and test set. We show that the classification
pipeline can be successfully reproduced using fewer experimental
repeats for the 231Doxorubicin and MCF7Docetaxel data sets. The
231Doxorubicin training set consists of data from one experiment
with a further, independent experiment performed on a separate day
used as a test set. Training and test sets for MCF7Docetaxel are from
the same two experiments, with random sampling used to produce
independent training and test sets. Each training data set contains a
balanced number of untreated and treated cells, treated with a
single drug concentration. We selected 30 μM docetaxel and 1 μM
doxorubicin for the experiments with MDA-MB-231 cells as the
optimal doses with which to induce changes in cell morphology and
migration without inducing cell death. However, a lower concentra-
tion (1μM) of docetaxel was used for MCF-7 cells as we found
that this induced similar morphological and dynamical changes to
those induced by higher concentrations but with reduced cell death
(Table 3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used to produce the results in the manuscript, including
separate data that will allow the user to follow the worked example in
the CellPhe user guide, are available from the Dryad Database52https://
doi.org/10.5061/dryad.4xgxd25f0. This includes the file exam-
ple_data.zip which contains all the data required to follow the
worked example. A video CellPhe_GUI_demo_vid.mov that explains

Table 3 | The three data sets used in this study with the number of cells in training and test sets used for untreated vs treated
classification

Data set Cell line Treatment Training set Test set

231Docetaxel MDA-MB-231 30μM Docetaxel Untreated: 646 Untreated: 913

Treated: 600 Treated: 300

231Doxorubicin MDA-MB-231 1 μM Doxorubicin Untreated: 213 Untreated: 191

Treated: 215 Treated: 60

MCF7Docetaxel MCF-7 1 μM Docetaxel Untreated: 200 Untreated: 441

Treated: 200 Treated: 128

Article https://doi.org/10.1038/s41467-023-37447-3

Nature Communications |         (2023) 14:1854 13

https://doi.org/10.5061/dryad.4xgxd25f0
https://doi.org/10.5061/dryad.4xgxd25f0


how to use the GUI is available from https://zenodo.org/record/
7674584#.ZAJYBOzP0o8. Source data are provided with this paper.

Code availability
The source code for algorithms developed during this research has
been deposited in GitHub, linked from https://zenodo.org/record/
7620171#.ZAJZMuzP0o853. The interactive CellPhe GUI can be acces-
sed at https://cellphegui.shinyapps.io/app_to_host/.
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