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Integrative proteogenomic characterization
of early esophageal cancer

Lingling Li1,7, Dongxian Jiang 2,7, Qiao Zhang1,7, Hui Liu1,7, Fujiang Xu 3,7,
Chunmei Guo1,7, Zhaoyu Qin 1,7, Haixing Wang2,7, Jinwen Feng 1, Yang Liu 1,
Weijie Chen2, Xue Zhang2, Lin Bai 1, Sha Tian 1, Subei Tan 1, Chen Xu 2,
Qi Song 2, Yalan Liu2, Yunshi Zhong2, Tianyin Chen2, Pinghong Zhou 4 ,
Jian-Yuan Zhao 1,5,6 , Yingyong Hou 2 & Chen Ding 1

Esophageal squamous cell carcinoma (ESCC) is malignant while the carcino-
genesis is still unclear. Here, we perform a comprehensivemulti-omics analysis
of 786 trace-tumor-samples from 154 ESCC patients, covering 9 histopatho-
logical stages and 3 phases. Proteogenomics elucidates cancer-driving waves
in ESCC progression, and reveals the molecular characterization of alcohol
drinking habit associated signatures. We discover chromosome 3q gain func-
tions in the transmit from nontumor to intraepithelial neoplasia phases, and
find TP53 mutation enhances DNA replication in intraepithelial neoplasia
phase. The mutations of AKAP9 and MCAF1 upregulate glycolysis and Wnt
signaling, respectively, in advanced-stage ESCC phase. Sixmajor tracks related
to different clinical features during ESCC progression are identified, which is
validated by an independent cohort with another 256 samples. Hyperpho-
sphorylated phosphoglycerate kinase 1 (PGK1, S203) is considered as a drug
target in ESCCprogression. This study provides insight into the understanding
of ESCC molecular mechanism and the development of therapeutic targets.

Esophageal cancer (EC) is a malignant gastrointestinal carcinoma,
ranking the seventh most common cancer and the sixth leading
cause of cancer-related death worldwide1. Esophageal adenocarci-
noma (EAC) and esophageal squamous cell carcinoma (ESCC) are
the two major histologic subtypes of EC, of which EAC is more
prevalent in western countries2, whereas ESCC predominantly
occurs in East Asia, particularly in China and Japan3, indicating the
diverse lifestyle of the countries as a major etiological factor of EC.
The other etiological factors of EC include gender, age4, and the
habits of drinking/smoking5. However, the molecular signatures,

which are associated with the risk factors in EC progression, are still
unknown.

Generally, the carcinogenesis of tumor development hall long-
drawn-out process, and genome data act as a “fossil” record of how a
tumor came to be. Several large-scale ESCC cohorts, including The
Cancer Genome Atlas (TCGA)6, presented genomic aberrations and
identified highly mutated genes (e.g., TP53) in the advanced stages of
ESCC. However, the first occurrences of the mutations/key events and
the related effects during the carcinogenesis of ESCC are poorly
understood. Liu et al. showed that earlier and advanced stages of ESCC
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shared several significantly mutated genes7. Thus, the mutations were
cumulative in ESCC progression, and the key mutation/events which
were found in the advanced stages might exist in the earlier stages,
whereas there is still a lack of proteogenomic landscape in ESCC pro-
gression. In addition, the molecular mechanism of the diversity and
tumor heterogeneity of ESCC is poorly understood, imposing a chal-
lenge for developing ESCC therapeutic strategies.

Histologically, the esophageal wall includes the epithelium, lamina
propria, muscularis mucosa, submucosa, muscularis externa, and
adventitia8. The depth of infiltration of the cancer cells, determining the
stage of lesions, wasmeasured at the deepest point of their penetration
in corresponding layers9. Surgery is the predominant curative treat-
ment strategy in advanced stages where the cells invade muscularis
externa (T2–T4 stages), with poor quality of life (QOL) and a low 5-year
survival rate (<30%)10. Though the recent advances in endoscopic sub-
mucosal dissection (ESD)11 have achieved the early detection of ESCC
patients (T1 stage) with higher QOL and significantly improved overall
survival rate (>90%)12, the complexity of the early ESCCprogression and
the extreme trace amount of tissue samples in different stages have
limited in portraying the multi-omics molecular landscape of ESCC.

In this study, weperform a comprehensivemulti-omics analysis of
786 trace-tumor samples from 154 ESCC patients. The integrative
multi-omics dataset reveals the stage-specific and risk factor-
associated molecular characterization, and defines the cancer-driving
waves along with the mutation accumulation in EC progression. Pro-
teogenomics uncovers key events in the transit of the phases and the
trajectory analysis shows 6 major tracks and their molecular char-
acteristics during the carcinogenesis of ESCC.

Results
Overview of proteogenomic landscape in ESCC progression
We performed multi-omics-based profiling of trace 786 samples
collected from 154 ESCC patients who had not experienced prior
chemotherapy or radiotherapy. The clinicopathological char-
acteristics of patients and tumors are summarized in Supple-
mentary Table 1. Subsequently, 22 substages during ESCC
progression from healthy esophageal tissue to tumor develop-
ment were established for these samples following WHO and
Japanese pathology diagnostic criteria13. The number of substages
identified from the ESCC patients varied from 4 to 16, and the
tissue samples from the corresponding substages were separately
dissected from the formalin-fixed, paraffin-embedded (FFPE)
slides (Supplementary Fig. 1a). All ESCC samples in our cohort
were dissected 3mm thick and stood up one by one in the
embedding, and were then marked in the hematoxylin and eosin
(H&E)-stained sections (Supplementary Fig. 1c, d). In total,
786 samples were collected and classified into 9 histopathological
stages covering 22 substages in our cohort (Supplementary
Table 2), including stage 1 (normal tissue stage), stage 2 (hyper-
plasia stage), stage 3 (Tis stage), stage 4 (lamina propria cancer
stage), stage 5 (muscularis mucosa stage), stage 6 (submucosal
invasion cancer stage a), stage 7 (submucosal invasion cancer
stage b), stage 8 (T2 stage), and stage 9 (T3 stage) (Fig. 1a and
Supplementary Data 1a; Methods). The normal (stage 1)/tumor
cell purity of all samples was over 95%, indicating the high quality
of all samples of our cohort (Supplementary Fig. 1e). In addition,
we collected another 256 samples as an independent validation
cohort from 49 early-stage ESCC patients, covering 6 of 9 histo-
pathological stages as stages 1, 2, 3, 4, 5, and 7 (Fig. 1a and Sup-
plementary Table 3; Methods). That represented the advantages
of our samples in a pathological region-resolved mode, providing
the chance to portray molecular profiles of ESCC in a time-
resolved mode. Subsequently, we performed mass spectrometry
(MS) profiling of all 786 samples, phosphoproteomic profiling of
145 samples (Supplementary Table 4 and Supplementary Data 1b),

and whole-exome sequencing (WES) of 102 samples in the main
cohort (Fig. 1a, Supplementary Figs. 1b and 2a, and Supplemen-
tary Data 1c, d; Methods). To demonstrate the findings and results
in the main cohort, we also performed proteomic profiling of
256 samples in the validation cohort.

WES profiling identified 9547 mutations in the Fudan cohort (this
study) (Supplementary Data 2a). The top mutations were TP53,MUC16,
FAT3, SYNE1, AKAP9, FAT4, etc. (Fig. 1b). TP53, frequently mutated in
EC14, was the top-ranked mutation in the Fudan cohort, and was co-
occurrencewith themutation ofKMT2D (Supplementary Fig. 2b). In our
study, we observed that the number of mutations gradually cumulated
during ESCC carcinogenesis, ranging from422mutations in hyperplasia
stage to 5280mutations in the T3 stage. Neo-mutations were indicated
as those just appearing at a certain stage (Methods). In our cohort, we
found that the number of the neo-mutations peaked at the Tis stage
(n = 1330), and the T2 (n = 3003), indicating the significant events dur-
ing carcinogenesis (Fig. 1c). Thus, ninepathological stages of our cohort
were grouped into three phases (NT, IEN, and A-ESCC) (Fig. 1c), which
allowed us to explore the keymutational events and the corresponding
impacts in ESCC progression. Observation of mutation loads of the
Fudan cohort and other ESCC cohorts (TCGA cohort15, Lin’s cohort16,
and Song’s cohort17) showed the lowest mutation loads in the NT phase
in the Fudan cohort (Fig. 1d). Liu et al. reported fewer mutations were
detected in the esophageal nondysplastic epithelium (simple
hyperplasia)7, which was also observed in our cohort that the mutation
loads of the NT phase were lower (Wilcoxon signed-rank test, p <0.05,
A-ESCC vs. NT ratio = 9.36, IEN vs. NT ratio = 2.08) (Supplementary
Fig. 2c), indicating the low mutation burden of our cohort was due to
the lowmutation loads of the early-stages of ESCC.Collectively,webuilt
a comprehensive genomic landscape in ESCC progression, and pre-
sented the difference between the early and advanced stages of ESCC.

At the protein and phosphoprotein levels, proteomic analysis
was performed using a label-free quantification strategy18. Protein
abundance was first calculated by intensity-based absolute quanti-
fication (iBAQ)19 and then normalized as the fraction of total (FOT).
Spearman’s correlation coefficient of HEK293T cells was 0.91, indi-
cating the consistent stability of our MS platform (Supplementary
Fig. 2d and Supplementary Data 3a). The gradually decreased
(Spearman’s) correlation coefficient of the nine histopathological
stages reflected the increased tumor heterogeneity during the car-
cinogenesis of ESCC, highlighting the importance of exploring
molecular characteristics in ESCC progression (Supplementary
Fig. 2e). With the advancement of the stages of ESCC, the numbers of
protein identifications were slightly increased (Kruskal–Wallis test,
p < 2.2E–16) from ~5000 in stage 1 (normal tissue) to ~7000 in stages
8 and 9 (T2 and T3 stages) with a total of 15,071 in 786 samples at 1%
false discovery rate (FDR) (Methods) (Fig. 1e and Supplementary
Fig. 2f). In addition, the reference proteome was highly dynamic
based on the protein abundance, which spanned over eight orders of
magnitude (Supplementary Fig. 2g). In addition, the ESCC bio-
markers identified in previous studies (several ESCC tissues or cell
lines), including ACTA2, TAGLN20, HSPA9, PDIA4, PLEC, POSTN,
PSAP, and THBS121 were also covered in the Fudan cohort (Supple-
mentary Data 3b). At the phosphoprotein level, a total of 52,856
phosphosites corresponding to 7612 phosphoproteins were identi-
fied in 145 samples (Supplementary Fig. 2h, i and Supplementary
Data 3c). During the process of ESCC carcinogenesis, the number of
phosphosite identifications was slightly increased (Kruskal–Wallis
test, p = 5.2E–3) (Fig. 1f). In the validation cohort, label-free quanti-
fication measurement of 256 samples resulted in a total of 12,383
protein groups with a 1% FDR at the protein and peptide levels
(Supplementary Fig. 2j). Consistent with the findings in the main
cohort, with the advancement of the stages of ESCC, slightly ele-
vated protein identifications were detected in the validation cohort
(Kruskal–Wallis test, p < 1.0E–4) (Supplementary Fig. 2k). Compared
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to the NT phase, more protein identifications were identified in the
IEN phase both in the main cohort and validation cohort (Wilcoxon
rank-signed test, p < 1.0E–4) (Supplementary Fig. 2l). Overall, we
established a comprehensive landscape of ESCC progression at the
multi-omics level.

The SBS16 signature, associated with alcohol drinking, pro-
moted DNA replication in the IEN phase
Except diverse lifestyle of the countries2,3, alcohol drinking is one of
the key risk factors of ESCC22. Moody et al. pointed that SBS16 is the
significant signature associated with alcohol drinking22, whereas the
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impacts of SBS16 signature on the molecular level in the ESCC pro-
gression have not been revealed. Furthermore, SBS16 signature shows
a negative association with the overall survival of ESCC patients
(referred from TCGA cohort, log-rank test, p =0.049) (Supplementary
Fig. 3a). These findings allowed us to explore the impacts of SBS16 in
ESCC patients with drinking habit at the molecular level.

Of note, gene ontology (GO) analysis revealed that DNA replica-
tion was enriched in the ESCC patients with SBS16 signature (Supple-
mentary Fig. 3b). Among the mutations, significantly related to
SBS16 signature, we found that OLFM4 mutation upregulated its cor-
responding protein expression (Wilcoxon signed-rank test, OLFM4
Mut vs. WT ratio = 4.6, FDR = 3.4E–5) (Fig. 2a, b). Generally, OLFM4
promotes S-phase transition in cancer cell proliferation23. In our
cohort, OLFM4-positive-associated proteins were involved in cell
proliferation, including DNA replication, cell division, etc. (Fig. 2c, d).
Moreover, OLFM4 displayed a positive association with CDK1 and
CDK2 at the protein level (Pearson’s R =0.44 for CDK1 and 0.54 for
CDK2, p =0.013 for CDK1 and 2.5E–3 for CDK2) (Supplementary
Fig. 3c), which is a key regulator in the transition fromS-phase to G2/M
phase in cell cycle24. The mutation of OLFM4 showed positive impacts
on the protein levels of cell proliferation-related markers, such as
CDK2, MCM3/5/6, etc. (Fig. 2d). Besides, over-phosphorylation of DNA
replication-related proteins was also detected during the carcinogen-
esis of ESCC (Kruskal–Wallis test, FDR <0.05, A-ESCC and IEN vs. NT
ratio ≥ 2) (Fig. 2e). To further validate the findings in our cohort, we
analyzed the impacts of OLFM4 in other ESCC cohorts, such as the Li’s
cohort25 and the Liu’s cohort26, and found that OLFM4 displayed
positive association with DNA replication-related proteins at the pro-
tein level in these cohorts (Fig. 2d and Supplementary Fig. 3d). Taken
together, SBS16 signaturewas a key event in the transition from theNT
phase to the IENphase for ESCCpatientswith a drinkinghabit, inwhich
OLFM4mutation showed positive impacts on DNA replication (Fig. 2j).

The APOBEC signature was overrepresented in the non-smok-
ing/drinking ESCC patients
To explore the specific etiological factors that might contribute to the
mutagenesis of ESCC, we adopted a non-negative matrix factorization
(NMF) algorithm27 to extract mutational signatures from the WES data
of the Fudan cohort andother ESCCcohorts, suchasMoody’s cohort22,
TCGA cohort15, Lin’s cohort16, and Song’s cohort17. In our cohort, DNA
repair signaturewas detected as early as in theNTphases and lasted till
the A-ESCC phase (Fisher’s exact test, p = 2.8E–3, 41.7%, 31.8%, 70.6%
for NT/IEN/A-ESCC phases, respectively) (Supplementary Fig. 3e, f),
indicating DNA damage is one of the causes leading to esophageal
carcinogenesis. In addition, we found APOBEC signature was promi-
nent in ESCC progression and was specially detected as early as in the
IEN phase (Fisher’s exact test, p = 0.012, 66.7%) (Fig. 2f and Supple-
mentary Fig. 3g). Similarly, we confirmed that APOBEC signature was
detected in the earlier stage of ESCC (Fisher’s exact test, p =0.029,
50%) in the TCGA cohort28 (Supplementary Fig. 3h).

Integration of the findings in the Moody’s cohort22, we found
APOBEC signature was prominent in the non-smoking/drinking ESCC
patients (Fisher’s exact test, p = 8.4E–3, 42.5%), in which higher
enrichment score was detected (Wilcoxon signed-rank test,
FDR = 5.1E–4, non-smoking/drinking vs. smoking vs. drinking ratio =
1.78) (Supplementary Fig. 3i, j). To explore the impacts of APOBEC

signature in the non-smoking/drinking ESCC patients, we integrated
the highly expressed proteins both detected in the APOBEC signature
and ESCC patients with non-smoking/drinking habit, and discovered
these proteins were correlated with cell proliferation process (Fig. 2g).
Somatic mutations analysis revealed that the mutations of CENPE,
EPS8, and DCTN2, were positive associated with APOBEC signature
(Fisher’s exact test, p <0.05) (Fig. 2f). We further investigated the
impacts of these three mutations, and found DCTN2 mutation upre-
gulated its corresponding protein expression (Wilcoxon signed-rank
test, FDR =0.040, Mut vs. WT ratio = 2.0) at the protein level (Sup-
plementary Fig. 3k). In addition, only the protein level of DCTN2 was
significantly overrepresented in the APOBEC signature group (Wil-
coxon signed-rank test, FDR = 5.1E–5) (Supplementary Fig. 3k). These
findings indicated the potential effects of DCTN2 mutation in the
patients with APOBEC signature.

DCTN2, a subunit of dynactin, binds to both microtubules and
cytoplasmic dynein, and is involved in a diverse array of cellular
functions, including spindle formation, chromosome movement,
nuclear positioning, etc.29. Among the dynein families, we found that
DYNLRB1 exhibited a positive correlation with DCTN2 (Pearson’s
R = 0.30, p = 4.3E–3) at the protein level (Supplementary Fig. 3l).
Dynein families share a conserved motor domain coupled cycles of
ATP hydrolysis with conformational changes to produce movement30.
To determine the activation and movement of dynein in mitosis, we
integrated DCTN2 positively correlated proteins, and found
RUVBL1 showed a significant correlation with DCTN2 (Pearson’s
R = 0.54, p = 4.3E–8) at the protein level (Fig. 2h). Generally, RUVBL1
exhibits DNA- andnucleosome- activatedATPase activity and catalyzes
ATP-dependent nucleosome sliding in mitosis31,32. In our cohort, we
found DCTN2 mutation had positive impacts on the protein level of
chromosomal/spindle components, evidenced by the markers
including SMC2, SMC3, etc. (Fig. 2i). Aswell as RUVBL1, DCTN2 showed
a significantly positive correlation with chromosomal/spindle com-
ponents and markers of tumor cell proliferation (e.g., TOP2A, MKI67,
etc.)33 (Fig. 2i). These findings indicated the activation of microtubule
and spindle in G2/M in the mitosis. Taken together, the links of the
findings in our cohort and the Moody’s cohort revealed that APOBEC
signature was prominent in the ESCC patients with non-smoking/
drinking habit, in whichDCTN2mutation upregulated the protein level
of DCTN2, elevating mitosis and cell proliferation (Fig. 2j).

Thegain of chromosome3qwas a key event in the transmit from
the NT phase to the IEN phase
Toexplore the impacts of key armevents,weperformedwhole exome-
based somatic copy number alterations (SCNAs) analyses based on
WES data and examined the regulatory effects of 23,109 SCNAs on
protein expressions of 102 samples in ESCC progression (Supple-
mentaryData 3d). The integrated genomic data of all phases illustrated
that the gain of chromosomes 3q (chr3q), which was also observed in
the TCGA ESCC cohort, was the top-ranked arm event, which was
prominent in the IEN phase (Fisher’s exact test, p = 2.9E–3, 45.5%)
(Fig. 3a and Supplementary Fig. 4a–c). In addition, the individual
regions at the chr3q gain also showed significant association in ESCC
progression, including chr3q26.1 gain, chr3q29 gain, chr3q22.1 gain,
and chr3q12.2 gain (Supplementary Fig. 4d). To explore the biological
functions of chr3q gain, we performed cis-effects analysis of the genes

Fig. 1 | The multi-omics landscape in ESCC progression. a Overview of the
experimental design and the number of samples for the genomic, proteomic, and
phosphoproteomic analyses. ESCC esophageal squamous cell carcinoma. b The
genomic profile of ESCC progression. Top: the mutation number and types of all
the samples from early to progressive ESCC. Bottom: the somatic copy number
alterations of all the samples from early to progressive ESCC. The mutation fre-
quencies are shownby a barplot at the right panel. NT phase: non-tumor phase, IEN
phase: intraepithelial neoplasia phase, A-ESCC phase: advanced-stage ESCC phase.

c The gain of neo-mutations at all stages in ESCC progression. d Analysis of the
mutations loads of diverse cohorts. EESCC cohort: early ESCC cohort. e The num-
ber of the identified proteins of 786 samples (Kruskal–Wallis test, p < 2.2E–16).
f Boxplot showing the number of the phosphosites identifications of 145 samples
(Kruskal–Wallis test). Boxplot shows median (central line), upper and lower quar-
tiles (box limits), 1.5× interquartile range (whiskers). ****p < 1.0E–4, ***p < 1.0E–3,
**p <0.01, *p <0.05, ns. > 0.05. Source data are provided as a Source data file.
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withCNA regions at the protein level, and found 20genes at chr3qgain
perturbation profiles had significantly positive cis effects on their
associated proteins (Fig. 3b). Interestingly, nearly 35% genes at chr3q
gain were positively associated with Ca2+ signal.

The Ca2+ signal is identified as a key regulator in processes of
excitable cells (e.g., neurons) and non-excitable cells (including those
of the epithelia)34, where it controls a diverse arrayof processes such as
secretion, proliferation35, and promotes cancer cell survival36. In our
cohort, all the amplifications of genes in the Ca2+ signal were detected
in the IEN phase (Fig. 3c), suggesting the gain of chr3q event was

detected as early as in the ESCC early stage. In addition, we found the
amplifications of those genes also had significantly positive effects on
other parallel proteins in theCa2+ signal at the protein level, such as the
amplification ofGMPSwas positively associated with the protein levels
of GFM1, OPA1, etc. (Fig. 3c). To assess the effects of these amplified
genes, we annotated outliers for the degree of which CRISPR- or short
hairpin RNA (RNAi)-mediated depletion reduced ESCC cell lines37. As a
result, we found the deletion of three genes (GMPS, GFM1, and OPA1)
had negative effects on the proliferation of ESCC cell lines (Fig. 3d and
Supplementary Data 4a, b). In addition, the three genes (GMPS, GFM1,
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and OPA1) exhibited a positive correlation with PCNA and MKI67,
makers of tumor cell proliferation33 (Fig. 3d).

Furthermore, we found that the other important genes at chr3q
(e.g., TP63/PIK3CA/SOX2) were also prominent in the IEN phase (Fish-
er’s exact test, p <0.05, 59.1%, 70.9%, 59.1% for TP63/PIK3CA/SOX2
respectively) (Supplementary Fig. 4e). Specifically, the amplifications
of TP63 at chr3q28 showed positive impacts on DNA replication
(Supplementary Fig. 4f, g), further indicating the functions of chr3q
gain in the transmit process from the NT phase to the IEN phase, and
implying the impacts of TP63 amplification onDNA replication in ESCC
progression. Taken together, the chr3q gain was a driven event in the
transmit process from the NT phase to the IEN phase, leading to the
activation of Ca2+ signal and cell proliferation in the IEN phase (Fig. 3e).

The impacts of genomic aberrations in ESCC progression
Notably, TP53, highly mutated in ESCC7, was the top-ranked mutation
in ESCC progression, and was prominent in the younger male ESCC
patients (Fisher’s exact test, p =0.044, 65.8%) in our cohort (Supple-
mentary Fig. 4h). To explore the impacts of TP53 mutation in ESCC
progression, we incorporated the alterations of significantly upregu-
lated proteins (SUPs, Wilcoxon rank-signed test, FDR <0.05) (Supple-
mentary Fig. 4i). As well as in the TCGA cohort15, the GO enrichment
disclosed that those overlapped SUPs were related to DNA replication
and cell cycle (e.g., MCM3/4/5/6, CCNK, PPP1R8, etc.), and ECM sig-
naling (e.g., ITGA2/3/5, LAMA3/5, etc.), which was also over-
represented in the tumor tissues compared to the paired non-
cancerous adjacent tissues (NATs) in the Liu’s cohort26 (Supplemen-
tary Fig. 4j, k). Corresponding to the stages in ESCC progression, TP53
mutation displayed positive impacts on DNA replication/cell cycle in
the IEN phase, and ECM signaling in the A-ESCC phase (Supplemen-
tary Fig. 4l).

Among the top ten mutations in ESCC progression, the mutation-
protein correlation analysis revealed thatMACF1mutationupregulated
its counterpart protein level (t-test, FDR = 5.5E–5) (Fig. 3f and Supple-
mentary Fig. 4m). In addition, gradually increased expression of
MACF1 was detected (Kruskal–Wallis test, FDR = 6.3E–9, A-ESCC vs. NT
ratio = 1.5E + 3) at the protein level in ESCC progression (Supplemen-
tary Fig. 4n).

Generally, MACF1 is a multidomain protein that associates with
microfilaments and microtubules, and binds to a complex (e.g.,
CTNND1, GSK3B, etc.) in Wnt signaling38. In our study, significant
correlations were found between MACF1 and GSK3A (Pearson’s
R = 0.46, p = 3.0E–4), and MACF1 and GSK3B (Pearson’s R =0.28,
p =0.027) at the protein level (Fig. 3g and Supplementary Fig. 4o). In
addition, consistent results were found in TCGA cohort15 at the RNA
level (Supplementary Fig. 4p), inferring the mutation ofMACF1 would
activate Wnt signaling. To investigate the impacts, we integrated the

MACF1 positively associated proteins in our cohort and TCGA cohort,
and found that those proteins participated in Wnt signaling (Fig. 3h).
Of note, the incorporation of the proteins in Wnt signaling affected by
MACF1 mutation, were highly expressed in the A-ESCC phase
(Kruskal–Wallis test, FDR <0.05, A-ESCC vs. NT ratio ≥ 2), such as
GSK3A, GSK3B, CSNK1A, CSNK2B,DVL3, etc. (Fig. 3i). Furthermore, the
CRISPR-mediated depletion of the genes (e.g., CSNK2B, CSNK1A, etc.)
reduced the proliferation of ESCC cell lines (Fig. 3i). At the phospho-
protein level, the overrepresented phosphorylation of CTNNB1 (T551,
S191) and CTNND1 (S346, Y865), were observed in the A-ESCC phase
(Kruskal–Wallis test, FDR <0.05, A-ESCC vs. NT ratio ≥ 2) (Supple-
mentary Fig. 4q). Therefore, the mutation of MACF1 upregulated the
protein level of MACF1, which bound to the Wnt complex and acti-
vated Wnt signaling in the A-ESCC phase (Fig. 3j). Collectively, we
uncovered that TP53 mutation observed in the whole ESCC stages
exhibited diverse impacts during ESCC carcinogenesis, and MACF1
mutation had roles in promoting ESCC progression in the
A-ESCC phase.

Proteomic characterization of three phases in ESCC progression
During the carcinogenesis of ESCC, three phases covered the NT
phase, the IEN phase, and the A-ESCC phase. Specifically, the NT phase
contained stage 1 and stage 2, the IEN phase covered stage 3 last till to
stage 7, and the A-ESCC phase included the advanced stages T2 and T3
(Supplementary Fig. 5a). To explore the characteristics of the three
phases of ESCC, we analyzed the TMB and differentially expressed
proteins (DEPs) of the three phases. As a result, the comparative ana-
lysis revealed that the NT phase, with the lowest TMB, was featured by
metabolic process (e.g., KLK12/13, ALOX12, etc.) and inflammatory
response (e.g., IL36A, SERPINB1, etc.) (Supplementary Figs. 2c and 5c).
DNA repair signature was detected in the IEN phase, indicating DNA
damage was initiated. To react to the external damage, the proteins
involved in the inflammatory response (e.g., IL36A, SERPINB1, etc.)
were highly expressed in the NT phase. As shown in Figs. 2 and 3, the
IENphase of ESCChadhigher TMBcompared to theNTphase, andwas
featured with the chr3q gain. The IEN overrepresented proteins par-
ticipated in the oncogenic-related pathways, such as cell cycle (e.g.,
CDK1/2, RB1, etc.), DNA repair (e.g., LIG1, PARP1, etc.), EGFR signaling
pathway (e.g., EGFR, SOS1, etc.), and so on. Comparatively, the A-ESCC
phase of ESCC, with the highest TMB, was characterized by the
dominant pathways of Wnt signaling (e.g., WNT2B, GSK3A, etc.) and
glycolysis (e.g., PGK1, ENO3, etc.).

To further demonstrate the findings, we analyzed the DEPs
(Wilcoxon rank-signed test, FDR < 0.05, IEN vs. NT ratio ≥ 2 or ≤ 0.5)
of the phases in the main cohort (n = 786) and the validation cohort
(n = 256), and found consistent findings of the characterizations of
the phases both in the main cohort and validation cohort.

Fig. 2 | The risk factor-associated mutational signatures in ESCC progression.
a Heatmap showing the significantly positive associated mutations in
SBS16 signature (two-sided Fisher’s exact test). ***p = 1.4E–4 (BCKDK), **p = 2.7E–3
(CEP104), ***p = 1.4E–4 (LRRC31), ***p = 4.5E–4 (OLFM4), ***p = 1.5E–3 (DSC3),
***p = 1.5E–3 (PGC). The square directs to a subset of patient samples used forWES.
b Volcano analysis of the impacts of significantly positive associated mutations in
SBS16 signature on their counterpart proteins expression (two-sided Wilcoxon
signed-rank test). cRepresentedpathwayenrichment thatwaspositively correlated
with OLFM4. d Heatmap showing the protein levels of DNA replication in OLFM4
mutation group vs. WT group (two-sided Wilcoxon signed-rank test, BH-adjusted
*p <0.05). e The expression (log2-transformed Intensity, median) of represented
DNA replication-related phosphoprotein in ESCC progression (Kruskal–Wallis test,
BH-adjusted *p <0.05). A total of 145 samples for phosphoproteomic profiling are
used in this analysis. n (NT) = 57, n (IEN) = 62, n (A-ESCC) = 26 biologically inde-
pendent samples examined. f The correlation between etiological factors (top) and
the significantly associated mutations of APOBEC signature (bottom) (two-sided
Fisher’s exact test). *p =0.012 (Phase), **p = 4.2E–3 (Habit), **p = 4.6E–3 (DCTN2),

**p = 4.6E–3 (EPS8), **p = 4.6E–3 (CENPE). g Venn diagram depicting the number of
the overlapped proteins overrepresented in the APOBEC signature and non-
smoking/drinking ESCC patients (left, two-sided Wilcoxon signed-rank test, BH-
adjusted *p <0.05), and the associated signaling pathways (right).hVenn plot (left)
showing the overlapped proteins significantly correlated with DCTN2 at the gene
and protein levels (two-sided Wilcoxon signed-rank test, BH-adjusted *p <0.05).
Volcano plot (right) depicting the correlation between DCTN2 and the overlapped
proteins (n = 86, two-sided Pearson’s correlation test). i Heatmap (left) presenting
the represented chromosomal/spindle components and cell proliferation markers
overrepresented in the DCTN2 mutation group (two-sided Wilcoxon signed-rank
test), and correlation (right) between DCTN2/RUVBL1 and represented chromo-
somal/spindle components and cell proliferation markers (two-sided Pearson’s
correlation test). j A brief summary of the impacts of the SBS16 signature (top) and
APOBEC signature (bottom) in ESCC progression. A total of 102 samples for WES
are used in the analysis. ****p < 1.0E–4, ***p < 1.0E–3, **p <0.01, *p <0.05, ns. > 0.05.
Source data are provided as a Source data file.
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Specifically, the primary functions of esophagus were dominant in
the NT phase, such as metabolic processes including keratinization
(e.g., KLK12/13, CSTA, etc.), lipid and amino acid metabolism (e.g.,
CYP4F22, ALOX12, etc.) (Supplementary Fig. 5b–d). In addition, the
overrepresented proteins in the IEN phase participated in the
oncogenic-related pathways, such as cell cycle (e.g., CDK1/2, RB1,

etc.), DNA repair (e.g., LIG1, PARP1, etc.), EGFR signaling pathway
(e.g., EGFR, SOS1, etc.), etc. (Supplementary Fig. 5b–d). These con-
sistent findings in the main cohort and validation cohort indicated
the benign of the NT phase, and the relative malignancy of the IEN
phase, highlighting the importance of investigating the key mole-
cular events during the carcinogenesis of esophagus.
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Fig. 3 | Integrative omics analyses of early ESCC samples. a The significant arm
events of 102 samples in ESCCprogression. The gain and loss events are highlighted
in red and blue, respectively. b Volcano plot showing the cis- correlation of the
SCNA (x-axis) and the associated –log10 (p value) (y-axis) on the genes at chr3q gain
(two-sided Spearman’s correlation test). c The cis SCNA-protein regulations of
significantly correlated genes (top) on their corresponding proteins expression
(bottom) (two-sided Spearman’s correlation test, p <0.05). d Dependency map-
supported (https://depmap.org) panels showing relative survival averaged across
all available ESCC cell lines after depletion of the indicated genes by RNAi or
CRISPR. The right shows Pearson’s correlation and p value of these genes with
PCNAandMKI67 at the protein level (two-sided Pearson’s correlation test).eAbrief
summary of the impacts of chr3q gain. f Volcano plot showing the impacts of the
top ten mutations of ESCC progression on proteins expression (log2-transformed

Intensity) (x-axis) and the associated –log10 (FDR) (y-axis) (two-sided Student’s t-
test). g Scatterplot showing the relationship between log10 GSK3A and log10MACF1
expression at the protein level in the Fudan cohort (two-sided Pearson’s correlation
test,mean± SD).hRepresentedpathwayenrichmentofproteins thatwaspositively
correlated with MACF1 in the Fudan cohort (top) and the TCGA ESCC cohort
(bottom). Biological pathways are analyzed from the GO/KEGG database.
iHeatmap showing the impacts of themutation ofMACF1 on the expression ofWnt
signaling-related proteins in ESCC progression (Kruskal–Wallis test, BH-adjusted
*p <0.05). The square directs to a subset of patient samples used forWES (n = 102).
j A brief summary of the impacts of the mutation of MACF1. ****p < 1.0E–4,
***p < 1.0E–3, **p <0.01, *p <0.05, ns. > 0.05. Source data are provided as a Source
data file.
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A carcinogenesis path with eight dynamic waves in ESCC
progression
The proteogenomics on three phases indicated a temporal correla-
tion between genomic aberrations and proteomic alterations in
ESCC progression. To further portraymolecular profiles of ESCC in a
time-resolved mode, we split the whole ESCC progression into
22 substages. Visualization of the abundance of the E2 proteins
(n = 6885; Methods) by principal component analysis (PCA) (Meth-
ods) differentiated the proteome profiles for the 22 substages,
which clearly discriminated the proteomes of the early and the
advanced ESCC stages. In addition, PCA of early ESCCs displayed
obvious diversity among the substages along with ESCC progression
(Fig. 4a). These results further showed the distinct profiles of the
substages in ESCC progression.

To investigate specific characteristics of the substages in ESCC
progression, we performed the substage-based supervised clustering
analysis (Methods) with substage highly expressed proteins
(Kruskal–Wallis test, FDR <0.05, certain substage vs. other substages
ratio ≥ 2) (Fig. 4b). Based on the enrichment analysis of the substages
highly expressed proteins showing that themolecular characterization
of the substages in ESCC progression was associated with the lesion
invasion layers, and could be grouped into eight models (1–2_1/
2_2–3_1/3_2/3_3/3_4/3_5–4_1/4_2/4_3/–5_1/5_2/5_3–6_1/6_2/6_3–7_1/7_2/
7_3–8/9) (Supplementary Fig. 5g). Thus, we speculated that the carci-
nogenesis path in ESCC progression could be linked to those eight
models.

To further demonstrate the speculation, we performed co-
expression analysis of the substage highly expressed proteins and
identified eight protein patterns, which were consistent with the
results in those eight models correlated to the lesion invasion layers
(Supplementary Fig. 5h, k). In addition, the consistent findings of the
enrichment pathways were also detected in eight models based on
substages and eight protein patterns based on the results of co-
expression analysis. Therefore, eight panels were identified on the
basis of the histopathological stages in a time-resolved mode (Fig. 4b
and Supplementary Fig. 5h). Specifically, in the (sub)stage 1 (normal
tissue), the primary metabolic machinery was dominant, such as lipid
metabolism (e.g., HMGCS1, ALOX15B, etc.), pyruvatemetabolism (e.g.,
CYP4F12, ACOX3, etc.), and amino acid metabolism (e.g., ANXA1,
CTSB, etc.). In stage 2 (hyperplasia stage), the expression of proteins,
including PPP2R5A, SERPINB3, and CSTA, involved in the immune
response to external damage, were overrepresented. Enhancement of
ERBB signaling and NOTCH signaling, and the related proteins (e.g.,
EGFR, GRB7, etc.) were detected in stage 3 (Tis stage). In stage 4
(lamina propria stage), insulin signaling and IGF signaling-related
proteins were overrepresented (e.g., SOD1/2, PPP3CC, etc.). Cell cycle/
TLR signaling (e.g., MCM2/3, TLR8, etc.) and DNA repair/mTOR sig-
naling (e.g., MSH3,MTOR, etc.) were the dominant pathways in stage 5
(muscularis mucosa stage), and the stage 6 (sm a stage), respectively.
In stage 7 (sm b stage), PI3K-AKT signaling and EMT signaling (e.g.,
AKT2/3, COL2A1, etc.) were dominant, of which EMT signaling is
involved in tumor-initiation and motility39. Glycolysis and Wnt signal-
ing (e.g., PGK1,WNT2B/7B, etc.) relatedproteinswereoverrepresented
in stages 8 (T2 stage) and 9 (T3 stage). PGK1, an important glycolytic
enzyme, though not mutated at the gene level, was highly increased at
the protein level, especially in the T2 and T3 stages of ESCC, which
provided further evidence for the crucial role of glycolysis, and sug-
gested the potential function of PGK1 in ESCC progression.

In the validation cohort, 256 samples covered 6 of 9 histopatho-
logical stages, in which stages 6 (submucosal invasion cancer stage a),
8 (T2), and 9 (T3), were not included. Substage-based supervised
clustering analysis identified six proteomic patterns (V1–V6), covering
six of eight patterns in the main cohort (Supplementary Fig. 5i). In
addition, the stages in theproteomicpanelswere consistentwith those
in the main cohort.

To further demonstrate the result at the molecular level, we
analyzed the DEPs of the stages (Kruskal–Wallis test, FDR <0.05), and
found that the molecular characterizations of the six patterns in the
validation cohort were consistent with those in the main cohort
(Supplementary Fig. 5j). Specifically, the V1 (stage 1, normal tissues)
proteins were associated with lipid and protein metabolism (e.g.,
ACOX1, ALOX12, etc.) (Supplementary Fig. 5j, k). In the V2 (stage 2,
hyperplasia stage), inflammatory response (e.g., COL6A5, SERPINB3,
etc.) wasdominant.NOTCHsignaling (e.g., ADAM10, CREBBP, etc.) and
insulin signaling (e.g., IRS2, PPP1CA, etc.) were the dominant pathways
in the V3 (stage 3, Tis stage) and V4 (stage 4, lamina propria stage),
respectively. At the muscularis mucosa stage (stage 5, V5), cell cycle
and TLR signaling (e.g., MCM2, TLR2, etc.) were dominant. The V6
(stage 7, submucosal invasion cancer stage b) proteins participated in
EMT signaling and PI3K-AKT-mTOR signaling (e.g., MMP1/2, PIK3CB,
etc.) were consistent with the molecular features of the submucosal
invasion cancer stage in the main cohort. Therefore, the molecular
characterizations of the proteomic patterns in the validation cohort
were consistent with those in themain cohort (Supplementary Fig. 5k).

At the gene level, we observed the stage-associated mutations
including PCDHB16 (Fisher’s exact test, p =0.038), BOC (Fisher’s exact
test, p =0.038), SYNE2 (Fisher’s exact test, p =0.048), BCL9L (Fisher’s
exact test, p =0.048), STAG2 (Fisher’s exact test, p =0.048), which
were detected in stage 6 and last till to the stage 9 (Fig. 4c). In addition,
the mutations of PCDHB16, BOC, and STAG2 were co-occurrent with
AKAP9 mutation, which exhibited positive impacts on glycolysis. The
recurrent co-occurrence of genomic events helps to dissect the
genomic complexity underlying tumor progression40, thus enabling us
to explore the functional impacts of the co-occurrence mutations in
ESCC progression. Furthermore, the multi-dimensional omics data
provided an excellent chance to explore the relationships between the
genome and the proteome in the time-resolved ESCC progression. We
thus performed enrichment pathway analysis using theDEPs (n = 608),
which were the overlapped between the differentially upregulated
proteins (n = 1748, Mut vs. WT ratio ≥ 2) and highly expressed phos-
phoproteins (n = 2818, submucosa stage to T3 stage) (Fig. 4d). The
results showed that those proteins participated in DNA repair, cell
proliferation, and glycolysis (Fig. 4e). Specifically, DNA repair (e.g.,
LIG1 S66, PARP1 T361, etc.) and glycolysis (e.g., GPI Y564, PGAM1 S118,
etc.) related proteins were overrepresented in the submucosa stages
(stages 6 and 7) and in the advanced stages (stages 8 and 9) of ESCC,
respectively, at the protein and phosphoprotein levels (Kruskal–Wallis
test, FDR <0.05, certain stage vs. other stages ratio ≥ 2) (Fig. 4f, g).

To explore the kinase-substrate interactions in ESCC progression,
we integrated the overrepresented kinases in the co-occurrence
mutations group, and performed the kinase-substrate analysis based
on phosphoprotein data. As a result, we found the kinases-substrate
regulation was notably consistent with the dynamic waves in ESCC
progression. Specifically, the stage 6 overrepresented kinases (e.g.,
PRKCD, SRC, CDK7) (Kruskal–Wallis test, FDR <0.05, stage 6 vs. other
stages ratio ≥ 2), showed positive regulation with the DNA repair-
related phosphoproteins, such as BCLAF1 S161, EP300 T885, POLR2A
T1898, etc. The T2 and T3 stages overrepresented kinases (e.g., PAK1,
AKT1, CDK1) (Kruskal–Wallis test, FDR <0.05, T2 and T3 stages vs.
other stages ratio ≥ 2), displayed positive regulation on glycolysis
related phosphoproteins, evidenced by the overrepresented phos-
phorylation of PGAM1 S14 and S118, PFKFB3 S22, LDHA T95, etc.
(Fig. 4g). These results suggested the potential therapy of kinase
inhibitor (e.g., XMD11-85h, Dasatinib, CGP-60474/Seliciclib, etc.) in
ESCC progression.

Taken together, a carcinogenesis path with eight dynamic waves
in ESCC progression was revealed on the basis of the consistency
among the genomic aberrations, proteomic alterations, and phos-
phoproteomic actions: metabolism (e.g., ANXA1 and CTSB) – DNA
damage (e.g., PPP2R5A and SERPINB3) – cell proliferation (e.g., EGFR
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and EGF) – lesion invasion (e.g., GRB2 and PRKCB) – cell cycle (e.g.,
MCM2/3 and FGFR1OP) – cell differentiation (e.g., MSH3 andMTOR) –
tumor metastasis (e.g., MMP2 and AKT2/3) – esophageal carcinogen-
esis (e.g., PGK1 and CTNNB1) (Supplementary Fig. 5k). Furthermore,
these results also defined the substages-specific molecular character-
istics and uncovered the potential candidates for ESCC malignancy.

Proteome clusters of ESCC progression
Consensus clustering (Methods) identified two major proteomic
clusters which showed association with the classification of the (sub)
stages in ESCC progression: Cluster 1 (C1, n = 314) included the stage 1,
and 2, and Cluster 2 (C2, n = 472) contained the rest of the stages,
including the T2 and T3 stages (Fig. 5a, Supplementary Fig. 6a, and

Fig. 4 | The temporal driver pathway waves in ESCC progression. a Principal
component analysis (PCA) of the Fudan cohort. Left: PCA of all 786 ESCC samples
(including NT phase, IEN phase, and A-ESCC phase); Right: PCA of 746 early ESCC
samples (NT phase and IEN phase). b Heatmap analysis of the dynamic switches
during the carcinogenesis of ESCC (Kruskal–Wallis test). Left: heatmap analysis of
DEPs of the 22 substages in ESCC progression. Right: the driver pathwaywaves of 8
panels in ESCCprogression. cThemutations are significantly associatedwith stages
in ESCC progression (two-sided Fisher’s exact test). The highlighted mutations
(right) are exclusively co-mutations (two-sided Fisher’s exact test). The square
directs to a subset of patient samples used for WES (n = 102). p values of the co-
mutations with AKAP9: ****p = 3.7E–5 (PCDHB16), ****p = 3.7E–5 (BOC), **p = 1.7E–3

(STAG2). d The number of the proteins regulated by the co-mutations and e the
associated biological pathways. f Heatmap showing the impacts of the co-
mutations of PCDHB16, BOC, SYNE2, BCL9L, and STAG2 (top, two-sided Fisher’s
exact test), on the protein level (bottom) in ESCCprogression (Kruskal–Wallis test).
*p =0.038 (PCDHB16), *p =0.038 (BOC), *p =0.048 (SYNE2), *p =0.048 (BCL9L),
*p =0.048 (STAG2). The square directs to a subset of patient samples used forWES
(n = 102). g The kinase-substrate interactions in ESCC progression (Kruskal–Wallis
test). A total of 145 samples for phosphoproteomic profiling are used in this ana-
lysis. *p =0.015 (PRKCD), ***p = 2.4E–4 (SRC), **p = 9.6E–3 (CDK7), ****p = 8.0E–6
(PAK1), ****p = 5.3E–9 (AKT1), ****p = 2.8E–10 (CDK1). ****p < 1.0E–4, ***p < 1.0E–3,
**p <0.01, *p <0.05, ns. > 0.05. Source data are provided as a Source data file.
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Fig. 5 | Proteomic clusters and the impacts of AKAP9 mutation in ESCC pro-
gression. a Consensus clustering analysis of 786 samples (two-sided Fisher’s exact
test). Left: the percentages of the two clusters in 22 substages; Right: 786 samples
were classified into two clusters based on proteomic patterns. *p =0.029 (Age),
****p < 2.2E–16 (Phases), ****p < 2.2E–16 (Substages).bVolcanoanalysis ofDEPs (left)
in the two clusters and their associated biological pathways (right) in the two
clusters (two-sided Student’s t-test). Biological pathways were analyzed from the
Reactome database. C1: the Cluster 1. C2: Cluster 2. c Venn diagram depicting the
number of the genes both detected in the genome and proteome in C2. The right
shows the significant C2 mutations with mutation frequency over 10%. d Heatmap
showing the impacts of AKAP9mutation on the protein level of AKAP9 (two-sided

Student’s t-test, BH-adjusted **p = 8.4E–3). e Scatterplot showing the relationship
between log10 PRKACA and log10 AKAP9 expression at the protein level (two-sided
Pearson’s correlation test, mean ± SD). f GSEA plot (KEGG gene sets) for glycolysis
inAKAP9mutation andWTcomparison.gHeatmapdepicting the impacts ofAKAP9
mutation on glycolysis in ESCC progression (two-sided Student’s t-test, BH-
adjusted *p <0.05). The square directs to a subset of patient samples used forWES
(n = 102). h Scatterplots showing the relationship between log10 G6PD (left)/HK1
(right) and log10GPI expression at theprotein level (two-sidedPearson’s correlation
test, mean± SD). i A brief summary of the impacts of AKAP9 mutation.
****p < 1.0E–4, ***p < 1.0E–3, **p <0.01, *p <0.05, ns. > 0.05. Source data are pro-
vided as a Source data file.
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Supplementary Data 5a). Comparative analysis of the later-stage sam-
ples (especially the IEN phase samples) of C1 and C2 with the clinic
features disclosed that the later samples in the C1 were prominent in
the younger ESCC patients (<50 years old, Fisher’s exact test,
p =0.029, 15.0%) (Supplementary Fig. 6b), indicating the potential
impacts of ages in ESCCprogression. In addition, the two clusters were
associated with 3 phases in ESCC progression, in which the C2 con-
tained themost samples in the IENphase (95.3%) and theA-ESCCphase
(100%), reflectingmore malignancy of the C2 (Supplementary Fig. 6c).
This distinct two-stage separation suggested that the irreversible
fundamental proteome alterations were detected as early as in the Tis
stage (stage 3). Van der Schaaf et al. pointed out that the Tis stage was
associated with worse survival41, further indicating the malignancy of
Tis stage in ESCC progression.

The significance analysis of microarray (SAM)42 analysis (Meth-
ods) was performed to investigate the characteristics of the two clus-
ters at the protein level, which identified 2922DEPs betweenC1 and C2
(t-test, FDR <0.05, C2 vs. C1 ratio ≥ 2 or ≤ 0.5), including 168 and 2754
proteins overrepresented in the C1 and C2, respectively (Supplemen-
tary Fig. 6d and Supplementary Data 5b). The results showed that the
oncogenic pathways-related proteins, including ATM, CDK1, EGFR,
CASP3, VCAN, etc., were significantly overrepresented in the C2. On
the contrary, the overrepresented proteins of the C1, including KLK12,
ACOX3, ALOX15B, and ANXA1, involved in keratinization and inflam-
matory response, were associatedwith the primary biological function
of normal esophagus (Fig. 5b and Supplementary Fig. 6g). To validate
the molecular characterization of two proteomic clusters, we per-
formed PCA of the 256 samples in the validation cohort, which were
also classified into two clusters. Consistent with the findings in the
main cohort, the C1 included stages 1 and 2, and the C2 contained the
rest of the stages in the validation cohort (Supplementary Fig. 6e). In
addition, the proteomic clusters in the validation cohort also showed a
positive association with the phases in ESCC progression, and speci-
fically, the C1 (Fisher’s exact test, p < 1.0E–4, 89.5%) and C2 (Fisher’s
exact test, p < 1.0E–4, 64.4%) consisted most of the samples in the NT
phases and the IEN phase, respectively. Furthermore, based on the
SAM analysis, the C1 proteins in the validation cohort participated in
the primary biological function of normal esophagus, such as kerati-
nization (e.g., KLK12/13, CSTA, etc.), fatty acid metabolism (e.g.,
ACOX3, ALOX12, etc.), and amino acid metabolism (e.g., MGLL,
CYP4F12, etc.) (Supplementary Fig. 6f, g). The oncogenic pathways-
related proteins were overrepresented in the C2 both in the main
cohort and validation cohort, including cell cycle (e.g., CDK1, SKP1,
etc.), DNA repair (e.g., DDB1, XPC, etc.), glycolysis (e.g., ENO2, HK3,
etc.), and so on. The specific biomarkers of normal esophagus anno-
tated from Human Proteome Atlas (HPA, https://www.proteinatlas.
org), including GBP6, TGM1, TGM3, and S100A14, were over-
represented in the C1, which gradually decreased from the normal
stage (stage 1) to advanced stages (stages 8 and 9) of ESCC
(Kruskal–Wallis test, FDR < 2.2E–16, stage 9 vs. stage 1 ratio ≥ 2) (Sup-
plementary Fig. 6h, i). Taken together, these results further confirmed
the dysregulation of metabolism and oncogenic pathways in ESCC
progression.

The AKAP9 mutation enhanced glycolysis in the A-ESCC phase
Incorporation of genomic aberrations (n = 40, mutation frequency >
10%) and the C2 overrepresented proteome (n = 3385, C2 vs. C1 ratio ≥
2) revealed that seven mutations (e.g., AKAP9, MACF1, EP400, etc.)
were exclusively detected in the C2 with mutation frequency over 10%
(Fig. 5c). Furthermore, the mutation of AKAP9 was associated with
poor prognosis outcomes of ESCC patients (log-rank test, p = 0.029)
indicating the potential functions of AKAP9 mutation in ESCC pro-
gression (Supplementary Fig. 6j).

AKAP9, one of the A-kinase anchoring proteins (AKAPs), binds to
the regulatory subunit of AMP-dependent protein kinase (PKA) and

achieves the activation of PKA43, which regulates multiple signaling
cascade44, such as glucose metabolism including glycolysis45. In our
cohort, we found themutation of AKAP9 upregulated the protein level
of AKAP9 (t-test, AKAP9Mut vs. WT ratio = 6.58, FDR = 8.4E–3) (Fig. 5d
and Supplementary Fig. 6k). Moreover, AKAP9 showed a significantly
positive correlation with PRKACA, one of the PKA catalytic subunits46,
at the protein level (Pearson’s R =0.37, p = 0.011) (Fig. 5e). Gene set
enrichment analysis (GSEA) demonstrated that the AKAP9 mutation
positive-correlated proteinswere convergedon glycolysis (normalized
enrichment score (NES) = 2.37, FDR =0) (e.g., HK1, GPI, PGK1, etc.),
which were gradually increased in ESCC progression (Kruskal–Wallis
test, FDR<0.05, A-ESCC vs. NT ratio ≥ 2) (Fig. 5f, g). Consistently, the
expression of AKAP9was significantly overrepresented in the C2 in the
validation cohort (t-test, FDR = 3.1E–3, C2 vs. C1 ratio = 3.29) (Supple-
mentary Fig. 6l). We integrated AKAP9 positively associated proteins
(n = 1344), and found those proteins were involved in glucose meta-
bolism, such as glycolysis, TCA cycle, etc. (Supplementary Fig. 6m).
These consistent findings further indicated the impacts of AKAP9
mutation on glycolysis in ESCC progression.

Allosteric regulation refers to the process where the effect of
binding of a ligand at one site of a protein is transmitted to another,
often distant, functional site, and thus regulates biological processes
including glucose metabolism47. As well as HK1 and GPI, G6PD, as one
of the activators in the transformation process from glucose-6-
phosphate to fructose-6-phosphate48, showed a significant associa-
tion with GPI (Pearson’s R =0.33, p = 1.7E–3), further demonstrating
the activation of glycolysis (Fig. 5h and Supplementary Fig. 6n). At the
phosphoprotein level, we also detected the increased phosphorylation
of glycolysis (e.g., ENO1 S272, PGAM1 S189, etc.) in ESCC progression
(Kruskal–Wallis test, FDR <0.05, A-ESCC vs. NT ratio ≥ 2) (Supple-
mentary Fig. 6o). Taken together, the mutation of AKAP9, activated
PKA and enhanced the energy formation, elevating the process of
glucosemetabolism, especially glycolysis, in theA-ESCCphase (Fig. 5i).
Thus, our study provided valuable insights into the proteomic char-
acteristicswithAKAP9mutation and revealed the impacts on glycolysis
in ESCC progression at the multi-omics level.

Personalized trajectory revealed sixmajor carcinogenesis tracks
of early ESCC
The diversity and tumoral heterogeneity of ESCC remain challenging
to decide precise clinical strategies for different ESCC patients who
have diverse featured carcinogenesis tracks. To this end, we used
trajectory inference methods49 (Methods) to trace the carcinogenesis
lineages of early ESCC in the cohort. As a result, six major tracks were
classified (13.2%, 7.0%, 7.9%, 43.9%, 19.3%, and 8.7% of patients,
respectively) (Fig. 6a, b and Supplementary Data 6a). The track pro-
teins were determined by the expression trend along with ESCC pro-
gression (Kruskal–Wallis test, FDR <0.05, stage 9 vs. stage 1 ratio ≥ 2),
and the dominant pathways of six major tracks were annotated as
follows: (1) track 1 (T1, n = 15), biomaterial synthesis; (2) track 2 (T2,
n = 8, non-drinking/smoking track), ECM signaling; (3) track 3 (T3,
n = 9, female track), cell cycle; (4) track 4 (T4, n = 50, mainstream track
(mainstreampopulation of ESCCpatients)), DNA repair; (5) track 5 (T5,
n = 22, older track), glucose metabolism; and (6) track 6 (T6, n = 10,
drinking/smoking track), immune response (Fig. 6b and Supplemen-
tary Data 6b, c). The proteins, of which the expression was gradually
decreased in six tracks (Kruskal–Wallis test, FDR <0.05, stage 9 vs.
stage 1 ratio ≤ 0.5), were involved in the primary biology of normal
esophagus, such as epithelial cell differentiation (e.g., EVPL and
AHNAK2) and keratinization (e.g., FLG, KLK12/13 and SPRP3) (Supple-
mentary Fig. 7a).

Furthermore, different tracks were closely associated with various
clinical features of early-stage ESCC patients, which improved our
understanding of tumor heterogeneity. For example, track 3, featured
with cell cycle, had the highest proportion of female patients (Fisher’s
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Fig. 6 | Personalized trajectory reveals six major carcinogenesis tracks of the
early ESCCs. a The trajectory of 746 samples (top) and 114 early ESCC cases were
grouped into 9 (bottom). b Sankey diagram analysis of 114 early ESCC cases (top,
main cohort) and 49 early ESCC cases (bottom, validation cohort). c Venn diagram
showing the trackmutations (top) and the CAGs (bottom) (two-sided Fisher’s exact
test). CAGs: cancer-associated genes. The overlapped mutations are shown in the
box. d The CAG-associated track mutations in the early ESCCs. The co-mutations
are highlighted on the left (two-sided Fisher’s exact test), and the mutation fre-
quency is shown on the right. The square directed to a subset of patient samples
used for WES (n = 68) in early ESCCs. Co-mutations: *p =0.032 (TP53 and EPAS1),
*p =0.032 (TP53 and EPHA3), ****p = 9.3E–6 (EPAS1 and EPHA3), *p = 2.2E–7 (STAG2
and USP6), ****p = 9.3E–6 (USP6 and AKAP9), ****p = 3.2E–5 (STAG2 and AKAP9).
e GSEA plot (KEGG gene sets) for ECM signaling in EPAS1 mutation and WT

comparison. f Venn diagram depicting the number of the overlapped proteins
enhanced by the mutation of EPAS1 and T2 enhanced phosphoprotein (top), and
the associated biological pathways (bottom). SUPs: the significantly upregulated
proteins. g Heatmap showing the represented protein in the cell–cell adhesion
positive associated with EPAS1mutation (two-sided Fisher’s exact test). The square
directs to a subset of patient samples used for WES (n = 68) in early ESCCs. Co-
mutations: *p =0.032 (TP53 and EPAS1), *p =0.032 (TP53 and EPHA3), ****p = 9.3E–6
(EPAS1 and EPHA3). h Heatmap showing the phosphorylation of the phosphopro-
teins in cell–cell adhesion (Kruskal–Wallis test). The square directs to a subset of
patient samples used for phosphoproteome (n = 119) in early ESCCs. ****p < 1.0E–4,
***p < 1.0E–3, **p <0.01, *p <0.05, ns. > 0.05. Source data are provided as a Source
data file.
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exact test, p = 7.7E–14, 29.2%) (Supplementary Fig. 7c), significantly
greater than thenatural proportion of female patients in ESCC (nomore
than 10%)50. Track 6, featured as immune response, had the highest
proportion of patientswith drinking/smokinghabits (Fisher’s exact test,
p = 2.3E–16, 18.1%), whichwas associatedwith chronic inflammatory and
regulatedoxidative stress in various cancer types51, revealing theunique
track in the patients with drinking/smoking habits.

To validate the features of the six major tracks, the trajectory
inference methods were also applied to 49 early-stage ESCC
patients in the validation cohort. As a result, we found all the
patients in the validation cohort were also classified into tracks
1–6, of which the molecular characterization was similar to those
in track 1 to track 6 from 114 early-stage ESCC patients in the main
cohort (Fig. 6b, Supplementary Fig. 7b, d, and Supplementary
Data 6d–f). Specifically, the ESCC patients with drinking/smoking
habits were prominent in track 6 of the validation cohort (Fisher’s
exact test, p = 5.1E–9, 18.6%) (Supplementary Fig. 7c). To explore
the features of the ESCC patients with drinking/smoking habits,
we integrated the gradually increased proteins, which partici-
pated in the immune response pathways, including interleukins
signaling, antigen processing and presentation, etc. (Supple-
mentary Fig. 7e). The consistent findings in the characterizations
of track 6 were observed in the main and validation cohorts,
further validating the findings of the personalized tracks.

At the gene level, we identified 150differential trackmutations, 5 of
which were also covered in CAGs with mutation frequency over 10%,
including TP53, EPAS1, EPHA3, STAG2, and USP6 (Fig. 6c and Supple-
mentary Data 6g). Furthermore, we found the mutations of STAG2
(Fisher’s exact test, p = 1.1E–3, track 2 vs. track 4 vs. track 5 vs track
6 =0% vs. 0% vs. 30.4% vs. 0%) and USP6 (Fisher’s exact test, p= 3.1E–3,
track 2 vs. track 4 vs. track 5 vs track 6 =0% vs. 0% vs. 26.1% vs. 0%) were
prominent in track 5, which were all co-occurrence with AKAP9 muta-
tion (Fisher’s exact test, p = 3.2E–5 for STAG2 and 9.3E–6 for USP6),
suggesting the roles of glycolysis in the ESCC patients in track 5
(Fig. 6d). In addition, GSEA showed the positive impacts of the muta-
tions of STAG2 (NES = 2.10, FDR= 7.2E–4), and USP6 (NES = 2.04,
FDR=0) on pentose phosphate pathway (Supplementary Fig. 7f), which
were the evidence of glucose metabolism characteristics in track 5.

Notably, themutations ofTP53 (Fisher’s exact test,p= 7.2E–3, track
2 vs. track 4 vs. track 5 vs track 6 = 100% vs. 73% vs. 57% vs. 27%), EPAS1
(Fisher’s exact test, p = 3.2E–5, track 2 vs. track 4 vs. track 5 vs track
6 = 71% vs. 0% vs. 4% vs. 0%), and EPHA3 (Fisher’s exact test, p = 2.2E–7,
track 2 vs. track 4 vs. track 5 vs track 6 = 86% vs. 0% vs. 0% vs. 0%) were
prominent in track 2. As shown in Supplementary Fig. 4l, TP53mutation
displayed positive impacts on ECM signaling, demonstrating the char-
acteristics of track 2. GSEA displayed the positive impacts of the
mutations of EPAS1 (NES = 1.99, FDR=0), EPHA3 (NES = 1.83,
FDR= 1.6E–3) on ECM signaling (Fig. 6e and Supplementary Fig. 7g).
Furthermore, EPAS1mutation was co-occurrence with the mutations of
TP53 (Fisher’s exact test, p =0.032) and EPHA3 (Fisher’s exact test,
p =9.3E–6). To elucidate the impacts of EPAS1 genomic aberrations on
proteomic alterations and phosphoproteomic actions, we integrated
the molecules (n = 126) overlapped in the EPAS1 mutation SUPs and
track 2 overrepresented phosphoproteins. As a result, we found those
overlapped molecules were involved in cell–cell adhesion (e.g., ITGA5,
EGFR, etc.) (Fig. 6f, g). Comparedwithother tracks, thephosphorylation
of the cell–cell adhesionproteins (ITGA5S127 andS128, EGFRS991, etc.)
was overrepresented in track 2 (Fig. 6h). Together, our study revealed
six major carcinogenesis tracks, and found the track specific mutations
had positive impacts on the track carcinogenesis lineages of ESCC.

PGK1, aberrant glycolytic enzyme, is a potential therapeutic
target
Abnormal glycolytic metabolismwas observed in the whole process of
ESCC carcinogenesis at the multi-omics level, which dramatically

increased throughout carcinogenesis (Fig. 7a). PGK1, the first ATP-
generating enzyme in glycolysis, gradually increased in ESCC pro-
gression in all 6 tracks at the protein level and identified as the
nominated drug-targetable protein in ESCC progression (Supplemen-
tary Fig. 8a). In addition, we performed Cox regression analysis to
assess the prognostic value of PGK1 expression, which was negatively
correlated with the OS of ESCC in the TCGA dataset (log-rank test,
p = 7.8E–3) (Fig. 7b and Supplementary Data 7a). To further cross-
validate these results, our dataset confirmed that the expression of
PGK1 was gradually increased in ESCC at the protein and phospho-
protein levels (Kruskal–Wallis test, FDR = 1.3E–18 for proteome and
4.2E–3 for phosphoproteome, stage 9 vs. stage 1 ratio = 2.30 for pro-
teome and 2.49 for phosphoproteome) (Fig. 7c), as demonstrated by
immunohistochemistry of ESCC FFPE slides in which PGK1 was gra-
dually increased in the process fromT0 stage (normal tissue) to the Tis
stage, SM2 stage, and advanced stage (Fig. 7d). In addition, the ele-
vated protein of PGK1 was identified in more than 75% (476/672)
samples for proteome and 60% (75/125) for phosphoproteome from
the stage 2 to stage 9 (n = 672 for proteome and 125 for phosphopro-
teome) (Fig. 7a, c). The only identified motif (sP) of PGK1 was ubiqui-
tously (125/145) detected, and the expression of PGK1 S203 was also
gradually increased with ESCC progression (Kruskal–Wallis test,
FDR =0.011, stage 9 vs. stage 1 ratio = 2.44) (Fig. 7e and Supplemen-
tary Fig. 8b).

To investigate the proteome-phosphoproteome regulation
between the motif of PGK1 and the kinases, we applied motif extrac-
tion algorithm52 to MS phosphorylation dataset from 145 samples. The
results revealed the association of ERK1/2, CDKs, and GSK-3 with the
motif of PGK1 (sP)53, whose downstream substrates and the related
corresponding phosphorylations, including MAP1S (S759), FOXK1
(S420),MAP2K1 (T386), etc., were increased in ESCCprogression at the
protein and phosphoprotein levels (Kruskal–Wallis test, FDR <0.05,
stage 9 vs. stage 1 ratio ≥ 2) (Fig. 7f). In addition, we found that PGK1
and the phosphorylation (S203) were overrepresented in the kinases
highly expressed group (two-sided Wilcoxon rank-sum test, FDR <
0.05, highly vs. lowly expressed group ratio ≥ 2), especially in ERK2
and CDK2 highly expressed group (Fig. 7g), indicating the potential
functions of ERK2 and CDK2 in the activation of PGK1 (S203) in ESCC
progression.

Our previous study has found ERK1/2 could phosphorylate PGK1
S203 and result in the mitochondrial translocation of PGK154. In this
study, we performed the kinase-substrate enrichment analysis (KSEA)
of the phosphoproteome of PGK1 (S203). The results of the score and
FDR showed that ERK2 was the top-rank one kinase to activate PGK1 in
ESCC progression (Fig. 7h). Furthermore, we found that the SCNAs of
CDK2 had positive impacts on the expression of PGK1 (Wilcoxon rank-
sum test, FDR = 2.8E–3) (Fig. 7i), and the substrates (e.g., GTF2F1,
PAK4, etc.) of kinases (Fig. 7j). These findings indicated that the SCNA
of CDK2 and ERK1/2 synergistically induced the total activity of PGK1
through increasing PGK1 expression both at the protein and phos-
phoprotein levels. Thus, we proposed that PGK1 S203 could be
implicated in identifying the potential therapeutic target to
manage ESCC.

Next, we investigated the roles of PGK1 in regulating glucose and
serinemetabolism. Overexpression of PGK1 in KYSE150 cells increased
the levels of glycolytic-citrate cycle flux metabolites, including 3-PG,
pyruvate, and lactate in glycolysis, and citrate, succinate, and fumarate
in citrate cycle (Supplementary Fig. 8c and Supplementary Data 7b). In
addition, the levels of serine and glycine were also increased in PGK1-
overexpressing cells. Conversely, the knockdown of PGK1 decreased
the concentration of metabolites in glycolysis and citrate cycle, as well
as serine and glycine (Supplementary Fig. 8d and Supplementary
Data 7c). Furthermore, the overexpression of ERK2 led to increased
Ser-phosphorylation level, but not Thr- or Tyr- phosphorylation levels
of PGK1 in KYSE150, KYSE70, ECA109, and TE-8 cell lines (Fig. 8a). On
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the contrary, ERK2 could not increase the Ser-phosphorylation level of
PGK1 S203 mutant (S203A) (Fig. 8a), indicating that ERK2 phos-
phorylated PGK1 S203 in ESCC cells. Moreover, the increased Ser-
phosphorylation level of PGK1 led to mitochondrial translocation of
PGK1 (Fig. 8b), which increased the phosphorylation level of PDHK1 at
T338 (Fig. 8c), and decreased pyruvate dehydrogenase (PDH) activity

in ERK2 overexpressing cells (Fig. 8d and Supplementary Data 7d). It
was also observed that the metabolites of glycolysis and serine meta-
bolism were further increased, while citrate cycle metabolites were
decreased in ERK2 overexpression cells (t-test, p <0.05) (Supplemen-
tary Fig. 8c), suggesting that the overexpression of ERK2 could shut
down the pyruvate dehydrogenase complex. Moreover, through
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Seahorse assay, we found overexpression of PGK1 decreased oxygen
consumption rate (OCR) and ATP production, and increased extra-
cellular acidification rate (ECAR) (Fig. 8e, f and Supplementary
Data 7e). In contrast, knockdown of PGK1 increased OCR and ATP
production, and decreased ECAR (Fig. 8e, f and Supplementary
Data 7f). In addition, increased expression of ERK2 further decreased
OCR and ATP production, and increased ECAR, in PGK1-
overexpression cells (Fig. 8e, f). Collectively, these results indicated
that the increased expression and phosphorylation levels of
PGK1 synergistically enhanced glycolysis and serine metabolism.
Accordingly, we confirmed that co-overexpression of PGK1 and ERK2
in the above four kinds of ESCC cell lines (KYSE150, KYSE70, ECA109,
and TE-8) promoted their proliferationmost profoundly, compared to
cells overexpressing either PGK1 or ERK2 (t-test, p < 1.0E–4) (Fig. 8g
and Supplementary Fig. 8e, and Supplementary Data 7g). In contrast,
the knockdown of PGK1 slowed down the cell proliferation, which was
further inhibited by double-knock down of PGK1 and ERK2 in those
four kinds of ESCC cell lines (t-test, p < 1.0E–3) (Supplementary Fig. 8f,
g and Supplementary Data 7h). Furthermore, unlike PGK1, the over-
expression of other glycolytic enzymes, including GAPDH and PGM1,
which catalyzed the last and the next step reaction of PGK1, respec-
tively, did not show pro-proliferation effects in KYSE150 cells (t-test,
p <0.05) (Supplementary Fig. 8h and Supplementary Data 7i). Taken
together, these results indicated that the activation of glycolytic
enzyme PGK1 was associated with the proliferation of ESCC cells.

It has been reported that pyrimidine deoxynucleoside analog
diphosphates (for example, gemcitabine) could be used as PGK1 inhi-
bitors because L-nucleoside analog diphosphates were selectively
phosphorylated by PGK155. Therefore, we tested the potential of
gemcitabine to inhibit ESCC tumor growth. Firstly, we validated the
significant inhibitoryeffects of gemcitabineonPGK1 (t-test,p = 4.8E–3)
with an IC50 of 16.3 nM (Fig. 8h and Supplementary Fig. 8i, and Sup-
plementary Data 7j) using an in vitro enzymatic assay. Secondly,
treating the cultured cells with 50 nmol/L gemcitabine significantly
decreased the glycolytic flux (such as pyruvate (t-test, p = 1.6E–3) and
lactate (t-test, p = 0.014)) and cell proliferation (Supplementary Fig. 8j
and Supplementary Data 7k, l). Thirdly, the xenograft growth-
promoting ability of PGK1 overexpression was abolished in gemcita-
bine treated mice bearing either KYSE150 cells (t-test, p = 4.4E–9),
ECA109 cells (t -test, p = 2.2E–9), or TE-8 cells (t-test, p = 4.0E–8),which
was consistent with the effects of PGK1 knockdown (t-test, p
(KYSE150) = 8.6E–8, p (ECA109) = 3.4E–7, p (TE-8) = 7.6E–8) (Fig. 8i and
Supplementary Fig. 8k, and SupplementaryData 7m, n). In addition,we
found that increased levels of PGK1 phosphorylation, but not PGK1
protein levels, were associated with tumor weight in xenograft TE-8
cells (Supplementary Fig. 8l, m and Supplementary Data 7o). Overall,
these observations suggested that enhanced PGK1 expression was
associated with early ESCC development.

Discussion
ESCC is one of the most common malignancies, with a relatively low
overall 5-year survival rate (less than 30%). Even though the whole
genome sequences of ESCC patients have been obtained, the tumor
heterogeneity and lackof understanding of themolecularmechanisms
in ESCC progression impose many challenging unmet clinical needs in
ESCC. It was speculated that tracking the occurrence anddevelopment
of early ESCC could provide direct evidence of cancer-driving path-
ways and molecules in each stage.

Depending on the substage-based model, our study detected
precise temporal molecular switches promoting the progression of
ESCC at the multi-omics level. The sequence of canonical cancer
pathways was also disclosed, which involved ERBB, NOTCH, IGF, cell
cycle, DNA repair, PI3K-AKT, mTOR, glycolysis, andWnt signaling. The
co-occurrence mutations of BOC, AKAP9, and PCDHB16, detected as
early as in stage 6 and last till the T2 and T3 stages, had positive
impacts on DNA repair in stage 6, and glycolysis in the T2 and
T3 stages, respectively. To further validate the findings and results in
our cohort, we collected another 256 samples as an independent
validation cohort from 49 early-stage ESCC patients. The number of
stages in the validation cohort was comparable with the main cohort.
Comparative analysis showed consistent findings in a time-resolved
mode in ESCCprogression, and presented that the gradual decrease of
keratinization and lipid metabolism revealed that the loss of normal
esophagus was an important event in initiating early ESCC. The bio-
markers of ESCC tissues, such as ACTA2, TAGLN, POSTN, PSAP, and
THBS120,21, were also detected and significantly increased during ESCC
progression (Kruskal–Wallis test, FDR < 2.2E–16, stage 9 vs. stage 1
ratio ≥ 2) (Supplementary Fig. 5e, f). These findings provided a tem-
poral dimension and trans-omics dimension in understanding the
ESCC progression.

It is generally agreed that carcinogenesis is a chronic process
involving several genes and pathways in different stages. The sig-
nificant genomic aberrations were then translated to proteomic
alterations in ESCC progression. Liu et al. also showed that several
significantly mutated genes were shared in the earlier and advanced
stage of ESCC7. Thus, we hypothesized that the mutations were
cumulative in ESCC progression, and the keymutation/events which
were found in the advanced stages might exist in the earlier stages.
In our cohort, we observed that the number of mutations gradually
cumulated during ESCC carcinogenesis. The dual-peak of the neo-
mutations detected at the Tis stage and the T2 stage, perfectly
matched their corresponding pathological phenotypes observed in
the clinic, delivering that the mutations were not based on the
principle of the linear accumulation model, but surged in certain
histopathological stages during the carcinogenesis process. The
mutation-surging wave at the advanced stage of ESCC (T2 and
T3 stages) in the Fudan cohort indicated that the sudden rise of the

Fig. 7 | Aberrant glycolyticmetabolism in ESCC and alterations in the activities
of its key enzyme, PGK1. a Aberrant glycolysis in ESCC progression at the multi-
omics level (Kruskal–Wallis test, BH-adjusted *p <0.05). A total of 786 samples for
proteomic profiling and 145 samples for phosphoproteomic profiling are used.
b Highly expressed PGK1 is negatively correlated to prognosis (two-sided log-rank
test). c Boxplots showing the increased expression (log10-transformed Intensity) of
PGK1 in ESCC at the protein (left) and phosphoprotein (right) levels (Kruskal–Wallis
test). Boxplots show median (central line), upper and lower quartiles (box limits),
1.5× interquartile range (whiskers). A total of 786 samples and 145 samples were
used for proteome and phosphoproteome, respectively. Proteome: n (stage 1) =
114,n (stage 2) = 206,n (stage 3) = 259, n (stage 4) = 86, n (stage 5) = 32,n (stage 6) =
17, n (stage 7) = 32, n (stage 8) = 16, n (stage 9) = 24 biologically independent
samples examined. Phosphoproteome:n (stage 1) = 20,n (stage 2) = 37,n (stage 3) =
31, n (stage 4) = 14, n (stage 5) = 5, n (stage 6) = 3, n (stage 7) = 9, n (stage 8) = 10, n
(stage 9) = 16 biologically independent samples examined.
d Immunohistochemistry analysis of PGK1 expression in normal (T0), Tis (T1), SM2
(T1), and advanced stage (T2/T3) tissues. The zone with the dotted lines and red

arrow represents PGK1positive staining. The scalebar indicates 50 µm. eAnalysis of
the serinemotif of PGK1 (sP). The top shows the sequenceandphosphorylated sites
of PGK1 (S203). The bottom presents that PGK1 S203 is detected at almost samples
in ESCC (125/145) and the kinases associated with the motif of PGK1 S203 (“sP”).
f The expression of the kinases and the substrates in ESCC progression at the
phosphoprotein level. The square directs to a subset of patient samples used for
phosphoproteome. g Volcano plot displaying the ERK2-substrates (top) and CDK2-
substrates (bottom) regulation results (two-sidedWilcoxon rank-sum test). The red
marks the overrepresented substrates (left) and phosphorylations (right) in the
kinases highly expressed group. h Histogram showing the Z-score and FDR of the
KSEA results. A total of 145 samples for phosphoproteomic profiling are used in the
analysis. i The SCNAs of CDK2 have positive effects on PGK1 expression (two-sided
Wilcoxon signed-rank test). j The impacts of the SCNAs of CDK2 (middle) on the
substrates expression of the kinases (bottom), associated with the PGK1 motif (sP).
The square directs to a subset of patient samples used for WES (n = 102).
****p < 1.0E–4, ***p < 1.0E–3, **p <0.01, *p <0.05, ns. > 0.05. Source data are pro-
vided as a Source data file.
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mutations at specific stages was regular and would determine the
carcinogenesis trend.

The neo-mutation peaks in ESCC progression promoted to divide
the carcinogenesis of ESCC into three phases (NT, IEN, A-ESCC).
Compared to the IEN and A-ESCC phases, the lowest TMB was
observed in the NT phase, in which TP53 mutation and DNA repair

signature were detected. Biological function of the normal esophagus
and inflammatory response were the dominant pathways in the NT
phase. The Ca2+ signal impacts nearly all aspects of cellular life56, and is
implicated in a variety of processes that are important in tumor pro-
gression, such as proliferation and invasiveness57. In our cohort, we
found the gain of chr3q was characterized in the IEN phase, in which
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the cis-effects genes related to the Ca2+ signal and showed positive
impacts on DNA replication. Interestingly, the amplification of TP63 at
chr3q28, prominent in the IEN phase, showed positive impacts onDNA
replication, implying the combined effects of Ca2+ signal and TP63
amplification on DNA replication in the IEN phase and further indi-
cating the functions of chr3q gain in the transmit process from the NT
phase to the IEN phase and on DNA replication in ESCC progression.
The highest TMB was detected in the A-ESCC phase, in which the
mutation ofMACF1, a large crosslinker that contributes to cell integrity
and cell differentiation58, activated Wnt signaling at the multi-omics
level. Interestingly, based on the two proteomic clusters (C1 and C2)
which were associated with the three phases in ESCC progression, the
C2 (relatively malignant cluster) prominent mutation of AKAP9 upre-
gulated the expression-level of AKAP9 and thus activated PKA,
improving the transfer of ATP to ADP and enhancing glycolysis at the
protein and phosphoprotein levels (Supplementary Fig. 9). These
results had explored that all these pathways followed a very precise
temporal order during the carcinogenesis progress of ESCC.

Except for the diverse lifestyles of the countries2,3, drinking/
smoking habit, gender, and ages are key environmental risks of ESCC1,
while the molecular mechanism is yet unknown. We applied the NMF
algorithm to analyze the mutational signatures of the Fudan cohort
and other ESCC cohorts, including the TCGA cohort, Moody’s cohort,
etc. The integrated findings revealed that the SBS16 signature, which
was associatedwith the ESCCpatients with a drinking habit andOLFM4
mutation exhibited positive impacts on CDKs activation and thus
enhancing DNA replication evidenced by the related markers, indi-
cating the potential medicative of Dinaciclib for drinking ESCC
patients. In addition, the APOBEC signature was the dominant sig-
nature in the non-drinking/smoking ESCC patients, and the significant
mutation of DCTN2 upregulated the protein level of DCTN2, and dis-
played positive impacts on RUVBL1 and thus activated DNA replica-
tion, implying the potential effects of CB-6644 in the non-drinking/
smoking ESCC patients. These results revealed the functions of DNA
replication in the IEN phase, whereas the molecular mechanism and
clinic strategy were diverse in the ESCC patients with the habits of
drinking and non-drinking/smoking.

Furthermore, 746 samples from 114 early ESCC patients in the
Fudan cohort allowed us to trace the carcinogenesis lineages of early-
stage ESCCs, resulting in six tracks closely related to the clinical fea-
ture, including gender, age, and risk habits of drinking/smoking. For
example, more female ESCC patients were observed in track 3 (Sup-
plementary Fig. 9). To further validate the results in our cohort, we
collected another 256 samples as an independent validation cohort
from 49 early-stage ESCC patient, which were then classified into
tracks 1–6 with similar molecular characterization. A large-scale,
population-based cohort study has shown that drinking/smoking

promotes ESCC carcinogenesis5. Our study disclosed the carcinogen-
esis lineage of ESCC patients with drinking/smoking habits (track 6).
Integration with the findings in the validation cohort revealed that the
immune response pathways, including interleukins signaling, antigen
processing and presentation, etc., were the dominant pathways in the
ESCC patients with drinking/smoking habits, which was consistent
with features of track 6, both in themain cohort and validation cohort,
further validating the findings of the personalized tracks. In brief, in
addition to the driver waves, this study provided 6 carcinogenesis
tracks as references for diverse ESCC clinical therapies.

Proliferative cancer demands a great deal of energy and building
blocks, and cancer cells mainly rely on aerobic glycolysis to produce
building blocks and energy, known as the Warburg effect59,60. In the
Fudan cohort, aberrant glycolysis and alterations in its key enzyme,
PGK1, which was negatively correlated with overall survival rate, were
noticed at themulti-omics level, and promoted ESCC cell proliferation
and tumor growth. Through motif prediction network and KSEA
results,we found that ERK2was the top-rank kinase associatedwith the
motif (sP) to activate PGK1 (S203) in ESCC progression. Thus, in this
study, we focused on the functions of ERK2 on PGK1 phosphorylation,
and the roles of PGK1 (S203) in the carcinogenesis process of ESCC.
Glycolysis is a sequence of ten enzyme-catalyzed reactions and links
other parallel pathways, including the pentose phosphate pathway,
serine de novo synthesis pathway, citrate cycle, etc. Several rate-
limiting enzymes determine the overall glycolysis rate, and dysregu-
lated glycolytic enzymes are frequently observed in various cancers61.
In the current study, increased PGK1 both at the protein and phos-
phoprotein levels through the tumor progress was observed. PGK1
works in the hub of glycolysis and serine/glycine synthesis, and
meanwhile, phosphorylated PGK1 at Ser203 was able to inhibit meta-
bolic flux from glycolysis to the citrate cycle. In addition, over-
expression of PGK1decreasedOCR andATPproduction, and increased
ECAR, further indicating the activation of glycolysis. Therefore, the
change in PGK1 activated glycolysis, serine synthesis, and inactivated
pyruvate dehydrogenase complex leading to further accumulation of
glycolysis metabolites. The present study also revealed that the
upstream and downstream enzymes of PGK1 in glycolysis did not
provide a strong pro-proliferation effect, unlike PGK1.

In addition, the inhibitory effect of gemcitabine on PGK1 enzy-
matic activity and cell proliferation was validated through in vitro
biochemistry assay, cultured ESCC cells, and xenografts model, in
which the levels of PGK1 phosphorylation, but not PGK1 protein
levels, were positively associated with tumors weight. Collectively,
our study indicated that PGK1 is an important drug target in ESCC,
whereas the association of the expression and phosphorylation
levels of PGK1 with other kinds of cancer requires further
investigation.

Fig. 8 | PGK1 reprograms glucose metabolism and contributes to ESCC pro-
gression. a Pan Serine/Threonine/Tyrosine-phosphorylation levels of PGK1 in
KYSE150 cells, KYSE70 cells, ECA109 cells, and TE-8 cells. b PGK1 level in mito-
chondria and cytosol fraction of in KYSE150 cells, KYSE70 cells, ECA109 cells, and
TE-8 cells. c The impacts of PGK1 and/or ERK2 on PDHK1 T338 phosphorylation
levels in KYSE150 cells, KYSE70 cells, ECA109 cells, and TE-8 cells. d The impacts of
PGK1 and/or ERK2 on PDH activity in KYSE150 cells (n = 36) and ECA109 cells
(n = 36) (two-sided Student’s t-test, mean± SD). KYSE150: p =0.088, *p =0.031,
****p = 7.7E–6, p =0.81, p =0.66 from left to right. ECA109: *p =0.043, p =0.052,
****p = 1.3E–7, p =0.78, p =0.058 from left to right. e The impacts of overexpressed
andknockdownPGK1 andERK2onOCRandATPproduction (two-sidedStudent’s t-
test, mean± SD). Twenty-four cell samples were used in the analysis. Top:
****p = 1.6E–8 (PGK1), ****p = 2.6E–12 (PGK1+ ERK2). Bottom: ***p = 7.7E–4. OCR:
oxygen consumption rate. f The impacts of overexpressed and knockdown PGK1
and ERK2 on ECAR (two-sided Student’s t-test, mean± SD). Sixteen cell samples are
used in the analysis. Top: **p = 1.2E–3 (PGK1), ****p = 1.0E–11 (PGK1 + ERK2). Bottom:
***p = 3.9E–7. ECAR: extracellular acidification rate. g The impacts of PGK1-
overexpression (OE) and/or ERK2-OE on cell proliferation in KYSE150 cells, KYSE70

cells, ECA109 cells, and TE-8 cell (two-sided Student’s t-test, mean ± SD). A total of
320 cell samples were used in the analysis. KYSE150: ****p = 1.5E–7 (PGK1),
****p = 1.6E–5 (ERK2), ****p = 2.9E–9 (PGK1+ ERK2). KYSE70: *p =0.014 (PGK1),
**p = 4.5E–3 (ERK2), ****p = 6.8E–5 (PGK1 + ERK2). ECA109: ****p = 5.4E–7 (PGK1),
****p = 3.2E–6 (ERK2), ****p = 2.7E–9 (PGK1 + ERK2). TE-8: **p = 2.1E–3 (PGK1),
***p = 5.0E–4 (ERK2), ***p = 3.2E–4 (PGK1+ ERK2). h Gemcitabine inhibits cell pro-
liferation (n = 30, two-sided Student’s t-test, **p = 4.8E–3,mean ± SD). i The impacts
of PGK1-OE (left) andPGK1knockdown (right) on theweight of the xenografts in the
KYSE150 cells, ECA109 cells, and TE-8 cells (two-sided Student’s t-test, mean ± SD).
A total of 130 samples are used in the analysis. Left: KYSE150: ****p = 5.9E–8 (Control
and PGK1-OE), ****p = 4.4E–9 (PGK1-OE and PGK1-OE-inhibitor), p =0.17 (Control
and PGK1-OE-inhibitor). ECA109: ****p = 2.1E–8 (Control and PGK1-OE),
****p = 4.4E–9 (PGK1-OE and PGK1-OE-inhibitor), p =0.17 (Control and PGK1-OE-
inhibitor). TE-8: ****p = 1.3E–7 (Control and PGK1-OE), ****p = 4.0E–8 (PGK1-OE and
PGK1-OE-inhibitor), p = 1.7E–3 (Control and PGK1-OE-inhibitor). Right:
****p = 8.6E–8 (KYSE150), ****p = 3.4E–7 (ECA109), ****p = 7.6E–8 (TE-8).
****p < 1.0E–4, ***p < 1.0E–3, **p <0.01, *p <0.05, ns. > 0.05. Source data are pro-
vided as a Source data file.
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However, limits are still represented in our study. The low DNA
extraction and peptide extraction of the trace amounts of samples
restricted the coverage at the multi-omics level, especially for the
limited overlapped samples between genome and phosphoproteome,
which is also a challenge for transcriptomic analysis. Owing to the lack
of the proteogenomic profiling early-stage of ESCC in the previous
studies, the validation of the datasets of other ESCC cohorts relied on
the advanced-stage samples of ESCC. In addition, the validations of the
impacts of other genes (e.g., AKAP9, MACF1, etc.) in ESCC progression
are lacking, even though we believe the comprehensive proteoge-
nomic landscape of early-stage ESCC at the multi-omics level will
provide a valuable resource for ESCC and considerable insights into
understanding ESCC molecular mechanisms.

In summary, our study depicted the comprehensive genomic,
proteomic, and phosphoproteomic map in ESCC progression, and
highlighted the key events during the transit process in ESCC pro-
gression. We discovered the kinetic waves of the dominant cancer
pathways via integrative proteogenomic analysis in the whole process
of carcinogenesis. We also uncovered 6 major tracks and their mole-
cular characteristics during the carcinogenesis of ESCC, and illustrated
the molecular characterization of environmental risks in ESCC at the
multi-omics level (Supplementary Fig. 9). Furthermore, we demon-
strated and proposed the value of a drug-targetable protein, PGK1,
especially the phosphoprotein, PGK1 S203, at themulti-omicsmap.We
believe this study provides insights into understanding the archi-
tecture of ESCC progression and enables advances in promoting the
diagnostics and therapeutics to manage ESCC.

Methods
Patient samples of early ESCCs
Construction of the ESCC cohort. Three hundred consecutive
patients presumed to have esophageal lesions underwent ESD therapy
from January 2018 to December 2018 at Zhongshan Hospital, Fudan
University. There were no biases in selecting patients, and none of the
patients had received any prior treatment, such as radiotherapy or
chemotherapy. One hundred and fourteen early ESCC cases were eli-
gible for the establishment of the intended study cohort. Among the
186 excluded patients, 21 were diagnosed with non-tumor lesions, 26
had stromal tumors, 86 patients were precluded due to the unavail-
ability of their normal tissue samples, and 53 samples failed to pass the
pathological quality check, such as tumor cell ratio <80%. Subse-
quently, 40 advanced ESCC cases (n = 16 for T2 and 24 for T3) were
screened after surgical resection without neoadjuvant therapy. All
cases were staged according to the 8th edition of the American Joint
Committee on Cancer (AJCC) TNM staging system.

As for pathology quality control, it was our primary concern for a
strict pathology classification. The complex pathological staging was
based on the morphological observation according to the 8th edition
of the AJCC TNM staging system.Notably, all early-stage ESCC samples
in our cohort were dissected with 3mm thick and stood up one by one
in the embedding, and then marked in the H&E-stained sections. The
H&E-stained sections were reviewed and evaluated by two or three
experienced gastrointestinal pathologists who would mark them
according to the proportion of tumor cells (Score 0 = 0%; 0% < Score
1 < 20%; 20% ≤ Score 2 < 40%; 40% ≤ Score 3 < 60%; 60% ≤ Score
4 < 80%; 80% ≤ Score 5 ≤ 100%). The tumor purity of all samples was
defined as Score 5, indicating the high quality of all samples of our
cohort. The present study was carried out in compliance with the
ethical standards of Helsinki Declaration II and approved by the Insti-
tution Review Board of Fudan University Zhongshan Hospital (B2019-
200R). All the patients’ samples were obtained with Zhongshan’s
approval of the Research Ethics Committee.Written informed consent
wasprovidedby all participants before any study-specific investigation
was performed. Each sample was assigned a new research ID, and the
patient’s name or medical record number used during hospitalization

was de-identified. Clinical information of individual patients, including
age, gender, smoking status, and substages, were listed in Supple-
mentary Data 1a.

According to the WHO and Japanese pathology diagnostic cri-
teria, all the substages in our early ESCC cohort were contained in four
TNM stages: T0 (normal epithelial, n = 114), T1 (T1a/b cancer, n = 114),
T2 (n = 16), and T3 (n = 24) (Supplementary Table 1). T1 was sub-
classified into hyperplasia stage (2_1, n = 114), mild and/or moderate
dysplasia stage (2_2, n = 92), Tis stage (3_1 (n = 61), 3_2 (n = 73), 3_3
(n = 67), 3_4 (n = 19), and 3_5 (n = 39)), lamina propria cancer stage
(including m2 stage, 4_1 (n = 61), 4_2 (n = 18), and 4_3 (n = 7)), and
muscularis mucosa stage (including m3 stage, 5_1 (n = 14), 5_2 (n = 9),
and 5_3 (n = 9)), and submucosal invasion cancer stage (sm stage),
namely sm stage a (6_1 (n = 5), 6_2 (n = 5), and 6_3 (n = 7)), and sm stage
b (7_1 (n = 12), 7_2 (n = 9), and 7_3 (n = 11)) (Supplementary Table 2).
According to the infer of the peaks of neo-mutation, all the samples
were distributed to three phases: NT phase (normal tissue stage and
hyperplasia stage), IEN phase (Tis stage to submucosa stage), and
A-ESCC phase (T2 and T3 stages).

All 786 samples were subjected to proteomic profiling. Owing to
the definite volume of the samples of the early ESCC cohort, only
145 samples (from 58 ESCC patients) were adequate for phosphopro-
teomic profiling: normal tissue (n = 20), hyperplasia stage (n = 37), Tis
stage (n = 31), lamina propria cancer stage (n = 14), muscularis mucosa
stage (n = 5), sm stage a (n = 3), sm stage b (n = 9), T2 stage (n = 10), and
T3 stage (n = 16) (Supplementary Table 4). In addition, only 102 sam-
ples (from 46 ESCC patients) covering 20 substages: stage 1 (n = 12),
hyperplasia stage 2_1 (n = 8), hyperplasia stage 2_2 (n = 4), Tis stage 3_1
(n = 2), Tis stage 3_2 (n = 4), Tis stage 3_3 (n = 5), Tis stage 3_4 (n = 1), Tis
stage 3_5 (n = 6), lamina propria cancer stage 4_1 (n = 7), muscularis
mucosa stage 5_1 (n = 3), muscularis mucosa stage 5_3 (n = 1), sm stage
(a) 6_1 (n = 1), sm stage (a) 6_2 (n = 2), sm stage (a) 6_3 (n = 1), sm stage
(b) 7_1 (n = 4), sm stage (b) 7_2 (n = 3), sm stage (b) 7_3 (n = 4), T2 stage
(n = 15), and T3 stage (n = 19) were adequate for WES.

Validation of an independent ESCC cohort. Two hundred and fifty-
six samples were collected as another independent validation cohort,
from 49 early-stage ESCC patients (Supplementary Table 3 and Sup-
plementary Data 6d). The number of stages in the validation cohort
was proportionable compared with the main cohort. The early-stage
ESCC patients of the validation cohort were presumed to have eso-
phageal lesions and underwent ESD therapy from January 2019 to
December 2019 at Zhongshan Hospital, Fudan University. There were
no biases in selecting patients, and none of the patients had received
any prior treatment, such as radiotherapy or chemotherapy. All the
patient samples were obtained with Zhongshan’s approval of the
Research Ethics Committee. Written informed consent was provided
by all participants before any study-specific investigation was per-
formed. Each sample was assigned a new research ID, and the patient’s
name or medical record number used during hospitalization was de-
identified.

Processingof FFPE specimens. All the FFPE specimenswere prepared
and provided by Zhongshan Hospital, Fudan University. For clinical
sample preparation, slides (10μmthick) fromFFPE blocksweremacro-
dissected, deparaffinized with xylene and washed with ethanol. One 3-
μm-thick slide from FFPE blocks was sectioned for H&E stained. All the
selected specimens were scraped according to the substages, which
were evaluated and confirmed by twoor three experienced and board-
certified gastrointestinal pathologists, and materials were aliquoted
and stored at −80 °C until further processing.

WES
WES was performed by Novogene Co., LTD. DNA from FFPE tumor
tissue samples was collected for WES and matched germline DNA was
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obtained from non-tumor tissue samples. One hundred and two
samples from 46 cases were analyzed. Paired-end sequencing (PE150)
was performed on Illumina HiSeq platform (Illumina Novaseq 6000)
with the mean coverage of the samples conducted in WES was 131×,
and themean volumeof rawdatawas 14.0G,whichwas consistentwith
other literature studies62. The resulting sequence libraries (the paired-
end sequence and insert DNA between two ends) were quantified with
a Qubit 2.0 (Thermo Fisher), and the insert size was determined using
an Agilent 2100 Bioanalyzer. The original fluorescence image files
obtained from the Hiseq platform are transformed into short reads
(raw data) by base calling. These short reads are recorded in FASTQ
format, which contains sequence information and corresponding
sequencing quality information. Base-calling was used to obtain the
raw data (sequenced reads, mean (raw data) of all samples was no less
than 12G) from the primary image data.

DNA extraction and DNA qualification
One hundred and two samples from 46 cases were analyzed by WES.
All the samples were firstly dewaxing with dimethylbenzene, and then
DNA degradation and contamination were monitored on 1% agarose
gels. DNA concentration wasmeasured byQubit® DNAAssay in Qubit®
2.0 Flurometer (Invitrogen, USA, Catalog: 5190-8863). A total amount
of at least 0.6μg genomic DNA per sample was used as input for DNA
sample preparation.

Library preparation
A total amount of 0.6μg genomic DNA per sample was used as input
for DNA sample preparation. Sequencing libraries were generated
usingAgilent SureSelectHumanAll Exon kit (Agilent Technologies,CA,
USA, Catalog: 5190-8863) following the manufacturer’s recommenda-
tions and index codes were added to each sample.

Fragmentation was carried out by hydrodynamic shearing system
(Covaris, Massachusetts, USA) to randomly generate 180–280 bp
fragments. The remaining overhangs were converted into blunt ends
via exonuclease/polymerase activities. After adenylation of 3’ ends of
DNA fragments, adapter oligonucleotideswere ligated.DNA fragments
with ligated adaptermolecules on both ends were selectively enriched
in a PCR reaction. After PCR reaction, libraries hybridizewith the liquid
phase with a biotin-labeled probe, then use magnetic beads with
streptavidin to capture the exons of genes. Captured libraries were
enriched in a PCR reaction to add index tags toprepare for sequencing.
Products were purified using AMPure XP system (Beckman Coulter,
Beverly, USA) and quantified using the Agilent high-sensitivity DNA
assay on the Agilent Bioanalyzer 2100 system.

The clustering of the index-coded samples was performed on a
cBot Cluster Generation System using Hiseq PE Cluster Kit (Illumina)
according to themanufacturer’s instructions. After cluster generation,
the DNA libraries were sequenced on Illumina Hiseq platform and
150 bp paired-end reads were generated.

QC of WES data processing and analysis
The following criteria were used to ensure high-quality clean data for
the downstream bioinformatics analyses:
(1) A paired readwas discarded if at least one read contained adapter

contamination (>10 nucleotides aligned to the adapter), allowing
≤10% mismatches.

(2) A paired read was discarded if >10% of bases were uncertain in at
least one read.

(3) A paired read was discarded if the proportion of low-quality
(Phred quality <5) bases was over 50% in either one read.

At the same time, QC statistics, including total number of reads,
raw data, raw depth, sequencing error rate, percentage of reads with
Q30 (the percent of bases with a Phred-scaled quality score) greater
than 30 andQC content distributionwere calculated and summarized.

Reads mapping to the reference sequence
Valid sequencing data were mapped to the reference human genome
(UCSC hg19) by Burrows–Wheeler Aligner (BWA) software63 to get the
original mapping results stored in BAM format. If one or one paired
read(s) were mapped to multiple positions, the strategy adopted by
BWA was to choose the most likely placement. If two or more most
likely placements were presented, BWA randomly picked one. Then,
SAMtools64 and Picard (http://broadinstitute.github.io/picard/) were
used to sort BAM files and perform duplicate markings, local realign-
ment, and base quality recalibration to generate the final BAM file for
computation of the sequence coverage and depth. The mapping step
was very difficult due to mismatches, including true mutation and
sequencing errors, and duplicates resulting from PCR amplification.
These duplicate reads were uninformative and should not be con-
sidered as evidence for variants. We used Picard to mark these dupli-
cates for subsequent analysis.

Detection and calling of somatic mutations
BWA and Samblaster were used for genome alignment, and muTect
Software64 was used for identifying the Somatic SNV sites, whereas
Strelka65 was used to detect the Somatic InDels. Control-FREEC was
used to detect SCNAs. SAMtools mpileup and bcftools were used for
the variant calling and to identify the SNPs and InDels. Statistical
analysis included two-tailed Student’s t-test and Fisher’s exact test.

GISTIC and MutSig analysis
To identify significantly amplified or deleted focal-level and arm-level
events, we used The Genomic Identification of Significant Targets in
Cancer (GISTIC) algorithm66 to the genomic data in the Fudan cohort,
and the Q value <0.25 was considered significant. The genes of each
sample were assigned a threshold copy number level to reflect the
magnitude of its deletion or amplification. These are integer values
ranging from −2 to 2, where 0 means no amplification or deletion of
magnitude greater than the threshold parameters described above.
Amplifications are represented by positive numbers: 1 means amplifi-
cation above the amplification threshold; 2 means amplification larger
than the arm-level amplification observed in the sample. Deletions are
represented by negative numbers: −1 means deletion beyond the
threshold, and −2 means deletions greater than the minimum arm-
level copy number observed in the sample.

The gain of neo-mutations
To investigate the mutation at all stages during the progression of
ESCC, the numbers of totalmutations and neo-mutations at each stage
were counted. The number of neo-mutations at a certain stage could
reflect the impacts of mutations in the progression of ESCC, demon-
strating the genomic characteristics of the early-stage ESCC; therefore,
we estimated the gain of neo-mutations. The mutation frequency was
estimated by the ratio of the number of mutated samples vs. the
number of total samples18. Here, the neo-mutation represented the
mutations appearing at a certain stage, but was not identified in earlier
stages. For example, the mutation of FAT4 was detected in the Tis
stage, but not in the hyperplasia stage.

Mutational signature analysis
Based on the single nucleotide substitution and its adjacent bases
pattern of samples, frequencies of 96 possiblemutation types for each
sample could be estimated. NMF algorithm was used to estimate the
minimal components that could explain maximum variance among
samples. Then each componentwas compared tomutation patterns of
30 validated cancer signatures reported from the COSMIC database to
identify cancer-related mutational signatures in the Fudan cohort and
other ESCC cohorts. Cosine similarity analysis66 was used to measure
the similarity between components and signatures,which ranged from
0 to 1, indicating maximal dissimilarity to maximal similarity.
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Analysis of somatic SNVs signatures
SBS16 signature enrichment analysis. To identify SBS and portray
the contribution across the whole genome based on WES data, we
applied the analysis procedure as an R/CRAN package sigminer (Ver-
sion 2.0.1) (https://cran.r-project.org/web/packages/sigminer/), to
extract and analyze mutational signatures for genomic variations,
providing valuable insights into cancer study. The most common cri-
terion to estimate the signature number is the cophenetic correlation
coefficient. Sigminer package (Version 2.0.1) can provide both relative
and absolute exposures of cancer signatures. In addition, we per-
formed the OS survival analysis for SBS16 signature (log-rank test,
p <0.05), which was referred from in TCGA cohort genomic dataset15

(https://www.cbioportal.org/).

APOBEC enrichment estimation. APOBEC-driven mutagenesis is
associated with C>T transition events occurring in TCW motif. We
applied plotApobecDiff (https://rdrr.io/bioc/maftools/man/
plotApobecDiff) to estimate APOBEC enrichment scores estimated,
by which all the samples for WES were grouped into two: APOBEC
enriched and non-APOBEC enriched. The samemethods are applied in
previously published studies67.

Defining cancer-associated genes (CAGs)
CAGs were compiled from genes defined by Bailey et al.68 and cancer-
associated genes listed inMertins et al.69 and adapted from Vogelstein
et al.70. The list of genes is provided in Supplementary Data 6g.

Analysis of SCNAs and the impacts on protein expressions
SCNAs analysis was performed using the WES-derived BAM files that
were processed in the somatic mutation detection pipeline. These
BAM files were further processed by the R package copywriteR (ver-
sion 1.18.0), which used off-target WES read to infer copy number
values. In this study, we used the multiomicsViz (version 1.6.0) in R
(version 3.5.1) to perform the correlation of genomics and proteomics
data. Correlations between SCNAs and proteome (with proteome data
mapped to genes, by choosing the most variable protein as the gene-
level representative) were determined using Spearman’s correlation of
common genes present in SCNA-proteome (3474mutations/proteins),
which was the key event in esophageal carcinogenesis. Only genes or
proteinswith <66.7%NAswere considered for the analysis, and protein
IDs were mapped to gene names.

Protein extraction and trypsin digestion
All samples of early and advanced ESCC patients were dissected with
microdissection and collected in 1.5mL EP tubes, and then stored in
the refrigerator at −80 °C. The thickness of every FFPE piece is 10μM,
and every substage is no more than 10,000 cells.

Fifty μL TCEP buffer (2% deoxycholic acid sodium salt (Solarbio,
Catalog: D8330)), 40mM 2-chloroacetamide (ALDRICH, Catalog:
22790-250G-F), 100mM tris-phosphine hydrochloride (AMRESCO,
Catalog: 0497), 10mM (2-carboxyl)-phosphine hydrochloride
(ALDRICH, Catalog: 4706-10G), 1 mM phenylmethylsulfonyl fluoride
(AMRESCO, Catalog: M145-5G) mixed with MS water (J.T. Baker,
Catalog: 4218-03), PH 8.8) were added into 1.5 mL EP tubes with
prepared samples, and then heated at 99 °C metal bath for 30min.
After cooling to room temperature, 3 μg trypsin (Promega, Catalog:
V528A) was added into each tube and digested for 18 h at 37 °C
incubator. Then, 13 μL 10% formic acid (FA) (Sigma, Catalog: F0507)
was added into each tube and made vortex for 3min, and then
centrifuged for 5min (12,000 g). After that, a new 1.5 mL tube with
350 μL buffer (0.1% FA in 50% acetonitrile [ACN] (J.T. Baker, Catalog:
9830-03)) is needed for collecting the supernatant for extraction
(vortex for 3min, and then 12,000 g centrifuged for 5min). And
then, the supernatant was transferred into a new tube for drying at
60 °C in a vacuum drier. After drying, 100 μL 0.1% FA was needed for

dissolving the peptides and vortex for 3min, and then centrifuged
for 3min (12,000 g). The supernatant was picked into a new tube
and then desalinated. Before desalination, the activation of pillars
with two slides of 3M C18 disk is required, and the lipid is as follows:
90 μL 100% ACN twice, 90 μL 50 and 80% ACN once in turn, and then
90 μL 50% ACN once. The supernatant of the tubes was then loaded
into the pillar twice, and decontamination with 90 μL 0.1% FA twice.
Lastly, 90 μL elution buffer (0.1% FA in 50% ACN) was added into the
pillar for elution twice and only the effluent was collected for MS.
Then the collection liquid was put at 60 °C in a vacuum drier for
drying (~1.5 h).

Proteome/phosphoproteome analysis in LC-MS/MS analysis
For the proteomic profiling of samples, peptides were analyzed on a
Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer
(Thermo Fisher Scientific, Rockford, IL, USA) coupled with a high-
performance liquid chromatography (HPLC) system (EASY nLC
1200, Thermo Fisher). Dried peptide samples re-dissolved in Solvent
A (0.1% FA in water) were loaded to a 2-cm self-packed trap column
(100-μm inner diameter, 3 μm ReproSil-Pur C18-AQ beads, Dr.
Maisch GmbH) using Solvent A and separated on a 150-μm-inner-
diameter column with a length of 15 cm (1.9 μmReproSil-Pur C18-AQ
beads, Dr. Maisch GmbH) over a 150min gradient (Solvent A: 0.1% FA
in water; Solvent B: 0.1% FA in 80% ACN) at a constant flow rate of
600 nL/min (0–150min, 0min, 4% B; 0–10min, 4–15% B; 10–125min,
15–30% B; 125–140min, 30–50% B; 140–141min, 50–100% B;
141–150min, 100%B). The eluted peptideswere ionized under 2.0 kV
and introduced intomass spectrometer). MSwas performed under a
data-dependent acquisition mode. For the MS1 Spectra full scan,
ions with m/z ranging from 300 to 1400 were acquired by Orbitrap
mass analyzer at a high resolution of 120,000. The automatic gain
control (AGC) target value was set as 3E6. The maximal ion injection
time was 80ms. MS2 Spectra acquisition was performed in the ion
trap mode at a rapid speed. Precursor ions were selected and frag-
mented with higher energy collision dissociation (HCD) with a nor-
malized collision energy of 27%. Fragment ions were analyzed by the
ion trap mass analyzer with the AGC target at 5E4. The maximal ion
injection time of MS2 was 20ms. Peptides that triggered MS/MS
scans were dynamically excluded from further MS/MS scans for 12 s.
The same methods and parameters have been applied in other
published studies71.

For the phosphoproteomic samples, peptides were analyzed on
a Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer
(Thermo Fisher Scientific) coupled with a HPLC system (EASY nLC
1200, Thermo Fisher Scientific). Dried peptide samples re-dissolved
in Solvent A (0.1% formic acid in water) were loaded onto a 2-cm self-
packed trap column (100 μm inner diameter, 3 μmReproSil-Pur C18-
AQbeads, Dr.MaischGmbH) using Solvent A and separated on a 150-
μm-inner-diameter column with a length of 30 cm (1.9 μm ReproSil-
Pur C18-AQ beads, Dr. Maisch GmbH) over a 150-min gradient
(buffer A: 0.1% formic acid in water; buffer B: 0.1% formic acid in 80%
ACN) at a constant flow rate of 600 nL/min (0–150min, 0min, 4% B;
0–10min, 4–15% B; 10–125min, 15–30% B; 125–140min, 30–50% B;
140–141min, 50–100% B; 141–150min, 100% B). The eluted phos-
phopeptides were ionized and detected by a Q Exactive HF-X Hybrid
Quadrupole-Orbitrap mass spectrometry. Mass spectra were
acquired over the scan range of m/z 300–1400 at a resolution of
120,000 (AUG target value of 3E+06 and maximum injection time
80ms). For the MS2 scan, HCD fragmentation was performed at a
normalized collision energy of 30%. The MS2 AGC target was set to
5E4 with a maximum injection time of 100ms. The peptide mode
was selected for monoisotopic precursor scan, and charge state
screening was enabled to reject unassigned 1+, 7+, 8+, and >8+ ions
with a dynamic exclusion time of 40 s to discriminate against pre-
viously analyzed ions between ±10 ppm.
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Phosphopeptide enrichment and analysis
All qualified profiling data were processed at firmiana platform against
the human RefSeq protein database (updated on July 4, 2013) in the
National Center for Biotechnology Information (NCBI). Owing to the
definite volume of the samples of the early ESCC cohort, only
145 samples (from 41 ESCC patients) were found to be adequate.

The phosphoproteome samples were prepared by Fe-NTA Phos-
phopeptide Enrichment Kit (Thermo, Catalog: A32992) according to
the manufacturer’s instructions. Briefly, 2mg peptides were resus-
pended in 200μL binding/wash buffer and loaded to the equilibrated
spin column. The resin was mixed with the sample by gently tapping.
The mixture was incubated for 30min and centrifuged at 1000× g for
30 s to discard the flowthrough. The column was then washed with
200μL of binding/wash buffer and centrifuged at 1000 × g for 30 s
three times and washed with 200μL of LC-MS grade water one more
time. The phosphopeptide was eluted with 100μL of elution buffer
and centrifuged at 1000× g for 30 s two times. Phosphopeptides were
dried down for LC-MS/MS analysis.

Quantification of global proteome data and phosphopro-
teome data
In our study, all MS raw files were processed at firmiana platform72 (a
one-stop proteomic cloud platform: http://www.firmiana.org). Briefly,
all MS raw files were searched against the NCBI human RefSeq protein
database (updated on July 4, 2013, 32,015 entries) in Mascot search
engine (version 2.3, Matrix Science Inc). Trypsin was used as the pro-
teolytic enzyme allowing up to two missed cleavages. Carbamido-
methyl (C) was considered as a fixed modification. For the proteome
profiling data, variable modifications were oxidation (M) and acetyla-
tion (Protein N-term). For the phosphoproteome data, variable mod-
ifications were oxidation (M), acetylation (Protein N-term) and
phospho (S/T/Y). All the identifiedpeptideswerequantified at firmiana
platform with peaks area derived from their MS1 intensity. The mass
tolerances were 20ppm for precursor and 50mmu for the product
collected by Q Exactive HF-X, which has been applied in previously
published studies71. Precursor ion score charges were limited to +2, +3,
and +4. The FDRs of the peptide-spectrummatches and proteins were
set at a maximum 1%. The same cutoff strategies of FDR have been
widely used in recently published researches73,74. Label-free protein
quantifications were calculated in our cohort, that so-called iBAQ
algorithm19,75, which divided the protein abundance (derived from
identified peptides’ intensities) by the number of theoretically obser-
vable peptides. Then the FOT, defined as a protein’s iBAQ divided by
the total iBAQ of all identified proteins within one sample, was used to
represent the normalized abundance of a particular protein across
samples.

Data imputation
For the missing values (NAs) in our study, we first applied a match
between runs (MBR) algorithm76,77 in this study, which has been proven
to be an effective technique to fill themissing values, whichwaswidely
used in other proteomic studies78. In detail, we built a dynamic
regression function based on commonly identified peptides in sam-
ples. According to correlation valueR2, linearor quadratic functionwas
applied for regression to calculate retention time (RT) of corre-
sponding hidden peptides, and check the existence of the extracted
ion chromatogram (XIC) based on the m/z and calculated RT. The
function evaluated the peak area values of those existed XICs. These
peak area values are considered as parts of corresponding proteins.
This strategy has been applied in other published proteomic
studies79,80.

At proteomic profiling of 786 samples, all the proteome data
were processed as follows: E1 (10,913 GPs): all the proteins were
required to have at least two unique strict peptide, and we excluded
keratins proteins of which the maximum FOT in all 786 experiments

were less than 1.0E–5 in FOT; E2 (6,885 GPs): GPs were identified in
more than 20% samples of each substage, and the FOT of all proteins
whose FOT values were less than 1.0E–5 were replacedwith 1.0E–5 to
adjust small values, which is also applied in other published pro-
teomic studies18,79.

In our study, the trypsin digestion and mass spectrometric ana-
lysis of the forty-two HEK293T cell samples (Cat# CRL-11268 from
ATCC, RRID: CVCL_QW54) were consistent with the methods of early
ESCC sample in our cohort, and then applied to assess the quality
control of the performance of MS, of which the measurement is often
applied in proteogenomic studies18. In our study, Spearman’s correla-
tion coefficient of HEK293T cells (n = 42) was 0.91, indicating the
consistent stability of our MS platform.

The unified terms for quantitative analysis
The unified terms for quantitative analysis at the genome level. As
for the correlation analysis (1) between the mutation characteristics
and three phases of ESCC, (2) between the different clinic features of
ESCCpatients (e.g.,MACF1), the termsof findings/results of the related
correlations were uniformly defined as “prominent/ordinary” with the
measurements of two-sided Fisher’ exact test/Chip-seq test (p < 0.05)
and proportions, including the mutations (e.g., TP53 and MACF1),
mutational signatures (e.g., SBS16 and APOBEC), etc. The same meth-
ods of the terminology were used for proteogenomic analysis in
CPTAC81 and Wu’s team82.

As for the genome-proteome combined analysis, the terms of the
findings/results of the impacts of mutations (e.g., AKAP9, MACF1) on
their counterpart proteins/phosphoproteins expression, were uni-
formly defined as “upregulate/downregulate” with the measurements
of statistic test (two-sided Student’s t-test/Wilcoxon rank-signed test)
and the fold change (≥2 and ≤0.5 for upregulated and downregulated,
respectively). The termsoffindings/results of the impacts ofmutations
(e.g., AKAP9, MACF1) on other proteins/phosphoproteins expression
and the relatedpathways,wereuniformlydefined as “positive/negative
impacts”with themeasurements of statistic test (two-sidedStudent’s t-
test/Wilcoxon rank-signed test) and the fold change (≥2 and ≤0.5 for
positive impacts and negative impacts, respectively). The same
methods of the terminology were applied for proteogenomic analysis
in CPTAC81,83.

The unified terms for quantitative analysis at the proteome and
phosphoproteome levels. As for the analysis of the proteins/phos-
phoproteins expressions and identifications in the comparisons
between two group comparisons at proteome and phosphoproteome
levels (e.g., two proteomic clusters, mutation group vs. WT group,
etc.), the terms of the findings/results were uniformly defined as
“overrepresent/underrepresent” with the measurement results of sta-
tistic test (two-sided Student’s t-test/Wilcoxon rank-signed test) and
the fold change (≥2 and ≤0.5 for overrepresented and under-
represented, respectively). The samemethodsof the terminologywere
also applied in our previous study71 and CPTAC81.

As for the analysis of the proteins/phosphoproteins expressions
and identifications among three or more group comparisons at pro-
teome and phosphoproteome levels (e.g., 3 phases, 9 stages, 8 waves,
etc.), the terms of the findings/results were uniformly defined as
“increase/decrease” with the measurement results of statistic test
(Kruskal–Wallis test) and fold changes (≥2 and ≤0.5 for increase and
decrease, respectively). The same methods of the terminology were
also applied in our previous study84 and Zeng’s team85.

As for the correlation analysis between two proteins/phospho-
proteins (e.g., AKAP9 and PRKACA,MACF1 and GSK3B, etc.), the terms
of the findings/results were uniformly defined as “positive/negative
association” with the measurement results of correlation coefficients
(two-sided Pearson’s correlation) and p values (<0.05). The same
methods of the terminology were also applied in our previous study84
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and CPTAC86,87. In addition, the outliers and missing values were
excluded from calculating the correlations.

As for the enrichment analysis of the proteins/phosphoproteins
(e.g., cluster 1 overrepresented proteins, etc.), the terms of the find-
ings/results were uniformly defined as “dominant/recessive” with the
measurement results of adjust. FDR (<0.05) and/or proteins/phos-
phoproteins counts. The same methods of the terminology were also
applied in our previous study71 and CPTAC88.

Batch effect analysis
The hierarchical clustering and principal component analyses were
implemented by programming language R (version 4.0.2) to assess the
batch effects in our proteome dataset with respect to the following
two variables: batch identity and sample type (substage). For the
hierarchical clustering analysis, the pair-wise Spearman’s correlation
coefficients of the same substage samples were investigated. The
samples of the same type exhibited a high similarity, whereas samples
of different types clearly differed. There was no clear association
between the batch intensity and correlation coefficients. Furthermore,
we used the average linkage algorithm with one minus Spearman’s
correlation coefficient as the dissimilarity measure. In the global
heatmap in our study, each protein expression value in the global
proteomic expressionmatrix was transformed into a Z-score across all
samples. For the sample-wise and protein-wise clustering, the distance
was set as “Euclidean” distance, and the weight method was “com-
plete”. The Z-score-transformedmatrix was clustered using R package:
pheatmap (version 1.0.12).

Interpretation of the phases, clusters, waves/panels, and tracks
The three phases consisted of the NT phase (stages 1 and 2), IEN phase
(stage 3 last till to stage 7), and A-ESCC phase (T2 and T3 stage), which
were based on the peaks of the gain of neo-mutations and the histo-
pathological stages in ESCC progression. In our cohort, we found the
number of the neo-mutations peaked at stage 3 (Tis stage) and the
T2 stage, allowing us to explore the key events in ESCC progression.

The two clusters were based on the distinctive proteomic char-
acterization through consensus clustering analysis, which were asso-
ciated with the subclassification of stages in ESCC progression.
Specifically, C1 included stages 1 and2, andC2contained the restof the
(sub)stages, including the T2 and T3 stages. The proteomic clusters
provided us a chance to explore the different molecular character-
izations of the benign and relative malignant ESCC at the multi-
omics level.

The substage-based eight dynamic waves/panels were shown to
portray the carcinogenesis path in ESCCprogression in a time-resolved
mode at the multi-omics level. The eight dynamic waves/panels
revealed the substage-specific molecular characteristics and provided
potential candidates for ESCC malignancy.

The six tracks represented the personalized lineages of early-
stage ESCC patients at the multi-omics level, which were closely
associatedwith various clinical features. For example, track 3, featured
with cell cycle, had the highest proportion of female patients (29%).
Track 6, featured as immune response, had the highest proportion of
patients with drinking/smoking habits (18%).

Differential proteomics analysis
A SAM42 analysis identified 2922 differential proteins in C1 and C2,
which were identified based on all 786 samples from 114 early-stage
and 40 advanced-stage ESCC patients. The statistical analysis was
performed with two-tailed Student’s t-test on overlapping samples to
determine the differential abundanceof proteins between twoclusters
and diverse tracks, in which statistical significance (two-sided Stu-
dent’s t-test, FDR <0.05, and differential expression C2 vs. C1 ratio ≥ 2
or ≤ 0.5) was considered in the differential analysis. The two-tailed
Student’s t-test was used for statistical analysis. Proteinswith noNAs in

at least 20%of sampleswere considered ineach substage, inwhichNAs
which was assigned to 1.0E–5, which was applied in other studies79. In
detail, the data type of SAM analysis was set as “two-class unpaired”,
delta value was set respectively tomeet FDR <0.01, and the “standard”
(t-statistic)wasused. Thep valueswere adjusted and set theq-valuesof
DEPs. The DEPs were defined if they met the following criteria: (1) q
value less than 0.01, and (2) fold change (FC, C2 vs. C1 ratio) was either
no less than2 (≥2) or nomore than0.5 (≤0.5). As a result, a total of 2922
DEPs were detected.

When comparing the DEPs of 22 substages, we focused on the
substages’ highly expressed proteins (one substage versus all other
substages), which were then enriched by GO/KEGG database89/
Reactome90. We then annotated the signaling pathways (FDR <0.05)
and manually checked the pathway-associated proteins, which were
then estimated whether they were significantly associated with the
22 substages of ESCC (Kruskal–Wallis test).

In a differential analysis of proteins in ESCC progression (gradu-
ally decreased or increased) at the protein level, the highly expressed
proteins of each substage/track/panel were screened, in which the
differential expressed ratio and adjust. FDR (Kruskal–Wallis test) was
considered. Statistical analysis was performed in R (version 3.5.1).

Pathway enrichment analysis
To investigate the dominant signaling pathways of 2 clusters, 6 tracks,
and 22 substages, we used gene sets of molecular pathways from GO/
KEGG89/Reactome90 databases to compute the pathway. Statistical
significance was considered when FDR was less than 0.05. The differ-
ential score (Q) is obtained as signed –log10 FDR.

To assess the impacts of the mutations, we applied GSEA for
pathway enrichment analysis91. GSEA evaluated and determined whe-
ther priori defined sets of genes show statistically significant, cumu-
lative changes in gene expression that are correlated with a specific
phenotype. To assess the impacts of the mutations (e.g., OLFM4,
DCTN2, MACF1, AKAP9, EPAS1, EPHA3, STAG2, USP6), the samples
grouped were subjected to GSEA, respectively. The represented pro-
teins were identified in all samples (FDR <0.01, unique peptides ≥ 2).
Molecular Signatures Database (MSigDB) of KEGG gene sets (C2) was
used for enrichment analysis. FDR value of 0.05 was used as a cutoff.
The enrichment score in GSEA was calculated by first ranking the
proteins from the most to least significant with respect to the two
phenotypes (i.e., Mut and WT); the entire ranked list was then used to
assess how the proteins of each gene set were distributed across the
ranked list.

Principal component analysis
We performed PCA on a total of 6885 proteins of 786 samples to
illustrate the global proteomic difference among the 22 ESCC sub-
stages. The PCA function under the scikit-learn R package was imple-
mented for unsupervised clustering analysis with the parameter
“n_components = 2” on the expression matrix of global proteomic
data. A colored ellipse represented the 95% confidence coverage for
each group, calculated based on the mean and covariance of points in
each specific substage.

Consensus clustering analysis of proteomics data
The protein expressionmatrix of the 786 samples was used to identify
the proteomic subtypes using the consensus cluster method. Con-
sensus clustering was performed using the ConsensusClusterPlus R
package (ConsensusclusterPlus, version 1.46.0)92 with E2 proteins
(n = 6885). Consensus Cluster Plus parameters were reps = 1000,
pItem =0.8, pFeature = 1, clusterAlg = “km”, distance = “euclidean”,
plot = “PDF”. Euclidean distance and 1000 repetitions in the range of
2–10 clusters. The consensus matrix of κ = 10 showed clear separation
among clusters. The empirical cumulative distribution function plot
initially showed optimal separation. Clustering by κ = 2 appeared to
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have the most obvious cut between clusters and showed a significant
association with the pathological substages. Taken together, pro-
teome clusters were defined using k-means consensus clustering with
κ = 2. As summarized in Supplementary Fig. 6a, e, the clustering ana-
lysis of the samples (vertical column) by protein abundance (hor-
izontal rows) classified all samples as two proteomic clusters defined
by silhouette analyses.

Survival analysis
To investigate the impacts of mutations on protein expressions and
the development of ESCC carcinogenesis, identified common genes
in genomic and proteomic data of biological pathways were
screened to perform the survival analysis. The data associated with
OS information was referenced to other ESCC cohorts. In addition,
Kaplan–Meier survival curves (log-rank test) were used for OS ana-
lysis. p value (less than 0.05) for significance was used. Owing to the
lack of proteomics data of early ESCC, the OS data (RNA-seq, n
(ESCC) = 81) of PGK1 was downloaded from the TCGA database93

(https://portal.gdc.cancer.gov).

Trajectory inference methods and tracks analysis
We used the monocle (version 2.10.1) and trajectory inference meth-
ods to trace the carcinogenesis lineages in 114 early-stage ESCC
patients. Firstly, the proteins (E1, n = 9,741) of all 746 samples (114 early
ESCC cohort) were used. In addition, the proteins with mean expres-
sion over 1.0E–1 were highlighted and screened. The dataset was
clustered and pre-prepared by t-distributed stochastic neighbor
embedding using a Barnes–Hut implementation with Rtsne (version
0.15) in R (version 3.5.1). All the substages of each early ESCC patient
were considered as the pseudotime to construct the trajectory of each
early ESCC patient. In the end, the trajectory of each ESCC patient was
revealed; and then, nine groups were determined by the number of
nodes and bifurcations, and finally, six tracks were determined.

Sequentially, 22 substages of 114 early-stage ESCC patients were
used as the pseudotime to construct the entire trajectory of ESCC
patients. The proteins which were gradually expressed in ESCC pro-
gression (Kruskal–Wallis test, stage9 vs. stage 1 ratio≥ 2, FDR <0.05) in
each track were determined by the expression trend (K > 0) in ESCC
progression by fitting curves with ggplot2 (version 3.3.0) in R (version
3.5.1), which were applied to the pathways enrichment to determine
the dominant pathways of 6 tracks. Thus, in Fig. 6b, the dominant
pathway of each track was defined based on the enrichment of the
increased proteins during the carcinogenesis of ESCC, which was dif-
ferentially expressed among the substages in ESCC progression
(Kruskal–Wallis test, stage 9 vs. stage 1 ratio ≥ 2, FDR <0.05).

Kinase activity prediction and phosphopeptide analysis
The phosphoproteome data of 145 ESCC samples were searched
against the database with MaxQuant. The phosphorylation of S or T
or Y was set as variable modification, in which three mis-cleavages
were allowed, with a minimum Andromeda score of 40 for spectra
matches. The ratios of identified phosphorylation sites of all sam-
ples were used to estimate the kinase activities by KSEA algorithm94.
The information on kinase-substrate relationships was obtained
from publicly available databases, including PhosphoSite95,
Phospho.ELM96 and PhosphoPOINT97. The information on substrate
motifs was obtained either from the literature98 or from an analysis
of the KSEA dataset with Motif (sP)99. PGK1 S203 was the only
phosphosite, which was frequently detected (125/145) in ESCC pro-
gression. The motif (sP) was then matched to Human Protein
Reference Database (http://hprd.org/PhosphoMotif_finder) and the
kinase-substrate-motif network analysis was referenced to Phos-
phoSitePlus (PSP, https://www.phosphosite.org/homeAction)100 and
NetworKIN 3.0101. Statistical analysis was performed in R (version
3.5.1) with the Kruskal–Wallis test.

In our cohort, we adjusted the abundance of phosphoproteins by
the total protein counterpart abundance, which has been applied in
previously published studies26. In addition, the phosphosites shown in
the quantitative analysis were identified in ≥30% of samples, which has
been applied in previously published studies81,88.

The samples used in the statistical comparison
In the analysis of proteogenomic profiling in ESCC progression (Fig. 1
and Supplementary Figs. 1 and 2), a total of 102 samples for WES were
used to explore the correlations between the twomutations. As for the
analysis of the protein and phosphosite identifications on the basis of
the (sub)stages/phases in ESCC progression, a total of 786 samples for
proteomic profiling and 145 samples for phosphoproteomic profiling
in the main cohort, and 256 samples for proteomic profiling in the
validation cohort were applied.

In the analysis of the molecular characterization of alcohol
drinking habit-associated signatures (SBS16 and APOBEC) (Fig. 2 and
Supplementary Fig. 3), a total of overlapped samples (n = 102) for
proteomic profiling and WES were employed to investigate the cor-
relation (1) between signatures (SBS16 and APOBEC) and the muta-
tions, (2) between the signatures (APOBEC and DNA repair), (3)
between APOBEC signature and the clinic features of ESCC patients
(e.g., drinking/smoking habits), and analyze the protein levels of the
DEPs in two groups comparison (e.g., Mutation group vs. WT group,
APOBEC group vs. non-APOBEC group). As for the analysis of the
phosphoprotein levels of theDEPsof thephases inESCCprogression, a
total of 145 samples for phosphoproteomic profiling in the main
cohort were used.

In the analysis of impacts of the chromosome 3q gain, TP53 and
MACF1 mutations in ESCC progression (Fig. 3 and Supplementary
Fig. 4), the overlapped samples (n = 102) for proteomic profiling and
WES were used to analyze the correlation (1) between mutational
characteristics (e.g., chr3q gain, MACF1 mutation, TP63/PIK3CA/SOX2
amplifications) and the three phases in ESCC progression, (2) between
TP53 mutation and the features of ESCC patients (e.g., gender, age),
and to explore the impacts of mutations on their counterpart protein
levels. A total of 786 samples for proteomic profiling and 145 samples
for phosphoproteomic profiling in the main cohort were applied to
analyze the DEPs in the three phases of ESCC progression.

In the analysis of substage-based carcinogenesis path in ESCC
progression in a time-resolved mode at the multi-omics level (Fig. 4
and Supplementary Fig. 5), the overlapped samples (n = 102) for pro-
teomic profiling and WES were used to explore the correlation
betweenmutations and the stages/phases in ESCC progression. A total
of 786 samples for proteomic profiling and 145 samples for phos-
phoproteomic profiling in the main cohort, and 256 samples for pro-
teomic profiling in the validation cohort were applied to investigate
the protein and phosphoprotein levels of the phases/stages in ESCC
progression.

In the analysis of distinctive proteomic characterization pro-
teomic clusters which were associated with the phases in ESCC pro-
gression (Fig. 5 and Supplementary Fig. 6), the overlapped samples
(n = 102) for proteomic profiling and WES were employed to explore
the correlation between the two proteomic clusters and the (sub)
stage/phases in ESCC progression, and the ESCC patients (e.g., age),
and analyze the protein levels of theDEPs between themutation group
and WT group. A total of 786 samples for proteomic profiling and
145 samples for phosphoproteomic profiling in the main cohort, and
256 samples for proteomic profiling in the validation cohort were
applied to investigate the protein levels and phosphoprotein levels of
the DEPs in the (sub)stages in ESCC progression.

In the analysis of the personalized lineages of early-stage ESCC
patients, which were closely associated with various clinical features
(Fig. 6 and Supplementary Fig. 7), 68 early-stage ESCC samples from32
cases for WES were employed to explore the correlation (1) between
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mutations and tracks, (2) between tracks and the features of ESCC
patients. A total of 746 early-stage ESCC samples for proteomic pro-
filing in themain cohort and 256 samples for proteomicprofiling in the
validation cohort were used to explore the characteristics of six tracks
of ESCC.

In the analysis of the validation of PGK1 (S203) promoting ESCC
progression, which was a key enzyme in glycolysis (Figs. 7 and 8 and
Supplementary Fig. 8), 786 samples for proteomic profiling and
145 samples for phosphoproteomic profiling were used to differential
expression of PGK1 in the stages in ESCCprogression, and 102 samples
overlapped for proteomic profiling and WES were used to explore the
impacts of SCNA of CDK2 on PGK1 and other kinases which were
associated with the motif of PGK1 (S203). Twenty-four and fourteen
samples were used for the comparisons of metabolite levels in Sup-
plementary Fig. 8c and Supplementary Fig. 8d, respectively. Seventy-
two sampleswere used for the comparisons of PDHactivity in Fig. 8d at
the cell level. Twenty-four and sixteen samples were used for com-
parisons in seahorse assay in Fig. 8e and Fig. 8f, respectively. Three
hundred and twenty samples were used for the comparisons of cell
proliferation assay exploring the impacts of the overexpression/
knockdownof PGK1 andERK2 in Fig. 8g andSupplementary Fig. 8f, and
two hundred samples were used for the comparisons of cell pro-
liferation assay exploring the impacts of the overexpression/knock-
downof other enzymes (e.g., GAPDH and PGM1) in glycolysis PGK1 and
ERK2 in Supplementary Fig. 8h. Thirty samples were used for the
comparisons of the PGK1 inhibition effects in Fig. 8h, and twenty
samples were used for the comparisons of the metabolites’ inhibition
effects in Supplementary Fig. 8j. As in the mouse xenograft assay, one
hundred and thirty mouse samples were used for the comparisons of
tumor weight in Fig. 8i. Forty-eight samples were used for the com-
parisons of PGK1 expression in Supplementary Fig. 8m.

Immunohistochemistry (IHC) analysis
To detect the expression of PGK1 in the tissue by IHC staining, 3-μm-
thick sections from each FFPE tissue block were de-waxed with xylene
and rehydrated through a graded series of ethanol, prepared by
Zhongshan Hospital, Fudan University.

Total PGK1 immunostaining was performed on representative
samples from normal to progressive ESCC. The IHC assay using PGK1
rabbit antibody (Wuhan Fine Biotech Co., Ltd, Catalog: FNab06354,
dilution 1:200) was performed with Ventana iView DAB Detection Kit
on a BenchMark XT automated staining system (Ventana Medical
Systems, Tucson, AZ). Normal IgG from the same species of primary
antibody diluted to match the concentration of the primary antibody
was used as the negative control. For PGK1 negative cases, the
experiments were repeated on the whole section in order to exclude
heterogeneity. For assessment of staining, slides were scanned with
the ScanScope System (Aperio, CA) and viewed with ImageScope
(Aperio).

Metabolite quantification
The pyruvate, lactate, citrate, succinate, fumarate, and glycine levels
were measured using NMR spectra, which were also applied in other
studies102. 3-phosphoglycerate and serine levels were measured using
LC-MS/MS. Briefly, ~1 × 107 cells were treated with a cold aqueous
methanol solution (80% v/v) to stop cell metabolism quickly. Samples
were then centrifuged for 15min at 15,000 × g and 4 °C, after which the
supernatants were collected. The supernatants were then lyophilized
and reconstituted in 500μL methanol/water (10:90 v/v). The sepa-
rated metabolites were fractioned by using HPLC employing an LC-
20AB pump (Shimadzu, Kyoto, Japan) and the Luna NH2 column (P/N
00B-4378-B0; 5μm, 50× 2.0mm; Phenomenex, Torrance, CA). The
mobile phase comprised eluent A (0.77 g NH4OAc, 1.25mL NH4OH,
25mL ACN, and 300 µL acetic acid [HAc] dissolved in 500mL water)
and eluentB (ACN). The elutionprogramwas as follows,0.1min, 85%B;

3min, 30%B; 12min, 2%B; 15min, 2% B; and 16–28min, 85%B. Theflow
rate of the pumpwas0.3mL/min, and themass spectrometer usedwas
the 4000 QTRAP system (AB Sciex, Framingham, MA) operated in
multiple reaction monitoring mode. The MS parameters were elec-
trospray voltage, 5 kV; gas 1, 30 kPa; gas 2, 30 kPa; curtain gas, 25 kPa;
and temperature, 500 °C. The ions monitored for 3-phosphoglycerate
and serine were at 185-79 and 106-60, respectively.

Seahorse assays
The Mitochondrial respiration OCR and ECAR were measured by a
Seahorse XF96 Extracellular Flux Analyzer (Agilent Technologies, CA,
USA), using a Cell Mito Stress Test Kit (103015, Agilent Technologies)
and a Glycolysis Stress Test Kit (103020, Agilent Technologies),
respectively. TE-8 cells were seeded intoXF96Cell CultureMicroplates
(101085, Agilent Technologies) at the density of 5000 cells/well in an
assay media supplemented with 1mM pyruvate and 80uL of RPMI,
centrifuged for 10min, and allowed to adhere toplate overnight. Then,
the culture medium was replaced with phenol red-free assay solution
and cells were equilibrated for 1 h without CO2 immediately before the
extracellular flux (XF) assay. For the mitochondrial stress test, oligo-
mycin, carbonyl cyanide 4-(triflfluoromethoxy) phenylhydrazone and
rotenone/antimycin A, respectively, were added according to the
manufacturer’s instructions and protocols. The glycolytic rate assay
was performed in XF Base Media without phenol red, oligomycin and
2-deoxy-Dglucose were added in proper order.

Cell lines and cell culture
The following ESCC cell lines were used in this assay: Human ECA109
cells (ATCC, Catalog: GCC-OE0002CS, RRID: CVCL_6898), Human
KYSE150 cells (ATCC, Catalog: GCC-OE0004CS, RRID: CVCL_QW54),
Human KYSE70 cells (YaJi Biological, Catalog: YS1331C, RRID:
CVCL_1356),HumanTE-8 cells (YaJi Biological, Catalog: YS2958C, RRID:
CVCL_1766). All cells were cultivated in RPMI-1640 medium (HyClone,
Logan, UT, USA) supplemented with 10% fetal bovine serum (HyClone,
Logan, UT, USA), and incubated at 37 °C in 5% CO2.

Gene overexpression and knockdown
For transient gene overexpression, the whole-length cDNA of PGK1,
GAPDH and PGM1 were cloned into pcDNA3.1 (b)-Flag vector between
the NheI and EcoRI sites. The whole-length cDNA of ERK2 was cloned
into pcDNA3.1(b)-Myc vector between the NheI and EcoRI sites,
whereas the plasmid PGK1-S203A-Flag was generated by site-directed
mutagenesis using theMuta-nBEST kit (TaKaRa, Kyoto, Japan, Catalog:
R401) according to the manufacturer’s instructions. Then plasmids
were transfected into KYSE150 cells, KYSE70 cells, ECA109 cells, and
TE-8 cells using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. For stable over-
expression of PGK1, the whole-length cDNA of PGK1 was cloned into
vector pBABE puro between the BamHI and EcoRI sites; then, the
plasmids were co-transfected with pCMV-VSV-G and pCMV-Gag-Pol
plasmids into KYSE150 cells, KYSE70 cells, ECA109 cells, and TE-8 cells
using the calcium phosphate method. For stable knockdown of PGK1
and ERK2, pMKO.1-shRNA plasmids encoding specific shRNAs target-
ing human PGK1 (5′–CTGACAAGTTTGATGAGAATG–3′) and human
ERK2 (5′–CAAAGTTCGAGTAGCTATCAA–3′) were transfected, toge-
therwith pCMV-VSV-G andpCMV-Gag-Pol plasmids, into oneHEK293T
packaging cell line using the calcium phosphate method and the virus
supernatants were collected from the medium for the subsequent
infection of KYSE150 cells, KYSE70 cells, ECA109 cells, and TE-8 cells.

Immunoprecipitation
For immunoprecipitationof the FLAG-taggedproteins, cells were lysed
with 0.1% NP-40 buffer containing 50mM Tris-HCl (pH 7.5), 150mM
NaCl, 0.1% NONIDET P-40, 1μg/mL aprotinin, 1μg/mL leupeptin,
1μg/mL pepstatin, and 1mM PMSF. The whole-cell lysates were
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incubated with monoclonal anti-Flag antibody-conjugatedM2 agarose
beads (Sigma) for 4 h at 4 °C. The bound proteins were triple-washed
with 0.1% NP-40 buffer.

Western blot analysis
Standard procedures were followed for western blot analysis. Primary
antibodies used in this study include anti-PGK1 antibody (Wuhan Fine
Biotech Co., Ltd., China, Catalog: FNab06354, dilution 1:1000), Anti-β-
actin (Genscript, Piscataway, NJ, USA, Catalog: A00702, dilution
1:10,000), Anti-p-Ser (Cell Signaling Technology, Danvers, MA, USA,
Catalog:9606, dilution 1:4000), Anti-phospho-Threonine (Cell Signal-
ing Technology, Danvers, MA, USA, Catalog: 9386, dilution 1:1000),
Anti-phospho-Tyrosine (Cell Signaling Technology, Danvers, MA, USA,
Catalog: 9411, dilution 1:2000), Anti-COX IV (Cell Signaling Technol-
ogy, Danvers, MA, USA, Catalog: 4580, dilution 1:1000), Anti-GAPDH
(Cell Signaling Technology, Danvers,MA,USA, Catalog: 85925, dilution
1:10,000), Anti-Thr-338 PDHK1 (Signalway Antibody, Nanjing, China,
Catalog: C11596, dilution 1:500), Anti-PDHK1 (Cell Signaling Technol-
ogy,Danvers,MA,USA,Catalog: 3820, dilution 1:1000), Anti-ERK2 (Cell
Signaling Technology, Danvers, MA, USA, Catalog: 9108, dilution
1:1000), Anti-Flag (Abmart, Shanghai, China, Catalog: M20008, dilu-
tion 1:5000), Anti-PGM1 (Cell Signaling Technology, Danvers,MA,USA,
Catalog: 12098, dilution 1:1000), and Anti-PHGDH (Cell Signaling
Technology, Danvers, MA, USA, Catalog: 66350, dilution 1:1000).
Western blot signals were obtained by detecting chemiluminescence
by using a Typhoon FLA 9500 biomolecular imager (GE Healthcare).

PGK1 purification and enzymatic assay
Flag-tagged PGK1 protein immuno-precipitated from HEK293T cells
was eluted with Flag peptide buffer. The eluent was further purified
and concentrated using an Amicon Ultra Centrifugal Filter (10 kDa
molecular weight cutoff, Millipore) in a buffer containing 50mM Tris-
HCl pH 7.5, 100mM KCl, 5mM MgCl2 and 5% glycerol. PGK1 activity
wasmeasured using purified Flag-tagged PGK1 (0.2μg/mL)mixedwith
DMSO or different concentrations of gemcitabine in the reaction
buffer containing 50mM Tris-HCl (pH 7.6), 8mM MgCl2, 4mM ATP,
0.2mMNADH, 12mM3-phosphoglycerate, and 8 U of GAPDH at 25 °C.
The change in absorbance at 340 nm owing to the decrease of NADH
was measured.

PDH activity assay
The assays were carried out using PDH Enzyme Activity Microplate
Assay Kit (Abcam, Catalog: ab109902) according to themanufacturer’s
guidance. The total intracellular PDH activities of KYSE150 cells,
KYSE70 cells, ECA109 cells, and TE-8 cells were normalized with the
protein expression levels of COX IV.

Cell proliferation assay
Cell proliferation was assessed using the Cell Counting Kit-8
(Dojindo Molecular Technologies, Inc, Kumamoto, Japan, Catalog:
CK04). In brief, cells were seeded in a 96-well plate at 4 × 103 cells per
well and allowed to adhere. Cell Counting Kit-8 solution (10 μL) was
added to each well, and the cells were cultured in 5% CO2 at 37 °C for
2 h. Cell proliferation was determined by measuring the absorbance
at 450 nm.

Mouse xenograft assay
Five-week-oldmale Balb/C nudemicewere obtained (Shanghai SLAC
Laboratory Animal Co., Ltd, Shanghai, China) for in vivo xenografts.
Mice were housed in polycarbonate cages, and provided free access
to food and water with a 12-h light:dark cycle. ESCC cells (~1 × 107)
were subcutaneously injected into nude mice. When the tumor
volumes reached approximately 100mm3, PGK1-OE tumor-bearing
mice were randomly separated into two groups (n = 10 per group) as
follows: PGK1-OE group and PGK1-OE-inhibitor (gemcitabine (Sigma-

Aldrich, Catalog: G6423, 6mg/kg) group. Mice in the group of PGK1-
OE-inhibitor were injected intravenously every other day for eight
times; while the mice in the other group were injected saline.
Tumors were harvested andweighed after 30 days post injection. All
experimental procedures involving animals in this study were
approved by the Fudan University Institutional Animal Care and Use
Committee and were conducted in accordance with the National
Institutes of Health Guidelines for the Care and Use of Laboratory
Animals. The maximal tumor burden permitted by the committee is
2000mm3.

Statistics and reproducibility
Statistical details of experiments and analyses can be found in the
(supplementary)/figure legends and supplementary datasets in
this text. Standard statistical tests were used to analyze the
clinical data, including but not limited to Wilcoxon signed-rank
test, Fisher’s exact test, Kruskal–Wallis test. Specifically, the sta-
tistical significance of differences between the two groups was
calculated with the Wilcoxon rank-sum test and Student’s t-test;
for more than two groups’ comparison, Kruskal–Wallis test was
used. When exploring the association of different groups with
clinical variables, Fisher’s exact test and Wilcoxon rank-sum test
were used for categorical variables and continuous variables,
respectively. As for the correlation analysis between two pro-
teins/phosphoproteins, Pearson’s correlation of correlation
coefficients was used. For the correlation analysis among the
stages in ESCC progression and different HEK293T cell samples,
Spearman’s correlation of correlation coefficients was used.
Kaplan–Meier plots (two-sided log-rank test) were used to
describe the OS. To validate the findings in this study, each
experiment was repeated at least three times independently. In
this study, all analyses were performed in R (version 4.0.2) and
GraphPad Prism (Version 9), and all statistical tests were two-
sided, and statistical significance was considered when p value
<0.05, which was adjusted using the BH procedure. Data in the
boxplot were presented as median (central line), upper and lower
quartiles (box limits), 1.5× interquartile range (whiskers).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteome and phosphoproteome raw datasets generalized in this
study have been deposited to the ProteomeXchange Consortium
(dataset identifier: PXD038961) via the iProX partner repository
(https://www.iprox.cn/)103 under Project ID IPX0002178000. The VCF
files of the WES data files were deposited to the European Genome-
Phenome Archive (EGA) associated with the study EGAS00001006126
under project ID EGAD00001008672. Data are available upon request
through EGA without any restrictions, and will be available perma-
nently. The raw WES data are available in the GSA104 (Genome
Sequence Archive, https://ngdc.cncb.ac.cn/gsa-human/) under
restricted access HRA004153 for data privacy laws related to patient
consent for data sharing, access can be obtained by the Request Data
steps inGSAdatabasewebsite or contacting the corresponding author.
The approximate response time for accession requests is about
2 weeks. Once access has been granted, the data will be available to
download for 3months. The gene expression profiles of ESCC cell lines
in the public dataset Expression 21Q2 in this study are available
in the Depmap database (https://depmap.org/portal/download/?
releasename=DepMap+Public+21Q2&filename=CCLE_expression.csv).
The remaining data are available within the article, Supplementary
Information, or Source Data file. Source Data are provided with
this paper.
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Code availability
No special code was used in this study, and codes for all figures in the
study are available for research purposes from the corresponding
authors on request.
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