
Article https://doi.org/10.1038/s41467-023-37446-4

MS2Query: reliable and scalable MS2 mass
spectra-based analogue search

Niek F. de Jonge 1 , Joris J. R. Louwen1, Elena Chekmeneva 2,
Stephane Camuzeaux 2, Femke J. Vermeir3, Robert S. Jansen 3,
Florian Huber 4,6 & Justin J. J. van der Hooft 1,5,6

Metabolomics-driven discoveries of biological samples remain hampered by
the grand challenge of metabolite annotation and identification. Only few
metabolites have an annotated spectrum in spectral libraries; hence, searching
only for exact library matches generally returns a few hits. An attractive
alternative is searching for so-called analogues as a starting point for structural
annotations; analogues are library molecules which are not exact matches but
display a high chemical similarity. However, current analogue search imple-
mentations are not yet very reliable and relatively slow. Here, we present
MS2Query, a machine learning-based tool that integrates mass spectral
embedding-based chemical similarity predictors (Spec2Vec and MS2Deep-
score) as well as detected precursor masses to rank potential analogues and
exact matches. Benchmarking MS2Query on reference mass spectra and
experimental case studies demonstrate improved reliability and scalability.
Thereby, MS2Query offers exciting opportunities to further increase the
annotation rate of metabolomics profiles of complexmetabolite mixtures and
to discover new biology.

Wide-screen untargeted metabolomics applications are increasingly
used to understand complex metabolite mixtures. To boost the
metabolite structure annotation rate, mass spectrometry fragmenta-
tion approaches are a key source of information in the field of
metabolomics1. Many improvements have beenmade in automatically
elucidating molecular structure from mass spectrometry fragmenta-
tion spectra (also referred to as MS/MS or MS2 spectra)2. However, it
remains very challenging to reliably determine structures based on
MS2 spectra3. Currently, three main types of approaches to determine
molecular structures from MS2 spectra exist: matching against anno-
tatedmass spectral library spectra4–9, by using fragmentation trees10–12,
or by predictingmass fragmentation spectra from chemical structures
tomatch against molecular structure databases13–18. However, all these

approaches still have important limitations. Many of these methods
were recently reviewed by our group, in particular those using
machine learning19.

One inherent limiting factor of mass spectral library matching is
that annotated spectra for only a fraction of the chemical space are
known. For example, the GNPS20 public mass spectral libraries contain
about 2.5% of known natural products21. When searching for exact
matches, this typically results in finding a few exact spectral matches
(with corresponding molecular masses) in a given sample22. To over-
come this limitation, several methods try to search larger structural
databases like Pubchem23 for potential matches. These methods typi-
cally rely on first predicting spectra from structures by using in silico
fragmentation, followed by comparing MS2 spectra to these predicted
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spectra13–15. Even though thesemethods are promising, they are still far
from perfect at predicting in silico fragmentation, especially for larger
molecules such as complex specialised metabolites or lipid-like
molecules. Other methods try to retrieve information directly from
the MS2 spectra without relying on spectral library databases
by creating fragmentation trees. Fragmentation trees have been
used to predict molecular formulas10, to match against structural
databases10,12, to predict molecular fingerprints24 and recently to pre-
dict completely novel structures from MS2 spectra11. These methods
show excellent results for smaller metabolites of <400Da; however,
for larger metabolites these approaches are still not fully reliable in
returning correct elemental formulas and candidate structures.
Besides that, the computation time to determine the fragmentation
trees also increases substantially19. Natural mixtures typically contain
considerable amounts of larger metabolites (>800Da), and this thus
poses challenges on the mass spectral interpretation.

A different approach to increase the percentage of spectra for
which chemical information can be retrieved is by searching for ana-
logues instead of exact matches4,9,25–27. This approach also relies on
annotatedmass spectral libraries but aims at finding chemically similar
molecules, without the need for them to be identical. To perform
a succesful analogue search, it is important to have a spectral similarity
score that serves as a good proxy for chemical similarity even if two
molecules are not identical. A first improvementmade in this direction
was the development of the modified cosine score, which in contrast
to the cosine score also uses neutral losses for determining spectral
similarity4,28, see Supplementary Note 8 for more details. This makes
the modified cosine score less sensitive to a small chemical modifica-
tion. However, multiple small chemical modifications can still result in
a large decrease in mass spectral similarity based on the modified
cosine score, which limits its ability to serve as a proxy for chemical
similarity19,29–31. Recently, two machine learning-based methods were
developed thatoutperformcosine-based scores inpredicting chemical
similarities fromMS2mass spectral pairs; the unsupervised Spec2Vec30

and the supervised MS2Deepscore32. We hypothesised that their che-
mical similarity predictions offer great potential for performing a
reliable analogue search.

Current implementations of an analogue searchonly consider one
library spectrum to predict chemical similarity. However, for a good
analogue other chemically closely related library structures are
expected to have similar structures to a query spectrum as well.
MS2Query uses this principle to improve prediction quality of an
analogue search, by additionally using MS2Deepscore for similar
library structures to predict if a molecule is a good analogue. In
addition, MS2Query combines the strength of both MS2Deepscore

and Spec2Vec and uses precursor m/z to further improve prediction
quality.

Herewe presentMS2Query, a tool for rapid large-scaleMS2 library
matching that enables searchingboth for analogues andexactmatches
in one run. MS2Query can reliably predict good analogues as well
as exact librarymatches.Wedemonstrate thatMS2Query is able tofind
reliable analogues for 35% of the mass spectra during benchmarking
with an average Tanimoto score of 0.63 (chemical similarity). This is a
substantial improvement compared to the modified cosine score-
based method, which on the same test set resulted in an average
Tanimoto score of 0.45 with settings that resulted in a recall of 35%
(percentage of query spectra forwhich amatch is predicted). To create
the used benchmarking test set, any exact library matches were
removed from the reference library to make sure the best possible
match that can be found is an analogue. Besides thorough bench-
marking on annotated library spectra, MS2Query was also used for
multiple case studies. The higher quality of predictions by MS2Query
offers exciting opportunities to further increase the annotation rate of
metabolomics profiles from complex metabolite mixtures and to dis-
cover new biology. MS2Query is available as a well-tested and open-
source Python library that facilitates easy access to both researchers
and developers.

Results
MS2Query combines several machine-learning approaches
The workflow for running MS2Query first uses MS2Deepscore32 to
calculate spectral similarity scores between all library spectra and a
query spectrum (Fig. 1). In contrast to existing methods, no preselec-
tion on precursor m/z is needed. By using pre-computed MS2Deep-
score embeddings for library spectra, this full-library comparison can
be computed much faster than existing alternatives (see Speed Per-
formance section). Next, the top 2000 spectra with the highest
MS2Deepscore are selected. MS2Query optimises re-ranking of the
best analogue or exact match at the top by using a random forest that
combines five features. The random forest predicts a score between 0
and 1 between each library and query mass spectrum. By using a
minimum threshold for this score, unreliable matches can be fil-
tered out.

As input for the random forest model, MS2Query uses five dif-
ferent features, calculated between the query spectrum and each of
the 2000 preselected library spectra. These features are Spec2Vec
similarity score30, query precursor m/z, precursor m/z difference, a
weighted average MS2Deepscore over 10 chemically similar library
molecules, and the average Tanimoto score for these 10 chemically
similar library molecules. The random forest model was trained to

Query spectrum
Load MS/MS spectra.

MS2DS
Calculate 
MS2Deepscore 
between query 
spectrum and all 
library spectra.

Filter
Select top library 
spectra with high 
MS2Deepscore.

Features
Calculate features 
between query 
spectrum and 
selected library 
spectra.

Random Forest
Combine features 
into one score 
using a Random 
Forest model.

Re-Rank
Rank on Random 
Forest score. 
Select highest
scoring library
spectrum.

Fig. 1 | Schematic workflowofMS2Query.MS2Query searches for both exactmatches and analogues in a reference library. First, potential candidates are selected based
on MS2Deepscore, followed by re-ranking the spectra by using a random forest model.
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predict Tanimoto scores (molecular fingerprint-based chemical simi-
larity) based on these 5 features. More details about the rationale
behind these features can be found in Supplementary Note 2 and the
Methods section.

The feature that has the biggest impact on the increased per-
formance is the Average MS2Deepscore of multiple library molecules,
see Supplementary Note 2. This feature builds on the following
principle: if two library molecules are chemically very similar, it is
expected that if one of these library molecules is a good analogue to
the query molecule, the other is a good analogue as well. For this
reason it is expected that the MS2Deepscore between the spectrum
of a chemically similar library molecule and the query spectrum is
also high in case of a good analogue. MS2Query is the first mass
spectral library searching method that uses this principle to re-rank
candidate molecules.

Speed performance
Running MS2Query on 5987 test spectra took 1 hour and 14minutes
(80 spectraperminute) onanormal laptopwith an 11th generation Intel
Core i5-1135G7 and 16 GB of RAMusing version 0.3.2 of MS2Query. The
test spectra were matched against a library of 302,514 spectra, without
doing any preselection on the precursor m/z difference. An analogue
search on the same test set using the Modified cosine score and a
preselection on a maximum precursor m/z difference of 100Da took
9hours and 24minutes (10,6 spectra per minute). Note that this would
takemuch longer with a largermaximumprecursorm/z difference. For
doing the modified cosine score calculations the implementation of
matchms33 was used, which is optimized for performance.

MS2Query has an improved performance in benchmarking
To test the performance of MS2Query, models were trained using
publicly available mass spectra from GNPS. These spectra were first
cleaned and filtered, including unifying the format of the metadata,
filtering out spectra with less than three peaks and normalizing
intensities.

The performance on finding exact matches and finding analo-
gues was tested separately using two different test sets. The test set
for searching for exact matches (‘exact matches test set’) contains
spectra that have at least one spectrum in the library from exactly the
same molecule. The test set to test the performance for an analogue
search (‘analogues test set’) contains spectra that donot have an exact
match to a library spectrum. Thus, for this test set, the best possible
match has to be an analogue of the query spectrum. To create the
analogues test set, 20-fold cross-validation was performed and
the data split was done randomly on all unique 2D structures. 20-fold
cross-validationwas chosen to ensure that a large-enough training set
was used to not compromise on overall model performance. In case
of the exact matches test set a test spectrum was randomly selected
for each unique 2D structure with at least 2 available spectra. 20 test
sets were created by randomly selecting unique test spectra. None of
the testing spectra were used for training MS2Deepscore, Spec2Vec
and MS2Query to ensure that there is no data leakage between
the models. In case of the exact matches test set, the spectra are
spectrum-disjoint, meaning that no spectrum in the test set was used
for training. The analogue search test set is structure-disjoint, mean-
ing that there were no spectra in the training set that correspond to
any of the 2D structures in the test set. 2D structures were used, since
tandem mass spectrometry cannot discriminate between different
stereoisomers, since they yield similar or identical fragmentation
mass spectra.

The performance of MS2Query was compared to MS2Deep-
score, the cosine score and themodified cosine score. As ametric for
the quality of a predicted analogue the average Tanimoto score
between the test molecules and predicted analogues is used. The
Tanimoto score34 is a metric for chemical similarity between two

molecules, based on chemical fingerprints35. For all methods a
minimal threshold can be used to vary the percentage of query
spectra for which a match is predicted (recall). The quality of pre-
dictions increases with more stringent thresholds for all methods,
but the recall decreases. To assess the performance of an analogue
search, the recall is compared to the average Tanimoto score on the
‘analogues test set’ (Fig. 2a). Across all recall values, MS2Query pre-
dicts analogues of better quality than comparable search methods
relying solely onMS2Deepscore or on themodified cosine score. At a
high recall, the observed increase in performance is smaller, which
suggests that the main added value of MS2Query is a better removal
of bad matches as compared to the other methods. This demon-
strates the importance of using a sufficiently high threshold for the
MS2Query score.

To determine the performance for finding an exact match, the
percentage of predictions that is an exact match for the test spectra is
calculated for the ‘exactmatches test set’ (Fig. 2a). The preselection on
precursorm/z differencewas set to 0.25 Da forMS2DeepScore and the
cosine score, while for MS2Query no pre-filtering on the mass differ-
ence was used, since MS2Query used the exact same settings and
model as for the analogue search. Figure 2b shows that MS2Query
performsbetter at finding exactmatches compared to searchmethods
relying on MS2Deepscore or the cosine score.

Additional analysis of performance for different mass ranges can
be found in Supplementary Note 4. Supplementary Note 7 shows the
benchmarking results of the analogue test setwithout anypreselection
on precursor m/z for the reference methods.

Case studies on experimental datasets of complex metabolite
mixtures
MS2Query was run on four case studies, to demonstrate that
MS2Query also performs well on newly generated experimental data.
Mass spectra obtained using different LC-MS/MS assays for a urine
sample, two blood plasma samples, and an anammox bacterial sample
set were analysed using MS2Query and GNPS analogue search. The
results of the case studies were manually validated and partially con-
firmed by in-house reference standards. Though informative, we
would like to stress that a fair comparison of the performance in these
case studies is challenging, since often no ground truth can be found
for all spectra and judging whether two chemical structures are ana-
logues remains to some extent subjective. The detailed results for all
case studies can be found in the Supplementary Data 1. Below we
highlight some of the results of four case studies to illustrate that
MS2Query is able to predict useful exact matches and analogues for
newly generated data.

Figure 3a shows the number of spectra for which MS2Query
predicted a match (recall) for the four case studies. The recall for the
four case studies is highly variable, but on average, the case studies do
not have a clear higher or lower recall compared to the benchmarking
test set used. Figure 3b shows that the ratio between the number
of predicted analogues (mass difference >1Da) and predicted
exact matches (mass difference <1 Da) differs between the case
studies. Manual validation shows that most predictions by
MS2Query were analogues or exact matches that matched with prior
biochemical knowledge on the sample (Fig. 3c). This confirms that
MS2Query is able to generate relevant predictions for newly generated
experimental data.

The NIST plasma sample analysed by lipid profiling assay in
positive ionization mode contained 139 spectra for which MS2Query
predicted 75matches. Since this blood plasma sample was analysed by
an LC-MS assay tailored for the profiling of lipids, the resulting
MS2Query predictions were, as expected, mainly lipids. 72 out of 75
matches predicted by MS2Query were lipids. This indicates that
MS2Query is able to reliably find analogues which consistently match
the correct compound class.

Article https://doi.org/10.1038/s41467-023-37446-4

Nature Communications |         (2023) 14:1752 3



Discussion
Structural elucidation based on mass spectrometry fragmentation
data remains hampered by a limited number of referencemass spectra
in spectral libraries. Only a fraction of themass spectra in experimental
data can therefore be annotated. Many different approaches target
this structural annotation problem, for instance fragmentation tree
based methods10–12, or approaches generating in silico spectra based
on structural libraries13,14. Even though these are promising approa-
ches, the problem of automatically assigning structures to mass
spectra remains unsolved. Searching for so-called analogues is an
attractive alternative to exact library matching. Analogues are library
molecules, which are not exact matches but are structurally very
similar. Analogues can be used as a starting point for complete anno-
tation, to select metabolites of interest, or for direct biological inter-
pretation. A benefit of searching for analogues compared to
compound class prediction is that analogues make the biochemical
interpretation more flexible. The choice is not limited to specific

chemical compound classes but can be extended to specific side
groups formetabolites of interest, involvement in certain pathways, or
relatedness to specific drugs or contaminants. Furthermore, searching
for analogues canpotentially help in efficiently increasing the chemical
diversity of public libraries. If an analogue search does not return any
matches, this metabolite is likely to be unrelated to known metabo-
lites. Prioritizing suchmetabolites for structural identification by NMR
spectroscopy would be an efficient way to increase the chemical
diversity of public libraries. Here, we introduce MS2Query, a tool that
can search a large mass spectral library both for exact matches and
analogues. Based on the performed benchmarking, we expect that
searching for analogues in currently publicly available mass spectral
libraries, MS2Query will typically result in useful analogues for about
one third of all molecules present in a complex sample. The precise
fraction, however, will vary depending on the exact composition and
origin of a sample and the similarity of itsmoleculeswith those inmass
spectral libraries.

Negative ionization mode

Positive ionization mode
a b

c d

Fig. 2 | MS2Query benchmarking results.MS2Query is more accurate for finding
analogues thanusingMS2Deepscore ormodified cosine score and ismore accurate
at predicting exact matches in positive mode at high recall than using MS2Deep-
score, the cosine score or the modified cosine score. The threshold for MS2Query,
MS2Deepscore, cosine and modified cosine is varied, resulting in different recalls.
The random results show the results if randommatches would be selected and the
optimal results show the performance if the best structuralmatch in the librarywas
selected. Results of 20-fold cross-validation are shown. The mean of these 20 test
sets are shown and the standard deviation is highlighted. Source data are provided
as a Source Data file. a The ‘analogues test set’ is used with spectra that have no
exactmatch in the library, therefore the best possible match is always an analogue.
ForMS2Deepscore, cosine score andmodified cosine score, library spectra are first

filtered on amass differenceof 100Da. The relationshipbetween recall and average
Tanimoto score (chemical similarity) is plotted. For each threshold the average
over the Tanimoto scores between the correct molecular structure and the pre-
dicted analogues is calculated. b The ‘exact matches test set’ is used, all these test
spectra have at least 1 exact structural match in the reference library. For
MS2Deepscore andmodified cosine score, library spectra arefirstfilteredon amass
difference of 0.25Da, while MS2Query does not use any pre-filtering on mass dif-
ference, and uses the exact same settings as for the analogue search. The percen-
tage of true positives is given. Amatch ismarked as true positive if the 2D structure
is correct. c The same plot as Fig. 2a, but for a model trained on spectra in negative
ionization mode. d The same plot as Fig. 2b, but for a model trained on spectra in
negative ionization mode.
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Comparison with cosine score, modified cosine score, and
MS2Deepscore shows that MS2Query performs better both at finding
exact matches as well as finding analogues for positive mode MS2

spectra. Using a modified cosine score is a common approach for
doing an analogue search, for instance implemented on GNPS4 and
MASST9. Even thoughwedemonstrate thatMS2Query is able to rapidly
provide reliable analogues for unknown substances, there is still room
for improvement. The current version was trained using available data
from GNPS20. While a very valuable resource, we do expect that our
models will notably improve when our library is built from larger and
chemically more diverse datasets. For negative mode mass spectra,
MS2Query performed worse, which is probably due to the lower

number of publicly available mass spectra in negative mode and the
fact that negative mode mass spectra contain less mass fragments
compared to positive mode mass spectra. Nevertheless, MS2Query
currently represents a substantial step forward in reliability, thereby
creating opportunities to use analogues to get more reliable insights
into unknown mass spectra.

In the four case studies the recall varies from 15 to 75% with the
same settings (Fig. 3). The observed variation canbe due to differences
in the quality of the acquired spectra, themasses of themetabolites, or
the differing similarity between the metabolites in the sample and the
metabolites in the reference libraries. This, in combination with the
challenges of manually validating results, makes it hard to objectively

Fig. 3 | Highlights of the results of the case studies. The same MS2Query model
was used for all test sets, for more details about the model used for the case
studies, see Supplementary Note 1. A minimal threshold of 0.633 for the random
forest score was used to determine if an analogue was selected. The threshold of
0.633 was selected, since this resulted in a recall of 35% for the “analogue test set”.
Source data are provided as a Source Data file. a The variation of recall across case
studiesusing the same settings.bThepercentageof query spectrawith a predicted
analogue (precursor m/z > 1Da) is compared to the percentage of spectra with an
exact match predicted (precursor m/z < 1 Da) c Results were manually validated

based on the retention time MS1 mass and MS2 spectra, by comparing to online
libraries or in-house reference standards. These reference standards were used to
judge the quality of the predicted analogues. In the Supplementary Note 6 more
details about the validation can be found. For the anammox bacteria sample set,
tentative validation was attempted for 50 features. d Three examples of predic-
tions for mass spectra in the case studies. These examples came from the case
study test sets LTR Urine, LTR Blood Plasma, and NIST Blood Plasma in that order.
For LPC(20:4/0:0) the exact position of the double bonds could not be determined
and was therefore guessed for the visualization.
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judge if MS2Query performs similarly on newly generated data, com-
pared to the benchmarking test set. Nonetheless, the case studies
show that MS2Query can generate useful results for newly generated
experimental data and that it can contribute to new biochemical
insights based on previously unconnected analogues.

Since a preselection onMS2Deepscore is the start of our method,
the improved performance of MS2Query compared to MS2Deepscore
shows the added value of using the five features and the random forest
for re-ranking the library spectra. Additional analysis of the feature
importance indicates that each of the five features used contain rele-
vant information for correctly ranking candidate structures (Supple-
mentary Table 1 and 2). The most important feature for the
performance of MS2Query is using the average MS2Deepscore of
multiple library structures; this shows the value of using multiple
library spectra for predicting good analogues. Besides the five used
features, multiple other features were tested as well, for instance the
cosine and modified cosine score. These other features were not
selected, since they did not improve the performance of the model.
Details about the other features that were tested can be found in the
Supplementary Note 3.

MS2Query is available as an easily installable python package,
which is stable and well-tested. The model as well as the library mass
spectra used are available on Zenodo.MS2Query is fully automatic and
was designed with the end-user in mind. For example, it outputs a CSV
file with all relevant information about the found matches for the
query spectra. For each found analogue it also returns the chemical
compound classes based on ClassyFire36 annotations to facilitate bio-
chemical interpretation of the results. MS2Query is optimized for
speed and working memory usage, which makes it possible to run
MS2Query on a normal laptop on 1000 spectra within 13min against a
reference library of 302 514 spectra, without doing any preselection on
precursor m/z difference. The scalability of MS2Query is an encoura-
ging step toward higher-throughput large-scale untargeted metabo-
lomics workflows, thereby creating the opportunity to develop large-
scale full sample comparisons.

Methods
Workflow MS2Query
MS2Querybuilds on the improvements of twomachine learning-based
methods, developed to predict chemical similarity from MS2 mass
spectral pairs; Spec2Vec30 and MS2Deepscore32. These methods per-
form especially well at predicting chemical similarity for molecules
that are similar but are chemically not exact matches. This makes
Spec2Vec and MS2Deepscore very suitable for an analogue search.

The workflow for running MS2Query first uses MS2Deepscore to
calculate spectral similarity scores between all library spectra and a
query spectrum. The top2000 spectrawith thehighestMS2Deepscore
are selected. To optimally rank these 2000 spectra, MS2Query calcu-
lates 5 features which are combined by a random forest model. The
prediction of the random forest model is used to rank the 2000 pre-
selected library spectra (See Fig. 1). As input for the random forest
model, MS2Query uses 5 different features, calculated between the
query spectrum and each of the 2000 preselected library spectra. The
features are 1. Spec2Vec similarity, 2. queryprecursorm/z, 3. precursor
m/zdifference, 4. an averageMS2Deepscoreover 10 chemically similar
library molecules, and 5. the average Tanimoto score for these 10
chemically most similar library molecules.

The Average MS2Deepscore of multiple library molecules
(feature 4), builds on the following principle. For two librarymolecules
that are chemically very similar, it is expected that if one of these
librarymolecules is a good analogue to the query spectra, the other is a
good analogue as well. For this reason it is expected that for a good
analogue theMS2Deepscore between such a chemically similar library
molecule and the query spectrum is also high. This is captured in this
feature by calculating the average MS2Deepscore between a query
spectrum and all spectra of 10 chemical similar library molecules
(Fig. 4). These 10 library molecules are selected based on the known
chemical structures of the spectra in the library, by selecting the library
structures with the highest Tanimoto score. For each of the 10 library
molecules all corresponding library spectra are selected. As an input
feature for the random forest model, the average over the MS2Deep-
score for the 10 library structures is used (Feature 4). In addition,
the average of the Tanimoto score between the starting library
structure and the 10 library structures is used as an additional input
feature (Feature 5). Multiple variations of the implementation of this
feature were tested and the best performing implementation was
selected. These other implementations used weighting based on the
Tanimoto score, or weighting the MS2Deepscore for each spectrum
equally instead of using the average MS2Deepscore per library struc-
ture. These other implementations and their performance are descri-
bed in more detail in Supplementary Note 3.

Tanimoto scores as structural similarity label
First, an rdkit35 daylight fingerprint (2,048 bits) is generated from the
SMILES for each unique 2D structure in the library. Unique 2D-
structures were selected by selecting the first 14-characters of the
InChIKeys in the library. The SMILES were first sanitized by rdkit. If
multiple spectra with the same InChIKey exist in the dataset, a

Fig. 4 | Workflow for calculating two input features of the random forestmodel. Feature 5 is the Average Tanimoto score for similar library molecules and feature 4 is
the average MS2Deepscore over 10 chemically similar library molecules.

Article https://doi.org/10.1038/s41467-023-37446-4

Nature Communications |         (2023) 14:1752 6



spectrum with the most frequently occurring InChI was selected and
was used for all spectra with the corresponding InChIKey. A Tanimoto
score34was calculatedbetween themolecularfingerprints for eachpair
of InChIKeys. The Tanimoto score is used as an indication for struc-
tural similarity of that pair. These Tanimoto scores are used as labels
for trainingMS2Deepscore andMS2Query and for selecting chemically
similar library molecules to calculate an average of the MS2Deepscore
of multiple chemically similar library spectra.

Data cleaning
For training and testing of MS2Query, we used data fromGNPS. For the
k-fold cross-validation the spectra were downloaded from (https://
gnps-external.ucsd.edu/gnpslibrary/ALL_GNPS_NO_PROPOGATED.mgf)
on the 1st of November 2022. For the case studies and the determining
of the feature importance theGNPS dataset usedwas downloaded from
GNPS (https://gnps-external.ucsd.edu/gnpslibrary/ALL_GNPS.mgf) on
the 15th of November 2021, 20:00 CET. More details about the model
used for benchmarking the case studies can be found in Supplemen-
tary Note 1.

The dataset was first cleaned using matchms33. The metadata was
cleaned to get a uniform format and to remove or correct misplaced
metadata. The dataset is split into positive and negativemode spectra.
The intensities of the mass fragmentation peaks are normalised. Peaks
above 1000Da were removed and peaks with an intensity of less than
0,1 % of the highest peak were removed. For spectra with more than

500peaks, thepeakswith the lowest intensitieswere removed. Spectra
with less than 3 peaks were completely removed from the library.
Some spectra in the GNPS library do not have an InChIKey stored. A
method from matchms extras was used to add missing InChIKeys by
searching the compound name and molecular formula on PubChem.
The library spectrawere split into annotated and unannotated spectra.
A spectrum was considered fully annotated if it has a valid SMILES,
InChiKey and Inchi. The unannotated spectra were used as additional
training spectra for Spec2Vec, since Spec2Vec is unsupervised. The
unannotated spectra were not used for training MS2Deepscore,
MS2Query or for the test spectra.

Training models for MS2Query
MS2Query uses MS2Deepscore and Spec2Vec models, for all bench-
marking newmodels for MS2Deepscore and Spec2Vec were trained to
ensure that none of the test spectra were used for training these
models (Fig. 5). MS2Deepscore was trained on all fully annotated
spectra from the GNPS library, using the same settings as used for the
MS2Deepscore publication32. A Spec2Vec model is trained using all
spectra from the GNPS library, both annotated and unannotated
spectra. The model is trained in 30 epochs using binning on 2
decimals30.

The random forestmodel used byMS2Query was trained on pairs
of annotated spectra using five different features to predict the Tani-
moto score between the two structures of each pair. To generate the

Annotated training
spectra

Train MS2Deepscore
model

Train Spec2Vec
model

Unannotated training
spectra

Test spectra

Calculate MS2Deepscore

All spectra of 1/40th
of unique 2D

structures + 1/40th of
random spectra

Remaining training
spectra

Calculate features
Top 100 highest

scoring spectral pairs
on MS2Deepscore

Label:
Tanimoto score

Train MS2Query
Random Forest

Model

Features

1. Spec2Vec

2. Query spectrum precursor m/z

3. Precursor m/z difference

4. Average MS2Deepscore over 10
chemically similar library molecules

5. Average Tanimoto score for similar
library molecules of feature 4

Cleaned MS2 spectra

Fig. 5 | Workflow for MS2Query model training. Workflow for training the
MS2Deepscore model, the Spec2Vec model and the random forest model used by
MS2Query. Rounded boxes indicate mass spectral handling steps, whereas
squared boxes are indicating machine learning model training steps. The blue

colour highlights preparation steps of the mass spectral data prior to model
training, the yellow colour the Spec2Vecmodel, the red colour theMS2DeepScore
model, and the green colour the MS2Query model.
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training spectrumpairs all library spectra of 1/40th of unique InChIKeys
and 1/40th of the remaining spectra were randomly selected from the
library spectra. The spectrum pairs were generated by starting with
one spectrum from this set and creating spectrum pairs with the 100
library spectra that have the highest scoring MS2Deepscore for this
spectrum.More details about the motivation for selecting the top 100
highest scoring spectra for training can be found in Supplemen-
tary Note 5.

The implementation of scikit-learn37 was used for the random
forestmodel. Themean squared error was used as a loss function. The
number of estimators was set to 250 and the max depth to 5. The
implementation of scikit-learn was used to calculate the feature
importance of the 5 scores used. This method is based on an impurity-
based feature importance, also known as the Gini importance38.

Beside these 5 features, multiple other features were tested as
well, for instance the cosine and modified cosine score. These other
features were not selected since these did not improve the perfor-
mance of the model. Details about the other features tested can be
found in Supplementary Note 3.

Benchmarking
MS2Query was designed to search for analogues and exact matches in
one run, two different types of test sets were generated to test the
performance on these two goals, an “analogue test set” and an “exact
matches test set”. Benchmarking for the analogue test set was done
using 20-fold cross-validation. Meaning that the training dataset was
split into 20 test sets. The MS2Deepscore, Spec2Vec and Random
Forest model were trained on the remaining 19 sets. The analogue test
sets were generated by splitting the unique 2D structures in the library
into 20 equal groups, for which all corresponding spectra were
selected. Benchmarking for the exact matches test set was also done
by creating 20 test sets. These test sets were generated by selecting all
unique 2D structures in the library and randomly selecting one spec-
trum from these, leaving the rest in the library. The 20 sets differ in
which spectrumwas randomly selected from the unique 2D structures.

Theperformance ofMS2Querywas compared to theperformance
of the modified cosine score, the cosine score and MS2Deepscore. All
four methods use a minimal threshold for the spectral similarity score
to determine if a library spectrum is a good analogue or exact match.
The threshold for each method was varied between 0 and 1, followed
by calculating a performance metric and the recall for predictions
falling in the selected threshold. The used performancemetric for the
“analogue test set” was the Tanimoto score between the predicted
library molecule and the correct test molecule. The performance
metric for the “exact matches test set” was the percentage of true
matches, a prediction was considered a true match when it matches
the 2D structure of the correct molecule.

In case of the analogue search usingMS2Deepscore andmodified
cosine score, library spectra were first filtered on a maximum pre-
cursor m/z difference of 100Da. To perform the benchmarking of the
search for exact matches using MS2Deepscore and cosine score, only
library spectra were considered within a mass tolerance of 0.25Da. To
calculate the cosine score, the cosine greedy implementation of
matchms33 was used with a fragment mass tolerance of 0.05 Da.

Speed and memory optimization
MS2Query was optimised for speed and working memory efficiency.
To make this possible, MS2Query aims to avoid repetitive, computa-
tional expensive operations. The biggest speed improvement was
achieved by pre-calculating mass spectral embeddings for Spec2Vec
and MS2Deepscore. MS2Deepscore and Spec2Vec both predict a
chemical similarity score between two library spectra, by first calcu-
lating a multidimensional embedding followed by calculating the
(mathematical) cosine similarity between these two embeddings. The
library spectra are already known, therefore the embeddings for all

library spectra are pre-calculated and stored. Therefore, only for the
query spectra the embeddings have to be computed, instead of for all
the library spectra.

In the first step of MS2Query, the top 2000 library spectra are
selected that have the highest MS2Deepscore between the query
spectrum and a library spectrum. To do this selection, the MS2Deep-
scores between a query spectrum and all MS2Deepscores are calcu-
lated. To avoid repetitive calculation of these scores, the calculated
MS2Deepscores are reused to calculate the average of the MS2Deep-
score of multiple chemically similar library molecules.

The precursor m/z is the only metadata entry that is required for
MS2Query and which serves to calculate the mass differences. Other
spectrametadata such as retention time, SMILES, or compound names
can be returned for results found by MS2Query. To reduce the toll on
working memory, this information is stored in a SQLite library. The
precursorm/z is stored in a separate SQLite library column for efficient
look-up speeds. To calculate the average MS2Deepscore of multiple
chemically similar library molecules, the 10 most chemically similar
librarymolecules based on the Tanimoto score are needed. This top 10
list of most related InChIKeys is pre-calculated for every unique
InChIKey in the library and stored in the SQLite library.

MS2Query contains a workflow to automatically generate all
needed files for an MS2Query library and a fully automatic workflow
for training all the needed models on a new library. This makes it
straightforward to run MS2Query or create models for different
mass spectral libraries.

Speed performance
The speed was tested on the 5987 test spectra in positive mode and
compared to the positive mode GNPS library containing
302.514 spectra. The test was run on a laptop; the Lenovo Thinkbook
15-IIL. This laptop has an 11th generation Intel Core i5-1135G7 and 16GB
installed RAM.

Case studies
Four case studies were performed to confirm thatMS2Query performs
well on newly generated experimental data. Two blood plasma sam-
ples, a urine sample and a bacterial sample set were analysed. The raw
data, intermediate files and raw results can be found on https://doi.
org/10.5281/zenodo.6811540. Here below, the materials, the analytical
methods used, and the analytical and data pre-processing and pro-
cessing steps are described for all case studies.

Case study 1: NIST Human blood plasma
The NIST 1950 Frozen Human Plasma standard reference material
(SRM) was used. The sample was subjected to reversed-phase chro-
motographic (RPC) assay tailored for complex lipid separation devel-
oped by Lewis, et al.39, as further described below.

Case study 2: blood plasma long-term reference
For this case study, a plasma Long-Term Reference (LTR) sample was
used. This LTR is routinely integrated in profiling studies at the
National Phenome Centre for study-independent monitoring of pre-
cision. To create the plasma LTR, 10 L of bulk plasma were purchased
from Seralab, homogenized, and aliquoted for long-term storage at
–80 °C. Hydrophilic interaction liquid chromatography (HILIC) was
used in this case study for the analysis of polarmetabolites in a sample
of plasma LTR39, as further described below.

Case study 3: urine long-term reference
For this case study, a pooled Long-TermReference (LTR) urine sample,
maintained by the National Phenome Centre and utilized as an inde-
pendent sample reference throughout all molecular profiling studies,
was used. The protocol followed to generate urine LTR sample is
described indetail by Lewis et al.40. Briefly, thismaterial was created by

Article https://doi.org/10.1038/s41467-023-37446-4

Nature Communications |         (2023) 14:1752 8

https://doi.org/10.5281/zenodo.6811540
https://doi.org/10.5281/zenodo.6811540


pooling together 78 urine voids collected from healthy volunteers in
one day. LTR urine collection was carried out under REC Wales
approval: 12/WA/0196. No screening criteria were used to assess the
health status of the donors. All sampleswere combined in a 20 L vessel,
homogenized and aliquoted into 15mL polypropylene conical cen-
trifuge tubes (Corning) for long-term storage at –80 °C. Samples were
analyzed by reversed-phase chromatographic (RPC) assay tailored for
small molecule metabolites39, as further described below.

Pre-processing case study 1
To perform the lipidomic profiling, a combined refence standards
mixture (referred to asLipidMix) is added to all samples during protein
precipitation with isopropanol (IPA). The composition of the Lipid
standard mixture is shown in Supplementary Table 5. The stock solu-
tions of the lipid standards are prepared in and further diluted in the
mixture with IPA.

NIST 1950 human plasma sample was thawed at 4 °C for 2 h.
Subsequently, a 50 µL aliquot was taken and prepared for lipid analysis
by dilution with LC-MS grade water (1:1 v/v) and addition of four parts
of isopropanol (IPA) containing a mixture of lipid reference
standards39 to one part of diluted sample for protein precipitation. Vial
with the sample was mixed at 1400 rpm for 2 h at 4 °C and subse-
quently centrifuged for 10mins at 3486 × g at 4 °C to separate the
homogenous supernatant from the precipitated protein. The clear
supernatant was aspirated and dispensed into LC-MS vial, then addi-
tionally centrifuged for 5mins at 3486 × g and 4 °C prior analysis.
Prepared sample was injected (1 µL) in the chromatographic system
using full loop mode (5× overfill).

Pre-processing case study 2
To perform the HILIC profiling, the method reference (MR) mixture
of the reference standards is added to all pooled QC samples pro-
viding metabolite targets that represent the wider observable
metabolome while facilitating a more real-time assessment of data
quality. To allow assessment of sample preparation and injection
precision as well as some limited assessment of matrix effect across
individual study samples, internal standards (IS) are added to all
pooled QC and study samples. When preparing samples for small
molecule for HILIC profiling, MR and IS mixtures are prepared in
aqueous solutions and added to the sample prior to further pre-
parative steps. The composition of the HILIC MR and IS standard
mixture is shown in Supplementary Note 9 (Supplementary Table 6).

Plasma LTR samplewasprepared for the analysis byHILICmethod
in positive ionization mode. The sample was thawed at 4 °C for 2 h.
Subsequently, a 50 µL aliquot of plasma LTR sample was diluted 1:1
with LC-MS gradewater and amixture of HILICMR and IS as described
in Supplementary Note 9 (Supplementary Table 6) with 10 µL each.
Three parts of acetonitrile were then added to one part of diluted
sample for protein precipitation. Vial with the sample was mixed at
1400 rpm for 2 h at 4 °C and subsequently centrifuged for 10mins at
3486 × g at 4 °C to separate the homogenous supernatant from the
precipitated protein. The clear supernatant was aspirated and dis-
pensed into LC-MS vial, then additionally centrifuged for 5mins at
3486 × g and 4 °C prior analysis. Prepared sample was injected (2 µL) in
the chromatographic system using full loop mode (5× overfill).

Pre-processing case study 3
Preparation and analysis of urine samples are described in detail by
Lewis et al.40. In brief, an aliquot of 150 µL of urine LTR sample was
mixed with RPC-specific MR solution in proportion LTR:MR 2:1 and
further diluted with 75 µL of ultrapure water and 75 µL of RPC-specific
internal standards (IS) solution shown in Supplementary Note 9
(Supplementary Table 7). The sample was mixed at 850 rpm for one
minute at 4 °C and centrifuged for 10mins at 3486 × g at 4 °C. The
supernatant was aspirated and dispensed into LC-MS vials for the

analysis. Urine sample was injected (2 µL) in the chromatographic
system using full loop mode (5× overfill).

UHPLC-MS profiling analysis for case studies 1-3
All UHPLC-MS analyses were performed onAcquity UPLC instruments,
coupled to Xevo G2-S TOF mass spectrometers (Waters Corp., Man-
chester, UK) via a Z-spray electrospray ionization (ESI) source.

To perform the lipid profiling, all solvents – water, acetonitrile
(ACN), and IPA and mobile phase additives ammonium acetate and
acetic acid were of LC-MS grade. Lipidomic profiling was conducted
using a 2.1 × 100mm BEH C8 column, thermostatted at 55 °C. Mobile
phase A consisted of a 2:1:1 mixture of water:ACN:IPA with 5mm
ammonium acetate, 0.05% acetic acid, and 20 µM phosphoric acid.
Mobile phase B consisted of 1:1 ACN:IPA with 5mM ammonium acet-
ate, 0.05% acetic acid. The initial conditions were 99:1 A:B at a flow rate
of 0.6mL/min. The gradient elution program is based on the protocols
associated with Lewis et al39. and is shown in Supplementary Note 9
(Supplementary Table 8).

The HILIC chromatographic retention and separation of polar
molecules was conducted using a 2.1 × 150mm Acquity BEH HILIC
column thermostatted at 40 °C. 20mM ammonium formate in water
with 0.1% formic acid was used as mobile phase A and ACN with 0.1%
formic acid asmobile phase B. The initial conditions were 5:95 A:B at a
flow rate of 0.6mL/min. The gradient elution program is based on the
protocols associated with Lewis et al39. and is shown in Supplementary
Note 9 (Supplementary Table 9).

To perform the urine profiling, water andACN supplementedwith
0.1% formic acid of LC-MSgradewere used asmobile phases A and B. A
2.1 × 150mm HSS T3 column thermostatted at 45 °C was used with a
mobile phase flow rate of 0.6mL/min. The gradient elution program is
based on the protocols associated with Lewis et al39. and is shown in
Supplementary Table 10.

The analysis of blood plasma and urine reference samples in
presented case studies were performed in positive ionization mode.
The mass spectrometry parameters were set as follows: capillary
voltage 2 kV for lipid profiling and 1.5 kV for urine profiling, sample
cone voltage 25 V for lipid profiling and 20V for urine profiling,
source temperature 120 °C, desolvation temperature 600 °C, deso-
lvation gas flow 1000 L/h, and cone gas flow 150 L/h. Data were col-
lected in centroid mode with a scan range of 50–2000m/z and
50–1200m/z for lipid and urine profiling, respectively, and a scan
time of 0.1 s. For mass accuracy, LockSpray mass correction was
performed using a 600 pg/μL leucine enkephalin solution
(m/z 556.2771 in ESI + ) in 1:1 water:ACN solution at a flow rate of
15μL/min. Lockmass scans were collected every 60 s and averaged
over 4 scans. The mass spectrometer was operating in Fast DDA
mode. The intensity threshold of precursor ion was set to 100K to
triggerMS2 fragmentation that was performed in centroidmode with
a scan range of 50–2000m/z and a scan time of 0.25 s. MS2 was
switched back to MS survey function after 2 s acquisition. Deiso-
toped peak selection option was enabled. The collision energy was
set to the ramp of 15–30 eV and 30–60 eV for MS2 acquisition of low
and highmass ions, respectively. Ten iterative DDA acquisitions were
performed using DDA auto-exclude program, which allows ions
selected as precursors in previous injections are removed from the
list in the following injections.

Case study 4: anammox bacteria
For the fourth case study extracts of three strains of anammoxbacteria
were used. Kuenenia stuttgartiensis MBR1 was cultivated in a 12 liter
single-cell membrane bioreactor (MBR) as previously described by
Kartal et al.41. In brief, the growth medium consisted of (per liter): 1 g
KHCO3, 0.025 g KH2PO4, 0.6mM HCl, 45mM NaNO2, 45mM (NH4)
2SO4, 0.15 g CaCl2⋅2H2O, 0.1 g MgSO4⋅7H2O and 0.00625 g FeSO4⋅7
H2O, and 1.25ml trace elements consisting of (per liter) 0.24 g CoCl2⋅6
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H2O, 0.25 g CuSO4⋅5 H2O, 0.014 g H3BO3, 0.99 gMnCl2⋅4 H2O, 0.22 g
Na2MoO4⋅2 H2O, 0.05 g Na2WO4⋅2 H2O, 0.19 g NiCl2⋅6 H2O, 0.067
SeO2, 15 g Tritiplex III (EDTA), 0.43 g ZnSO4⋅7 H2O). In the reactor, the
temperature was maintained at 33 °C with a heating jacket and the
biomass was stirred at 200 r.p.m. with a six-bladed turbine stirrer.
Excess biomass was removed at 1.1 L per day, resulting in a doubling
time of 10 days. Brocadia fulgida was cultivated as previously descri-
bed by Kartal et al42. with some adjustments: the working volume was
6 liter and the bacteria were kept in a single-cell membrane bioreactor.
The growth medium consisted of (per liter): 1.25 g KHCO3, 0.1 g
KH2PO4, 0.048 g MgSO4⋅7H2O, 0.0576 g CaCl2⋅2H2O, 0.00625 g
FeSO4⋅7 H2O, 1.25ml trace elements (as described above), 45mM
NaNO2, and 45mM (NH4)2SO4. Temperature was regulated with a
heating jacket and kept at 33 °C. The biomass was stirred at 200 r.p.m.
with a six-bladed turbine stirrer. The reactor was originally inoculated
with activated sludge from the secondary stage of the Dokhaven
municipal wastewater treatment plant (Rotterdam, The Netherlands).
Scalinduawas cultivated in a 5.5 liter sequencing batch reactor at room
temperature asdescribed earlier by vandeVossenberget al.43.Medium
consisted of (per liter): 30 g red sea salt, 0.003125 g KHCO3, 0.025mg
FeSO4⋅7 H2O, 30mM NaNO2, and 30mM (NH4)2SO4. The biomass
was stirred at 350 r.p.m. with a six-bladed turbine stirrer. Scalindua
was originally enriched from the deepest part of the Gullmar Fjord
(Alsbäck, 58°15.5′N, 11°13.5′E, water depth 116m). Samples (30mL)
were taken from each reactor in triplicate and kept on ice. After cen-
trifugation at 3000 × g, at 4 °C for 5minutes, the cell pellets were lysed
in ice-cold acetonitrile:methanol:water (2:2:1; v:v:v). The samples were
snap-frozen in liquidnitrogen and stored at−70 °Cuntil further use. To
remove precipitated proteins and extracellular matrix, samples were
centrifuged again at 20,238 × g, at room temperature for 5minutes.
Subsequently, samples were subjected to LC-MS analysis as described
previouslyby Jansen et al.44 with several adaptations. The sampleswere
injected onto a Diamond Hydride Type C column and separated using
a gradient of acetonitrile and water (both with 0.2% formic acid) on an
Agilent 1290 II LC system coupled to an Agilent Accurate Mass 6546
Quadrupole Time of Flight (Q-TOF) instrument operated in the posi-
tive ionization mode and a scan range of 50-1200m/z. For data
dependent acquisition of MS2 spectra, automated selection of max-
imum 4 precursor ions (>m/z 100) per cycle with an exclusion window
of 2minutes after a single spectrum, and anabsolute thresholdof 1000
counts with a mass error tolerance of 20 ppm was used. The scan
speed was varied based on precursor abundance with a target of
50,000 counts. Common background ions were excluded, the isola-
tionwidthwas set to narrow (~1.3m/z), and the collision energywas set
to 20 V. Data collection was performed using Agilent Masshunter
software 10.0 (Agilent Technologies).

Data processing
In the case of case studies 1-3 the spectra were uploaded on GNPS to
runMSCluster45 to create consensus spectra. These consensus spectra
were taken as input for MS2Query. The data files for case study 4 were
first converted to mzML format using Proteowizard (Chambers et al.,
2012). Next, LC-MS features were picked using XCMS346 (https://
github.com/sneumann/xcms), using the findChromPeaks function.
The resulting MS2 spectral MGF file was used to run MS2Query.

Analogues and exactmatches with aMS2Query score above 0.633
(corresponding to 35% recall for the “analogues test set” during
benchmarking) were considered for all case studies. In addition, an
analogue search on the GNPS platform20 for case studies 1-3 was per-
formed and FBMN for case study 4 was performed. More information
about this can be found in the Supplementary Note 6.

Manual validation
To validate theMS2Querymatches for case study 1-3, metabolites with
MS2 were manually annotated to confidence level 1-3 according to the

Metabolomics Standards Initiative47 by matching fragmentation spec-
tra to reference data from an in-house standards database and online
databases LIPIDMAPS48, HMDB49, andGNPS20. In the case of case study
4, annotations were checked based on a combination of biological
knowledge andmatching ofMS1 mass and retention time to reference
standards. Judgement of the analogue quality was done manually.
Lipids where the lipid type (e.g. PC or SM) was correctly predicted and
the chain lengths were similar, were marked as a good analogue.
Correctly predicted lipids, but wrong lipid types were marked as
analogue. The detailed manual annotations and judgements for all
spectra can be found as an excel file in the SupplementaryData 1 for all
case studies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The models and spectra files used for the case studies can be down-
loaded from the Zenodo database at https://doi.org/10.5281/zenodo.
6124553. For the k-fold cross-validation the raw results, the raw data
and the data splits can be downloaded from the Zenodo database at
https://doi.org/10.5281/zenodo.7427094. Themass spectrometry data
for the case studies were deposited in the MassIVE repository (https://
massive.ucsd.edu/) under accession number MSV000089648 and
MSV000090642 [https://doi.org/10.25345/C52B8VH15]. To validate
the case study results, multiple libraries were used: LIPID MAPS
(https://www.lipidmaps.org/), HMDB (https://hmdb.ca/) and GNPS
(https://gnps.ucsd.edu/). Source data are provided with this paper.

Code availability
MS2Query is available as an easily installable Python library running on
Python 3.7 and 3.8 on Windows, Linux and MacOS. Source code and
installation instructions can be found on Github (https://github.com/
iomega/ms2query). The case study resultswere obtainedusing version
0.3.2 and the k-fold cross-validation results were obtained using ver-
sion 0.6.6. Version 0.6.6 can also be downloaded from Zenodo at
https://doi.org/10.5281/zenodo.769181650.
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