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Cellcano: supervised cell type identification
for single cell ATAC-seq data

Wenjing Ma 1, Jiaying Lu 1 & Hao Wu 2,3

Computational cell type identification is a fundamental step in single-cell
omics data analysis. Supervised celltyping methods have gained increasing
popularity in single-cell RNA-seq data because of the superior performance
and the availability of high-quality reference datasets. Recent technological
advances in profiling chromatin accessibility at single-cell resolution (scA-
TAC-seq) have brought new insights to the understanding of epigenetic
heterogeneity. With continuous accumulation of scATAC-seq datasets,
supervised celltyping method specifically designed for scATAC-seq is in
urgent need. Here we develop Cellcano, a computational method based on a
two-round supervised learning algorithm to identify cell types from scATAC-
seq data. The method alleviates the distributional shift between reference
and target data and improves the prediction performance. After system-
atically benchmarking Cellcano on 50 well-designed celltyping tasks from
various datasets, we show that Cellcano is accurate, robust, and computa-
tionally efficient. Cellcano is well-documented and freely available at https://
marvinquiet.github.io/Cellcano/.

The developments of single cell sequencing technologies have
greatly enhanced the understanding of biological mechanisms in
complex tissues. Among all single cell assays, single-cell RNA-
sequencing (scRNA-seq) has been the most popular with over 1200
analytical tools developed1. In scRNA-seq data analysis, computa-
tional cell type identification based on gene expression values of
individual cells (referred to as “celltyping” hereafter) is one of the
most fundamental questions. Many celltyping methods are currently
available2–9 and several benchmark papers have been published10–12.
These methods can be roughly categorized as supervised and
unsupervised. According to benchmark studies, supervised celltyp-
ing methods have advantages over unsupervised ones in accuracy,
robustness and scalability13,14.

Gene expression can be regulated by several factors. Among
them, chromatin accessibility is essential for the interaction between
DNA and regulatory elements, and provides important information for
understanding the transcriptional regulatory mechanism15. Recent

years have also witnessed the shift from measuring chromatin acces-
sibility in bulk samples to single-cell level by single-cell sequencing
assay for transposase-accessible chromatin (scATAC-seq)16. Like in
scRNA-seq, celltyping is alsoan important question in scATAC-seqdata
analysis. However, scATAC-seq data have certain characteristics that
make the celltyping more difficult. First of all, scATAC-seq data are
much sparser due to low read counts17, which results in weaker signals
for distinguishing cell types. Secondly, unlike scRNA-seq, feature space
is not well-defined in scATAC-seq data, which poses difficulties in
extracting useful information. The raw scATAC-seq data can be sum-
marized to counts on genome-wide fixed-size bins, peaks representing
the accessible regions, or genes18. Thus, the determination of feature
space is an additional important step in scATAC-seq celltyping.
Although it is possible to do celltyping through experimental proce-
dures such as Fluorescence-activated cell sorting (FACS)19 or lever-
aging information from multi-omics sequencing techniques such as
SNARE-seq20, these datasets are expensive and limited. Therefore,
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method specifically developed for scATAC-seq celltyping is in
urgent need.

Most existing computational scATAC-seq celltyping methods are
unsupervised and based on prior knowledge21–24. As of now, many
methods have been developed for single-cell omics data integration
while very limited methods have been specifically developed for
scATAC-seq celltyping. Seurat24 and scJoint25 use scRNA-seq as refer-
ence to transfer cell labels to scATAC-seq. Due to the strong data
distributional shift between differentmeasurements, the twomethods
can significantly underperform. Signac26, a recently developed end-to-
end scATAC-seq data analysis pipeline, provides functions for scATAC-
seq data integration and label transfer. EpiAnno was also published
very recently to perform supervised celltyping in scATAC-seq using
scATAC-seq as reference27. A major problem of Signac and EpiAnno is
that they use read counts from called peaks as input, where the peaks
are highly data dependent. Due to technical and biological artifacts,
concordance of peaks can be low between reference and target28,
which would result in a loss of information and undesirable celltyping
results. Additionally, EpiAnno is not computationally scalable for large
datasets.

In this work, we develop a computational celltyping method for
scATAC-seq, named Cellcano. Cellcano implements a two-round
supervised learning algorithm. It first trains a multi-layer perceptron
(MLP) on the reference dataset and predicts cell types in target data.
From the prediction results, Cellcano selects some target cells that are
considered well-predicted (referred to as anchors) to form a new
training set. Next, Cellcano trains a self-Knowledge Distiller model (KD
model)29 on anchors using the predicted pseudo labels, and then apply
the trained KD model to predict cell types for remaining non-anchor
cells. Through extensive real data analyses, we demonstrate that
Cellcano is significantly more accurate, computationally efficient, and
scalable compared to existing methods. Cellcano is well-documented
and freely available at https://marvinquiet.github.io/Cellcano/.

Results
The Cellcano framework
Cellcano uses gene-level summaries from the raw scATAC-seq data as
inputs. Given the raw data, Cellcano incorporates ArchR30 pipeline to
process the raw data and obtain gene scores for both reference and
target datasets (details in Methods section). The choice of the input is
carefully investigated, and the results show that using gene scores
provides good prediction accuracy and computational efficiency
(details in later section). Then Cellcano applies F-test on reference
gene scores to select cell-type-specific genes as features for model
construction31. After obtaining the referenceand target gene scores for
the selected features, Cellcano adopts a two-round supervised cell-
typing strategy, shown in Fig. 1. In the first round, Cellcano trains an
MLPmodel with reference gene scores and predicts cell types in target
data. If the target size is too small, Cellcano stops and returns the
prediction results.When the target size is large enough (e.g., over 1000
cells), Cellcano performs another round of model training to improve
the prediction results. The second round starts with selecting anchor
cells. For that, we first calculate entropy for each cell based on the
predictionprobabilities from thefirst-roundpredictionand then select
cells with lower entropies as anchors. The assumption is that the cells
with lower prediction entropies are more likely to be accurately pre-
dicted. We carefully investigate the anchor cell properties and their
impact on the prediction results (details in later section) and demon-
strate that the assumption holds well in real data. We then use the
anchors with their predicted cell types as new reference data to train
another classifier to predict the non-anchor cells. Here, we use a KD
model as the classifier since it works better when reference data have
imperfect labels. The assumption in the second round is that the
classifier trainedonanchors (which are from the target data) canbetter
capture the data distribution in the target dataset compared to the

classifier trained on the reference dataset, thus improve the prediction
performance.

Celltyping tasks
We collect and process four human peripheral blood mononuclear
cells (PBMCs) datasets and two mouse brain datasets (Supplemen-
tary Table 1; details in Methods section). Among four human PBMCs
datasets, one is cell-sorted by FACS and can be considered as gold
standard. The cell types in other three datasets are annotated based
on computational methods and prior biological knowledge, which
are silver standard32. For the six datasets, we design 50 celltyping
tasks (details in Supplementary Note 1; tasks listed in Supplementary
Dataset 1 and 2), which comprehensively cover different real appli-
cation scenarios. All results in following subsections are based on
these tasks.

The choice of using gene score as input
As mentioned before, scATAC-seq data can be represented in three
different feature spaces: genome-wide fixed-size bins, peaks, and
genes. Genome-wide fixed-size bins have a very large feature space,
which poses heavy computational burden. The peaks are not pre-
defined and require additional steps in calling and unifying peaks.
More importantly, since the peaks will be different for each dataset,
one cannot reuseapre-trainedpredictionmodel for new target data. In
this work, we choose gene scores as input because they are well
defined and have a small feature space. Also, it is possible to further
connect the model trained on gene scores to scRNA-seq models, and
vice versa. There are different ways of summarizing gene scores18,30

and our first question is how to utilize these gene score models. In
total, ArchR provides 54 variations of gene score models (details in
Supplementary Note 2), and its recommended one is shown to be the
most accurate to infer gene expression in matched scATAC-seq and
scRNA-seq data. From real data analysis, we show that using the ArchR
recommended gene score model achieves good celltyping perfor-
mances from Cellcano (details in Supplementary Note 3).

We next evaluate Cellcano with the recommended gene score or
fixed-size 500-bpbin counts as input inbothhumanPBMCs andmouse
brain celltyping tasks. The comparison of prediction performances
from human PBMCs is shown in Fig. 2a and Supplementary Fig. 1a, b.
The two types of inputs produce comparable prediction accuracies in
most celltyping tasks, while results in ARI andmacroF1 show that using
gene scores is significantly better. In mouse brain celltyping tasks,
Cellcanowith gene scores as input is better than usingfixed-size bins in
62 out of 63 prediction results (Fig. 2b, Supplementary Fig. 1c, d),
except one in mouse brain celltyping task using ARI as measurement
(Supplementary Fig. 1c). Overall, these results demonstrate that using
gene scores as inputs works better than using bin counts. In addition,
the computational time for using gene scores as input is much shorter
(Fig. 2c). Considering both computational and prediction perfor-
mances, we decide to use the ArchR recommended gene scores as
Cellcano’s default input.

Properties of Cellcano anchors
Cellcano selects anchor cells from the target dataset based on the
prediction entropy from the first round (details in the Methods sec-
tion) and uses them as reference to predict cell types for non-anchors
in the second round. The number of anchors is specified by user as a
cutoff for the quantiles of entropies. For example, when using 0.3
entropy quantile cutoff, 30% of the cells in the target dataset will be
selected as anchor cells. As an exploration, we first compare the per-
formance between anchors and non-anchors under different quantile
cutoffs (0.1 to 0.6 with step size 0.1) in human PBMCs celltyping tasks
and mouse brain celltyping tasks. Results (details in Supplementary
Note 4) show that the final prediction performance depends on a
balance between anchor numbers and anchor accuracy.
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We then summarize the final prediction performances using dif-
ferent entropy quantiles in human PBMCs celltyping tasks (Fig. 2d,
Supplementary Fig. 2a, b) and mouse brain celltyping tasks (Fig. 2e,
Supplementary Fig. 2c, d). Each celltyping task has a prediction base-
line which is calculated as the average performance by using different
quantile cutoffs. We calculate the gains/losses for using each quantile
cutoff against the average performance. Overall, the performances are
stable when using 0.2 or above as quantile cutoffs (the median Acc
varies within −0.4% ~ +0.9% in human PBMCs celltyping tasks and
−0.9% ~ +1.4% inmouse brain celltyping tasks). The worst performance
occurs when using 0.1 as the quantile cutoff. This can be explained by
the small training size in the second round and the failure of capturing
the target data distribution. In conclusion, when using a moderate
number of anchor cells, Cellcano can produce comparable prediction
results. By default, we use 0.4 as the entropy quantile cutoff in our
software implementation. Moreover, since Seurat also has an anchor
selection step, we perform comparisons and show that Cellcano
anchors are more accurate and can better capture the full scope of
target data distribution (details in Supplementary Note 5).

Cellcano outperforms existing supervised scATAC-seq celltyp-
ing methods
After deciding the input data and the anchor numbers for Cellcano, we
compare Cellcano with other supervised scATAC-seq celltyping

methods. We benchmark Cellcano against six competing supervised
celltyping methods: Seurat24, scJoint25, Signac26, EpiAnno27, ACTINN8,
and SingleR4. Even though Seurat and scJoint are not specifically
designed for scATAC-seq celltyping using scATAC-seq data as refer-
ence, they can take gene scores as input for cell type prediction. For
Signac, we follow its recently published scATAC-seq integration vign-
ettes to first process raw scATAC-seq data into peak counts and then
performdata integration alongwith label transfer. For EpiAnno,weuse
ArchR to call peaks and count reads overlapping the peak regions to
generate peak-by-cell matrices as its input. ACTINN is a deep learning
based method which is very similar to the first-round prediction of
Cellcano. SingleR is a correlation-based supervised scRNA-seq cell-
typing method. According to a recent survey study, SingleR is the
second-best performer behind Seurat in scRNA-seq celltyping12. Even
though ACTINN and SingleR are designed for scRNA-seq celltyping,
they do not make any scRNA-seq specific assumptions on the input
data and thus can take the gene scores as input for scATAC-seq cell-
typing. We include them because we want to explore whether existing
scRNA-seq supervised celltyping methods can be directly applied to
scATAC-seq with gene scores as input. In addition, we also include
another set of comparisons by first removing the batch effect between
reference and target datasets and then use an MLP to transfer cell
labels (details in the next section). We put all the results together to
make direct comparisons on prediction performances. We evaluate

Fig. 1 | Overview of Cellcano framework.Cellcano adopts a two-round prediction
strategy. In the first round,Cellcano trains aMulti-layer Preceptron (MLP)model on
reference gene scores with known cell labels. Then, Cellcano uses the trained MLP
to predict cell types on target gene scores.When the target size is sufficiently large,
Cellcano starts the second round by selecting anchors. With the predicted

probability matrix obtained from the first-round prediction, entropies are calcu-
lated for each cell. Cellswith relatively lowentropies are selectedas anchors to train
a Knowledge Distillation (KD) model. The trained KD model is used to predict cell
types in remaining non-anchors.
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the prediction performances from all methods by different metrics,
including overall accuracy (Acc), adjusted rand index (ARI), macro
F1 score (macroF1), Cohen’s kappa (κ), median F1 score (medianF1),
median precision, and median recall.

We first focus on the celltyping methods and compare the per-
formances where we have one fixed gold standard target data (Fig. 3a,
Supplementary Fig. 3). In total, there are seven celltyping tasks using
different references. We order the boxplot according to the average
performance. The results show that Cellcano achieves the highest
average accuracy as 0.852 in the seven celltyping tasks (Fig. 3a), while
scJoint is a close second with average accuracy as 0.837 and the third
performer ACTINN has an average accuracy as 0.782. The accuracies
from all other methods are significantly lower. For all other metrics
(Supplementary Fig. 3), Cellcano and scJoint in general have the
highest performances compared to all other methods, consistent with
the results in prediction accuracy. Overall, the third best performer is
ACTINN which is a variation of Cellcano first-round prediction. The
performance differences between Cellcano and ACTINN indicate the
performance improvements by introducing our second-round
prediction.

We then evaluate the performances in all other 22 human PBMCs
celltyping tasks (Fig. 3b, Supplementary Fig. 4). Since the celltyping
tasks involve different target datasets, the baseline performance for
each celltyping task can vary. We eliminate such baseline effect by
computing the performance gains/losses for each method against the
average. To be specific, we take the average of the prediction perfor-
mances from all seven methods for each celltyping task, and then
subtract the average from the performances for each method. From

these experimental scenarios, Cellcano ranks first in average accuracy
gain and average ARI gain where Signac ranks the second. Signac
slightly outperforms Cellcano in average macroF1 gain. Overall,
ACTINN ranks the third. Similarly, we evaluate the performances in 21
mouse brain celltyping tasks (Fig. 3c, Supplementary Fig. 5) and
observe that Cellcano again outperforms all other methods with most
accuracy gain as 0.144. In themeantime, Signac acts as the second-best
performer with accuracy gain as 0.134 and ACTINN acts as the third-
best performer with accuracy gain as 0.120. Note that EpiAnno fails to
generate results for two relatively larger (over 32k cells) celltyping
tasks due to memory limit. Taking all 50 celltyping tasks together, we
perform a paired t-test on Accuracy, ARI and macroF1 in three com-
parisons: (1) Cellcano and ACTINN, (2) Cellcano and scJoint, and
(3) Cellcano and Signac. The test statistics show that Cellcano per-
forms significantly better than ACTINN (p-value: 4.857e-3), scJoint (p-
value: 1.645e-3) and Signac (p-value: 0.023) in Accuracy. Results hold
for all comparisons in ARI. For macroF1, Cellcano slightly outperforms
ACTINN while largely outperforms scJoint and Signac. In summary,
Cellcano outperforms all othermethods considering all scenarios: two
systems (human PBMCs and mouse brain), 50 celltyping tasks, and
seven metrics.

To further demonstrate how the two-roundprocedure in Cellcano
outperforms, we use one celltyping task (one FACS-sorted human
PBMCs dataset as target, a combination of four individuals from Sat-
pathy et al.33 PBMCs dataset as reference) as an example to visualize
the prediction results after each round by tSNE and UMAP. Figure 3d
and Supplementary Fig. 6a labels the ground truth cell types provided
by FACS. After the first-round prediction, some cells in B cell and

Fig. 2 | Cellcano’s parameter selection. a–c Focus on exploring performances
between using different input for Cellcano. a, b Accuracies comparison on Cell-
cano using genome-wide fixed-size bins and gene scores as input from (a) n = 29
human PBMCs celltyping tasks and (b) n = 21 mouse brain celltyping tasks. The
red dotted lines are identity lines. c Model training time comparison using the
two different inputs on all n = 50 celltyping tasks. d, e demonstrate the selection
of the appropriate number of anchors. d, e Accuracy gains/losses using different
entropy cutoffs on (d) n = 29 human PBMCs celltyping tasks and (e) n = 21 mouse

brain celltyping tasks. Inside the boxes, the middle line indicates the median of
the data while the bottom and upper lines indicate the 25th percentile and the
75th percentile of the data. Outside the boxes, the whiskers extend to the mini-
mum and maximum values no greater than 1.5 times interquartile range. Those
values outside the range are outliers, which are represented as dots with corre-
sponding colors. Each box in (d) contains n = 29 prediction results and each box
in (e) contains n = 21 prediction results. Source data are provided as a Source
Data file.
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natural killer (NK) are wrongly predicted as Monocytes (Fig. 3e and
Supplementary Fig. 6b, red boxes). After the second round, the wrong
predictions are corrected (Fig. 3f and Supplementary Fig. 6c, red
boxes). Another observation is thatmany CD8 T cells on the boundary
between CD4 T cell and CD8 T cell clusters (black dotted line area) are
not correctly predicted. After the second round,mostof these cells are
correctly assigned back to CD8 T cells. We also visualize the predicted
correctness, entropy, and predicted probabilities of CD8 T cells before
and after second-round prediction (Supplementary Fig. 7a–f). The
increased correctness and confidence in predicting cell types
demonstrate the advantage of having our second-round prediction
with KD model. Similarly in an example mouse brain celltyping task
(Supplementary Fig. 8), some inhibitory neurons are wrongly pre-
dicted as Astrocytes and Microglias are wrongly predicted as Oligo-
dendrocytes after the first-round prediction and those are corrected
after the second-round prediction (Supplementary Fig. 8, red boxes).
These visualization examples demonstrate the advantage of having
our second-round prediction with KD model.

Cellcano works better than prediction with batch effect
removed
A key advantage of the two-round approach inCellcano is that training
a model using anchors in target data alleviates the distributional shift
problem between the reference and target data. The distributional
shift is often causedby batch effect in high-throughput data. This leads
to a question whether our two-round strategy is better than the one
where we first remove batch effect and then apply a direct prediction.

According to a recent benchmark study34, LIGER35 and ComBat36 are
the top performers when integrating scATAC-seq datasets. Although
we have proven that using gene scores as input is the best choice for
Cellcano, in this benchmarking study, genome-wide bins or peaks are
suggested as inputs for the integration tasks. We therefore follow the
suggestions and include four top-performing integration combina-
tions into our comparison: LIGER with genome-wide bins as input,
LIGER with peaks as input, ComBat with genome-wide bins as input
and ComBat with peaks as input as integration methods. We are also
interested in knowing how batch-effect removed methods work with
gene scores as input. Therefore, we added Harmony37, which was
demonstrated to have the bestperformance and shortest running time
in previous batch-effect removal benchmark study in scRNA-seq
data38. In themeantime, we also included Portal39, a recently published
integration method which has not been benchmarked and can take
gene scores as input. After performing the integration between refer-
ence and target datasets, we apply MLP as classifier to transfer cell
labels according to the integrated output (details in Methods section).
We evaluate the prediction performances by Acc, ARI and macroF1.

Asmentioned earlier, we put all prediction results from celltyping
and integration with label transfer into boxplots (Fig. 3a–c, Supple-
mentary Fig. 3a, b, Supplementary Fig. 4a, b, Supplementary Fig. 5a, b)
for a direct comparison. Since boxplots providemarginal distributions
which represent the overall performances, we add heatmaps (Sup-
plementary Figs. 9, 10) with original prediction performances to show
a full scope comparison. We categorize the heatmaps by different
types of celltyping tasks and make the leftmost column have the

Fig. 3 | Performance comparisons between Cellcano and other competing
methods along with illustrations on how Cellcano outperforms. a–c Accuracy
comparisons between Cellcano, Seurat, scJoint, Signac, SingleR, ACTINN, and
EpiAnno along with other integration with label transfer methods on (a) n = 7
celltyping tasks using one human PBMCs FACS-sorted dataset as target, (b) n = 22
more human PBMCs celltyping tasks and (c) n = 21 mouse brain celltyping tasks.
Inside the boxes, themiddle line indicates themedian of the data while the bottom
and upper lines indicate the 25th percentile and the 75th percentile of the data.
Outside the boxes, the whiskers extend to the minimum and maximum values no
greater than 1.5 times interquartile range. Those values outside the range are

outliers, which are represented as dotswith corresponding colors. Note thatwe use
red dots to indicate the mean of the data. Each box in (a) contains n = 7 prediction
results, each box in (b) contains n = 22 prediction results and each box in (c) con-
tains n = 21 prediction results. The boxplots are ordered to have the leftmost
method with the highest average performance. d–f t-SNE plots from one of the
celltyping tasks using FACS-sorted dataset as target that contains n = 21,214 cells.
The cells are coloredwith (d) ground truth labels; (e) Cellcano first-roundpredicted
labels; and (f) Cellcano second-round predicted labels. The highlighted areas
illustrateCellcano’s ability to correctwrongly assigned cells predicted from thefirst
round. Source data are provided as a Source Data file.
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highest average performances. When focusing on all integration with
label transfer methods, ComBat with peaks as input and ComBat with
genome-wide bins as input rank top, however, they do not outperform
the top celltyping performers and thus are inferior to Cellcano. We
generate a low-dimensional visualization before (Supplementary
Fig. 11a) and after the batch effect removal (Supplementary Fig. 11b–e)
on one example where one FACS-sorted PBMCs data is taken as target
and four individuals from Satpathy et al. are combined as reference.
We can observe that even when the batch effect removal methods
work well on integrating reference and target datasets or integrating
individuals (Supplementary Fig. 11c, d using LIGER and Portal), the
celltyping results are not necessarily better. In conclusion, these
comparisons demonstrate that Cellcano can handle data from differ-
ent individuals and batches in both reference and target data. Cellcano
does not need to remove batch effect and steadily outperforms other
integrationwith label transfermethods. Thisprovides the possibility of
training predication models using a large compendium of datasets.

Cellcano is computationally efficient and scalable
We evaluate the computational performance of Cellcano and show all
celltypingmethods’ runtime for all celltyping tasks (Fig. 4a, b). For fair
comparisons, we combine the training time and prediction time into
an overall runtime for Cellcano and EpiAnno. This is because all other
methods need both reference and target datasets as input to do pre-
diction.Here, wedonot consider the data pre-processing time (suchas
the time used for generating peak counts or gene scores from the raw
data). We sort the celltyping tasks by the total number of cells in

reference and target datasets. The results indicate that when the cell
number is low, Cellcano, Seurat and scJoint use about the same run-
time. However, when the cell number starts increasing, Seurat and
scJoint can be three times slower than Cellcano. Signac is 2 ~ 3 slower
than Cellcanowhen predicting cell types for human PBMCs tasks while
its running time is comparable to Cellcano in mouse brain celltyping
tasks. All other methods are 5 ~ 100 times slower than Cellcano. The
reason why ACTINN as one-round prediction is slower than Cellcano is
because ACTINN uses all genes for training while Cellcano selects
3000 genes as features. An additional advantage is that Cellcano is a
supervised celltypingmethod, the pretrainedmodels can be re-used in
future predictions, which means the runtime can be further reduced
with the first-round pretrained model as input.

Discussion
Computational celltyping for single cell omics data is an important
problem. Such methods are under-developed for scATAC-seq data. In
this work, we develop Cellcano, a two-round supervised scATAC-seq
celltyping method. Due to distributional shift, the first-round predic-
tion can be inaccurate, and the anchors can be noisy. The KDmodel in
the second round is thus used to distill the knowledge from a noisily
labeled input.We have shown in 50 celltyping taskswith data from two
systems (human PBMCs and mouse brain) that Cellcano significantly
outperforms other celltyping methods and integration with label
transfermethods both inprediction and computational performances.
Cellcano is also robust against the anchor selection procedure and
batch effects in the data.

Fig. 4 | Computational performance comparison. a, b Run time comparisons
among Cellcano, Seurat, scJoint, Signac, SingleR, ACTINN, and EpiAnno on (a)
n = 29 human PBMCs celltyping tasks and (b) n = 21 mouse brain celltyping tasks.
The x-axis indicates each celltyping task and is ordered by the total number of cells

in the reference and target datasets. Note that EpiAnno fails to generate results for
twomouse brain celltyping tasks where the cell numbers are large. Source data are
provided as a Source Data file.
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Cellcano has several advantages and methodological features.
First, Cellcano uses gene scores as input, which has many advantages
compared to using bin or peak counts: (1) genes have a much smaller
feature space, which significantly improve the computational perfor-
mance; (2) genes are shared among datasets, which provides potential
to be further connected to other modalities, such as gene expression
data. We show that using gene scores works as equally well or even
better than using bin counts as input. Secondly, Cellcano implements
strategies in selecting and using anchors. The MLP in Cellcano can
better capture thenon-linear relationshipbetween the gene scores and
the corresponding cell types. In addition, the KD model is robust to
anchors with noisy labels. Moreover, Cellcano does not need to jointly
operate on the reference and target datasets, like Seurat, Signac, and
scJoint does. This allows Cellcano to be trained on a compendium of
reference datasets and provide a pre-trained model.

There are some further developments for Cellcano we plan to
work on. First, Cellcano can be adapted to other celltyping scenarios,
for example, cross-modality predictions (using scRNA-seq as reference
for scATAC-seq celltyping), celltyping in single-cell DNA methylation,
etc. Another interesting question is to use multimodal reference data,
for example, to jointly use scRNA- and scATAC-seq data as reference to
improve celltyping results for either scRNA- and scATAC-seq data.
Such an approach can potentially further improve prediction
performance.

Methods
Overall scheme of data processing and analysis
Conceptually, the design for the celltyping task is rather straightfor-
ward (Supplementary Fig. 12). Below are the details in each step.
1. Data collection and genome unification: We collected four data-

sets from human PBMCs and two datasets frommouse brains and
then downloaded the raw scATAC-seq data (10X fragment files or
bam files). The original raw data sometimes are aligned to
different versions of genomes, we therefore use liftOver to unify
the human PBMCs data to hg19 genome and the mouse brains
data tomm10 genome. After unification, we use ArchR to process
the raw scATAC-seq data. Note that for Signac, we need an
additional step to convert bam files into fragment files with sinto
(https://timoast.github.io/sinto/installation.html).

2. Preprocess rawdatawithArchR: In ArchR,we set genomehg19 for
human PBMCs datasets and mm10 for mouse brain datasets.
Then, we load the downloaded fragment files or bam files as input
for ArchR to generate the ArrowFiles with createArrowFiles()
function. In the function, two parameters serve with quality con-
trol purpose: minTSS and minFrags. We adjust the thresholds
according to original papers to obtain high-quality cells and we
use default thresholds from ArchR for those datasets with no
explicit quality control information provided.

3. Generate feature matrices: The gene score matrices and genome-
wide fixed-size bin counts are generated using the default setting
in ArchR. The gene score matrix is generated with ArchR
recommended gene score model (details in Supplementary
Note 1). The bin counts are generated with 500-bp bins
genome-wide. This results in around 6 million bins in hg19 and 5
millionbins inmm10. To accelerate thedata loading time,wefilter
out the bins with non-zero counts in less than 1% cells to reduce
the feature space. The peak-by-cell matrices generation needs
additional peak calling steps in ArchR. To reuse the ArrowFiles
generated earlier, we put ArrowFiles from all human PBMCs
datasets together and call peaks. ArchRfirst clusters cells and then
creates pseudo-bulk replicates to assure the reproducibility of
peak calling. Once the peaks are obtained, reads are counted on
the peak regions to generate the peak count matrices. The same
procedure hasbeen performed inmouse brain datasets. Note that
for Signac, we use raw fragment files as input.

4. Cell type curation and construct celltyping tasks: Once having all
generated feature-level matrices, we curate the cell types for
human PBMCs datasets and mouse brain datasets (details in
Supplementary Note 6). Then, according to our prediction task
designs on celltyping (details in Supplementary Note 1; celltyping
tasks listed in Supplementary Dataset 1 and 2), we select one
reference dataset with cell type information and one target
dataset without cell type information to perform Cellcano as well
as other benchmarked supervised celltyping methods. As for the
batch effect removalmethods,wefirst integrate the reference and
target datasets without cell type information. Then, whenwe have
the corrected data, we extract the corrected reference data and
feed in the cell type information. Finally, we use MLP to predict
cell types in the corrected target data.

Input data for Cellcano
Cellcano is a supervised celltyping model, therefore, cell type infor-
mation of the reference dataset is required. As for the input data for-
mat, Cellcano can use either raw scATAC-seq data or processed gene
scorematrices as inputs. Asmentioned in the last section, if the input is
raw scATAC-seq data, ArchR is first performed to generate gene scores
for the reference and target datasets. If users already have derived
gene scores from the reference data, they can also be taken as the
input for Cellcano. In such case, it is recommended to have the same
gene score calculation procedures for reference and target datasets to
assure the first-round prediction performance.

Cellcano model
Oncewehave the gene scores fromboth reference and target datasets,
we assume there areG genes andN cells in the reference, andM cells in
the target data, we define the gene score matrices in reference and
target data as Xref 2 RG×N and Xtgt 2 RG×M , respectively. In the
reference gene scores, we first perform a feature selection step to
select representative features. The features are selected by F-test with
known cell type labels, represented asCref 2 RN × 1.Wehavepreviously
shown that features selected by F-test in reference data can provide
the best results in supervised scRNA-seq celltyping13. By default, we
select top 3000 genes with the largest F-statistics. We obtain the
reference and target gene scores for the selected features and perform
data normalization. To be specific, we normalize the cell-wise gene
scores so that the total gene scores sum to 10,000 for each cell. We
then take log-transformation on the normalized gene scores plus 1.
After that, we perform gene-wise standardization on the log normal-
ized gene scores so that each gene will have zero-mean and unit-
variance. The standardization is a recommended procedure for per-
forming efficient backpropagation in neural networks40.

In Cellcano’s first-round prediction, we first train an MLP model
with a ReLU activation function to capture the non-linear mapping
between the Xref and Cref. For a multi-class classification with K cell
types, the cell type labelCref is one-hot encoded to a binarymatrixwith
dimensionN×K. The one-hot encoding labels the corresponding class
as 1 and all others as 0 for each cell. The last layer of MLP is connected
to a softmax function to convert the outputs from the last layer of the
MLP to probabilities. The softmax function is represented by

σ Zi

� �
=

exp Z i
T

� �

PK
k = 1exp

Zk
T

� � : ð1Þ

Here, Zi represents the outputs from the last layer of theMLP, and
T is a hyperparameter representing the temperature of the softmax
function. The larger the T is, the smoother the σ(Zi) will be.We set T = 1
in the first-roundMLPmodel. During training, we use cross-entropy as
the loss function tominimize the distributional difference between the
one-hot encoded cell type label p and the predicted cell type
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probabilities σ(Z):

H p, σðZ ÞÞð Þ= �
XN

i = 1

XK

k = 1

pik logðσ Zi

� �
kÞ: ð2Þ

After training the MLPmodel, we apply the trained MLP model to
the target data to obtain the probabilities for each cell being in each
cell type.

When the target data size is small, Cellcano takes the classwith the
largest probability as the final predicted cell type for each cell and
stops. When the target size is large (over 1000 cells by default), we
perform a second-round prediction. We first select anchors from the
target, and we aim at selecting accurate anchors, which can also cap-
ture the full scope of target distribution to guide the second-round
prediction. With the first-round predicted probabilities, denoted as qik
for cell i being in cell type k, we calculate the entropy EM×1 for all M cells
as

Ei = �
XK

k = 1

qik logðqik Þ: ð3Þ

When a cell label is more confidently assigned, its entropy over
the predicted probabilities is lower, and the prediction is in general
more accurate (Fig. 4a, Supplementary Fig. 7–8). Once we have
entropies for all cells, we select 40% cells with the lowest entropies as
anchors for each cell type to form the new reference dataset for
second-round training. Sometimes the cell type composition in
anchors can be very skewed, which could affect the performancewhen
training the second-round model. Therefore, we first calculate the
average number of cells per cell type according to the predicted cell
types in the anchors, and then oversample the cell types with fewer
cells to the average number. This can ensure that there are enough
training cells in all cell types in the anchor. Since some anchors will be
mistakenly predicted, we apply the KD model in the second-round
training to deal with the issue, detailed in next section. The model
trained in the second round will be used to predict cell types for non-
anchors. Finally, we combine the cell types predicted for the anchors
(from the first round) and non-anchors (from the second round) as our
final cell type calls.

TheKnowledgeDistiller (KD)model. Although the anchors cannot be
perfectly predicted from the first round, they are important com-
plementary trainingdata for improvingprediction, since these cells are
from the exact same target domain where we previously lack super-
vision. Todealwith trainingdatawith noisy labels, we implement a self-
Knowledge Distiller (KD) model in the second-round training. The KD
technique was originally proposed to transfer the knowledge learned
from a sophisticated teachermodel to a light-weighted studentmodel,
by treating the prediction results produced from the teach model as
the “soft labels” for training the student model41. Inspired by this and
several recent works29,42, we propose to use the teacher-student
interaction to alleviate the noisy label problem. Specifically, the tea-
cher model distills knowledge from both clean supervision and noisy
supervision by producing “soft labels” as the training targets of the
student model. Compared to the “hard labels” that only contain over-
confident 1’s and 0’s, “soft labels” are smoothed and thus more noise-
tolerated43. Also, there are cell types sharing similar profiles during
celltyping which fits the fine-grained classification setting in the KD
model. In Cellcano, we apply a “self-KD model” where we have the
exact same structure for the teachermodel and the studentmodel.We
set them to be vanilla MLPs of two hidden layers with 64 and 16 nodes,
respectively. To let the model be more generalizable, we put the
dropout layer right after the input layer. We use ReLU as the activation
function.

We first train the teacher model with the anchors as input. To
make the label “softer”, we set the temperature T of the softmax
function to be larger. We use cross-entropy loss for the teachermodel,
then train the student model with the teacher’s “soft labels” as well as
the one-hot encoded “hard labels”. The idea is to learn a label
smoothing regularization so that the label distribution can be better
captured. The KD loss function for the student model is a weighted
average of two losses, which is shown in the equation below:

LKD =αH p,qT 1
s

� �
+ 1� αð ÞKL qT2

t ,qT2
s

� �
: ð4Þ

Here, T1 and T2 are temperatures in the softmax functions, and α is
a hyperparameter for balancing the two losses. The first part of the KD
loss is a cross-entropy losswhere the student predictionqs is guidedby
“hard labels” (anchor cell types fromfirst-roundprediction), andweset
the T1 as 1. The second part represents the Kullback–Leibler (KL)
divergence loss which measures the probability distribution distances
between the soft teacher prediction qt and the soft student prediction
qs, where T2 can be adjusted.We set T2 = 3 for the secondpart to soften
the label distribution. Overall, we set α as 0.1 to value more on the
teacher model’s “soft labels”. The KD model is trained for 30 epochs.

Supervised celltyping methods
We benchmark Cellcano to six competing methods: Seurat, scJoint,
Signac, EpiAnno, ACTINN, and SingleR. For all methods except
EpiAnno and Signac, we use the scATAC-seq gene score matrix before
feature selection in the place of scRNA-seq gene expression matrix as
the reference and follow their default procedures for celltyping. In
Seurat, we choose reciprocal principal component analysis (RPCA) to
calculate the joint embedding of reference and target datasets as it is
proved to have better integration performance in a benchmark
paper34. For Signac, we use raw fragment files as input and follow the
vignettes provided by Signac on scATAC-seq data integration. We
notice that overlapping genomics regions to obtain peak count
matrices for target datasets takes a much longer time than generating
gene scores with ArchR. For EpiAnno, we use peak counts matrices as
input. To accommodate the memory limitation of EpiAnno, we set the
hyper parameter peak rate as 0.08 or 0.05 for large input matrices,
while keeping the original 0.03 peak rate for remaining matrices.

Integration with label transfer methods
We benchmark Cellcano to six combinations of batch-effect removal
methods with different feature-level inputs: LIGERwith peaks as input,
LIGER with genome-wide bins as input, ComBat with peaks as input,
ComBatwith genome-wide bins as input, Harmonywith gene scores as
input and Portal with gene scores as input. We use corresponding
feature matrices derived from ArchR as input for each combination
and use the default procedures to remove batch effect between the
reference and target datasets. ComBat returns corrected counts which
has the samedimension as theoriginal datawhile LIGER,Harmony, and
Portal return joint embeddings with size as 20, 50, and 20, respec-
tively. We then split the corrected counts or joint embeddings into
reference and target datasets according to the batch information
before integration and perform celltyping with MLP. Here, the MLP
model has the same structure and settings with the MLP model in
Cellcano’s first-round prediction.

Evaluation Metrics
We choose overall accuracy, ARI and macroF1 for performance eva-
luation. Accuracy describes the number of correctly assigned cells
divided by total number of cells. This can be used as an indicator to
show how well most cells are assigned. ARI measures the cluster con-
cordance between the true labels and predicted labels. MacroF1 treats
all cell types equally, which puts more emphasis on the accuracies of
smaller clusters compared to other metrics. For a fair comparison, we
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also include median F1 score (medianF1), median precision, median
recall, and Cohen’s kappa (κ), which were used in the EpiAnno paper.
ThemedianF1, median prediction andmedian recall regard predicting
each cell type as a binary classification task and calculate the median
performance for each cell type. Cohen’s kappa measures the agree-
ment between labels from the ground truth and the predictor. In
summary, these metrics measure different perspectives and can be
used to fairly reflect prediction performance among different
performers.

Statistics and reproducibility
In this work, we set random seed as 2022 for Python random package
along with tensorflow package to ensure the reproducibility of our
results. No statistical method was used to predetermine sample size.
Cells with low-quality were excluded based on standard scATAC-seq
preprocessing procedures. The experiments were not randomized.
The Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets are publicly available, and the access numbers or the
downloaded websites are provided by the original publications.
The Satpathy et al.3 data used in this study are available in the Gene
Expression Omnibus (GEO) dataset under accession code
“GSE129785”. The Granja et al.44 data is available in the GEO dataset
under accession code “GSE139369”. The 10X PBMCs data is avail-
able in the 10X genomics datasets. We downloaded the raw data
under the Single Cell Multiome ATAC + Gene Expression category
named PBMC from a Healthy Donor – Granulocytes Removed
Through Cell Sorting (10 K) processed by Cell Ranger ARC 2.0.0
(https://www.10xgenomics.com/resources/datasets/pbmc-from-
a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-
1-standard-2-0-0). The FACS PBMCs45 data is available in the GEO
dataset under accession code “GSE123578”. The Lareau et al.45 data
is available in the GEO dataset under accession code “GSE123581”.
The Cusanovich et al.46 data is available in the Mouse Atlas dataset
under Downloads tab (https://atlas.gs.washington.edu/mouse-
atac/data/). The liftOver chain files to convert human genome
build hg38 to hg19 data are available in the UCSC file server saved
as hg38ToHg19.over.chain.gz (https://hgdownload.cse.ucsc.edu/
goldenpath/hg38/liftOver/) and the chain files to convert mouse
genome build mm9 to mm10 data is available in the USCS file
server saved as mm9ToMm10.over.chain.gz (https://hgdownload.
cse.ucsc.edu/goldenpath/mm9/liftOver/). More information on
the datasets can be found in Supplementary Table 1 and details on
data preprocessing are provided in Supplementary Note 2. All
other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files
or from the corresponding author upon reasonable request. The
results of celltyping prediction tasks along with supporting
visualization information that appear in all figure panels are pro-
vided in the Source Data files. Source data are provided with
this paper.

Code availability
Cellcano code is freely available on GitHub (https://github.com/
marvinquiet/Cellcano) and Zenodo (https://doi.org/10.5281/zenodo.
7686209)47. The software package has been released both on PyPI
(https://pypi.org/project/Cellcano/) and Anaconda (https://anaconda.
org/marvinquiet/cellcano-all). Users can choose either option to easily
install our package. Detailed tutorials on installation and usage are also

provided (https://marvinquiet.github.io/Cellcano/). Cellcano python
package is built upon Python and the recommended version is v3.8.
There are several Python package dependencies, including tensorflow
(v2.7.1), anndata (v0.7.4), scanpy (v1.8.2), numpy (v1.19.2), h5py
(v2.10.0), keras and rpy2. R environment and the R package ArchR
(v1.0.1) are also suggested to be installed for generating gene scores.
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